51
|
Ko YJ, Yoo IH, Lee J, Lee J, Yum MS, Ko TS, Kim H, Hwang H, Kim SY, Chae JH, Choi JE, Kim KJ, Lim BC. The Role of Focal Epilepsy Features in Defining SCN1A Mutation-positive Dravet Syndrome as Generalized and Focal Epilepsy. J Epilepsy Res 2021; 11:127-135. [PMID: 35087721 PMCID: PMC8767227 DOI: 10.14581/jer.21019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
Background and Purpose This study was aimed to describe focal epilepsy features of SCN1A mutation-positive Dravet syndrome patients. Methods A total of 82 SCN1A mutation-positive patients were reviewed retrospectively (39 boys and 43 girls). Seizure type and electroencephalography (EEG) findings were investigated according to the stage, disease onset, and steady state (after age 2 years). Long-term video EEG data were used to classify the seizure type. Results Focal seizures at onset and the steady state were found in 54.9% (45/82) and 90% (63/70) of patients, respectively. Afebrile focal seizures were an initial seizure in about one fourth of the patients (22/82, 26.8%). Of 48 seizures captured during long-term video EEG monitoring of 30 patients, 19 seizures were classified as focal onset (39.6%). Of the 19 focal seizures, 12 were either focal motor or focal non-motor seizures, and seven were focal onset bilateral tonic-clonic seizure. Focal epileptiform discharges were more frequent than generalized epileptiform discharges at seizure onset and during the clinical course on conventional EEG (3.7% vs. 0%, 52.9% vs. 32.9%, respectively). Conclusions Our study provides a comprehensive description of focal epilepsy features of SCN1A mutation-positive Dravet syndrome patients. Recognizing these features as defining the clinical spectrum of Dravet syndrome may lead to earlier genetic diagnosis and tailored management.
Collapse
Affiliation(s)
- Young Jun Ko
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Suwon
| | - Il Han Yoo
- Department of Pediatrics, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon
| | - Jiwon Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Korea
| | - Jeehun Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Korea
| | - Mi-Sun Yum
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae-Sung Ko
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hunmin Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Suwon
| | - Hee Hwang
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Suwon
| | - Soo Yeon Kim
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ji-Eun Choi
- Department of Pediatrics, Seoul National University Boramae Hospital, Seoul, Korea
| | - Ki Joong Kim
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Byung Chan Lim
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
52
|
Cardenal-Muñoz E, Auvin S, Villanueva V, Cross JH, Zuberi SM, Lagae L, Aibar JÁ. Guidance on Dravet syndrome from infant to adult care: Road map for treatment planning in Europe. Epilepsia Open 2021; 7:11-26. [PMID: 34882995 PMCID: PMC8886070 DOI: 10.1002/epi4.12569] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
Dravet syndrome (DS) is a severe, rare, and complex developmental and epileptic encephalopathy affecting 1 in 16 000 live births and characterized by a drug‐resistant epilepsy, cognitive, psychomotor, and language impairment, and behavioral disorders. Evidence suggests that optimal treatment of seizures in DS may improve outcomes, even though neurodevelopmental impairments are the likely result of both the underlying genetic variant and the epilepsy. We present an updated guideline for DS diagnosis and treatment, taking into consideration care of the adult patient and nonpharmaceutical therapeutic options for this disease. This up‐to‐date guideline, which is based on an extensive review of the literature and culminates with a new treatment algorithm for DS, is a European consensus developed through a survey involving 29 European clinical experts in DS. This guideline will serve professionals in their clinical practice and, as a consequence, will benefit DS patients and their families.
Collapse
Affiliation(s)
- Elena Cardenal-Muñoz
- Dravet Syndrome Foundation Spain, Member of the EpiCARE ePAG Group, Madrid, Spain
| | - Stéphane Auvin
- APHP. Service de Neurologie Pédiatrique, Hôpital Robert Debré, Paris, France.,INSERM NeuroDiderot, Université de Paris, Paris, France.,Institut Universitaire de France (IUF), Paris, France
| | - Vicente Villanueva
- Refractory Epilepsy Unit, Hospital Universitario y Politécnico La Fe, Member of the ERN EpiCARE, Valencia, Spain
| | - J Helen Cross
- Department of Developmental Neurosciences, UCL NIHR BRC Great Ormond Street Institute of Child Health, London, UK.,Department of Neurology, Great Ormond Street Hospital for Children, Member of the ERN EpiCARE, London, UK
| | - Sameer M Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Member of the ERN EpiCARE, Glasgow, UK.,Institute of Health & Wellbeing, University of Glasgow, Glasgow, UK
| | - Lieven Lagae
- Department of Development and Regeneration, KU Leuven, Member of the ERN EpiCARE, Leuven, Belgium
| | - José Ángel Aibar
- Dravet Syndrome Foundation Spain, Member of the EpiCARE ePAG Group, Madrid, Spain
| |
Collapse
|
53
|
Juandó-Prats C, James E, Bilder DA, McNair L, Kenneally N, Helfer J, Huang N, Vila MC, Sullivan J, Wirrell E, Rico S. DRAVET ENGAGE. Parent caregivers of children with Dravet syndrome: Perspectives, needs, and opportunities for clinical research. Epilepsy Behav 2021; 122:108198. [PMID: 34284219 DOI: 10.1016/j.yebeh.2021.108198] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 11/15/2022]
Abstract
Dravet syndrome (DS) is an intractable developmental and epileptic encephalopathy significantly impacting affected children and their families. A novel, one-time, adeno-associated virus (AAV)-mediated gene regulation therapy was designed to treat the underlying cause of DS, potentially improving the full spectrum of DS manifestations. To ensure the first-in-human clinical trial addresses meaningful outcomes for patients and families, we examined their perspectives, priorities, goals, and desired outcomes in the design phase through a mixed methods approach (quantitative and qualitative). We conducted a non-identifiable parent caregiver survey, shared through a patient advocacy organization (n = 36 parents; children age ≤6 years). Parents were also engaged via three group discussions (n = 10; children age 2-20 years) and optional follow-up in-depth individual interviews (n = 6). Qualitative data analysis followed an inductive interpretive process, and qualitative researchers conducted a thematic analysis with a narrative approach. Survey results revealed most children (94%) were diagnosed by age 1, with onset of seizures at mean age 6.2 months and other DS manifestations before 2 years. The most desired disease aspects to address with potential new disease-modifying therapies were severe seizures (ranked by 92% of caregivers) and communication issues (development, expressive, receptive; 72-83%). Qualitative results showed the need for trial outcomes that recognize the impact of DS on the whole family. Parents eventually hope for trials including children of all ages and were both excited about the potential positive impact of a one-time disease-modifying therapy and mindful of potential long-term implications. Participants reflected on the details and risks of a clinical trial design (e.g., sham procedures) and described the different factors that relate to their decision to participate in a trial. Their main aspirations were to stop neurodevelopmental stagnation, to reduce seizures, and to reduce the impact on their families' wellbeing. To our knowledge, this is the first study within a patient-oriented research framework that specifically explored parents' needs and perceptions regarding clinical trials of a potential disease-modifying therapy for children with a severe, developmental disease, such as DS.
Collapse
Affiliation(s)
- Clara Juandó-Prats
- Dalla Lana School of Public Health, University of Toronto, ON, Canada; Applied Health Research Center, St. Michael's Hospital, Unity Health Toronto, ON, Canada.
| | - Emma James
- Encoded Therapeutics, Inc., South San Francisco, CA, USA
| | | | | | - Noah Kenneally
- Humane Services and Early Learning, MacEwan University, Edmonton, AB, Canada
| | | | - Norman Huang
- Encoded Therapeutics, Inc., South San Francisco, CA, USA
| | | | - Joseph Sullivan
- University of California, San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Elaine Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Salvador Rico
- Encoded Therapeutics, Inc., South San Francisco, CA, USA
| |
Collapse
|
54
|
Li W, Schneider AL, Scheffer IE. Defining Dravet syndrome: An essential pre-requisite for precision medicine trials. Epilepsia 2021; 62:2205-2217. [PMID: 34338318 PMCID: PMC9291974 DOI: 10.1111/epi.17015] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The classical description of Dravet syndrome, the prototypic developmental and epileptic encephalopathy, is of a normal 6-month-old infant presenting with a prolonged, febrile, hemiclonic seizure and showing developmental slowing after age 1 year. SCN1A pathogenic variants are found in >80% of patients. Many patients have atypical features resulting in diagnostic delay and inappropriate therapy. We aimed to provide an evidence-based definition of SCN1A-Dravet syndrome in readiness for precision medicine trials. METHODS Epilepsy patients were recruited to the University of Melbourne Epilepsy Genetics Research Program between 1995 and 2020 by neurologists from around the world. Patients with SCN1A pathogenic variants were reviewed and only those with Dravet syndrome were included. Clinical data, including seizure and developmental course, were analyzed in all patients with SCN1A-Dravet syndrome. RESULTS Two hundred and five patients were studied at a median age of 8.5 years (range 10 months to 60 years); 25 were deceased. The median seizure-onset age was 5.7 months (range 1.5-20.6 months). Initial seizures were tonic-clonic (52%) and hemiclonic (35%), with only 55% being associated with fever. Only 34% of patients presented with status epilepticus (seizure lasting ≥30 minutes). Median time between first and second seizure was 30 days (range 4 hours to 8 months), and seven patients (5%) had at least 6 months between initial seizures. Median ages at onset of second and third seizure types were 9.1 months (range 3 months-25.4 years) and 15.5 months (range 4 months-8.2 years), respectively. Developmental slowing occurred prior to 12 months in 27%. SIGNIFICANCE An evidence-based definition of SCN1A-Dravet syndrome is essential for early diagnosis. We refine the spectrum of Dravet syndrome, based on patterns of seizure onset, type, and progression. Understanding of the full spectrum of SCN1A-Dravet syndrome presentation is essential for early diagnosis and optimization of treatment, especially as precision medicine trials become available.
Collapse
Affiliation(s)
- Wenhui Li
- Children's Hospital of Fudan University, Shanghai, China.,Department of Medicine, Austin Health, Epilepsy Research Centre, University of Melbourne, Heidelberg, Vic., Australia
| | - Amy L Schneider
- Department of Medicine, Austin Health, Epilepsy Research Centre, University of Melbourne, Heidelberg, Vic., Australia
| | - Ingrid E Scheffer
- Department of Medicine, Austin Health, Epilepsy Research Centre, University of Melbourne, Heidelberg, Vic., Australia.,Florey Institute of Neuroscience and Mental Health, Heidelberg, Vic., Australia.,Murdoch Children's Research Institute and Department of Paediatrics, Royal Children's Hospital, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
55
|
Barco TL, Kuchenbuch M, Garcelon N, Neuraz A, Nabbout R. Improving early diagnosis of rare diseases using Natural Language Processing in unstructured medical records: an illustration from Dravet syndrome. Orphanet J Rare Dis 2021; 16:309. [PMID: 34256808 PMCID: PMC8278630 DOI: 10.1186/s13023-021-01936-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/27/2021] [Indexed: 12/01/2022] Open
Abstract
Background The growing use of Electronic Health Records (EHRs) is promoting the application of data mining in health-care. A promising use of big data in this field is to develop models to support early diagnosis and to establish natural history. Dravet Syndrome (DS) is a rare developmental and epileptic encephalopathy that commonly initiates in the first year of life with febrile seizures (FS). Age at diagnosis is often delayed after 2 years, as it is difficult to differentiate DS at onset from FS. We aimed to explore if some clinical terms (concepts) are significantly more used in the electronic narrative medical reports of individuals with DS before the age of 2 years compared to those of individuals with FS. These concepts would allow an earlier detection of patients with DS resulting in an earlier orientation toward expert centers that can provide early diagnosis and care. Methods Data were collected from the Necker Enfants Malades Hospital using a document-based data warehouse, Dr Warehouse, which employs Natural Language Processing, a computer technology consisting in processing written information. Using Unified Medical Language System Meta-thesaurus, phenotype concepts can be recognized in medical reports. We selected individuals with DS (DS Cohort) and individuals with FS (FS Cohort) with confirmed diagnosis after the age of 4 years. A phenome-wide analysis was performed evaluating the statistical associations between the phenotypes of DS and FS, based on concepts found in the reports produced before 2 years and using a series of logistic regressions. Results We found significative higher representation of concepts related to seizures’ phenotypes distinguishing DS from FS in the first phases, namely the major recurrence of complex febrile convulsions (long-lasting and/or with focal signs) and other seizure-types. Some typical early onset non-seizure concepts also emerged, in relation to neurodevelopment and gait disorders. Conclusions Narrative medical reports of individuals younger than 2 years with FS contain specific concepts linked to DS diagnosis, which can be automatically detected by software exploiting NLP. This approach could represent an innovative and sustainable methodology to decrease time of diagnosis of DS and could be transposed to other rare diseases.
Collapse
Affiliation(s)
- Tommaso Lo Barco
- Department of Pediatric Neurology, Necker-Enfants Malades Hospital, APHP, Centre de Référence Épilepsies Rares, Member of ERN EPICARE, Université de Paris, Paris, France.,Child Neuropsychiatry, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Mathieu Kuchenbuch
- Department of Pediatric Neurology, Necker-Enfants Malades Hospital, APHP, Centre de Référence Épilepsies Rares, Member of ERN EPICARE, Université de Paris, Paris, France.,Imagine Institute, INSERM, UMR 1163, Université de Paris, 75015, Paris, France
| | - Nicolas Garcelon
- Imagine Institute, INSERM, UMR 1163, Université de Paris, 75015, Paris, France
| | - Antoine Neuraz
- Université de Paris, Paris, France.,INSERM, UMR1138, Centre de Recherche Des Cordeliers, Paris, France.,Department of Medical Informatics, University Hospital Necker-Enfants Malades, APHP, Paris, France
| | - Rima Nabbout
- Department of Pediatric Neurology, Necker-Enfants Malades Hospital, APHP, Centre de Référence Épilepsies Rares, Member of ERN EPICARE, Université de Paris, Paris, France. .,Imagine Institute, INSERM, UMR 1163, Université de Paris, 75015, Paris, France. .,Université de Paris, Paris, France.
| |
Collapse
|
56
|
Xu YX, Zhong JM. [Early identification and diagnosis of epilepsy related to fever sensitivity]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:749-754. [PMID: 34266536 PMCID: PMC8292662 DOI: 10.7499/j.issn.1008-8830.2105007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Febrile seizures are the most common nervous system disease in childhood, and most children have a good prognosis. However, some epilepsy cases are easily induced by fever and are characterized by "fever sensitivity", and it is difficult to differentiate such cases from febrile seizures. Epilepsy related to fever sensitivity includes hereditary epilepsy with febrile seizures plus, Dravet syndrome, and PCDH19 gene-related epilepsy. This article mainly describes the clinical manifestations of these three types of epilepsy and summarizes their clinical features in the early stage of disease onset, so as to achieve early identification, early diagnosis, and early intervention to improve prognosis.
Collapse
Affiliation(s)
- Yu-Xin Xu
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang 330006, China
| | - Jian-Min Zhong
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang 330006, China
| |
Collapse
|
57
|
Gowda VK, Battina M, Vegda H, Srinivasan VM, Chikara SK, Mishra A, Shivappa SK, Benakappa N. Cohort of Phenotype, Genotype, and Outcome of SCN Developmental and Epileptic Encephalopathies from Southern Part of India. J Pediatr Genet 2021; 12:32-41. [PMID: 36684540 PMCID: PMC9848768 DOI: 10.1055/s-0041-1731020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/03/2021] [Indexed: 01/25/2023]
Abstract
The SCN encephalopathies are one of the rare early childhood intractable epileptic encephalopathies associated with pleomorphic seizures, cognitive decline, motor, and behavioral abnormalities that begin in early infancy. There is a dearth of data on phenotype and genotype of SCN encephalopathies from the Indian subcontinent, hence we are reporting clinical and molecular profile and outcome of SCN developmental and epileptic encephalopathies. This is a retrospective chart review of SCN developmental and epileptic encephalopathies in a tertiary care center, Bangalore, India between January 2015 and March 2020. All children with clinical features of SCN developmental and epileptic encephalopathies and confirmed with pathogenic variants were included. A total of 50 cases of SCN developmental and epileptic encephalopathies were analyzed, 31 of them were male and the mean age of presentation was 7.8 months. Precipitating factors for the first episode of seizure were fever and vaccination accounting for 33 and 8 children, respectively. Forty (80%) children had prolonged seizures and 15 (30%) had epileptic spasms. All children had a normal birth history and normal development before the onset of seizures, which was followed by developmental delay and regression. Thirty (60%) children had behavioral difficulties, notable hyperactivity, and autistic features. Neuroimaging and the initial electroencephalogram (EEG) were normal in all patients. The mean age of abnormal EEG was 14 months. The various subtypes of SCN variants were SCN1A in 31 children followed by SCN2A and SCN9A in eight children each and SCN1B in three children. Frameshift and nonsense mutations were associated with more severe phenotype and poor outcome compared with missense mutations. Thirty-four patients partially responded to treatment and the rest were refractory. The results of genetic testing were used to guide treatment; sodium channel blocking antiepileptic drugs were discontinued in 15 patients and sodium channel blocking agents were started in 3 patients with partial response. Three out of four children on stiripentol had a partial response. The SCN developmental and epileptic encephalopathies can present with epileptic spasms in addition to other types of seizures. Epileptic spasms are more common in nonsense and frameshift mutations. The outcome is poor in children with epileptic spasms compared with those without epileptic spasms. Genetic testing helps to select antiepileptic drugs that lead to seizure reduction.
Collapse
Affiliation(s)
- Vykuntaraju K. Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bengaluru, Karnataka, India,Address for correspondence Vykuntaraju K. Gowda, DM Department of Pediatric Neurology, Indira Gandhi Institute of Child HealthNear NIMHANS, Bengaluru, Karnataka 560029India
| | - Manojna Battina
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bengaluru, Karnataka, India
| | - Hemadri Vegda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bengaluru, Karnataka, India
| | - Varunvenkat M. Srinivasan
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bengaluru, Karnataka, India
| | - Surendra K. Chikara
- Department of Molecular Genetics, Bione, Brigade IRV Center, Bangalore, Karnataka, India
| | - Adrija Mishra
- Department of Molecular Genetics, Bione, Brigade IRV Center, Bangalore, Karnataka, India
| | - Sanjay K. Shivappa
- Department of Pediatrics, Indira Gandhi Institute of Child Health, Bengaluru, Karnataka, India
| | - Naveen Benakappa
- Department of Pediatrics, Indira Gandhi Institute of Child Health, Bengaluru, Karnataka, India
| |
Collapse
|
58
|
Liu X, Shen Q, Zheng G, Guo H, Lu X, Wang X, Yang X, Cao Z, Chen J. Gene and Phenotype Expansion of Unexplained Early Infantile Epileptic Encephalopathy. Front Neurol 2021; 12:633637. [PMID: 34163418 PMCID: PMC8215605 DOI: 10.3389/fneur.2021.633637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The genetic aetiology of epileptic encephalopathy (EE) is growing rapidly based on next generation sequencing (NGS) results. In this single-centre study, we aimed to investigate a cohort of Chinese children with early infantile epileptic encephalopathy (EIEE). Methods: NGS was performed on 50 children with unexplained EIEE. The clinical profiles of children with pathogenic variants were characterised and analysed in detail. Conservation analysis and homology modelling were performed to predict the impact of STXBP1 variant on the protein structure. Results: Pathogenic variants were identified in 17 (34%) of 50 children. Sixteen variants including STXBP1 (n = 2), CDKL5 (n = 2), PAFAH1B1, SCN1A (n = 9), SCN2A, and KCNQ2 were de novo, and one (PIGN) was a compound heterozygous variant. The phenotypes of the identified genes were broadened. PIGN phenotypic spectrum may include EIEE. The STXBP1 variants were predicted to affect protein stability. Significance: NGS is a useful diagnostic tool for EIEE and contributes to expanding the EIEE-associated genotypes. Early diagnosis may lead to precise therapeutic interventions and can improve the developmental outcome.
Collapse
Affiliation(s)
- Xianyu Liu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qiyang Shen
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Guo Zheng
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hu Guo
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaopeng Lu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyu Wang
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Yang
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zixuan Cao
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Chen
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
59
|
Abstract
Pathogenic variants in epilepsy genes result in a spectrum of clinical severity. One source of phenotypic heterogeneity is modifier genes that affect expressivity of a primary pathogenic variant. Mouse epilepsy models also display varying degrees of clinical severity on different genetic backgrounds. Mice with heterozygous deletion of Scn1a (Scn1a+/−) model Dravet syndrome, a severe epilepsy most often caused by SCN1A haploinsufficiency. Scn1a+/− mice recapitulate features of Dravet syndrome, including spontaneous seizures, sudden death, and cognitive/behavioral deficits. Scn1a+/− mice maintained on the 129S6/SvEvTac (129) strain have normal lifespan and no spontaneous seizures. In contrast, admixture with C57BL/6J (B6) results in epilepsy and premature lethality. We previously mapped Dravet Survival Modifier loci (Dsm1-Dsm5) responsible for strain-dependent differences in survival. Gabra2, encoding the GABAA α2 subunit, was nominated as a candidate modifier at Dsm1. Direct measurement of GABAA receptors found lower abundance of α2-containing receptors in hippocampal synapses of B6 mice relative to 129. We also identified a B6-specific single nucleotide deletion within Gabra2 that lowers mRNA and protein by nearly 50%. Repair of this deletion reestablished normal levels of Gabra2 expression. In this study, we used B6 mice with a repaired Gabra2 allele to evaluate Gabra2 as a genetic modifier of severity in Scn1a+/− mice. Gabra2 repair restored transcript and protein expression, increased abundance of α2-containing GABAA receptors in hippocampal synapses, and rescued epilepsy phenotypes of Scn1a+/− mice. These findings validate Gabra2 as a genetic modifier of Dravet syndrome, and support enhancing function of α2-containing GABAA receptors as treatment strategy for Dravet syndrome.
Collapse
|
60
|
Ricci R, Colasante G. CRISPR/dCas9 as a Therapeutic Approach for Neurodevelopmental Disorders: Innovations and Limitations Compared to Traditional Strategies. Dev Neurosci 2021; 43:253-261. [PMID: 33940579 DOI: 10.1159/000515845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/10/2021] [Indexed: 11/19/2022] Open
Abstract
Brain development is a complex process that requires a series of precise and coordinated events to take place. When alterations in some of those events occur, neurodevelopmental disorders (NDDs) may appear, with their characteristic symptoms, including cognitive, social motor deficits, and epilepsy. While pharmacologic treatments have been the only therapeutic options for many years, more recently the research is turning to the direct removal of the underlying genetic cause of each specific NDD. This is possible thanks to the increased knowledge of genetic basis of those diseases and the enormous advances in genome-editing tools. Together with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based strategies, there is a great development also of nuclease defective Cas9 (dCas9) tools that, with an extreme flexibility, allow the recruitment of specific protein functions to the desired genomic sites. In this work, we review dCas9-based tools and discuss all the published applications in the setting of therapeutic approaches for NDDs at the preclinical level. In particular, dCas9-based therapeutic strategies for Dravet syndrome, transcallosal dysconnectivity caused by mutations in C11orf46 gene, and Fragile X syndrome are presented and discussed. A direct comparison with other possible therapeutic strategies, such as classic gene replacement or CRISPR/Cas9-based strategies, is provided. We also highlight not only those aspects that constitute a clear advantage compared to previous strategies but also the main technical hurdles related to their applications that need to be overcome.
Collapse
Affiliation(s)
- Raffaele Ricci
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, Ospedale San Raffaele, Milan, Italy.,Translational and Molecular Medicine PhD Program, DIMET, University of Milan-Bicocca, Milan, Italy
| | - Gaia Colasante
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
61
|
Rampazzo ACM, Dos Santos RRP, Maluf FA, Simm RF, Marson FAL, Ortega MM, de Aguiar PHP. Dravet syndrome and Dravet syndrome-like phenotype: a systematic review of the SCN1A and PCDH19 variants. Neurogenetics 2021; 22:105-115. [PMID: 33937968 DOI: 10.1007/s10048-021-00644-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Dravet syndrome (DS) is a rare and severe epileptic syndrome of childhood with prevalence between 1/22,000 and 1/49,900 of live births. Approximately 80% of patients with this syndrome present SCN1A pathogenic variants, which encodes an alpha subunit of a neural voltage-dependent sodium channel. There is a correlation between PCDH19 pathogenic variants, encodes the protocadherin 19, and a similar disease to DS known as DS-like phenotype. The present review aims to clarify the differences between DS and DS-like phenotype according to the SCN1A and PCDH19 variants. A systematic review was conducted in PubMed and Virtual Health Library (VHL) databases, using "Dravet Syndrome" and "Severe Myoclonic Epilepsy in Infancy (SMEI)" search words, selecting cohort of studies published in journal with impact factor of two or greater. The systematic review was according to the Preferred Reporting Items for Systematic Review and Meta-Analysis recommendations. Nineteen studies were included in the present review, and a significant proportion of patients with DS-carrying SCN1A was greater than patients with DS-like phenotype-harboring PCDH19 variants (76.6% versus 23.4%). When clinical and genetic data were correlated, autism was predominantly observed in patients with DS-like-carrying PCDH19 variants compared to SCN1A variant carriers (62.5% versus 37.5%, respectively, P-value = 0.044, P-value corrected = 0.198). In addition, it was noticed a significant predisposition to hyperthermia during epilepsy crisis in individuals carrying PCDH19 variants (P-value = 0.003; P-value corrected = 0.027). The present review is the first to point out differences between the DS and DS-like phenotype according to the SCN1A and PCDH19 variants.
Collapse
Affiliation(s)
- Ana Carla Mondek Rampazzo
- Pontifical Catholic University of Paraná, 485 Jockei Club Ave., Londrina, Paraná, 86072-360, Brazil.
| | | | - Fernando Arfux Maluf
- Pontifical Catholic University of Paraná, 485 Jockei Club Ave., Londrina, Paraná, 86072-360, Brazil
| | - Renata Faria Simm
- Neurophysiology Clinic, Clinics Hospital, São Paulo, São Paulo, Brazil
| | - Fernando Augusto Lima Marson
- Laboratory of Cellular and Molecular Biology of Tumors and Bioactive Compounds and Laboratory of Human and Medical Genetics, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Manoela Marques Ortega
- Laboratory of Cellular and Molecular Biology of Tumors and Bioactive Compounds and Laboratory of Human and Medical Genetics, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Paulo Henrique Pires de Aguiar
- Laboratory of Cellular and Molecular Biology of Tumors and Bioactive Compounds and Laboratory of Human and Medical Genetics, São Francisco University, Bragança Paulista, São Paulo, Brazil
- Department of Neurosurgery, Postgraduate Program in Health Sciences, State Public Medical Assistance Institute, Department of Neurosurgery, Santa Paula Hospital, São Paulo, São Paulo, Brazil
- Research and Innovation Department of the Cellular and Molecular Biology Laboratory of the ABC, School of Medicine, Santo André, São Paulo, São Paulo, Brazil
- Department of Neurology, School of Medicine, Pontifical Catholic University of São Paulo, São Paulo, Brazil
| |
Collapse
|
62
|
Paprocka J, Lewandowska A, Zieliński P, Kurczab B, Emich-Widera E, Mazurczak T. Dravet Syndrome-The Polish Family's Perspective Study. J Clin Med 2021; 10:1903. [PMID: 33924914 PMCID: PMC8125154 DOI: 10.3390/jcm10091903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/27/2022] Open
Abstract
AIM The aim of the paper is to study the prevalence of Dravet Syndrome (DS) in the Polish population and indicate different factors other than seizures reducing the quality of life in such patients. METHOD A survey was conducted among caregivers of patients with DS by the members of the Polish support group of the Association for People with Severe Refractory Epilepsy DRAVET.PL. It included their experience of the diagnosis, seizures, and treatment-related adverse effects. The caregivers also completed the PedsQL survey, which showed the most important problems. The survey received 55 responses from caregivers of patients with DS (aged 2-25 years). RESULTS Prior to the diagnosis of DS, 85% of patients presented with status epilepticus lasting more than 30 min, and the frequency of seizures (mostly tonic-clonic or hemiconvulsions) ranged from 2 per week to hundreds per day. After the diagnosis of DS, patients remained on polytherapy (drugs recommended in DS). Before diagnosis, some of them had been on sodium channel blockers. Most patients experienced many adverse effects, including aggression and loss of appetite. The frequency of adverse effects was related to the number of drugs used in this therapy, which had an impact on the results of the PedsQL form, particularly in terms of the physical and social spheres. Intensive care unit stays due to severe status epilepticus also had an influence on the results of the PedsQL form. CONCLUSIONS Families must be counseled on non-pharmacologic strategies to reduce seizure risk, including avoidance of triggers that commonly induce seizures (including hyperthermia, flashing lights and patterns, sleep abnormalities). In addition to addressing seizures, holistic care for a patient with Dravet syndrome must involve a multidisciplinary team that includes specialists in physical, occupational and speech therapy, neuropsychology, social work.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Anita Lewandowska
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (A.L.); (P.Z.); (B.K.)
| | - Piotr Zieliński
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (A.L.); (P.Z.); (B.K.)
| | - Bartłomiej Kurczab
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (A.L.); (P.Z.); (B.K.)
| | - Ewa Emich-Widera
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Tomasz Mazurczak
- Clinic of Paediatric Neurology, National Research Institute of Mother and Child, 01-211 Warsaw, Poland;
| |
Collapse
|
63
|
Voskobiynyk Y, Battu G, Felker SA, Cochran JN, Newton MP, Lambert LJ, Kesterson RA, Myers RM, Cooper GM, Roberson ED, Barsh GS. Aberrant regulation of a poison exon caused by a non-coding variant in a mouse model of Scn1a-associated epileptic encephalopathy. PLoS Genet 2021; 17:e1009195. [PMID: 33411788 PMCID: PMC7790302 DOI: 10.1371/journal.pgen.1009195] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022] Open
Abstract
Dravet syndrome (DS) is a developmental and epileptic encephalopathy that results from mutations in the Nav1.1 sodium channel encoded by SCN1A. Most known DS-causing mutations are in coding regions of SCN1A, but we recently identified several disease-associated SCN1A mutations in intron 20 that are within or near to a cryptic and evolutionarily conserved "poison" exon, 20N, whose inclusion is predicted to lead to transcript degradation. However, it is not clear how these intron 20 variants alter SCN1A expression or DS pathophysiology in an organismal context, nor is it clear how exon 20N is regulated in a tissue-specific and developmental context. We address those questions here by generating an animal model of our index case, NM_006920.4(SCN1A):c.3969+2451G>C, using gene editing to create the orthologous mutation in laboratory mice. Scn1a heterozygous knock-in (+/KI) mice exhibited an ~50% reduction in brain Scn1a mRNA and Nav1.1 protein levels, together with characteristics observed in other DS mouse models, including premature mortality, seizures, and hyperactivity. In brain tissue from adult Scn1a +/+ animals, quantitative RT-PCR assays indicated that ~1% of Scn1a mRNA included exon 20N, while brain tissue from Scn1a +/KI mice exhibited an ~5-fold increase in the extent of exon 20N inclusion. We investigated the extent of exon 20N inclusion in brain during normal fetal development in RNA-seq data and discovered that levels of inclusion were ~70% at E14.5, declining progressively to ~10% postnatally. A similar pattern exists for the homologous sodium channel Nav1.6, encoded by Scn8a. For both genes, there is an inverse relationship between the level of functional transcript and the extent of poison exon inclusion. Taken together, our findings suggest that poison exon usage by Scn1a and Scn8a is a strategy to regulate channel expression during normal brain development, and that mutations recapitulating a fetal-like pattern of splicing cause reduced channel expression and epileptic encephalopathy.
Collapse
Affiliation(s)
- Yuliya Voskobiynyk
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer’s Disease Center, and Evelyn F. McKnight Brain Institute, Departments, of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Gopal Battu
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
| | - Stephanie A. Felker
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
- Department of Department of Biotechnology Science and Engineering, University of Alabama in Huntsville, Hunstville, AL, United States AL, United States of America
| | - J. Nicholas Cochran
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
| | - Megan P. Newton
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Laura J. Lambert
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Robert A. Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Richard M. Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
| | - Gregory M. Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
| | - Erik D. Roberson
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer’s Disease Center, and Evelyn F. McKnight Brain Institute, Departments, of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America
- * E-mail: (GSB); (EDR)
| | - Gregory S. Barsh
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
- * E-mail: (GSB); (EDR)
| |
Collapse
|
64
|
Abstract
PURPOSE OF REVIEW This review will illustrate the electroclinical description of Dravet syndrome, highlighting the difficulty to understand the correlation between the SCN1A mutation and clinical characteristics, including the frequent comorbidities. Therefore, the efficacy of the new treatment options, which now become available, should not only focus on seizure frequency reduction but also on the long-term effects on these comorbidities, such as intellectual disability, motor and sleep problems. RECENT FINDINGS Comprehensive guidelines for a more standardized treatment in children with Dravet syndrome have been published. First-line and second-line treatments actually include only a few antiseizure medications, such as valproate, clobazam, stiripentol, topiramate and bromide. Cannabidiol and fenfluramine were shown to be very effective drugs and will become standard second-line drugs in Dravet syndrome. There are preliminary data showing that both drugs also have a positive effect on quality of life and on cognitive functioning. Genetic treatments in Dravet syndrome most likely will dramatically change the natural course of this refractory epilepsy syndrome. SUMMARY A better understanding of the full clinical picture is necessary to understand the potential value of new treatment options in Dravet syndrome. Treatment nowadays with the newer drugs becomes much more standardized and effective, and this will have a positive effect on long-term overall outcome.
Collapse
|
65
|
Cognitive, behavioral, and social functioning in children and adults with Dravet syndrome. Epilepsy Behav 2020; 112:107319. [PMID: 32858363 DOI: 10.1016/j.yebeh.2020.107319] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 11/23/2022]
Abstract
AIM The objective of the study was to delineate the cognitive, behavioral, psychological, and social functioning of individuals with Dravet syndrome. METHOD Cognitive, behavioral, and social functioning were assessed in patients with Dravet syndrome by comprehensive, age-appropriate standardized neuropsychological testing. Primary caregivers completed standardized measures regarding participants' behavior, psychological status, adaptive functioning, and social skills, including their involvement with intervention services. RESULTS The cohort comprised 45 patients, aged 2-30 years. Intellectual functioning ranged from average intellect to profound intellectual disability, with a decrease in cognitive and adaptive functioning with age. Only 6 children were able to complete the entire neuropsychological battery and showed a range of cognitive profiles. Five of 6 participants scored within the average range on Affect Recognition and 5/6 on Motor Free Visual Perception tests. Twenty-one (58%) participants had deficits in social skills and 18/27 (67%) in social communication, with 10 participants, who did not yet have a diagnosis of autism spectrum disorder (ASD), screening positive for social communication deficits. Behavioral problems were frequently reported, with attention problems in 24 (65%) and atypicality in 25 (70%). Despite this, parents reported that psychological services were the least utilized health interventions. CONCLUSIONS Cognitive functioning varies markedly in individuals with Dravet syndrome, with some patients demonstrating global impairment while others have a discordant neuropsychological profile. Behavioral, psychological, social problems, and ASD are common. Social deficits should be reviewed to identify those who warrant ASD assessment. Early identification of behavioral and psychological disorders and targeted use of psychological intervention are essential components of holistic care in Dravet syndrome.
Collapse
|
66
|
The effects of sex on prevalence and mechanisms underlying neurodevelopmental disorders. HANDBOOK OF CLINICAL NEUROLOGY 2020. [PMID: 32958183 DOI: 10.1016/b978-0-444-64150-2.00025-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Neurodevelopmental disorders occur more frequently in boys than in girls and often differ in presentation between the sexes. The sex differences in prevalence and presentation of autism spectrum disorder, intellectual disability, communication disorders, specific learning disabilities, attention deficit/hyperactivity disorder, Tourette's syndrome, and epilepsy are discussed, as well as sex differences in the patterns of comorbidities between these disorders. Prominent theories have been proposed to explain sex biases. These include genetic factors, sex hormones, sociological factors, cognitive differences between the sexes, and environmental insult. Despite the large body of research reviewed in this chapter, many aspects of sex-related effects in neurodevelopmental disorders remain poorly understood.
Collapse
|
67
|
Specchio N, Pietrafusa N, Doccini V, Trivisano M, Darra F, Ragona F, Cossu A, Spolverato S, Battaglia D, Quintiliani M, Luigia Gambardella M, Rosati A, Mei D, Granata T, Dalla Bernardina B, Vigevano F, Guerrini R. Efficacy and safety of Fenfluramine hydrochloride for the treatment of seizures in Dravet syndrome: A real‐world study. Epilepsia 2020; 61:2405-2414. [DOI: 10.1111/epi.16690] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Nicola Specchio
- Rare and Complex Epilepsy Unit Department of Neuroscience Bambino Gesù Children’s Hospital IRCCS Full Member of European Reference Network EpiCARE Rome Italy
| | - Nicola Pietrafusa
- Rare and Complex Epilepsy Unit Department of Neuroscience Bambino Gesù Children’s Hospital IRCCS Full Member of European Reference Network EpiCARE Rome Italy
| | - Viola Doccini
- Neuroscience Department A. Meyer Children's Hospital–University of Florence Full Member of European Reference Network EpiCARE Florence Italy
| | - Marina Trivisano
- Rare and Complex Epilepsy Unit Department of Neuroscience Bambino Gesù Children’s Hospital IRCCS Full Member of European Reference Network EpiCARE Rome Italy
| | - Francesca Darra
- Child Neuropsychiatry Department of Surgical Sciences Dentistry, Gynecology, and Pediatrics University of Verona Verona Italy
| | - Francesca Ragona
- Department of Pediatric Neuroscience IRCCS Foundation Carlo Besta Neurological Institute Full Member of the European Reference Network EpiCare Milan Italy
| | - Alberto Cossu
- Child Neuropsychiatry Department of Surgical Sciences Dentistry, Gynecology, and Pediatrics University of Verona Verona Italy
| | - Silvia Spolverato
- Child Neuropsychiatry Department of Surgical Sciences Dentistry, Gynecology, and Pediatrics University of Verona Verona Italy
| | - Domenica Battaglia
- Pediatric Neurology Department of Woman and Child Health and Public Health Child Health Area A. Gemelli University Polyclinic Foundation IRCCS Catholic University of the Sacred Heart Rome Italy
| | - Michela Quintiliani
- Pediatric Neurology Department of Woman and Child Health and Public Health Child Health Area A. Gemelli University Polyclinic Foundation IRCCS Catholic University of the Sacred Heart Rome Italy
| | - Maria Luigia Gambardella
- Pediatric Neurology Department of Woman and Child Health and Public Health Child Health Area A. Gemelli University Polyclinic Foundation IRCCS Catholic University of the Sacred Heart Rome Italy
| | - Anna Rosati
- Neuroscience Department A. Meyer Children's Hospital–University of Florence Full Member of European Reference Network EpiCARE Florence Italy
| | - Davide Mei
- Neuroscience Department A. Meyer Children's Hospital–University of Florence Full Member of European Reference Network EpiCARE Florence Italy
| | - Tiziana Granata
- Department of Pediatric Neuroscience IRCCS Foundation Carlo Besta Neurological Institute Full Member of the European Reference Network EpiCare Milan Italy
| | - Bernardo Dalla Bernardina
- Child Neuropsychiatry Department of Surgical Sciences Dentistry, Gynecology, and Pediatrics University of Verona Verona Italy
| | - Federico Vigevano
- Department of Neuroscience Bambino Gesù Children’s Hospital IRCCS Full Member of European Reference Network EpiCARE Rome Italy
| | - Renzo Guerrini
- Child Neuropsychiatry Department of Surgical Sciences Dentistry, Gynecology, and Pediatrics University of Verona Verona Italy
| |
Collapse
|
68
|
Fadila S, Quinn S, Turchetti Maia A, Yakubovich D, Ovadia M, Anderson KL, Giladi M, Rubinstein M. Convulsive seizures and some behavioral comorbidities are uncoupled in the
Scn1a
A1783V
Dravet syndrome mouse model. Epilepsia 2020; 61:2289-2300. [DOI: 10.1111/epi.16662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Saja Fadila
- Goldschleger Eye Research Institute Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
- Department of Human Molecular Genetics and Biochemistry Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Shir Quinn
- Goldschleger Eye Research Institute Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
- Department of Human Molecular Genetics and Biochemistry Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Ana Turchetti Maia
- Goldschleger Eye Research Institute Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Daniel Yakubovich
- Department of Physiology and Pharmacology Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
- Schneider Children's Medical Center of Israel Petah Tikvah Israel
| | - Mor Ovadia
- Goldschleger Eye Research Institute Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
- Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel
| | - Karen L. Anderson
- Goldschleger Eye Research Institute Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Moshe Giladi
- Department of Physiology and Pharmacology Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Moran Rubinstein
- Goldschleger Eye Research Institute Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
- Department of Human Molecular Genetics and Biochemistry Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
- Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel
| |
Collapse
|
69
|
Menezes LFS, Sabiá Júnior EF, Tibery DV, Carneiro LDA, Schwartz EF. Epilepsy-Related Voltage-Gated Sodium Channelopathies: A Review. Front Pharmacol 2020; 11:1276. [PMID: 33013363 PMCID: PMC7461817 DOI: 10.3389/fphar.2020.01276] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022] Open
Abstract
Epilepsy is a disease characterized by abnormal brain activity and a predisposition to generate epileptic seizures, leading to neurobiological, cognitive, psychological, social, and economic impacts for the patient. There are several known causes for epilepsy; one of them is the malfunction of ion channels, resulting from mutations. Voltage-gated sodium channels (NaV) play an essential role in the generation and propagation of action potential, and malfunction caused by mutations can induce irregular neuronal activity. That said, several genetic variations in NaV channels have been described and associated with epilepsy. These mutations can affect channel kinetics, modifying channel activation, inactivation, recovery from inactivation, and/or the current window. Among the NaV subtypes related to epilepsy, NaV1.1 is doubtless the most relevant, with more than 1500 mutations described. Truncation and missense mutations are the most observed alterations. In addition, several studies have already related mutated NaV channels with the electrophysiological functioning of the channel, aiming to correlate with the epilepsy phenotype. The present review provides an overview of studies on epilepsy-associated mutated human NaV1.1, NaV1.2, NaV1.3, NaV1.6, and NaV1.7.
Collapse
Affiliation(s)
- Luis Felipe Santos Menezes
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Elias Ferreira Sabiá Júnior
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Diogo Vieira Tibery
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Lilian Dos Anjos Carneiro
- Faculdade de Medicina, Centro Universitário Euro Americano, Brasília, Brazil.,Faculdade de Medicina, Centro Universitário do Planalto Central, Brasília, Brazil
| | - Elisabeth Ferroni Schwartz
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
70
|
Shafrir Y. Response to: Deng L, Ma A, Wood N, Ardern-Holmes S. Vaccination management in an asymptomatic child with a novel SCN1A variant and family history of status epilepticus following vaccination: A case report on a potential new direction in personalised medicine. Seizure. 2020;78:49-52. Seizure 2020; 80:226. [DOI: 10.1016/j.seizure.2020.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 10/23/2022] Open
|
71
|
Hamad A, Ferrari-Marinho T, Caboclo L, Thomé U, Fernandes R. Nonconvulsive status epilepticus in epileptic encephalopathies in childhood. Seizure 2020; 80:212-220. [DOI: 10.1016/j.seizure.2020.06.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/16/2022] Open
|
72
|
Wheless JW, Fulton SP, Mudigoudar BD. Dravet Syndrome: A Review of Current Management. Pediatr Neurol 2020; 107:28-40. [PMID: 32165031 DOI: 10.1016/j.pediatrneurol.2020.01.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
Dravet syndrome is a debilitating epileptic encephalopathy of childhood with few treatment options available in the United States before 2018. In the modern era, new genetic testing options will allow diagnosis closer to disease onset. Three new medicines-stiripentol, cannabidiol, and fenfluramine-have documented efficacy and safety as adjunctive therapies for treating pharmacoresistant Dravet syndrome. Early diagnosis resulting in earlier treatment with these and other medications may improve prognosis of long-term outcomes, including less severity of cognitive, motor, and behavioral impairments. New rescue medication formulations can now manage acute seizures and help prevent status epilepticus via intranasal, buccal, and intramuscular routes as opposed to rectal administration. Preventing status epilepticus and generalized tonic-clonic seizures could potentially lower the risk of sudden unexpected death in epilepsy. With this changing landscape in diagnostic and treatment options comes questions and controversies for the practicing clinician, especially as diagnostic techniques outpace clinical treatment strategies. Critical decision points include when to start treatment, what pharmacotherapy combinations to try first, which rescue medication to recommend, and how to advise parents on controversial topics (e.g., immunizations). Given that most patients require polypharmacy, clinicians must be cognizant of drug-drug interactions between new medicines, existing anti-epileptic drugs, and other medications to manage comorbidities and must have an understanding of available therapeutic drug monitoring strategies and pharmacokinetic parameters. This review places new diagnostic, treatment and acute care options into the modern era and provides an overview of the challenges and opportunities facing the pediatric epileptologist in this rapidly changing landscape.
Collapse
Affiliation(s)
- James W Wheless
- Division of Pediatric Neurology, Department of Pediatrics & Neurology, University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, Tennessee.
| | - Stephen P Fulton
- Division of Pediatric Neurology, Department of Pediatrics & Neurology, University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Basanagoud D Mudigoudar
- Division of Pediatric Neurology, Department of Pediatrics & Neurology, University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, Tennessee
| |
Collapse
|
73
|
Mei D, Cetica V, Marini C, Guerrini R. Dravet syndrome as part of the clinical and genetic spectrum of sodium channel epilepsies and encephalopathies. Epilepsia 2020; 60 Suppl 3:S2-S7. [PMID: 31904125 DOI: 10.1111/epi.16054] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 01/01/2023]
Abstract
Dravet syndrome is the most studied form of genetic epilepsy. It has now been clarified that the clinical spectrum of the syndrome does not have firmly established boundaries. The core phenotype is characterized by intractable, mainly clonic, seizures precipitated by increased body temperature with onset in the first year of life and subsequent appearance of multiple seizures types still precipitated by, but not confined to, hyperthermia. Cognitive impairment is invariably present when the full syndrome is manifested. This complex of symptoms is related to mutations in the SCN1A gene, which are often de novo and constitutional but can also be inherited from a parent with less severe clinical manifestations or be present as somatic mosaicism. Inheritance from less severely affected individuals, at times only having experienced a few febrile seizures, and differences in severity, even within the same family, with a subset of patients only showing fragments of the syndrome, testify to a remarkable phenotypic heterogeneity as far as severity, but less so clinical phenomenology, are concerned. This characteristic, together with underascertainment of SCN1A mutations due to human errors or technical limitations in uncovering alternative pathogenic molecular mechanisms, such as genomic rearrangements or poison exons, has contributed to making clinicians and geneticists suspicious that Dravet syndrome may be caused by more than one gene. This opinion has been further amplified by the description of other genetic disorders, such as PCDH19- or CHD2-related epilepsy, whose phenotypes have included fragments of the Dravet phenotypic spectrum, and by the suboptimal characterization of phenotypes associated with mutations in SCN1B, HCN1, KCN2A, GABRA1, GABRG2, and STXBP1. The SCN1A gene-Dravet syndrome association is in our opinion highly specific. However, because the syndrome spectrum is wide, fragments of it can at times also be manifested in other genetic epilepsy syndromes, thereby leading to overdiagnosis of Dravet syndrome beyond SCN1A. Dravet syndrome is in turn a severe SCN1A phenotype within a continuum of SCN1A-related clinical phenomenology.
Collapse
Affiliation(s)
- Davide Mei
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Meyer Children's Hospital-University of Florence, Florence, Italy
| | - Valentina Cetica
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Meyer Children's Hospital-University of Florence, Florence, Italy
| | - Carla Marini
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Meyer Children's Hospital-University of Florence, Florence, Italy
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Meyer Children's Hospital-University of Florence, Florence, Italy.,IRCCS Stella Maris Foundation, Pisa, Italy
| |
Collapse
|
74
|
Brunklaus A, Du J, Steckler F, Ghanty II, Johannesen KM, Fenger CD, Schorge S, Baez-Nieto D, Wang HR, Allen A, Pan JQ, Lerche H, Heyne H, Symonds JD, Zuberi SM, Sanders S, Sheidley BR, Craiu D, Olson HE, Weckhuysen S, DeJonge P, Helbig I, Van Esch H, Busa T, Milh M, Isidor B, Depienne C, Poduri A, Campbell AJ, Dimidschstein J, Møller RS, Lal D. Biological concepts in human sodium channel epilepsies and their relevance in clinical practice. Epilepsia 2020; 61:387-399. [PMID: 32090326 DOI: 10.1111/epi.16438] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Voltage-gated sodium channels (SCNs) share similar amino acid sequence, structure, and function. Genetic variants in the four human brain-expressed SCN genes SCN1A/2A/3A/8A have been associated with heterogeneous epilepsy phenotypes and neurodevelopmental disorders. To better understand the biology of seizure susceptibility in SCN-related epilepsies, our aim was to determine similarities and differences between sodium channel disorders, allowing us to develop a broader perspective on precision treatment than on an individual gene level alone. METHODS We analyzed genotype-phenotype correlations in large SCN-patient cohorts and applied variant constraint analysis to identify severe sodium channel disease. We examined temporal patterns of human SCN expression and correlated functional data from in vitro studies with clinical phenotypes across different sodium channel disorders. RESULTS Comparing 865 epilepsy patients (504 SCN1A, 140 SCN2A, 171 SCN8A, four SCN3A, 46 copy number variation [CNV] cases) and analysis of 114 functional studies allowed us to identify common patterns of presentation. All four epilepsy-associated SCN genes demonstrated significant constraint in both protein truncating and missense variation when compared to other SCN genes. We observed that age at seizure onset is related to SCN gene expression over time. Individuals with gain-of-function SCN2A/3A/8A missense variants or CNV duplications share similar characteristics, most frequently present with early onset epilepsy (<3 months), and demonstrate good response to sodium channel blockers (SCBs). Direct comparison of corresponding SCN variants across different SCN subtypes illustrates that the functional effects of variants in corresponding channel locations are similar; however, their clinical manifestation differs, depending on their role in different types of neurons in which they are expressed. SIGNIFICANCE Variant function and location within one channel can serve as a surrogate for variant effects across related sodium channels. Taking a broader view on precision treatment suggests that in those patients with a suspected underlying genetic epilepsy presenting with neonatal or early onset seizures (<3 months), SCBs should be considered.
Collapse
Affiliation(s)
- Andreas Brunklaus
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Juanjiangmeng Du
- Cologne Center for Genomics, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Felix Steckler
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Ismael I Ghanty
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Katrine M Johannesen
- Deparment of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center Filadelfia, Dianalund, Denmark.,Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Christina Dühring Fenger
- Deparment of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center Filadelfia, Dianalund, Denmark.,Amplexa Genetics, Odense, Denmark
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.,School of Pharmacy, University College London, London, UK
| | - David Baez-Nieto
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Hao-Ran Wang
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Andrew Allen
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Henrike Heyne
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.,Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Joseph D Symonds
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Sameer M Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.,School of Medicine, University of Glasgow, Glasgow, UK
| | - Stephan Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Beth R Sheidley
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Dana Craiu
- Carol Davila University of Medicine, Department of Clinical Neurosciences, Pediatric Neurology Discipline, Bucharest, Romania.,Alexandru Obregia Hospital, Pediatric Neurology Clinic, Bucharest, Romania
| | - Heather E Olson
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Sarah Weckhuysen
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Peter DeJonge
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Neuropediatrics, University of Kiel, Kiel, Germany
| | - Hilde Van Esch
- Department of Human Genetics and Center for Human Genetics, Laboratory for Genetics of Cognition, University Hospitals Leuven, Leuven, Belgium
| | - Tiffany Busa
- Genetics Department, Timone Enfants University Hospital Center, Public Assistance-Marseille Hospitals, Marseille, France
| | - Matthieu Milh
- Medical Genetics and Functional Genomics, National Institute of Health and Medical Research, Mixed Unit of Research S910, Aix-Marseille University, Marseille, France.,Hematology Laboratory, Le Mans Hospital Center, Le Mans, France
| | - Bertrand Isidor
- Medical Genetics Department, Nantes University Hospital Center, Nantes, France
| | - Christel Depienne
- Institute of Human Genetics, Essen University Hospital, Essen, Germany.,Brain and Spinal Cord Institute, National Institute of Health and Medical Research, Unit 1127, National Center for Scientific Research, Mixed Unit of Research 7225, Sorbonne Universities, Pierre and Marie Curie University, Mixed Unit of Research S 1127, Brain & Spine Institute, Paris, France
| | - Annapurna Poduri
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | | | - Jordane Dimidschstein
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Rikke S Møller
- Deparment of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center Filadelfia, Dianalund, Denmark.,Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Dennis Lal
- Cologne Center for Genomics, University of Cologne, University Hospital Cologne, Cologne, Germany.,Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts.,Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts.,Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
75
|
Niibori Y, Lee SJ, Minassian BA, Hampson DR. Sexually Divergent Mortality and Partial Phenotypic Rescue After Gene Therapy in a Mouse Model of Dravet Syndrome. Hum Gene Ther 2020; 31:339-351. [PMID: 31830809 PMCID: PMC7087406 DOI: 10.1089/hum.2019.225] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Dravet syndrome (DS) is a neurodevelopmental genetic disorder caused by mutations in the SCN1A gene encoding the α subunit of the NaV1.1 voltage-gated sodium channel that controls neuronal action potential firing. The high density of this mutated channel in GABAergic interneurons results in impaired inhibitory neurotransmission and subsequent excessive activation of excitatory neurons. The syndrome is associated with severe childhood epilepsy, autistic behaviors, and sudden unexpected death in epilepsy. Here, we compared the rescue effects of an adeno-associated viral (AAV) vector coding for the multifunctional β1 sodium channel auxiliary subunit (AAV-NaVβ1) with a control vector lacking a transgene. We hypothesized that overexpression of NaVβ1 would facilitate the function of residual voltage-gated channels and improve the DS phenotype in the Scn1a+/− mouse model of DS. AAV-NaVβ1 was injected into the cerebral spinal fluid of neonatal Scn1a+/− mice. In untreated control Scn1a+/− mice, females showed a higher degree of mortality than males. Compared with Scn1a+/− control mice, AAV-NaVβ1-treated Scn1a+/− mice displayed increased survival, an outcome that was more pronounced in females than males. In contrast, behavioral analysis revealed that male, but not female, Scn1a+/− mice displayed motor hyperactivity, and abnormal performance on tests of fear and anxiety and learning and memory. Male Scn1a+/− mice treated with AAV-NaVβ1 showed reduced spontaneous seizures and normalization of motor activity and performance on the elevated plus maze test. These findings demonstrate sex differences in mortality in untreated Scn1a+/− mice, an effect that may be related to a lower level of intrinsic inhibitory tone in female mice, and a normalization of aberrant behaviors in males after central nervous system administration of AAV-NaVβ1. The therapeutic efficacy of AAV-NaVβ1 in a mouse model of DS suggests a potential new long-lasting biological therapeutic avenue for the treatment of this catastrophic epilepsy.
Collapse
Affiliation(s)
- Yosuke Niibori
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Shiron J Lee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Berge A Minassian
- Department of Pediatrics, University of Texas Southwest Medical Center, Dallas, Texas
| | - David R Hampson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada.,Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
76
|
Colasante G, Lignani G, Brusco S, Di Berardino C, Carpenter J, Giannelli S, Valassina N, Bido S, Ricci R, Castoldi V, Marenna S, Church T, Massimino L, Morabito G, Benfenati F, Schorge S, Leocani L, Kullmann DM, Broccoli V. dCas9-Based Scn1a Gene Activation Restores Inhibitory Interneuron Excitability and Attenuates Seizures in Dravet Syndrome Mice. Mol Ther 2020; 28:235-253. [PMID: 31607539 PMCID: PMC6952031 DOI: 10.1016/j.ymthe.2019.08.018] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 01/05/2023] Open
Abstract
Dravet syndrome (DS) is a severe epileptic encephalopathy caused mainly by heterozygous loss-of-function mutations of the SCN1A gene, indicating haploinsufficiency as the pathogenic mechanism. Here we tested whether catalytically dead Cas9 (dCas9)-mediated Scn1a gene activation can rescue Scn1a haploinsufficiency in a mouse DS model and restore physiological levels of its gene product, the Nav1.1 voltage-gated sodium channel. We screened single guide RNAs (sgRNAs) for their ability to stimulate Scn1a transcription in association with the dCas9 activation system. We identified a specific sgRNA that increases Scn1a gene expression levels in cell lines and primary neurons with high specificity. Nav1.1 protein levels were augmented, as was the ability of wild-type immature GABAergic interneurons to fire action potentials. A similar enhancement of Scn1a transcription was achieved in mature DS interneurons, rescuing their ability to fire. To test the therapeutic potential of this approach, we delivered the Scn1a-dCas9 activation system to DS pups using adeno-associated viruses. Parvalbumin interneurons recovered their firing ability, and febrile seizures were significantly attenuated. Our results pave the way for exploiting dCas9-based gene activation as an effective and targeted approach to DS and other disorders resulting from altered gene dosage.
Collapse
Affiliation(s)
- Gaia Colasante
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Simone Brusco
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudia Di Berardino
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Jenna Carpenter
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Serena Giannelli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Nicholas Valassina
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Simone Bido
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Raffaele Ricci
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valerio Castoldi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Marenna
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Timothy Church
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Luca Massimino
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giuseppe Morabito
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy; IRCCS Ospedale Policlinico San Martino, University of Genova, 16132 Genova, Italy
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; CNR Institute of Neuroscience, 20129 Milan, Italy.
| |
Collapse
|
77
|
Abstract
SCN1A gene mutations are associated with epilepsy and neurodevelopmental disorders. This study aimed to explore the genotype and phenotype spectrum of SCN1A gene related epilepsy. Epileptic patients who were treated in the Children's Hospital of Chongqing Medical University from January 2015 to July 2018 and identified as having SCN1A mutations by targeted next-generation sequencing were included. Clinical manifestations of all patients were analyzed retrospectively. A total of 24 patients with SCN1A mutations were identified. The age of epilepsy onset ranged from 2 months to 2 years and 9 months. Multiple seizure types were observed. A total of 13 (54.2%) patients had three or more types of seizures. Overall, 16 (66.7%) patients had status epilepticus, 11 (45.8%) patients had fever sensitivity, and nine (37.5%) patients had seizures after vaccination. Moreover, 15 (62.5%) patients showed varying degrees of cognitive and motor development retardation. In addition, two patients had mutations inherited from one of their parents and 22 (91.7%) patients had de novo mutations. The following SCN1A mutation types were identified: missense (16 patients, 66.7%), nonsense (four patients, 16.7%), splice site (one patient), frameshift (one patient), and large deletions (two patients). Overall, 23 of the patients received antiepileptic therapy, of which eight (33.3%) patients had no decrease in seizures and 11 (45.8%) patients had more than 50% decrease in seizure frequency. Three patients had poor response to antiepileptic drug therapy before attempting ketogenic diet, after which seizure frequency decreased by 50%. A total of 10 (41.7%) patients had used sodium channel blockers before accurate diagnosis, all of whom showed ineffective or even aggravated seizure response. SCN1A mutations are associated with a spectrum of seizure-related disorders, ranging from a relatively mild form of febrile seizures to a more severe epileptic encephalopathy known as Dravet syndrome. Early diagnosis of SCN1A mutation-associated epilepsy can aid in appropriate choice of antiepileptic drugs for treatment and reducing adverse sequelae.
Collapse
|
78
|
Damiano JA, Deng L, Li W, Burgess R, Schneider AL, Crawford NW, Buttery J, Gold M, Richmond P, Macartney KK, Hildebrand MS, Scheffer IE, Wood N, Berkovic SF. SCN1A Variants in vaccine-related febrile seizures: A prospective study. Ann Neurol 2019; 87:281-288. [PMID: 31755124 DOI: 10.1002/ana.25650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Febrile seizures may follow vaccination. Common variants in the sodium channel gene, SCN1A, are associated with febrile seizures, and rare pathogenic variants in SCN1A cause the severe developmental and epileptic encephalopathy Dravet syndrome. Following vaccination, febrile seizures may raise the specter of poor outcome and inappropriately implicate vaccination as the cause. We aimed to determine the prevalence of SCN1A variants in children having their first febrile seizure either proximal to vaccination or unrelated to vaccination compared to controls. METHODS We performed SCN1A sequencing, blind to clinical category, in a prospective cohort of children presenting with their first febrile seizure as vaccine proximate (n = 69) or as non-vaccine proximate (n = 75), and children with no history of seizures (n = 90) recruited in Australian pediatric hospitals. RESULTS We detected 2 pathogenic variants in vaccine-proximate cases (p.R568X and p.W932R), both of whom developed Dravet syndrome, and 1 in a non-vaccine-proximate case (p.V947L) who had febrile seizures plus from 9 months. All had generalized tonic-clonic seizures lasting >15 minutes. We also found enrichment of a reported risk allele, rs6432860-T, in children with febrile seizures compared to controls (odds ratio = 1.91, 95% confidence interval = 1.31-2.81). INTERPRETATION Pathogenic SCN1A variants may be identified in infants with vaccine-proximate febrile seizures. As early diagnosis of Dravet syndrome is essential for optimal management and outcome, SCN1A sequencing in infants with prolonged febrile seizures, proximate to vaccination, should become routine. ANN NEUROL 2020;87:281-288.
Collapse
Affiliation(s)
- John A Damiano
- Department of Medicine, University of Melbourne, Austin Hospital, Heidelberg, Victoria, Australia
| | - Lucy Deng
- National Centre for Immunisation Research and Surveillance, Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Children's Hospital Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Wenhui Li
- Department of Medicine, University of Melbourne, Austin Hospital, Heidelberg, Victoria, Australia
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Rosemary Burgess
- Department of Medicine, University of Melbourne, Austin Hospital, Heidelberg, Victoria, Australia
| | - Amy L Schneider
- Department of Medicine, University of Melbourne, Austin Hospital, Heidelberg, Victoria, Australia
| | - Nigel W Crawford
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Jim Buttery
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Infection and Immunity, Monash Children's Hospital, Department of Paediatrics, Monash Centre for Health Care Research and Implementation, Monash University, Clayton, Victoria, Australia
| | - Michael Gold
- Discipline of Paediatrics, School of Medicine, Women's and Children's Hospital, University of Adelaide, Adelaide, South Australia, Australia
| | - Peter Richmond
- Vaccine Trials Group, Wesfarmer's Centre of Vaccines and Infectious Disease, Telethon Kids Institute, and Department of General Paediatrics, Perth Children's Hospital, Nedlands, Western Australia, Australia
- Division of Paediatrics, School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Kristine K Macartney
- National Centre for Immunisation Research and Surveillance, Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Children's Hospital Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Michael S Hildebrand
- Department of Medicine, University of Melbourne, Austin Hospital, Heidelberg, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Ingrid E Scheffer
- Department of Medicine, University of Melbourne, Austin Hospital, Heidelberg, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Florey Institute of Neurosciences and Mental Health, Melbourne, Victoria, Australia
| | - Nicholas Wood
- National Centre for Immunisation Research and Surveillance, Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Children's Hospital Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Samuel F Berkovic
- Department of Medicine, University of Melbourne, Austin Hospital, Heidelberg, Victoria, Australia
| |
Collapse
|
79
|
Till Á, Zima J, Fekete A, Bene J, Czakó M, Szabó A, Melegh B, Hadzsiev K. Mutation spectrum of the SCN1A gene in a Hungarian population with epilepsy. Seizure 2019; 74:8-13. [PMID: 31765958 DOI: 10.1016/j.seizure.2019.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/30/2019] [Accepted: 10/29/2019] [Indexed: 01/05/2023] Open
Abstract
PURPOSE The vast majority of mutations responsible for epilepsy syndromes such as genetic epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome (DS) occur in the gene encoding the type 1 alpha subunit of neuronal voltage-gated sodium channel (SCN1A). METHODS 63 individuals presenting with either DS or GEFS + syndrome phenotype were screened for SCN1A gene mutation using Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA). RESULTS Our research study identified 15 novel pathogen mutations in the SCN1A gene of which 12 appeared to be missense mutations with addition of two frameshift-deletions and one in-frame deletion. The distribution of clinical phenotypes in patients carrying SCN1A mutations was as follows: twelve patients had classical DS, three patients had GEFS + syndrome and two relatives of DS patients were suffering from febrile seizures. CONCLUSIONS Our study highlights the phenotypic and genotypic heterogeneities of DS and GEFS + with the important aim of gaining a deeper understanding of SCN1A-related disorders. This study also represents the first genetic analysis of the SCN1A gene in a Hungarian cohort with the DS and GEFS + syndrome phenotype.
Collapse
Affiliation(s)
- Ágnes Till
- Department of Medical Genetics, Medical School, Clinical Center, University of Pécs, Pécs, Hungary
| | - Judith Zima
- Department of Medical Genetics, Medical School, Clinical Center, University of Pécs, Pécs, Hungary
| | - Anett Fekete
- Department of Medical Genetics, Medical School, Clinical Center, University of Pécs, Pécs, Hungary
| | - Judit Bene
- Department of Medical Genetics, Medical School, Clinical Center, University of Pécs, Pécs, Hungary; Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Márta Czakó
- Department of Medical Genetics, Medical School, Clinical Center, University of Pécs, Pécs, Hungary; Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - András Szabó
- Department of Medical Genetics, Medical School, Clinical Center, University of Pécs, Pécs, Hungary; Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Béla Melegh
- Department of Medical Genetics, Medical School, Clinical Center, University of Pécs, Pécs, Hungary; Szentágothai Research Center, University of Pécs, Pécs, Hungary.
| | - Kinga Hadzsiev
- Department of Medical Genetics, Medical School, Clinical Center, University of Pécs, Pécs, Hungary; Szentágothai Research Center, University of Pécs, Pécs, Hungary
| |
Collapse
|
80
|
Beck VC, Hull JM, Isom LL. Beyond Dravet Syndrome: Characterization of a Novel, More Severe SCN1A-Linked Epileptic Encephalopathy. Epilepsy Curr 2019; 19:266-268. [PMID: 31257984 PMCID: PMC6891832 DOI: 10.1177/1535759719858339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Not All SCN1A Epileptic Encephalopathies Are Dravet Syndrome: Early Profound Thr226Met Phenotype Sadleir LG, Mountier EI, Gill D, et al. Neurology. 2017;89(10):1035-1042. OBJECTIVE To define a distinct SCN1A developmental and epileptic encephalopathy with early onset, profound impairment, and movement disorder. METHODS A case series of 9 children were identified with a profound developmental and epileptic encephalopathy and SCN1A mutation. RESULTS We identified 9 children 3 to 12 years of age; 7 were male. Seizure onset was at 6 to 12 weeks with hemiclonic seizures, bilateral tonic-clonic seizures, or spasms. All children had profound developmental impairment and were nonverbal and nonambulatory, and 7 of 9 required a gastrostomy. A hyperkinetic movement disorder occurred in all and was characterized by dystonia and choreoathetosis with prominent oral dyskinesia and onset from 2 to 20 months of age. Eight had a recurrent missense SCN1A mutation, p.Thr226Met. The remaining child had the missense mutation p.Pro1345Ser. The mutation arose de novo in 8 of 9; for the remaining case, the mother was negative and the father was unavailable. CONCLUSIONS Here, we present a phenotype-genotype correlation for SCN1A. We describe a distinct SCN1A phenotype, early infantile SCN1A encephalopathy, which is readily distinguishable from the well-recognized entities of Dravet syndrome and genetic epilepsy with febrile seizures plus. This disorder has an earlier age at onset, profound developmental impairment, and a distinctive hyperkinetic movement disorder, setting it apart from Dravet syndrome. Remarkably, 8 of 9 children had the recurrent missense mutation p.Thr226Met. SCN1A Gain of Function in Early Infantile Encephalopathy Berecki G, Bryson A, Terhag J, et al. Ann Neurol. 2019; 85:514-525. OBJECTIVE To elucidate the biophysical basis underlying the distinct and severe clinical presentation in patients with the recurrent missense SCN1A variant, p.Thr226Met. Patients with this variant show a well-defined genotype-phenotype correlation and present with developmental and early infantile epileptic encephalopathy that is far more severe than typical SCN1A Dravet syndrome. METHODS Whole cell patch clamp and dynamic action potential clamp were used to study T226M Nav 1.1 channels expressed in mammalian cells. Computational modeling was used to explore the neuronal scale mechanisms that account for altered action potential firing. RESULTS T226M channels exhibited hyperpolarizing shifts of the activation and inactivation curves and enhanced fast inactivation. Dynamic action potential clamp hybrid simulation showed that model neurons containing T226M conductance displayed a left shift in rheobase relative to control. At current stimulation levels that produced repetitive action potential firing in control model neurons, depolarization block and cessation of action potential firing occurred in T226M model neurons. Fully computationally simulated neuron models recapitulated the findings from dynamic action potential clamp and showed that heterozygous T226M models were also more susceptible to depolarization block. INTERPRETATION From a biophysical perspective, the T226M mutation produces gain of function. Somewhat paradoxically, our data suggest that this gain of function would cause interneurons to more readily develop depolarization block. This "functional dominant negative" interaction would produce a more profound disinhibition than seen with haploinsufficiency that is typical of Dravet syndrome and could readily explain the more severe phenotype of patients with T226M mutation.
Collapse
|
81
|
Salgueiro-Pereira AR, Duprat F, Pousinha PA, Loucif A, Douchamps V, Regondi C, Ayrault M, Eugie M, Stunault MI, Escayg A, Goutagny R, Gnatkovsky V, Frassoni C, Marie H, Bethus I, Mantegazza M. A two-hit story: Seizures and genetic mutation interaction sets phenotype severity in SCN1A epilepsies. Neurobiol Dis 2019; 125:31-44. [DOI: 10.1016/j.nbd.2019.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/14/2018] [Accepted: 01/14/2019] [Indexed: 01/07/2023] Open
|
82
|
Chiron C. Stiripentol for the treatment of seizures associated with Dravet syndrome. Expert Rev Neurother 2019; 19:301-310. [DOI: 10.1080/14737175.2019.1593142] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Catherine Chiron
- Inserm NeuroDiderot, InDev, Paris, France
- Neurospin, CEA, Paris, France
| |
Collapse
|
83
|
Gonsales MC, Montenegro MA, Preto P, Guerreiro MM, Coan AC, Quast MP, Carvalho BS, Lopes-Cendes I. Multimodal Analysis of SCN1A Missense Variants Improves Interpretation of Clinically Relevant Variants in Dravet Syndrome. Front Neurol 2019; 10:289. [PMID: 31001185 PMCID: PMC6455056 DOI: 10.3389/fneur.2019.00289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/06/2019] [Indexed: 01/27/2023] Open
Abstract
Objective: We aimed to improve the classification of SCN1A missense variants in patients with Dravet syndrome (DS) by combining and modifying the current variants classification criteria to minimize inconclusive test results. Methods: We established a score classification workflow based on evidence of pathogenicity to adapt the classification of DS-related SCN1A missense variants. In addition, we compiled the variants reported in the literature and our cohort and assessed the proposed pathogenic classification criteria. We combined information regarding previously established pathogenic amino acid changes, mode of inheritance, population-specific allele frequencies, localization within protein domains, and deleterious effect prediction analysis. Results: Our meta-analysis showed that 46% (506/1,101) of DS-associated SCN1A variants are missense. We applied the score classification workflow and 56.5% (286/506) of the variants had their classification changed from VUS: 17.8% (90/506) into "pathogenic" and 38.7% (196/506) as "likely pathogenic." Conclusion: Our results indicate that using multimodal analysis seems to be the best approach to interpret the pathogenic impact of SCN1A missense changes for the molecular diagnosis of patients with DS. By applying the proposed workflow, most DS related SCN1A variants had their classification improved.
Collapse
Affiliation(s)
- Marina C. Gonsales
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, The Brazilian Institute of Neuroscience and Neurotecnology, University of Campinas, Campinas, Brazil
| | - Maria Augusta Montenegro
- Department of Neurology, School of Medical Sciences, The Brazilian Institute of Neuroscience and Neurotecnology, University of Campinas, Campinas, Brazil
| | - Paula Preto
- Department of Neurology, School of Medical Sciences, The Brazilian Institute of Neuroscience and Neurotecnology, University of Campinas, Campinas, Brazil
| | - Marilisa M. Guerreiro
- Department of Neurology, School of Medical Sciences, The Brazilian Institute of Neuroscience and Neurotecnology, University of Campinas, Campinas, Brazil
| | - Ana Carolina Coan
- Department of Neurology, School of Medical Sciences, The Brazilian Institute of Neuroscience and Neurotecnology, University of Campinas, Campinas, Brazil
| | - Monica Paiva Quast
- Department of Statistics, Institute of Mathematics, Statistics and Scientific Computing, The Brazilian Institute of Neuroscience and Neurotecnology, University of Campinas, Campinas, Brazil
| | - Benilton S. Carvalho
- Department of Statistics, Institute of Mathematics, Statistics and Scientific Computing, The Brazilian Institute of Neuroscience and Neurotecnology, University of Campinas, Campinas, Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, The Brazilian Institute of Neuroscience and Neurotecnology, University of Campinas, Campinas, Brazil
| |
Collapse
|
84
|
Nissenkorn A, Almog Y, Adler I, Safrin M, Brusel M, Marom M, Bercovich S, Yakubovich D, Tzadok M, Ben-Zeev B, Rubinstein M. In vivo, in vitro and in silico correlations of four de novo SCN1A missense mutations. PLoS One 2019; 14:e0211901. [PMID: 30735520 PMCID: PMC6368302 DOI: 10.1371/journal.pone.0211901] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/22/2019] [Indexed: 12/31/2022] Open
Abstract
Mutations in the SCN1A gene, which encodes for the voltage-gated sodium channel NaV1.1, cause Dravet syndrome, a severe developmental and epileptic encephalopathy. Genetic testing of this gene is recommended early in life. However, predicting the outcome of de novo missense SCN1A mutations is difficult, since milder epileptic syndromes may also be associated. In this study, we correlated clinical severity with functional in vitro electrophysiological testing of channel activity and bioinformatics prediction of damaging mutational effects. Three patients, bearing the mutations p.Gly177Ala, p.Ser259Arg and p.Glu1923Arg, showed frequent intractable seizures that had started early in life, with cognitive and behavioral deterioration, consistent with classical Dravet phenotypes. These mutations failed to produce measurable sodium currents in a mammalian expression system, indicating complete loss of channel function. A fourth patient, who harbored the mutation p.Met1267Ile, though presenting with seizures early in life, showed lower seizure burden and higher cognitive function, matching borderland Dravet phenotypes. In correlation with this, functional analysis demonstrated the presence of sodium currents, but with partial loss of function. In contrast, six bioinformatics tools for predicting mutational pathogenicity suggested similar impact for all mutations. Likewise, homology modeling of the secondary and tertiary structures failed to reveal misfolding. In conclusion, functional studies using patch clamp are suggested as a prognostic tool, whereby detectable currents imply milder phenotypes and absence of currents indicate an unfavorable prognosis. Future development of automated patch clamp systems will facilitate the inclusion of such functional testing as part of personalized patient diagnostic schemes.
Collapse
Affiliation(s)
- Andreea Nissenkorn
- Service for Rare Disorders, The Edmond and Lily Safra Children’s Hospital, Chaim Sheba Medical Center, Tel HaShomer, Israel
- Pediatric Neurology Unit, The Edmond and Lily Safra Children’s Hospital, Chaim Sheba Medical Center, Tel HaShomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Almog
- Goldschleger Eye Research Institute, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inbar Adler
- Goldschleger Eye Research Institute, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Mary Safrin
- Goldschleger Eye Research Institute, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marina Brusel
- Goldschleger Eye Research Institute, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Milit Marom
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shayel Bercovich
- The Arrow Project, The Edmond and Lily Safra Children’s Hospital, Chaim Sheba Medical Center, Tel HaShomer, Israel
| | - Daniel Yakubovich
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Neonatal Intensive Care, Edmond and Lily Safra Children’s Hospital, Chaim Sheba Medical Center, Tel HaShomer, Israel
| | - Michal Tzadok
- Pediatric Neurology Unit, The Edmond and Lily Safra Children’s Hospital, Chaim Sheba Medical Center, Tel HaShomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Bruria Ben-Zeev
- Pediatric Neurology Unit, The Edmond and Lily Safra Children’s Hospital, Chaim Sheba Medical Center, Tel HaShomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moran Rubinstein
- Goldschleger Eye Research Institute, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
85
|
A systematic review and meta-analysis of 271 PCDH19-variant individuals identifies psychiatric comorbidities, and association of seizure onset and disease severity. Mol Psychiatry 2019; 24:241-251. [PMID: 29892053 PMCID: PMC6344372 DOI: 10.1038/s41380-018-0066-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/22/2018] [Accepted: 03/06/2018] [Indexed: 12/13/2022]
Abstract
Epilepsy and Mental Retardation Limited to Females (EFMR) is an infantile onset disorder characterized by clusters of seizures. EFMR is due to mutations in the X-chromosome gene PCDH19, and is underpinned by cellular mosaicism due to X-chromosome inactivation in females or somatic mutation in males. This review characterizes the neuropsychiatric profile of this disorder and examines the association of clinical and molecular factors with neuropsychiatric outcomes. Data were extracted from 38 peer-reviewed original articles including 271 individual cases. We found that seizure onset ≤12 months was significantly associated (p = 4.127 × 10-7) with more severe intellectual disability, compared with onset >12 months. We identified two recurrent variants p.Asn340Ser and p.Tyr366Leufs*10 occurring in 25 (20 unrelated) and 30 (11 unrelated) cases, respectively. PCDH19 mutations were associated with psychiatric comorbidities in approximately 60% of females, 80% of affected mosaic males, and reported in nine hemizygous males. Hyperactive, autistic, and obsessive-compulsive features were most frequently reported. There were no genotype-phenotype associations in the individuals with recurrent variants or the group overall. Age at seizure onset can be used to provide more informative prognostic counseling.
Collapse
|
86
|
de Lange IM, Gunning B, Sonsma ACM, van Gemert L, van Kempen M, Verbeek NE, Sinoo C, Nicolai J, Knoers NVAM, Koeleman BPC, Brilstra EH. Outcomes and comorbidities of SCN1A-related seizure disorders. Epilepsy Behav 2019; 90:252-259. [PMID: 30527252 DOI: 10.1016/j.yebeh.2018.09.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 01/06/2023]
Abstract
PURPOSE Differentiating between Dravet syndrome and non-Dravet SCN1A-related phenotypes is important for prognosis regarding epilepsy severity, cognitive development, and comorbidities. When a child is diagnosed with genetic epilepsy with febrile seizures plus (GEFS+) or febrile seizures (FS), accurate prognostic information is essential as well, but detailed information on seizure course, seizure freedom, medication use, and comorbidities is lacking for this milder patient group. In this cross-sectional study, we explore disease characteristics in milder SCN1A-related phenotypes and the nature, occurrence, and relationships of SCN1A-related comorbidities in both patients with Dravet and non-Dravet syndromes. METHODS A cohort of 164 Dutch participants with SCN1A-related seizures was evaluated, consisting of 116 patients with Dravet syndrome and 48 patients with either GEFS+, febrile seizures plus (FS+), or FS. Clinical data were collected from medical records, semi-structured telephone interviews, and three questionnaires: the Functional Mobility Scale (FMS), the Pediatric Quality of Life Inventory (PedsQL) Measurement Model, and the Child or Adult Behavior Checklists (CBCL/ABCL). RESULTS Walking disabilities and severe behavioral problems affect 71% and 43% of patients with Dravet syndrome respectively and are almost never present in patients with non-Dravet syndromes. These comorbidities are strongly correlated to lower quality-of-life (QoL) scores. Less severe comorbidities occur in patients with non-Dravet syndromes: learning problems and psychological/behavioral problems are reported for 27% and 38% respectively. The average QoL score of the non-Dravet group was comparable with that of the general population. The majority of patients with non-Dravet syndromes becomes seizure-free after 10 years of age (85%). CONCLUSIONS Severe behavioral problems and walking disabilities are common in patients with Dravet syndrome and should receive specific attention during clinical management. Although the epilepsy course of patients with non-Dravet syndromes is much more favorable, milder comorbidities frequently occur in this group as well. Our results may be of great value for clinical care and informing newly diagnosed patients and their parents about prognosis.
Collapse
Affiliation(s)
- Iris M de Lange
- Department of Genetics, University Medical Center Utrecht, Utrecht University, the Netherlands.
| | | | - Anja C M Sonsma
- Department of Genetics, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Lisette van Gemert
- Academical Center of Epileptology, Maastricht and Heeze, the Netherlands
| | - Marjan van Kempen
- Department of Genetics, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Nienke E Verbeek
- Department of Genetics, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Claudia Sinoo
- Department of Genetics, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Joost Nicolai
- Academical Center of Epileptology, Maastricht and Heeze, the Netherlands
| | - Nine V A M Knoers
- Department of Genetics, University Medical Center Utrecht, Utrecht University, the Netherlands; Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Bobby P C Koeleman
- Department of Genetics, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Eva H Brilstra
- Department of Genetics, University Medical Center Utrecht, Utrecht University, the Netherlands
| |
Collapse
|
87
|
Trivisano M, Pietrafusa N, Terracciano A, Marini C, Mei D, Darra F, Accorsi P, Battaglia D, Caffi L, Canevini MP, Cappelletti S, Cesaroni E, de Palma L, Costa P, Cusmai R, Giordano L, Ferrari A, Freri E, Fusco L, Granata T, Martino T, Mastrangelo M, Bova SM, Parmeggiani L, Ragona F, Sicca F, Striano P, Specchio LM, Tondo I, Zambrelli E, Zamponi N, Zanus C, Boniver C, Vecchi M, Avolio C, Dalla Bernardina B, Bertini E, Guerrini R, Vigevano F, Specchio N. Defining the electroclinical phenotype and outcome of PCDH19-related epilepsy: A multicenter study. Epilepsia 2018; 59:2260-2271. [PMID: 30451291 DOI: 10.1111/epi.14600] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE PCDH19-related epilepsy is an epileptic syndrome with infantile onset, characterized by clustered and fever-induced seizures, often associated with intellectual disability (ID) and autistic features. The aim of this study was to analyze a large cohort of patients with PCDH19-related epilepsy and better define the epileptic phenotype, genotype-phenotype correlations, and related outcome-predicting factors. METHODS We retrospectively collected genetic, clinical, and electroencephalogram (EEG) data of 61 patients with PCDH19-related epilepsy followed at 15 epilepsy centers. All consecutively performed EEGs were analyzed, totaling 551. We considered as outcome measures the development of ID, autistic spectrum disorder (ASD), and seizure persistence. The analyzed variables were the following: gender, age at onset, age at study, genetic variant, fever sensitivity, seizure type, cluster occurrence, status epilepticus, EEG abnormalities, and cognitive and behavioral disorders. Receiver operating characteristic curve analysis was performed to evaluate the age at which seizures might decrease in frequency. RESULTS At last follow-up (median = 12 years, range = 1.9-42.1 years), 48 patients (78.7%) had annual seizures/clusters, 13 patients (21.3%) had monthly to weekly seizures, and 12 patients (19.7%) were seizure-free for ≥2 years. Receiver operating characteristic analysis showed a significant decrease of seizure frequency after the age of 10.5 years (sensitivity = 81.0%, specificity = 70.0%). Thirty-six patients (59.0%) had ID and behavioral disturbances. ASD was present in 31 patients. An earlier age at epilepsy onset emerged as the only predictive factor for ID (P = 0.047) and ASD (P = 0.014). Conversely, age at onset was not a predictive factor for seizure outcome (P = 0.124). SIGNIFICANCE We found that earlier age at epilepsy onset is related to a significant risk for ID and ASD. Furthermore, long-term follow-up showed that after the age of 10 years, seizures decrease in frequency and cognitive and behavioral disturbances remain the primary clinical problems.
Collapse
Affiliation(s)
- Marina Trivisano
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Clinic of Nervous System Diseases, University of Foggia, Foggia, Italy
| | - Nicola Pietrafusa
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Carla Marini
- Pediatric Neurology Unit and Laboratories, Children's Hospital Meyer-University of Florence, Florence, Italy
| | - Davide Mei
- Pediatric Neurology Unit and Laboratories, Children's Hospital Meyer-University of Florence, Florence, Italy
| | - Francesca Darra
- Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | | | | | - Lorella Caffi
- Neuropsychiatric Unit, University of Bergamo, Bergamo, Italy
| | - Maria P Canevini
- Epilepsy Center, San Paolo Hospital, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Simona Cappelletti
- Unit of Clinical Psychology, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Luca de Palma
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paola Costa
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Raffaella Cusmai
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lucio Giordano
- Child Neuropsychiatric Unit, Civilian Hospital, Brescia, Italy
| | - Annarita Ferrari
- Department of Developmental Neuroscience, Clinical Neurophysiology Laboratory, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Lucia Fusco
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Tiziana Granata
- Department of Pediatric Neuroscience, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Tommaso Martino
- Clinic of Nervous System Diseases, University of Foggia, Foggia, Italy
| | - Massimo Mastrangelo
- Pediatric Neurology Unit, Vittore Buzzi Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Stefania M Bova
- Pediatric Neurology Unit, Vittore Buzzi Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Lucio Parmeggiani
- Department of Neuropediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Francesca Ragona
- Department of Pediatric Neuroscience, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Federico Sicca
- Department of Developmental Neuroscience, Clinical Neurophysiology Laboratory, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, G. Gaslini Institute, University of Genoa, Genoa, Italy
| | - Luigi M Specchio
- Clinic of Nervous System Diseases, University of Foggia, Foggia, Italy
| | - Ilaria Tondo
- Unit of Clinical Psychology, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elena Zambrelli
- Epilepsy Center, San Paolo Hospital, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Nelia Zamponi
- Child Neuropsychiatric Unit, University of Ancona, Ancona, Italy
| | - Caterina Zanus
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Clementina Boniver
- Child Neurology and Clinical Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Marilena Vecchi
- Child Neurology and Clinical Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Carlo Avolio
- Clinic of Nervous System Diseases, University of Foggia, Foggia, Italy
| | | | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Renzo Guerrini
- Pediatric Neurology Unit and Laboratories, Children's Hospital Meyer-University of Florence, Florence, Italy
| | - Federico Vigevano
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Nicola Specchio
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
88
|
Esterhuizen AI, Mefford HC, Ramesar RS, Wang S, Carvill GL, Wilmshurst JM. Dravet syndrome in South African infants: Tools for an early diagnosis. Seizure 2018; 62:99-105. [PMID: 30321769 PMCID: PMC6261486 DOI: 10.1016/j.seizure.2018.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/09/2018] [Accepted: 09/13/2018] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Dravet syndrome (DS) is a well-described, severe genetic epileptic encephalopathy with an increased risk of SUDEP. The incidence and genetic architecture of DS in African patients is virtually unknown, largely due to lack of awareness and unavailability of genetic testing. The clinical benefits of the available precision medicine approaches to treatment emphasise the importance of an early, correct diagnosis. We investigated the genetic causes and clinical features of DS in South African children to develop protocols for early, cost-effective diagnosis in the local setting. METHOD We selected 22 South African children provisionally diagnosed with clinical DS for targeted resequencing of DS-associated genes. We sought to identify the clinical features most strongly associated with SCN1A-related DS, using the DS risk score and clinical co-variates under various statistical models. RESULTS Disease-causing variants were identified in 10 of the 22 children: nine SCN1A and one PCDH19. Moreover, we showed that seizure onset before 6 months of age and a clinical DS risk score of >6 are highly predictive of SCN1A-associated DS. Clinical reassessment resulted in a revised diagnosis in 10 of the 12 variant-negative children. CONCLUSION This first genetic study of DS in Africa confirms that de novo SCN1A variants underlie disease in the majority of South African patients. Affirming the predictive value of seizure onset before 6 months of age and a clinical DS risk score of >6 has significant practical implications for the resource-limited setting, presenting simple diagnostic criteria which can facilitate early correct treatment, specialist consultation and genetic testing.
Collapse
Affiliation(s)
- Alina I Esterhuizen
- Division of Human Genetics, Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa; National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa.
| | - Heather C Mefford
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA.
| | - Rajkumar S Ramesar
- Division of Human Genetics, Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town, South Africa; National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa.
| | - Shuyu Wang
- Department of General Medicine, Alfred Health, Victoria, Australia.
| | - Gemma L Carvill
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| | - Jo M Wilmshurst
- Paediatric Neurology and Neurophysiology, Red Cross Children's War Memorial Hospital, Cape Town, South Africa; School of Child and Adolescent Health, University of Cape Town, South Africa.
| |
Collapse
|
89
|
Platzer K, Cogné B, Hague J, Marcelis CL, Mitter D, Oberndorff K, Park SM, Ploos van Amstel HK, Simonic I, van der Smagt JJ, Stegmann APA, Stevens SJC, Stumpel CTRM, Vincent M, Lemke JR, Jamra R. Haploinsufficiency of CUX1 Causes Nonsyndromic Global Developmental Delay With Possible Catch-up Development. Ann Neurol 2018; 84:200-207. [PMID: 30014507 DOI: 10.1002/ana.25278] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Developmental delay (DD) with favorable intellectual outcome and mild intellectual disability (ID) are mostly considered to be of complex genetic and environmental origin, but, in fact, often remain unclear. We aimed at proving our assumption that also mild cases of DD and ID may be of monogenic etiology. METHODS We clinically evaluated 8 individuals and performed exome sequencing or array copy number analysis and identified variants in CUX1 as the likely cause. In addition, we included a case from the public database, DECIPHER. RESULTS All 9 individuals harbored heterozygous null-allele variants in CUX1, encoding the Cut-homeobox 1 transcription factor that is involved in regulation of dendritogenesis and cortical synapse formation in layer II to IV cortical neurons. Six variants arose de novo, while in one family the variant segregated with ID. Of the 9 included individuals, 2 were diagnosed with moderate ID, 3 with mild ID, and 3 showed a normal age-related intelligence at ages 4, 6, and 8 years after a previous history of significant DD. INTERPRETATION Our results suggest that null-allele variants, and thus haploinsufficiency of CUX1, cause an isolated phenotype of DD or ID with possible catch-up development. This illustrates that such a developmental course is not necessarily genetic complex, but may also be attributed to a monogenic cause. Ann Neurol 2018;84:200-207.
Collapse
Affiliation(s)
- Konrad Platzer
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Benjamin Cogné
- Service de génétique médicale, CHU Nantes, Nantes, France.,L'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Jennifer Hague
- East Anglian Regional Genetics Service, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | - Carlo L Marcelis
- Department of Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Diana Mitter
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Katrin Oberndorff
- Department of Pediatrics, Zuyderland Medical Center, BG Sittard, The Netherlands
| | - Soo-Mi Park
- East Anglian Regional Genetics Service, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | | | - Ingrid Simonic
- East Anglian Regional Genetics Service, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom
| | | | - Alexander P A Stegmann
- Department of Clinical Genetics and School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Servi J C Stevens
- Department of Clinical Genetics and School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Constance T R M Stumpel
- Department of Clinical Genetics and School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marie Vincent
- Service de génétique médicale, CHU Nantes, Nantes, France.,L'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Rami Jamra
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| |
Collapse
|
90
|
de Lange IM, Gunning B, Sonsma ACM, van Gemert L, van Kempen M, Verbeek NE, Nicolai J, Knoers NVAM, Koeleman BPC, Brilstra EH. Influence of contraindicated medication use on cognitive outcome in Dravet syndrome and age at first afebrile seizure as a clinical predictor in SCN1A
-related seizure phenotypes. Epilepsia 2018; 59:1154-1165. [DOI: 10.1111/epi.14191] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Iris M. de Lange
- Department of Medical Genetics; University Medical Center Utrecht; Utrecht University; Utrecht The Netherlands
| | - Boudewijn Gunning
- The Epilepsy Institutes of The Netherlands Foundation (SEIN); Zwolle The Netherlands
| | - Anja C. M. Sonsma
- Department of Medical Genetics; University Medical Center Utrecht; Utrecht University; Utrecht The Netherlands
| | | | - Marjan van Kempen
- Department of Medical Genetics; University Medical Center Utrecht; Utrecht University; Utrecht The Netherlands
| | - Nienke E. Verbeek
- Department of Medical Genetics; University Medical Center Utrecht; Utrecht University; Utrecht The Netherlands
| | - Joost Nicolai
- Academical Center of Epileptology; Maastricht and Heeze The Netherlands
| | - Nine V. A. M. Knoers
- Department of Medical Genetics; University Medical Center Utrecht; Utrecht University; Utrecht The Netherlands
| | - Bobby P. C. Koeleman
- Department of Medical Genetics; University Medical Center Utrecht; Utrecht University; Utrecht The Netherlands
| | - Eva H. Brilstra
- Department of Medical Genetics; University Medical Center Utrecht; Utrecht University; Utrecht The Netherlands
| |
Collapse
|
91
|
Carpenter JC, Schorge S. The voltage-gated channelopathies as a paradigm for studying epilepsy-causing genes. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
92
|
Abstract
Dravet syndrome (DS) is a medically refractory epilepsy that onsets in the first year of life with prolonged seizures, often triggered by fever. Over time, patients develop other seizure types (myoclonic, atypical absences, drops), intellectual disability, crouch gait and other co-morbidities (sleep problems, autonomic dysfunction). Complete seizure control is generally not achievable with current therapies, and the goals of treatment are to balance reduction of seizure burden with adverse effects of therapies. Treatment of co-morbidities must also be addressed, as they have a significant impact on the quality of life of patients with DS. Seizures are typically worsened with sodium-channel agents. Accepted first-line agents include clobazam and valproic acid, although these rarely provide adequate seizure control. Benefit has also been noted with stiripentol, topiramate, levetiracetam, the ketogenic diet and vagal nerve stimulation. Several agents presently in development, specifically fenfluramine and cannabidiol, have shown efficacy in clinical trials. Status epilepticus is a recurring problem for patients with DS, particularly in their early childhood years. All patients should be prescribed a home rescue therapy (usually a benzodiazepine) but should also have a written seizure action plan that outlines when rescue should be given and further steps to take in the local hospital if the seizure persists despite home rescue therapy.
Collapse
|
93
|
Mahdieh N, Mikaeeli S, Badv RS, Shirazi AG, Maleki M, Rabbani B. Pathogenic significance of SCN1A splicing variants causing Dravet syndrome: Improving diagnosis with targeted sequencing for variants by in silico analysis. Clin Neurol Neurosurg 2018; 166:80-90. [PMID: 29408779 DOI: 10.1016/j.clineuro.2018.01.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/21/2018] [Accepted: 01/27/2018] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Genetic heterogeneity of epileptic encephalopathy (IEE) mandates the use of gene-panels for diagnosis. PATIENTS AND METHODS A 36-gene-panel next-generation sequencing was applied for IEE in two Iranian families. A literature search was performed using keywords to identify reported splicing mutations in SCN1A and perform genotype-phenotype correlation. RESULTS An update of splicing mutations revealed 147 variants with 65.75% of them de novo mutations. Most of the familial variants were of parental origin. The structure of the protein was often affected in the linker and transmembrane segments. 92% of intronic variants were pathogenic. A de novo heterozygous mutation was found in the first patient, but not in her sibling and parents. In the second family, a novel de novo heterozygous mutation was found at position c.1210insT leading to a truncated protein. CONCLUSION Gene-panel sequencing is helpful for reducing the time and cost, guiding early treatment, and estimating the recurrence risks. The importance of characterization of intronic variants was noticed; though bioinformatics analysis of novel intronic variants should be of concern for rapid reporting the pathogenic effect of variants.
Collapse
Affiliation(s)
- Nejat Mahdieh
- Genetic Research Laboratory, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Mikaeeli
- Genetic Research Laboratory, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Children's Hospital Center, Pediatric Center of Excellence, Tehran University of Medical Center, Tehran, Iran
| | - Azadeh Gharehzadeh Shirazi
- Children's Hospital Center, Pediatric Center of Excellence, Tehran University of Medical Center, Tehran, Iran
| | - Majid Maleki
- Genetic Research Laboratory, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Bahareh Rabbani
- Genetic Research Laboratory, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|