51
|
Samra K, MacDougall AM, Bouzigues A, Bocchetta M, Cash DM, Greaves CV, Convery RS, Hardy C, van Swieten JC, Seelaar H, Jiskoot LC, Moreno F, Sanchez-Valle R, Laforce R, Graff C, Masellis M, Tartaglia MC, Rowe JB, Borroni B, Finger E, Synofzik M, Galimberti D, Vandenberghe R, de Mendonça A, Butler CR, Gerhard A, Ducharme S, Le Ber I, Santana I, Pasquier F, Levin J, Otto M, Sorbi S, Warren JD, Rohrer JD, Russell LL, GENetic Frontotemporal dementia Initiative (GENFI)
AfonsoSóniaAlmeidaMaria RosarioAnderl-StraubSarahAnderssonChristinAntonellAnnaArchettiSilvanaArighiAndreaBalasaMirceaBarandiaranMyriamBargallóNuriaBarthaRobartBenderBenjaminBenussiAlbertoBertouxMaximeBertrandAnneBessiValentinaBlackSandraBorrego-EcijaSergiBrasJoseBriceAlexisBruffaertsRoseCamuzatAgnèsCañadaMartaCantoniValentinaCaroppoPaolaCastelo-BrancoMiguelColliotOlivierCopeThomasDeramecourtVincentde ArribaMaríaFedeGiuseppe DiDíezAlinaDuroDianaFenoglioChiaraFerrariCamillaFerreiraCatarina BFoxNickFreedmanMorrisFumagalliGiorgioFunkiewiezAuréliedu CerveauInstitutGabilondoAlazneGasparottiRobertoGauthierSergeGazzinaStefanoGiacconeGiorgioGorostidiAnaGuerreiroRitaHellerCarolinHoegenTobiasIndakoetxeaBegoñaJelicVesnaKarnathHans-OttoKerenRonKuchcinskiGregoryLangheinrichTobiasLebouvierThibaudJoão LeitãoMariaLladóAlbertLombardiGemmaLoosliSandraMarutaCarolinaMeadSimonMeeterLiekeMiltenbergerGabrielvan MinkelenRickMitchellSaraMooreKatrinaNacmiasBenedettaNelsonAnnabelÖijerstedtLinnOlivesJaumeOurselinSebastienPadovaniAlessandroPanmanJessicaPapmaJanne MPijnenburgYolandePolitoCristinaPremiEnricoPrioniSaraPrixCatharinaRademakersRosaRedaelliVeronicaRinaldiDaisydu CerveauInstitutRittmanTimRogaevaEkaterinaRollinAdelineRosa-NetoPedroRossiGiacominaRossorMartinSantiagoBeatrizSaracinoDarioSayahSabrinaScarpiniElioSchöneckerSonjaSemlerElisaShafeiRachelleShoesmithChristenSwiftImogenTábuas-PereiraMiguelTaintaMikelTaipaRicardoTang-WaiDavidThomasDavid LThompsonPaulThonbergHakanTimberlakeCarolynTiraboschiPietroToddEmilyDammePhilip VanVandenbulckeMathieuVeldsmanMicheleVerdelhoAnaVillanuaJorgeWilkeCarloWoollacottIoneWlasichElisabethZetterbergHenrikZulaicaMiren. Genetic forms of primary progressive aphasia within the GENetic Frontotemporal dementia Initiative (GENFI) cohort: comparison with sporadic primary progressive aphasia. Brain Commun 2023; 5:fcad036. [PMID: 36938528 PMCID: PMC10019761 DOI: 10.1093/braincomms/fcad036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/26/2022] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Primary progressive aphasia is most commonly a sporadic disorder, but in some cases, it can be genetic. This study aimed to understand the clinical, cognitive and imaging phenotype of the genetic forms of primary progressive aphasia in comparison to the canonical nonfluent, semantic and logopenic subtypes seen in sporadic disease. Participants with genetic primary progressive aphasia were recruited from the international multicentre GENetic Frontotemporal dementia Initiative study and compared with healthy controls as well as a cohort of people with sporadic primary progressive aphasia. Symptoms were assessed using the GENetic Frontotemporal dementia Initiative language, behavioural, neuropsychiatric and motor scales. Participants also underwent a cognitive assessment and 3 T volumetric T1-weighted MRI. One C9orf72 (2%), 1 MAPT (6%) and 17 GRN (44%) symptomatic mutation carriers had a diagnosis of primary progressive aphasia. In the GRN cohort, 47% had a diagnosis of nonfluent variant primary progressive aphasia, and 53% had a primary progressive aphasia syndrome that did not fit diagnostic criteria for any of the three subtypes, called primary progressive aphasia-not otherwise specified here. The phenotype of the genetic nonfluent variant primary progressive aphasia group largely overlapped with that of sporadic nonfluent variant primary progressive aphasia, although the presence of an associated atypical parkinsonian syndrome was characteristic of sporadic and not genetic disease. The primary progressive aphasia -not otherwise specified group however was distinct from the sporadic subtypes with impaired grammar/syntax in the presence of relatively intact articulation, alongside other linguistic deficits. The pattern of atrophy seen on MRI in the genetic nonfluent variant primary progressive aphasia group overlapped with that of the sporadic nonfluent variant primary progressive aphasia cohort, although with more posterior cortical involvement, whilst the primary progressive aphasia-not otherwise specified group was strikingly asymmetrical with involvement particularly of the insula and dorsolateral prefrontal cortex but also atrophy of the orbitofrontal cortex and the medial temporal lobes. Whilst there are overlapping symptoms between genetic and sporadic primary progressive aphasia syndromes, there are also distinct features. Future iterations of the primary progressive aphasia consensus criteria should encompass such information with further research needed to understand the earliest features of these disorders, particularly during the prodromal period of genetic disease.
Collapse
Affiliation(s)
- Kiran Samra
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Amy M MacDougall
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Arabella Bouzigues
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Caroline V Greaves
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Rhian S Convery
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Chris Hardy
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | | | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Lize C Jiskoot
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia Universitary Hospital, San Sebastian, Spain
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
| | - Raquel Sanchez-Valle
- Alzheimer’s disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d’Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, Québec City, Canada
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Daniela Galimberti
- Fondazione Ca’ Granda, IRCCS Ospedale Policlinico, Milan, Italy
- University of Milan, Centro Dino Ferrari, Milan, Italy
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Neurology Service, University Hospitals Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Alexandre de Mendonça
- Laboratory of Neurosciences, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
- Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, Germany
| | - Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Québec, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute – Institut du Cerveau – ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Isabel Santana
- University Hospital of Coimbra (HUC), Neurology Service, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Florence Pasquier
- Univ Lille, Inserm 1172, Lille, France
- Inserm 1172, Lille, France
- CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, France
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians Universität München, Munich, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Jason D Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | | | - Lucy L Russell
- Correspondence to: Dr Lucy L. Russell Dementia Research Centre, Department of Neurodegenerative Disease UCL Institute of Neurology, Queen Square London, UK, WC1N 3BG E-mail:
| | | |
Collapse
|
52
|
He Q, Chu M, Wu L. Editorial: Horizon in frontotemporal lobar degeneration related disorder. Front Neurol 2023; 14:1127073. [PMID: 36824416 PMCID: PMC9941689 DOI: 10.3389/fneur.2023.1127073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Affiliation(s)
- Qianqian He
- Affiliated Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China,Min Chu ✉
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China,*Correspondence: Liyong Wu ✉
| |
Collapse
|
53
|
Xu J, Xia Y, Meng M, Liu F, Che P, Zhang Y, Wang Y, Cai L, Qin W, Zhang N. Clinical features and biomarkers of semantic variant primary progressive aphasia with MAPT mutation. Alzheimers Res Ther 2023; 15:21. [PMID: 36707904 PMCID: PMC9881263 DOI: 10.1186/s13195-023-01176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
BACKGROUND Semantic variant primary progressive aphasia (svPPA) is generally sporadic, with very few reports of tau pathology caused by MAPT mutations. METHODS A 64-year-old man was diagnosed with svPPA with MAPT P301L mutation. Clinical information, cognitive and language functions, multimodal magnetic resonance imaging (MRI), blood biomarkers, fluorodeoxyglucose (FDG) imaging and tau positron emission tomography (PET) were obtained. RESULTS Semantic memory impairment was the earliest and most prominent symptom in this family. Tau accumulation and hypometabolism were observed prior to brain atrophy in mutation carriers. Plasma NfL and GFAP concentrations were elevated in the two svPPA patients. Some relative decreases and some relative increases in regional cerebral blood flow (CBF) as measured by arterial spin labelling (ASL) were observed in mutation carriers compared to noncarriers. CONCLUSIONS This study describes a large svPPA-affected family with the MAPT P301L mutation and provides an ideal model for inferring underlying pathology and pathophysiological processes in svPPA caused by tauopathies.
Collapse
Affiliation(s)
- Jing Xu
- grid.412645.00000 0004 1757 9434Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heing District, Tianjin, 300052 China
| | - Yanmin Xia
- grid.412645.00000 0004 1757 9434Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heing District, Tianjin, 300052 China ,grid.459324.dDepartment of Neurology, Affiliated Hospital of Hebei University, Baoding, 071000 Hebei China
| | - Meng Meng
- grid.412645.00000 0004 1757 9434Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Fang Liu
- grid.412645.00000 0004 1757 9434Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heing District, Tianjin, 300052 China
| | - Ping Che
- grid.412645.00000 0004 1757 9434Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heing District, Tianjin, 300052 China
| | - Yanxin Zhang
- grid.412645.00000 0004 1757 9434Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heing District, Tianjin, 300052 China
| | - Ying Wang
- grid.412645.00000 0004 1757 9434Department of PET-CT Diagnostic, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Li Cai
- grid.412645.00000 0004 1757 9434Department of PET-CT Diagnostic, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Wen Qin
- grid.412645.00000 0004 1757 9434Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Nan Zhang
- grid.412645.00000 0004 1757 9434Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heing District, Tianjin, 300052 China
| |
Collapse
|
54
|
Lack of a protective effect of the Tmem106b "protective SNP" in the Grn knockout mouse model for frontotemporal lobar degeneration. Acta Neuropathol Commun 2023; 11:21. [PMID: 36707901 PMCID: PMC9881268 DOI: 10.1186/s40478-023-01510-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/08/2023] [Indexed: 01/28/2023] Open
Abstract
Genetic variants in TMEM106B are a common risk factor for frontotemporal lobar degeneration and the most important modifier of disease risk in patients with progranulin (GRN) mutations (FTLD-GRN). TMEM106B is encoding a lysosomal transmembrane protein of unknown molecular function. How it mediates its disease-modifying function remains enigmatic. Several TMEM106B single nucleotide polymorphisms (SNPs) are significantly associated with disease risk in FTLD-GRN carriers, of which all except one are within intronic sequences of TMEM106B. Of note, the non-coding SNPs are in high linkage disequilibrium with the coding SNP rs3173615 located in exon six of TMEM106B, resulting in a threonine to serine change at amino acid 185 in the minor allele, which is protective in FTLD-GRN carriers. To investigate the functional consequences of this variant in vivo, we generated and characterized a knockin mouse model harboring the Tmem106bT186S variant. We analyzed the effect of this protective variant on FTLD pathology by crossing Tmem106bT186S mice with Grn-/- knockout mice, a model for GRN-mediated FTLD. We did not observe the amelioration of any of the investigated Grn-/- knockout phenotypes, including transcriptomic changes, lipid alterations, or microgliosis in Tmem106bT186S/T186S × Grn-/- mice, indicating that the Tmem106bT186S variant is not protective in the Grn-/- knockout mouse model. These data suggest that effects of the associated SNPs not directly linked to the amino acid exchange in TMEM106B are critical for the modifying effect.
Collapse
|
55
|
Soppela H, Krüger J, Hartikainen P, Koivisto A, Haapasalo A, Borroni B, Remes AM, Katisko K, Solje E. Traumatic Brain Injury Associates with an Earlier Onset in Sporadic Frontotemporal Dementia. J Alzheimers Dis 2023; 91:225-232. [PMID: 36373318 DOI: 10.3233/jad-220545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Currently, there are few studies considering possible modifiable risk factors of frontotemporal dementia (FTD). OBJECTIVE In this retrospective case-control study, we evaluated whether a history of traumatic brain injury (TBI) associates with a diagnosis of FTD or modulates the clinical phenotype or onset age in FTD patients. METHODS We compared the prevalence of prior TBI between individuals with FTD (N = 218) and age and sex-matched AD patients (N = 214) or healthy controls (HC; N = 100). Based on the patient records, an individual was categorized to the TBI+ group if they were reported to have suffered from TBI during lifetime. The possible associations of TBI with age of onset and disease duration were also evaluated in the whole FTD patient group or separately in the sporadic and genetic FTD groups. RESULTS The prevalence of previous TBI was the highest in the FTD group (19.3%) when compared to the AD group (13.1%, p = 0.050) or HC group (12%, p = 0.108, not significant). Preceding TBI was more often associated with the sporadic FTD cases than the C9orf72 repeat expansion-carrying FTD cases (p = 0.003). Furthermore, comparison of the TBI+ and TBI- FTD groups indicated that previous TBI was associated with an earlier onset age in the FTD patients (B = 3.066, p = 0.010). CONCLUSION A preceding TBI associates especially with sporadic FTD and with earlier onset of symptoms. The results of this study suggest that TBI may be a triggering factor for the neurodegenerative processes in FTD. However, understanding the precise underlying mechanisms still needs further studies.
Collapse
Affiliation(s)
- Helmi Soppela
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Johanna Krüger
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,MRC, Oulu University Hospital, Oulu, Finland.,Neurocenter, Neurology, Oulu University Hospital, Oulu, Finland
| | - Päivi Hartikainen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anne Koivisto
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland.,Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland.,Neuro Center, Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Annakaisa Haapasalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, Centre for Neurodegenerative Disorders, University of Brescia, Brescia, Italy.,Neurology Unit, ASST Spedali Civili Brescia, Brescia, Italy
| | - Anne M Remes
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,MRC, Oulu University Hospital, Oulu, Finland.,Clinical Neurosciences, University of Helsinki, Helsinki, Finland
| | - Kasper Katisko
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Eino Solje
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland.,Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
56
|
Abstract
Tauopathies are a clinically and neuropathologically heterogeneous group of neurodegenerative disorders, characterized by abnormal tau aggregates. Tau, a microtubule-associated protein, is important for cytoskeletal structure and intracellular transport. Aberrant posttranslational modification of tau results in abnormal tau aggregates causing neurodegeneration. Tauopathies may be primary, or secondary, where a second protein, such as Aß, is necessary for pathology, for example, in Alzheimer's disease, the most common tauopathy. Primary tauopathies are classified based on tau isoform and cell types where pathology predominates. Primary tauopathies include Pick disease, corticobasal degeneration, progressive supranuclear palsy, and argyrophilic grain disease. Environmental tauopathies include chronic traumatic encephalopathy and geographically isolated tauopathies such as the Guam-Parkinsonian-dementia complex. The clinical presentation of tauopathies varies based on the brain areas affected, generally presenting with a combination of cognitive and motor symptoms either earlier or later in the disease course. As symptoms overlap and tauopathies such as Alzheimer's disease and argyrophilic grain disease often coexist, accurate clinical diagnosis is challenging when biomarkers are unavailable. Available treatments target cognitive, motor, and behavioral symptoms. Disease-modifying therapies have been the focus of drug development, particularly agents targeting Aß and tau pathology in Alzheimer's disease, although most of these trials have failed.
Collapse
Affiliation(s)
- Gayatri Devi
- Department of Neurology and Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.
| |
Collapse
|
57
|
Zecca C, Tortelli R, Carrera P, Dell'Abate MT, Logroscino G, Ferrari M. Genotype-phenotype correlation in the spectrum of frontotemporal dementia-parkinsonian syndromes and advanced diagnostic approaches. Crit Rev Clin Lab Sci 2022; 60:171-188. [PMID: 36510705 DOI: 10.1080/10408363.2022.2150833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The term frontotemporal dementia (FTD) refers to a group of progressive neurodegenerative disorders characterized mainly by atrophy of the frontal and anterior temporal lobes. Based on clinical presentation, three main clinical syndromes have traditionally been described: behavioral variant frontotemporal dementia (bvFTD), non-fluent/agrammatic primary progressive aphasia (nfPPA), and semantic variant PPA (svPPA). However, over the last 20 years, it has been recognized that cognitive phenotypes often overlap with motor phenotypes, either motor neuron diseases or parkinsonian signs and/or syndromes like progressive supranuclear palsy (PSP) and cortico-basal syndrome (CBS). Furthermore, FTD-related genes are characterized by genetic pleiotropy and can cause, even in the same family, pure motor phenotypes, findings that underlie the clinical continuum of the spectrum, which has pure cognitive and pure motor phenotypes as the extremes. The genotype-phenotype correlation of the spectrum, FTD-motor neuron disease, has been well defined and extensively investigated, while the continuum, FTD-parkinsonism, lacks a comprehensive review. In this narrative review, we describe the current knowledge about the genotype-phenotype correlation of the spectrum, FTD-parkinsonism, focusing on the phenotypes that are less frequent than bvFTD, namely nfPPA, svPPA, PSP, CBS, and cognitive-motor overlapping phenotypes (i.e. PPA + PSP). From a pathological point of view, they are characterized mainly by the presence of phosphorylated-tau inclusions, either 4 R or 3 R. The genetic correlate of the spectrum can be heterogeneous, although some variants seem to lead preferentially to specific clinical syndromes. Furthermore, we critically review the contribution of genome-wide association studies (GWAS) and next-generation sequencing (NGS) in disentangling the complex heritability of the FTD-parkinsonism spectrum and in defining the genotype-phenotype correlation of the entire clinical scenario, owing to the ability of these techniques to test multiple genes, and so to allow detailed investigations of the overlapping phenotypes. Finally, we conclude with the importance of a detailed genetic characterization and we offer to patients and families the chance to be included in future randomized clinical trials focused on autosomal dominant forms of FTLD.
Collapse
Affiliation(s)
- Chiara Zecca
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy
| | - Rosanna Tortelli
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Paola Carrera
- Unit of Genomics for Human Disease Diagnosis and Clinical Molecular Biology Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Teresa Dell'Abate
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy
| | - Giancarlo Logroscino
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy.,Department of Basic Medicine Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | | |
Collapse
|
58
|
Rossi G, Salvi E, Mehmeti E, Ricci M, Villa C, Prioni S, Moda F, Di Fede G, Tiraboschi P, Redaelli V, Coppola C, Koch G, Canu E, Filippi M, Agosta F, Giaccone G, Caroppo P. Semantic and right temporal variant of FTD: Next generation sequencing genetic analysis on a single-center cohort. Front Aging Neurosci 2022; 14:1085406. [PMID: 36570531 PMCID: PMC9773257 DOI: 10.3389/fnagi.2022.1085406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Semantic and right temporal variant of frontotemporal dementia (svFTD and rtvFTD) are rare clinical phenotypes in which, in most cases, the underlying pathology is TDP-43 proteinopathy. They are usually sporadic disorders, but recent evidences suggest a higher frequency of genetic mutations for the right temporal versus the semantic variant. However, the genetic basis of these forms is not clear. In this study we performed a genetic screening of a single-center cohort of svFTD and rtvFTD patients, aiming at identifying the associated genetic variants. A panel of 73 dementia candidate genes has been analyzed by NGS target sequencing including both causal and risk/modifier genes in 23 patients (15 svFTD and 8 rtvFTD) and 73 healthy age-matched controls. We first performed a single variant analysis considering rare variants and then a gene-based aggregation analysis to evaluate the cumulative effects of multiple rare variants in a single gene. We found 12 variants in nearly 40% of patients (9/23), described as pathogenic or classified as VUS/likely pathogenic. The overall rate was higher in svFTD than in rtvFTD. Three mutations were located in MAPT gene and single mutations in the following genes: SQSTM1, VCP, PSEN1, TBK1, OPTN, CHCHD10, PRKN, DCTN1. Our study revealed the presence of variants in genes involved in pathways relevant for the pathology, especially autophagy and inflammation. We suggest that molecular analysis should be performed in all svFTD and rtvFTD patients, to better understand the genotype-phenotype correlation and the pathogenetic mechanisms that could drive the clinical phenotypes in FTD.
Collapse
Affiliation(s)
- Giacomina Rossi
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy,*Correspondence: Giacomina Rossi,
| | - Erika Salvi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elkadia Mehmeti
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Martina Ricci
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cristina Villa
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Prioni
- Clinical Neuropsychology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Fabio Moda
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Di Fede
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pietro Tiraboschi
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Veronica Redaelli
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cinzia Coppola
- Department of Advanced Medical and Surgical Sciences, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy,Vita-Salute San Raffaele University, Milan, Italy,Unit of Neurorehabilitation, IRCCS San Raffaele Scientific Institute, Milan, Italy,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy,Vita-Salute San Raffaele University, Milan, Italy
| | - Giorgio Giaccone
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Caroppo
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
59
|
Chen Z, Chu M, Liu L, Zhang J, Kong Y, Xie K, Cui Y, Ye H, Li J, Wang L, Wu L. Genetic prion diseases presenting as frontotemporal dementia: clinical features and diagnostic challenge. Alzheimers Res Ther 2022; 14:90. [PMID: 35768878 PMCID: PMC9245249 DOI: 10.1186/s13195-022-01033-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
To elucidate the clinical and ancillary features of genetic prion diseases (gPrDs) presenting with frontotemporal dementia (FTD) to aid early identification.
Methods
Global data of gPrDs presenting with FTD caused by prion protein gene mutations were collected from literature review and our records. Fifty-one cases of typical FTD and 136 cases of prion diseases admitted to our institution were included as controls. Clinical and ancillary data of the different groups were compared.
Results
Forty-nine cases of gPrDs presenting with FTD were identified. Compared to FTD or prion diseases, gPrDs presenting with FTD were characterized by earlier onset age (median 45 vs. 61/60 years, P < 0.001, P < 0.001) and higher incidence of positive family history (81.6% vs. 27.5/13.2%, P < 0.001, P < 0.001). Furthermore, GPrDs presenting with FTD exhibited shorter duration (median 5 vs. 8 years) and a higher rate of parkinsonism (63.7% vs. 9.8%, P < 0.001), pyramidal signs (39.1% vs. 7.8%, P = 0.001), mutism (35.9% vs. 0%, P < 0.001), seizures (25.8% vs. 0%, P < 0.001), myoclonus (22.5% vs. 0%, P < 0.001), and hyperintensity on MRI (25.0% vs. 0, P < 0.001) compared to FTD. Compared to prion diseases, gPrDs presenting with FTD had a longer duration of symptoms (median 5 vs. 1.1 years, P < 0.001), higher rates of frontotemporal atrophy (89.7% vs. 3.3%, P < 0.001), lower rates of periodic short-wave complexes on EEG (0% vs. 30.3%, P = 0.001), and hyperintensity on MRI (25.0% vs. 83.0%, P < 0.001). The frequency of codon 129 Val allele in gPrDs presenting with FTD was significantly higher than that reported in the literature for gPrDs in the Caucasian and East Asian populations (33.3% vs. 19.2%/8.0%, P = 0.005, P < 0.001).
Conclusions
GPrDs presenting with FTD are characterized by early-onset, high incidence of positive family history, high frequency of the Val allele at codon 129, overlapping symptoms with prion disease and FTD, and ancillary features closer to FTD. PRNP mutations may be a rare cause in the FTD spectrum, and PRNP genotyping should be considered in patients with these features.
Collapse
|
60
|
Pérez Palmer N, Trejo Ortega B, Joshi P. Cognitive Impairment in Older Adults: Epidemiology, Diagnosis, and Treatment. Psychiatr Clin North Am 2022; 45:639-661. [PMID: 36396270 DOI: 10.1016/j.psc.2022.07.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cognitive impairment and dementia affect dozens of millions of people worldwide and cause significant distress to patients and caregivers and a financial burden to families and health care systems. Careful history-taking, cognitive and physical examination, and supplemental neuroimaging and fluid-based biomarkers can accurately diagnose neurocognitive disorders. Management includes non-pharmacological and pharmacological treatments tailored to the etiology and to the individual.
Collapse
Affiliation(s)
- Nicolás Pérez Palmer
- Department of Psychiatry, Yale School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA.
| | - Barbara Trejo Ortega
- Department of Psychiatry, Yale School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA
| | - Pallavi Joshi
- Banner Alzheimer's Institute, 901 East Willeta Street, Phoenix, AZ 85006, USA; Department of Psychiatry, University of Arizona College of Medicine-Phoenix, 475 North 5th, Phoenix, AZ 85004, USA
| |
Collapse
|
61
|
del Campo M, Zetterberg H, Gandy S, Onyike CU, Oliveira F, Udeh‐Momoh C, Lleó A, Teunissen CE, Pijnenburg Y. New developments of biofluid-based biomarkers for routine diagnosis and disease trajectories in frontotemporal dementia. Alzheimers Dement 2022; 18:2292-2307. [PMID: 35235699 PMCID: PMC9790674 DOI: 10.1002/alz.12643] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 01/31/2023]
Abstract
Frontotemporal dementia (FTD) covers a spectrum of neurodegenerative disorders with different phenotypes, genetic backgrounds, and pathological states. Its clinicopathological diversity challenges the diagnostic process and the execution of clinical trials, calling for specific diagnostic biomarkers of pathologic FTD types. There is also a need for biomarkers that facilitate disease staging, quantification of severity, monitoring in clinics and observational studies, and for evaluation of target engagement and treatment response in clinical trials. This review discusses current FTD biofluid-based biomarker knowledge taking into account the differing applications. The limitations, knowledge gaps, and challenges for the development and implementation of such markers are also examined. Strategies to overcome these hurdles are proposed, including the technologies available, patient cohorts, and collaborative research initiatives. Access to robust and reliable biomarkers that define the exact underlying pathophysiological FTD process will meet the needs for specific diagnosis, disease quantitation, clinical monitoring, and treatment development.
Collapse
Affiliation(s)
- Marta del Campo
- Departamento de Ciencias Farmacéuticas y de la SaludFacultad de FarmaciaUniversidad San Pablo‐CEUCEU UniversitiesMadridSpain
| | - Henrik Zetterberg
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden,Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden,UK Dementia Research Institute at UCLLondonUK,Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK,Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Sam Gandy
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Chiadi U Onyike
- Division of Geriatric Psychiatry and NeuropsychiatryThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Fabricio Oliveira
- Department of Neurology and NeurosurgeryEscola Paulista de MedicinaFederal University of São Paulo (UNIFESP)São PauloSão PauloBrazil
| | - Chi Udeh‐Momoh
- Ageing Epidemiology Research UnitSchool of Public HealthFaculty of MedicineImperial College LondonLondonUK,Translational Health SciencesFaculty of MedicineUniversity of BristolBristolUK
| | - Alberto Lleó
- Neurology DepartmentHospital de la Santa Creu I Sant PauBarcelonaSpain
| | - Charlotte E. Teunissen
- Neurochemistry LaboratoryDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam University Medical CentersVrije UniversiteitAmsterdamthe Netherlands
| | - Yolande Pijnenburg
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
| |
Collapse
|
62
|
Snowden JS. Changing perspectives on frontotemporal dementia: A review. J Neuropsychol 2022. [DOI: 10.1111/jnp.12297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Julie S. Snowden
- Cerebral Function Unit, Manchester Centre for Neurosciences Salford Royal NHS Foundation Trust Salford UK
- Division of Neuroscience & Experimental Psychology School of Biological Sciences, University of Manchester Manchester UK
| |
Collapse
|
63
|
Magrath Guimet N, Zapata-Restrepo LM, Miller BL. Advances in Treatment of Frontotemporal Dementia. J Neuropsychiatry Clin Neurosci 2022; 34:316-327. [PMID: 35578801 DOI: 10.1176/appi.neuropsych.21060166] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this review, the authors explored the clinical features of frontotemporal dementia (FTD), focusing on treatment. The clinical features of FTD are unique, with disinhibition, apathy, loss of empathy, and compulsions common. Motor changes occur later in the illness. The two major proteins that aggregate in the brain with FTD are tau and TDP-43, whereas a minority of patients aggregate FET proteins, primarily the FUS protein. Genetic causes include mutations in MAPT, GRN, and C9orf72. There are no medications that can slow FTD progression, although new therapies for the genetic forms of FTD are moving into clinical trials. Once a diagnosis is made, therapies should begin, focusing on the family and the patient. In the setting of FTD, families experience a severe burden associated with caregiving, and the clinician should focus on alleviating this burden. Advice around legal and financial issues is usually helpful. Careful consideration of environmental changes to cope with abnormal behaviors is essential. Most compounds that have been used to treat dementia of the Alzheimer's disease type are not effective in FTD, and cholinesterase inhibitors and memantine should be avoided. Although the data are scant, there is some evidence that antidepressants and second-generation antipsychotics may help individual patients.
Collapse
Affiliation(s)
- Nahuel Magrath Guimet
- Global Brain Health Institute, University of California, San Francisco (all authors); Institute of Neuroscience, Trinity College, Dublin (all authors); Department of Cognitive Neurology, Neuropsychiatry and Neuropsychology, Instituto Neurológico Fleni, Buenos Aires (Magrath Guimet); Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco (Miller); and Department of Medical Sciences, Pontifical Xaverian University Cali, Cali, Colombia (Zapata-Restrepo), Department of Psychiatry, Fundación Valle del Lili, Cali, Colombia (Zapata-Restrepo)
| | - Lina M Zapata-Restrepo
- Global Brain Health Institute, University of California, San Francisco (all authors); Institute of Neuroscience, Trinity College, Dublin (all authors); Department of Cognitive Neurology, Neuropsychiatry and Neuropsychology, Instituto Neurológico Fleni, Buenos Aires (Magrath Guimet); Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco (Miller); and Department of Medical Sciences, Pontifical Xaverian University Cali, Cali, Colombia (Zapata-Restrepo), Department of Psychiatry, Fundación Valle del Lili, Cali, Colombia (Zapata-Restrepo)
| | - Bruce L Miller
- Global Brain Health Institute, University of California, San Francisco (all authors); Institute of Neuroscience, Trinity College, Dublin (all authors); Department of Cognitive Neurology, Neuropsychiatry and Neuropsychology, Instituto Neurológico Fleni, Buenos Aires (Magrath Guimet); Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco (Miller); and Department of Medical Sciences, Pontifical Xaverian University Cali, Cali, Colombia (Zapata-Restrepo), Department of Psychiatry, Fundación Valle del Lili, Cali, Colombia (Zapata-Restrepo)
| |
Collapse
|
64
|
Kim EJ, Na DL, Kim HJ, Park KW, Lee JH, Roh JH, Kwon JC, Yoon SJ, Jung NY, Jeong JH, Jang JW, Kim HJ, Park KH, Choi SH, Kim S, Park YH, Kim BC, Youn YC, Ki CS, Kim SH, Seo SW, Kim YE. Genetic Screening in Korean Patients with Frontotemporal Dementia Syndrome. J Alzheimers Dis Rep 2022; 6:651-662. [DOI: 10.3233/adr-220030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/04/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Frontotemporal dementia (FTD) syndrome is a genetically heterogeneous group of diseases. However, pathogenic variants in the chromosome 9 open reading frame 72 (C9orf72), microtubule-associated protein tau (MAPT), and progranulin (GRN) genes are mainly associated with genetic FTD in Caucasian populations. Objective: To understand the genetic background of Korean patients with FTD syndrome. Methods: We searched for pathogenic variants of 52 genes related to FTD, amyotrophic lateral sclerosis, familial Alzheimer’s disease, and other dementias, and hexanucleotide repeats of the C9orf72 gene in 72 Korean patients with FTD using whole exome sequencing and the repeat-primed polymerase chain reaction, respectively. Results: One likely pathogenic variant, p.G706R of MAPT, in a patient with behavioral variant FTD (bvFTD) and 13 variants of uncertain significance (VUSs) in nine patients with FTD were identified. Of these VUSs, M232R of the PRNP gene, whose role in pathogenicity is controversial, was also found in two patients with bvFTD. Conclusions: These results indicate that known pathogenic variants of the three main FTD genes (MAPT, GRN, and C9orf72) in Western countries are rare in Korean FTD patients.
Collapse
Affiliation(s)
- Eun-Joo Kim
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, Korea
| | - Duk L. Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee-Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung Won Park
- Department of Neurology, Dong-A Medical Center, Dong-A University College of Medicine, Busan, Korea
| | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jee Hoon Roh
- Department of Biomedical Sciences and Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jay C. Kwon
- Department of Neurology, Changwon Fatima Hospital, Changwon, Korea
| | - Soo Jin Yoon
- Department of Neurology, Eulji University Hospital, Daejeon
| | - Na-Yeon Jung
- Department of Neurology, Pusan National University Yangsan Hospital, Research Institute for Convergence of Biomedical Science and Technology, Busan, Korea
| | - Jee H. Jeong
- Department of Neurology, Ewha Womans University Hospital, Seoul
| | - Jae-Won Jang
- Department of Neurology, Kangwon National University Hospital, Chuncheon
| | - Hee-Jin Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, Korea
| | - Kee Hyung Park
- Department of Neurology, Gachon University Gil Hospital, Incheon, Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine and Clinical Neuroscience Center, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| | - Young Ho Park
- Department of Neurology, Seoul National University College of Medicine and Clinical Neuroscience Center, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| | - Byeong C. Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | | | - Seung-Hyun Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Neurology, Gachon University Gil Hospital, Incheon, Korea
| | - Young-Eun Kim
- Department of Laboratory Medicine, Hanyang University College of Medicine, Seoul, Korea
- Department of Neurology, Gachon University Gil Hospital, Incheon, Korea
| |
Collapse
|
65
|
Plasma Small Extracellular Vesicle Cathepsin D Dysregulation in GRN/C9orf72 and Sporadic Frontotemporal Lobar Degeneration. Int J Mol Sci 2022; 23:ijms231810693. [PMID: 36142612 PMCID: PMC9504770 DOI: 10.3390/ijms231810693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/22/2022] Open
Abstract
Emerging data suggest the roles of endo-lysosomal dysfunctions in frontotemporal lobar degeneration (FTLD) and in other dementias. Cathepsin D is one of the major lysosomal proteases, mediating the degradation of unfolded protein aggregates. In this retrospective study, we investigated cathepsin D levels in human plasma and in the plasma small extracellular vesicles (sEVs) of 161 subjects (40 sporadic FTLD, 33 intermediate/pathological C9orf72 expansion carriers, 45 heterozygous/homozygous GRN mutation carriers, and 43 controls). Cathepsin D was quantified by ELISA, and nanoparticle tracking analysis data (sEV concentration for the cathepsin D level normalization) were extracted from our previously published dataset or were newly generated. First, we revealed a positive correlation of the cathepsin D levels with the age of the patients and controls. Even if no significant differences were found in the cathepsin D plasma levels, we observed a progressive reduction in plasma cathepsin D moving from the intermediate to C9orf72 pathological expansion carriers. Observing the sEVs nano-compartment, we observed increased cathepsin D sEV cargo (ng/sEV) levels in genetic/sporadic FTLD. The diagnostic performance of this biomarker was fairly high (AUC = 0.85). Moreover, sEV and plasma cathepsin D levels were positively correlated with age at onset. In conclusion, our study further emphasizes the common occurrence of endo-lysosomal dysregulation in GRN/C9orf72 and sporadic FTLD.
Collapse
|
66
|
Tipton PW, Deutschlaender AB, Savica R, Heckman MG, Brushaber DE, Dickerson BC, Gavrilova RH, Geschwind DH, Ghoshal N, Graff-Radford J, Graff-Radford NR, Grossman M, Hsiung GYR, Huey ED, Irwin DJ, Jones DT, Knopman DS, McGinnis SM, Rademakers R, Ramos EM, Forsberg LK, Heuer HW, Onyike C, Tartaglia C, Domoto-Reilly K, Roberson ED, Mendez MF, Litvan I, Appleby BS, Grant I, Kaufer D, Boxer AL, Rosen HJ, Boeve BF, Wszolek ZK. Differences in Motor Features of C9orf72, MAPT, or GRN Variant Carriers With Familial Frontotemporal Lobar Degeneration. Neurology 2022; 99:e1154-e1167. [PMID: 35790423 PMCID: PMC9536745 DOI: 10.1212/wnl.0000000000200860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/02/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Familial frontotemporal lobar degeneration (f-FTLD) is a phenotypically heterogeneous spectrum of neurodegenerative disorders most often caused by variants within chromosome 9 open reading frame 72 (C9orf72), microtubule-associated protein tau (MAPT), or granulin (GRN). The phenotypic association with each of these genes is incompletely understood. We hypothesized that the frequency of specific clinical features would correspond with different genes. METHODS We screened the Advancing Research and Treatment in Frontotemporal Lobar Degeneration (ARTFL)/Longitudinal Evaluation of Familial Frontotemporal Dementia Subjects (LEFFTDS)/ARTFL LEFFTDS Longitudinal Frontotemporal Lobar Degeneration Consortium for symptomatic carriers of pathogenic variants in C9orf72, MAPT, or GRN. We assessed for clinical differences among these 3 groups based on data recorded as part of a detailed neurologic examination, the Progressive Supranuclear Palsy Rating Scale, Progressive Supranuclear Palsy-Quality of Life Rating Scale, Unified Parkinson's Disease Rating Scale Part III (motor items), and the Amyotrophic Lateral Sclerosis Functional Rating Scale, revised version. Data were analyzed using Kruskal-Wallis and Wilcoxon rank-sum tests and Fisher exact test. RESULTS We identified 184 symptomatic participants who had a single pathogenic variant in C9orf72 (n = 88), MAPT (n = 53), or GRN (n = 43). Motor symptom age at onset was earliest in the MAPT participants followed by C9orf72, whereas the GRN pathogenic variant carriers developed symptoms later. C9orf72 participants more often had fasciculations, muscle atrophy, and weakness, whereas parkinsonism was less frequent. Vertical oculomotor abnormalities were more common in the MAPT cohort, whereas apraxia and focal limb dystonia occurred more often in participants with GRN variants. DISCUSSION We present a large comparative study of motor features in C9orf72, MAPT, and GRN pathogenic variant carriers with symptomatic f-FTLD. Our findings demonstrate characteristic phenotypic differences corresponding with specific gene variants that increase our understanding of the genotype-phenotype relationship in this complex spectrum of neurodegenerative disorders. TRIAL REGISTRATION INFORMATION NCT02365922, NCT02372773, and NCT04363684.
Collapse
Affiliation(s)
- Philip Wade Tipton
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill.
| | - Angela B Deutschlaender
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Rodolfo Savica
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Michael G Heckman
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Danielle E Brushaber
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Bradford C Dickerson
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Ralitza H Gavrilova
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Daniel H Geschwind
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Nupur Ghoshal
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Jonathan Graff-Radford
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Neill R Graff-Radford
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Murray Grossman
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Ging-Yuek R Hsiung
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Edward D Huey
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - David John Irwin
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - David T Jones
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - David S Knopman
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Scott M McGinnis
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Rosa Rademakers
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Eliana Marisa Ramos
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Leah K Forsberg
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Hilary W Heuer
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Chiadi Onyike
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Carmela Tartaglia
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Kimiko Domoto-Reilly
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Erik D Roberson
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Mario F Mendez
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Irene Litvan
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Brian S Appleby
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Ian Grant
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Daniel Kaufer
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Adam L Boxer
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Howard J Rosen
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Brad F Boeve
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| | - Zbigniew K Wszolek
- From the Department of Neurology (P.W.T., A.B.D., N.R.G.-R., Z.K.W.), Mayo Clinic, Jacksonville, FL; Department of Neurology (R.S., D.E.B., R.H.G., J.G.-R., D.T.J., D.S.K., L.K.F., B.F.B.), Mayo Clinic, Rochester, MN; Division of Clinical Trials and Biostatistics (M.G.H.), Mayo Clinic, Jacksonville, FL; Massachusetts General Hospital (B.C.D., S.M.M.), Harvard University, Boston; University of California, Los Angeles (UCLA) (D.H.G., E.M.R., M.F.M.); Washington University (N.G.), St. Louis, MO; University of Pennsylvania (M.G., D.J.I.), Philadelphia; University of British Columbia (G.-Y.R.H.), Vancouver, Canada; Columbia University (E.D.H.), New York; Department of Neuroscience (R.R.), Mayo Clinic, Jacksonville, FL; University of California, San Francisco (UCSF) (H.W.H., A.L.B., H.J.R.); Johns Hopkins University School of Medicine (C.O.), Baltimore, MD; University of Toronto (C.T.), Ontario, Canada; University of Washington (K.D.-R.), Seattle; University of Alabama at Birmingham (E.D.R.); University of California, San Diego (UCSD) (I.L.); Case Western Reserve University (B.S.A.), Cleveland, OH; Northwestern University (I.G.), Evanston, IL; and University of North Carolina (D.K.), Chapel Hill
| |
Collapse
|
67
|
Roytman M, Chiang GC, Gordon ML, Franceschi AM. Multimodality Imaging in Primary Progressive Aphasia. AJNR Am J Neuroradiol 2022; 43:1230-1243. [PMID: 36007947 PMCID: PMC9451618 DOI: 10.3174/ajnr.a7613] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/30/2021] [Indexed: 01/26/2023]
Abstract
Primary progressive aphasia is a clinically and neuropathologically heterogeneous group of progressive neurodegenerative disorders, characterized by language-predominant impairment and commonly associated with atrophy of the dominant language hemisphere. While this clinical entity has been recognized dating back to the 19th century, important advances have been made in defining our current understanding of primary progressive aphasia, with 3 recognized subtypes to date: logopenic variant, semantic variant, and nonfluent/agrammatic variant. Given the ongoing progress in our understanding of the neurobiology and genomics of these rare neurodegenerative conditions, accurate imaging diagnoses are of the utmost importance and carry implications for future therapeutic triaging. This review covers the diverse spectrum of primary progressive aphasia and its multimodal imaging features, including structural, functional, and molecular neuroimaging findings; it also highlights currently recognized diagnostic criteria, clinical presentations, histopathologic biomarkers, and treatment options of these 3 primary progressive aphasia subtypes.
Collapse
Affiliation(s)
- M Roytman
- From the Neuroradiology Division (M.R., G.C.C.), Department of Radiology, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York
| | - G C Chiang
- From the Neuroradiology Division (M.R., G.C.C.), Department of Radiology, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York
| | - M L Gordon
- Departments of Neurology and Psychiatry (M.L.G.), Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, The Litwin-Zucker Research Center, Feinstein Institutes for Medical Research, Manhasset, New York
| | - A M Franceschi
- Neuroradiology Division (A.M.F.), Department of Radiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, New York
| |
Collapse
|
68
|
Sogorb-Esteve A, Nilsson J, Swift IJ, Heller C, Bocchetta M, Russell LL, Peakman G, Convery RS, van Swieten JC, Seelaar H, Borroni B, Galimberti D, Sanchez-Valle R, Laforce R, Moreno F, Synofzik M, Graff C, Masellis M, Tartaglia MC, Rowe JB, Vandenberghe R, Finger E, Tagliavini F, Santana I, Butler CR, Ducharme S, Gerhard A, Danek A, Levin J, Otto M, Sorbi S, Le Ber I, Pasquier F, Gobom J, Brinkmalm A, Blennow K, Zetterberg H, Rohrer JD, on behalf of the GENetic FTD Initiative NelsonAnnabelBouziguesArabellaGreavesCaroline VCashDavidThomasDavid LToddEmilyBenotmaneHanyaNicholasJenniferSamraKiranShafeiRachelleTimberlakeCarolynCopeThomasRittmanTimothyBenussiAlbertoPremiEnricoGasparottiRobertoArchettiSilvanaGazzinaStefanoCantoniValentinaArighiAndreaFenoglioChiaraScarpiniElioFumagalliGiorgioBorracciVittoriaRossiGiacominaGiacconeGiorgioDi FedeGiuseppeCaroppoPaolaTiraboschiPietroPrioniSaraRedaelliVeronicaTang-WaiDavidRogaevaEkaterinaCastelo-BrancoMiguelFreedmanMorrisKerenRonBlackSandraMitchellSaraShoesmithChristenBarthaRobartRademakersRosaPoosJackiePapmaJanne M.GianniniLuciavan MinkelenRickPijnenburgYolandeNacmiasBenedettaFerrariCamillaPolitoCristinaLombardiGemmaBessiValentinaVeldsmanMicheleAnderssonChristinThonbergHakanÖijerstedtLinnJelicVesnaThompsonPaulLangheinrichTobiasLladóAlbertAntonellAnnaOlivesJaumeBalasaMirceaBargallóNuriaBorrego-EcijaSergide MendonçaAlexandreVerdelhoAnaMarutaCarolinaFerreiraCatarina B.MiltenbergerGabrieldo CoutoFrederico SimõesGabilondoAlazneGorostidiAnaVillanuaJorgeCañadaMartaTaintaMikelZulaicaMirenBarandiaranMyriamAlvesPatriciaBenderBenjaminWilkeCarloGrafLisaVogelsAnnickVandenbulckeMathieuVan DammePhilipBruffaertsRosePoesenKoenRosa-NetoPedroGauthierSergeCamuzatAgnèsBriceAlexisBertrandAnneFunkiewiezAurélieRinaldiDaisySaracinoDarioColliotOlivierSayahSabrinaPrixCatharinaWlasichElisabethWagemannOliviaLoosliSandraSchöneckerSonjaHoegenTobiasLombardiJolinaAnderl-StraubSarahRollinAdelineKuchcinskiGregoryBertouxMaximeLebouvierThibaudDeramecourtVincentSantiagoBeatrizDuroDianaLeitãoMaria JoãoAlmeidaMaria RosarioTábuas-PereiraMiguelAfonsoSónia. Differential impairment of cerebrospinal fluid synaptic biomarkers in the genetic forms of frontotemporal dementia. Alzheimers Res Ther 2022; 14:118. [PMID: 36045450 PMCID: PMC9429339 DOI: 10.1186/s13195-022-01042-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Approximately a third of frontotemporal dementia (FTD) is genetic with mutations in three genes accounting for most of the inheritance: C9orf72, GRN, and MAPT. Impaired synaptic health is a common mechanism in all three genetic variants, so developing fluid biomarkers of this process could be useful as a readout of cellular dysfunction within therapeutic trials. METHODS A total of 193 cerebrospinal fluid (CSF) samples from the GENetic FTD Initiative including 77 presymptomatic (31 C9orf72, 23 GRN, 23 MAPT) and 55 symptomatic (26 C9orf72, 17 GRN, 12 MAPT) mutation carriers as well as 61 mutation-negative controls were measured using a microflow LC PRM-MS set-up targeting 15 synaptic proteins: AP-2 complex subunit beta, complexin-2, beta-synuclein, gamma-synuclein, 14-3-3 proteins (eta, epsilon, zeta/delta), neurogranin, Rab GDP dissociation inhibitor alpha (Rab GDI alpha), syntaxin-1B, syntaxin-7, phosphatidylethanolamine-binding protein 1 (PEBP-1), neuronal pentraxin receptor (NPTXR), neuronal pentraxin 1 (NPTX1), and neuronal pentraxin 2 (NPTX2). Mutation carrier groups were compared to each other and to controls using a bootstrapped linear regression model, adjusting for age and sex. RESULTS CSF levels of eight proteins were increased only in symptomatic MAPT mutation carriers (compared with controls) and not in symptomatic C9orf72 or GRN mutation carriers: beta-synuclein, gamma-synuclein, 14-3-3-eta, neurogranin, Rab GDI alpha, syntaxin-1B, syntaxin-7, and PEBP-1, with three other proteins increased in MAPT mutation carriers compared with the other genetic groups (AP-2 complex subunit beta, complexin-2, and 14-3-3 zeta/delta). In contrast, CSF NPTX1 and NPTX2 levels were affected in all three genetic groups (decreased compared with controls), with NPTXR concentrations being affected in C9orf72 and GRN mutation carriers only (decreased compared with controls). No changes were seen in the CSF levels of these proteins in presymptomatic mutation carriers. Concentrations of the neuronal pentraxins were correlated with brain volumes in the presymptomatic period for the C9orf72 and GRN groups, suggesting that they become abnormal in proximity to symptom onset. CONCLUSIONS Differential synaptic impairment is seen in the genetic forms of FTD, with abnormalities in multiple measures in those with MAPT mutations, but only changes in neuronal pentraxins within the GRN and C9orf72 mutation groups. Such markers may be useful in future trials as measures of synaptic dysfunction, but further work is needed to understand how these markers change throughout the course of the disease.
Collapse
Affiliation(s)
- Aitana Sogorb-Esteve
- grid.511435.7UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK
- grid.83440.3b0000000121901201Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG UK
| | - Johanna Nilsson
- grid.8761.80000 0000 9919 9582Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
| | - Imogen J. Swift
- grid.511435.7UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK
- grid.83440.3b0000000121901201Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG UK
| | - Carolin Heller
- grid.511435.7UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK
- grid.83440.3b0000000121901201Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG UK
| | - Martina Bocchetta
- grid.83440.3b0000000121901201Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG UK
| | - Lucy L. Russell
- grid.83440.3b0000000121901201Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG UK
| | - Georgia Peakman
- grid.83440.3b0000000121901201Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG UK
| | - Rhian S. Convery
- grid.83440.3b0000000121901201Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG UK
| | - John C. van Swieten
- grid.5645.2000000040459992XDepartment of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Harro Seelaar
- grid.5645.2000000040459992XDepartment of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Barbara Borroni
- grid.7637.50000000417571846Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Galimberti
- grid.4708.b0000 0004 1757 2822Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- grid.414818.00000 0004 1757 8749Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Raquel Sanchez-Valle
- grid.5841.80000 0004 1937 0247Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital ClínicInstitut d’Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Robert Laforce
- grid.23856.3a0000 0004 1936 8390Clinique Interdisciplinaire de MémoireDépartement Des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, Quebec City, QC Canada
| | - Fermin Moreno
- grid.414651.30000 0000 9920 5292Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Gipuzkoa, Spain
- grid.432380.eNeuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
| | - Matthis Synofzik
- grid.10392.390000 0001 2190 1447Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- grid.424247.30000 0004 0438 0426Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, BioclinicumKarolinska Institutet, Solna, Sweden
- grid.24381.3c0000 0000 9241 5705Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Mario Masellis
- grid.17063.330000 0001 2157 2938Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Maria Carmela Tartaglia
- grid.17063.330000 0001 2157 2938Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - James B. Rowe
- grid.5335.00000000121885934Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust and Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Rik Vandenberghe
- grid.5596.f0000 0001 0668 7884Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Louvain, Belgium
- grid.410569.f0000 0004 0626 3338Neurology Service, University Hospitals Leuven, Louvain, Belgium
- grid.5596.f0000 0001 0668 7884Leuven Brain Institute, KU Leuven, Louvain, Belgium
| | - Elizabeth Finger
- grid.39381.300000 0004 1936 8884Department of Clinical Neurological Sciences, University of Western Ontario, London, ON Canada
| | - Fabrizio Tagliavini
- grid.417894.70000 0001 0707 5492Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Isabel Santana
- grid.28911.330000000106861985Faculty of Medicine, University Hospital of Coimbra (HUC), Neurology Service, University of Coimbra, Coimbra, Portugal
- grid.8051.c0000 0000 9511 4342Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Chris R. Butler
- grid.4991.50000 0004 1936 8948Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
- grid.7445.20000 0001 2113 8111Department of Brain Sciences, Imperial College London, London, UK
| | - Simon Ducharme
- grid.412078.80000 0001 2353 5268Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada
- grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Alexander Gerhard
- grid.5379.80000000121662407Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
- grid.5718.b0000 0001 2187 5445Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, Duisburg, Germany
| | - Adrian Danek
- grid.5252.00000 0004 1936 973XNeurologische Klinik Und Poliklinik, Ludwig-Maximilians-Universität, Munich, Germany
| | - Johannes Levin
- grid.5252.00000 0004 1936 973XNeurologische Klinik Und Poliklinik, Ludwig-Maximilians-Universität, Munich, Germany
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- grid.452617.3Munich Cluster of Systems Neurology, Munich, Germany
| | - Markus Otto
- grid.6582.90000 0004 1936 9748Department of Neurology, University of Ulm, Ulm, Germany
| | - Sandro Sorbi
- grid.8404.80000 0004 1757 2304Department of Neurofarba, University of Florence, Florence, Italy
- grid.418563.d0000 0001 1090 9021IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Isabelle Le Ber
- grid.462844.80000 0001 2308 1657Sorbonne Université, Paris Brain Institute – Institut du Cerveau – ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- grid.411439.a0000 0001 2150 9058Centre de Référence Des Démences Rares Ou Précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- grid.411439.a0000 0001 2150 9058Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- Reference Network for Rare Neurological Diseases (ERN-RND), Tübingen, Germany
| | - Florence Pasquier
- grid.503422.20000 0001 2242 6780University of Lille, Lille, France
- grid.457380.d0000 0004 0638 5749Inserm, 1172, Lille, France
- grid.410463.40000 0004 0471 8845CHU, CNR-MAJ, Labex Distalz, LiCEND, Lille, France
| | - Johan Gobom
- grid.8761.80000 0000 9919 9582Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
- grid.8761.80000 0000 9919 9582Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Ann Brinkmalm
- grid.8761.80000 0000 9919 9582Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
- grid.8761.80000 0000 9919 9582Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Kaj Blennow
- grid.8761.80000 0000 9919 9582Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
- grid.8761.80000 0000 9919 9582Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- grid.511435.7UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK
- grid.8761.80000 0000 9919 9582Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
- grid.8761.80000 0000 9919 9582Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- grid.1649.a000000009445082XClinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- grid.24515.370000 0004 1937 1450Hong Kong Center for Neurodegenerative Diseases, Sha Tin, Hong Kong, China
| | - Jonathan D. Rohrer
- grid.511435.7UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK
- grid.83440.3b0000000121901201Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG UK
| | | |
Collapse
|
69
|
Soppela H, Katisko K, Gadola Y, Krüger J, Hartikainen P, Alberici A, Benussi A, Koivisto A, Haapasalo A, Remes AM, Borroni B, Solje E. Modifiable potential risk factors in familial and sporadic frontotemporal dementia. Ann Clin Transl Neurol 2022; 9:1195-1205. [PMID: 35767471 PMCID: PMC9380159 DOI: 10.1002/acn3.51619] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/11/2022] [Accepted: 06/19/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Only a few studies have evaluated modifiable risk factors for frontotemporal dementia (FTD). Here, we evaluated several modifiable factors and their association with disease phenotype, genotype, and prognosis in a large study population including Finnish and Italian patients with FTD and control groups. METHODS In this case-control study, we compared the presence of several cardiovascular and other lifestyle-related diseases and education between Finnish and Italian patients with familial (n = 376) and sporadic (n = 654) FTD, between different phenotypes of FTD, and between a subgroup of Finnish FTD patients (n = 221) and matched Finnish patients with Alzheimer's disease (AD) (n = 214) and cognitively healthy controls (HC) (n = 100). RESULTS Patients with sporadic FTD were less educated (p = 0.042, B = -0.560, 95% CI -1.101 to -0.019) and had more heart diseases (p < 0.001, OR = 2.265, 95% CI 1.502-3.417) compared to patients with familial FTD. Finnish FTD patients were less educated (p = 0.032, B = 0.755, 95% CI 0.064-1.466) compared with AD patients. The Finnish FTD group showed lower prevalence of hypertension than the HC group (p = 0.003, OR = 2.162, 95% CI 1.304-3.583) and lower prevalence of hypercholesterolemia than in the HC group (p < 0.001, OR = 2.648, 95%CI 1.548-4.531) or in the AD group (p < 0.001, OR = 1.995, 95% CI 1.333-2.986). Within the FTD group, clinical phenotypes also differed regarding education and lifestyle-related factors. INTERPRETATION Our study suggests distinct profiles of several modifiable factors in the FTD group depending on the phenotype and familial inheritance history and that especially sporadic FTD may be associated with modifiable risk factors.
Collapse
Affiliation(s)
- Helmi Soppela
- Institute of Clinical Medicine – NeurologyUniversity of Eastern FinlandKuopioFinland
| | - Kasper Katisko
- Institute of Clinical Medicine – NeurologyUniversity of Eastern FinlandKuopioFinland
| | - Yasmine Gadola
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Johanna Krüger
- Research Unit of Clinical Neuroscience – NeurologyUniversity of OuluOuluFinland
- MRC – Oulu University HospitalOuluFinland
| | | | | | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
- Neurology UnitASST Spedali Civili BresciaBresciaItaly
| | - Anne Koivisto
- Institute of Clinical Medicine – NeurologyUniversity of Eastern FinlandKuopioFinland
- Neuro Center – NeurologyKuopio University HospitalKuopioFinland
- Neuro Center, NeurologyHelsinki University HospitalHelsinkiFinland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Anne M Remes
- Research Unit of Clinical Neuroscience – NeurologyUniversity of OuluOuluFinland
- MRC – Oulu University HospitalOuluFinland
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
- Neurology UnitASST Spedali Civili BresciaBresciaItaly
| | - Eino Solje
- Institute of Clinical Medicine – NeurologyUniversity of Eastern FinlandKuopioFinland
- Neuro Center – NeurologyKuopio University HospitalKuopioFinland
| |
Collapse
|
70
|
Bouzigues A, Russell LL, Peakman G, Bocchetta M, Greaves CV, Convery RS, Todd E, Rowe JB, Borroni B, Galimberti D, Tiraboschi P, Masellis M, Tartaglia MC, Finger E, van Swieten JC, Seelaar H, Jiskoot L, Sorbi S, Butler CR, Graff C, Gerhard A, Langheinrich T, Laforce R, Sanchez-Valle R, de Mendonça A, Moreno F, Synofzik M, Vandenberghe R, Ducharme S, Le Ber I, Levin J, Danek A, Otto M, Pasquier F, Santana I, Rohrer JD, Nelson A, Bouzigues A, Heller C, Greaves CV, Cash D, Thomas DL, Todd E, Benotmane H, Zetterberg H, Swift IJ, Nicholas J, Samra K, Russell LL, Bocchetta M, Shafei R, Convery RS, Timberlake C, Cope T, Rittman T, Benussi A, Premi E, Gasparotti R, Archetti S, Gazzina S, Cantoni V, Arighi A, Fenoglio C, Scarpini E, Fumagalli G, Borracci V, Rossi G, Giaccone G, Caroppo P, Tiraboschi P, Prioni S, Redaelli V, Tang-Wai D, Rogaeva E, Castelo-Branco M, Keren R, Black S, Mitchell S, Shoesmith C, Bartha R, Rademakers R, Poos J, Papma JM, Giannini L, Minkelen R, Pijnenburg Y, Nacmias B, Ferrari C, Polito C, Lombardi G, Bessi V, Veldsman M, Andersson C, Thonberg H, Öijerstedt L, Jelic V, Thompson P, Langheinrich T, Lladó A, et alBouzigues A, Russell LL, Peakman G, Bocchetta M, Greaves CV, Convery RS, Todd E, Rowe JB, Borroni B, Galimberti D, Tiraboschi P, Masellis M, Tartaglia MC, Finger E, van Swieten JC, Seelaar H, Jiskoot L, Sorbi S, Butler CR, Graff C, Gerhard A, Langheinrich T, Laforce R, Sanchez-Valle R, de Mendonça A, Moreno F, Synofzik M, Vandenberghe R, Ducharme S, Le Ber I, Levin J, Danek A, Otto M, Pasquier F, Santana I, Rohrer JD, Nelson A, Bouzigues A, Heller C, Greaves CV, Cash D, Thomas DL, Todd E, Benotmane H, Zetterberg H, Swift IJ, Nicholas J, Samra K, Russell LL, Bocchetta M, Shafei R, Convery RS, Timberlake C, Cope T, Rittman T, Benussi A, Premi E, Gasparotti R, Archetti S, Gazzina S, Cantoni V, Arighi A, Fenoglio C, Scarpini E, Fumagalli G, Borracci V, Rossi G, Giaccone G, Caroppo P, Tiraboschi P, Prioni S, Redaelli V, Tang-Wai D, Rogaeva E, Castelo-Branco M, Keren R, Black S, Mitchell S, Shoesmith C, Bartha R, Rademakers R, Poos J, Papma JM, Giannini L, Minkelen R, Pijnenburg Y, Nacmias B, Ferrari C, Polito C, Lombardi G, Bessi V, Veldsman M, Andersson C, Thonberg H, Öijerstedt L, Jelic V, Thompson P, Langheinrich T, Lladó A, Antonell A, Olives J, Balasa M, Bargalló N, Borrego-Ecija S, Verdelho A, Maruta C, Ferreira CB, Miltenberger G, do Couto FS, Gabilondo A, Gorostidi A, Villanua J, Cañada M, Tainta M, Zulaica M, Barandiaran M, Alves P, Bender B, Wilke C, Graf L, Vogels A, Vandenbulcke M, Van Damme P, Bruffaerts R, Poesen K, Rosa-Neto P, Gauthier S, Camuzat A, Brice A, Bertrand A, Funkiewiez A, Rinaldi D, Saracino D, Colliot O, Sayah S, Prix C, Wlasich E, Wagemann O, Loosli S, Schönecker S, Hoegen T, Lombardi J, Anderl-Straub S, Rollin A, Kuchcinski G, Bertoux M, Lebouvier T, Deramecourt V, Santiago B, Duro D, Leitão MJ, Almeida MR, Tábuas-Pereira M, Afonso S, Engel A, Polyakova M. Anomia is present pre-symptomatically in frontotemporal dementia due to MAPT mutations. J Neurol 2022; 269:4322-4332. [PMID: 35348856 PMCID: PMC9294015 DOI: 10.1007/s00415-022-11068-0] [Show More Authors] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION A third of frontotemporal dementia (FTD) is caused by an autosomal-dominant genetic mutation in one of three genes: microtubule-associated protein tau (MAPT), chromosome 9 open reading frame 72 (C9orf72) and progranulin (GRN). Prior studies of prodromal FTD have identified impaired executive function and social cognition early in the disease but few have studied naming in detail. METHODS We investigated performance on the Boston Naming Test (BNT) in the GENetic Frontotemporal dementia Initiative cohort of 499 mutation carriers and 248 mutation-negative controls divided across three genetic groups: C9orf72, MAPT and GRN. Mutation carriers were further divided into 3 groups according to their global CDR plus NACC FTLD score: 0 (asymptomatic), 0.5 (prodromal) and 1 + (fully symptomatic). Groups were compared using a bootstrapped linear regression model, adjusting for age, sex, language and education. Finally, we identified neural correlates of anomia within carriers of each genetic group using a voxel-based morphometry analysis. RESULTS All symptomatic groups performed worse on the BNT than controls with the MAPT symptomatic group scoring the worst. Furthermore, MAPT asymptomatic and prodromal groups performed significantly worse than controls. Correlates of anomia in MAPT mutation carriers included bilateral anterior temporal lobe regions and the anterior insula. Similar bilateral anterior temporal lobe involvement was seen in C9orf72 mutation carriers as well as more widespread left frontal atrophy. In GRN mutation carriers, neural correlates were limited to the left hemisphere, and involved frontal, temporal, insula and striatal regions. CONCLUSION This study suggests the development of early anomia in MAPT mutation carriers, likely to be associated with impaired semantic knowledge. Clinical trials focused on the prodromal period within individuals with MAPT mutations should use language tasks, such as the BNT for patient stratification and as outcome measures.
Collapse
Affiliation(s)
- Arabella Bouzigues
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Lucy L Russell
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Georgia Peakman
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Martina Bocchetta
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Caroline V Greaves
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Rhian S Convery
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Emily Todd
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - James B Rowe
- Trust and Medical Research Council Cognition and Brain Sciences Unit, Department of Clinical Neurosciences and Cambridge University Hospitals NHS, University of Cambridge, Cambridge, UK
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | | | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Lize Jiskoot
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK.,Department of Brain Sciences, Imperial College London, London, UK
| | - Caroline Graff
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Bioclinicum, Karolinska Institutet, Solna, Sweden.,Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.,Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg, Essen, Germany
| | - Tobias Langheinrich
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.,Cerebral Function Unit, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Robert Laforce
- Département Des Sciences Neurologiques, Clinique Interdisciplinaire de Mémoire, CHU de Québec, and Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | | | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Gipuzkoa, Spain.,Neuroscience Area, Biodonostia Health Research Institute, Gipuzkoa, San Sebastian, Spain
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Neurology Service, University Hospitals Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Simon Ducharme
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada.,Department of Neurology & Neurosurgery, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Isabelle Le Ber
- Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Centre de Référence Des Démences Rares Ou Précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Johannes Levin
- Neurologische Klinik Und Poliklinik, Ludwig-Maximilians-Universität, Munich, Germany.,Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology, Munich, Germany
| | - Adrian Danek
- Neurologische Klinik Und Poliklinik, Ludwig-Maximilians-Universität, Munich, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Florence Pasquier
- Univ Lille, Lille, France.,Inserm 1172, Lille, France.,CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, Lille, France
| | - Isabel Santana
- Neurology Service, Faculty of Medicine, University Hospital of Coimbra (HUC), University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Benussi A, Libri I, Premi E, Alberici A, Cantoni V, Gadola Y, Rivolta J, Pengo M, Gazzina S, Calhoun VD, Gasparotti R, Zetterberg H, Ashton NJ, Blennow K, Padovani A, Borroni B. Differences and similarities between familial and sporadic frontotemporal dementia: An Italian single-center cohort study. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12326. [PMID: 35898667 PMCID: PMC9310192 DOI: 10.1002/trc2.12326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/11/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Introduction The possibility to generalize our understandings on treatments and assessments to both familial frontotemporal dementia (f-FTD) and sporadic FTD (s-FTD) is a fundamental perspective for the near future, considering the constant advancement in potential disease-modifying therapies that target particular genetic forms of FTD. We aimed to investigate differences in clinical features, cerebrospinal fluid (CSF), and blood-based biomarkers between f-FTD and s-FTD. Methods In this longitudinal cohort study, we evaluated a consecutive sample of symptomatic FTD patients, classified as f-FTD and s-FTD according to Goldman scores (GS). All patients underwent clinical, behavioral, and neuropsychiatric symptom assessment, CSF biomarkers and serum neurofilament light (NfL) analysis, and brain atrophy evaluation with magnetic resonance imaging. Results Of 570 patients with FTD, 123 were classified as f-FTD, and 447 as s-FTD. In the f-FTD group, 95 had a pathogenic FTD mutation while 28 were classified as GS = 1 or 2; of the s-FTD group, 133 were classified as GS = 3 and 314 with GS = 4. f-FTD and s-FTD cases showed comparable demographic features, except for younger age at disease onset, age at diagnosis, and higher years of education in the f-FTD group (all P < .05). f-FTD showed worse behavioral disturbances as measured with Frontal Behavioral Inventory (FBI) negative behaviors (14.0 ± 7.6 vs. 11.6 ± 7.4, P = .002), and positive behaviors (20.0 ± 11.0 vs. 17.4 ± 11.8, P = .031). Serum NfL concentrations were higher in patients with f-FTD (70.9 ± 37.9 pg/mL) compared to s-FTD patients (37.3 ± 24.2 pg/mL, P < .001), and f-FTD showed greater brain atrophy in the frontal and temporal regions and basal ganglia. Patients with f-FTD had significantly shorter survival than those with s-FTD (P = .004). Discussion f-FTD and s-FTD are very similar clinical entities, but with different biological mechanisms, and different rates of progression. The parallel characterization of both f-FTD and s-FTD will improve our understanding of the disease, and aid in designing future clinical trials for both genetic and sporadic forms of FTD. Highlights Do clinical features and biomarkers differ between patients with familial frontotemporal dementia (f-FTD) and sporadic FTD (s-FTD)?In this cohort study of 570 patients with FTD, f-FTD and s-FTD share similar demographic features, but with younger age at disease onset and diagnosis in the f-FTD group.f-FTD showed higher serum neurofilament light concentrations, greater brain damage, and shorter survival, compared to s-FTD.f-FTD and s-FTD are very similar clinical entities, but with different cognitive reserve mechanisms and different rates of progression.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
- Neurology UnitDepartment of Neurological and Vision SciencesASST Spedali CiviliBresciaItaly
| | - Ilenia Libri
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Enrico Premi
- Stroke UnitDepartment of Neurological and Vision SciencesASST Spedali CiviliBresciaItaly
| | - Antonella Alberici
- Neurology UnitDepartment of Neurological and Vision SciencesASST Spedali CiviliBresciaItaly
| | - Valentina Cantoni
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Yasmine Gadola
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Jasmine Rivolta
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Marta Pengo
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Stefano Gazzina
- Neurophysiology UnitDepartment of Neurological and Vision SciencesASST Spedali CiviliBresciaItaly
| | - Vince D. Calhoun
- The Mind Research NetworkDepartment of Electrical and Computer EngineeringUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | | | - Henrik Zetterberg
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- UK Dementia Research Institute at UCLLondonUK
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Nicholas J. Ashton
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgMölndalSweden
- King's College LondonInstitute of PsychiatryPsychology & NeuroscienceMaurice Wohl Clinical Neuroscience InstituteLondonUK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS FoundationLondonUK
| | - Kaj Blennow
- Institute of Neuroscience and PhysiologyDepartment of Psychiatry and NeurochemistryThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Alessandro Padovani
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
- Neurology UnitDepartment of Neurological and Vision SciencesASST Spedali CiviliBresciaItaly
| | - Barbara Borroni
- Neurology UnitDepartment of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
- Neurology UnitDepartment of Neurological and Vision SciencesASST Spedali CiviliBresciaItaly
| |
Collapse
|
72
|
Tábuas-Pereira M, Santana I, Gibbons E, Paquette K, Almeida MR, Baldeiras I, Bras J, Guerreiro R. Exome Sequencing of a Portuguese Cohort of Frontotemporal Dementia Patients: Looking Into the ALS-FTD Continuum. Front Neurol 2022; 13:886379. [PMID: 35873773 PMCID: PMC9300853 DOI: 10.3389/fneur.2022.886379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Frontotemporal dementia (FTD) is considered to be part of a continuum with amyotrophic lateral sclerosis (ALS). Many genes are associated with both ALS and FTD. Yet, many genes associated with ALS have not been shown to cause FTD. We aimed to study a Portuguese cohort of FTD patients, searching for variants in genes associated with both FTD and/or ALS. Methods We included 57 thoroughly characterized index FTD patients from our memory clinic, who were not carriers of pathogenic variants in GRN, MAPT or C9orf72. We performed exome sequencing and 1) prioritized potential FTD and ALS causing variants by using Exomiser to annotate and filter results; and 2) looked specifically at rare variability in genes associated with FTD (excluding GRN, MAPT and C9ORF72) and/or ALS. Results We identified 13 rare missense variants in 10 patients (three patients had two variants) in the following genes: FUS, OPTN, CCNF, DCTN1, TREM2, ERBB4, ANG, CHRNA4, CHRNB4 and SETX. We found an additional frameshift variant on GLT8D1 in one patient. One variant (ERBB4 p.Arg1112His) gathered enough evidence to be classified as likely pathogenic by the ACMG criteria. Discussion We report, for the first time, an expanded study of genes known to cause FTD-ALS, in the Portuguese population. Potentially pathogenic variants in ERBB4, FUS, SETX, ANG, CHRNA4 and CHRNB4 were identified in FTD patients. These findings provide additional evidence for the potential role of rare variability in ALS-associated genes in FTD, expanding the genetic spectrum between the two diseases.
Collapse
Affiliation(s)
- Miguel Tábuas-Pereira
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Department of Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- *Correspondence: Miguel Tábuas-Pereira
| | - Isabel Santana
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Department of Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Department of Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Elizabeth Gibbons
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Kimberly Paquette
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Maria Rosário Almeida
- Department of Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Inês Baldeiras
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Department of Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Department of Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Jose Bras
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| |
Collapse
|
73
|
Miedema SSM, Mol MO, Koopmans FTW, Hondius DC, van Nierop P, Menden K, de Veij Mestdagh CF, van Rooij J, Ganz AB, Paliukhovich I, Melhem S, Li KW, Holstege H, Rizzu P, van Kesteren RE, van Swieten JC, Heutink P, Smit AB. Distinct cell type-specific protein signatures in GRN and MAPT genetic subtypes of frontotemporal dementia. Acta Neuropathol Commun 2022; 10:100. [PMID: 35799292 PMCID: PMC9261008 DOI: 10.1186/s40478-022-01387-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022] Open
Abstract
Frontotemporal dementia is characterized by progressive atrophy of frontal and/or temporal cortices at an early age of onset. The disorder shows considerable clinical, pathological, and genetic heterogeneity. Here we investigated the proteomic signatures of frontal and temporal cortex from brains with frontotemporal dementia due to GRN and MAPT mutations to identify the key cell types and molecular pathways in their pathophysiology. We compared patients with mutations in the GRN gene (n = 9) or with mutations in the MAPT gene (n = 13) with non-demented controls (n = 11). Using quantitative proteomic analysis on laser-dissected tissues we identified brain region-specific protein signatures for both genetic subtypes. Using published single cell RNA expression data resources we deduced the involvement of major brain cell types in driving these different protein signatures. Subsequent gene ontology analysis identified distinct genetic subtype- and cell type-specific biological processes. For the GRN subtype, we observed a distinct role for immune processes related to endothelial cells and for mitochondrial dysregulation in neurons. For the MAPT subtype, we observed distinct involvement of dysregulated RNA processing, oligodendrocyte dysfunction, and axonal impairments. Comparison with an in-house protein signature of Alzheimer’s disease brains indicated that the observed alterations in RNA processing and oligodendrocyte function are distinct for the frontotemporal dementia MAPT subtype. Taken together, our results indicate the involvement of different brain cell types and biological mechanisms in genetic subtypes of frontotemporal dementia. Furthermore, we demonstrate that comparison of proteomic profiles of different disease entities can separate general neurodegenerative processes from disease-specific pathways, which may aid the development of disease subtype-specific treatment strategies.
Collapse
Affiliation(s)
- Suzanne S M Miedema
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, W&N Building, C314. De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands.
| | - Merel O Mol
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Frank T W Koopmans
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, W&N Building, C314. De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - David C Hondius
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, W&N Building, C314. De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Pim van Nierop
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, W&N Building, C314. De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Kevin Menden
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany
| | - Christina F de Veij Mestdagh
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, W&N Building, C314. De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands.,Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, the Netherlands.,Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Jeroen van Rooij
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Andrea B Ganz
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, W&N Building, C314. De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands.,Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Iryna Paliukhovich
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, W&N Building, C314. De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Shamiram Melhem
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, W&N Building, C314. De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Henne Holstege
- Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.,Department of Clinical Genetics, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Patrizia Rizzu
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany
| | - Ronald E van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, W&N Building, C314. De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, W&N Building, C314. De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
74
|
Tafuri B, Filardi M, Urso D, De Blasi R, Rizzo G, Nigro S, Logroscino G. Radiomics Model for Frontotemporal Dementia Diagnosis Using T1-Weighted MRI. Front Neurosci 2022; 16:828029. [PMID: 35794955 PMCID: PMC9251132 DOI: 10.3389/fnins.2022.828029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Radiomics has been proposed as a useful approach to extrapolate novel morphological and textural information from brain Magnetic resonance images (MRI). Radiomics analysis has shown unique potential in the diagnostic work-up and in the follow-up of patients suffering from neurodegenerative diseases. However, the potentiality of this technique in distinguishing frontotemporal dementia (FTD) subtypes has so far not been investigated. In this study, we explored the usefulness of radiomic features in differentiating FTD subtypes, namely, the behavioral variant of FTD (bvFTD), the non-fluent and/or agrammatic (PNFA) and semantic (svPPA) variants of a primary progressive aphasia (PPA). Classification analyses were performed on 3 Tesla T1-weighted images obtained from the Frontotemporal Lobar Degeneration Neuroimaging Initiative. We included 49 patients with bvFTD, 25 patients with PNFA, 34 patients with svPPA, and 60 healthy controls. Texture analyses were conducted to define the first-order statistic and textural features in cortical and subcortical brain regions. Recursive feature elimination was used to select the radiomics signature for each pairwise comparison followed by a classification framework based on a support vector machine. Finally, 10-fold cross-validation was used to assess classification performances. The radiomics-based approach successfully identified the brain regions typically involved in each FTD subtype, achieving a mean accuracy of more than 80% in distinguishing between patient groups. Note mentioning is that radiomics features extracted in the left temporal regions allowed achieving an accuracy of 91 and 94% in distinguishing patients with svPPA from those with PNFA and bvFTD, respectively. Radiomics features show excellent classification performances in distinguishing FTD subtypes, supporting the clinical usefulness of this approach in the diagnostic work-up of FTD.
Collapse
Affiliation(s)
- Benedetta Tafuri
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari “Aldo Moro” at Pia Fondazione “Card. G. Panico”, Tricase, Italy
- Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy
| | - Marco Filardi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari “Aldo Moro” at Pia Fondazione “Card. G. Panico”, Tricase, Italy
- Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy
| | - Daniele Urso
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari “Aldo Moro” at Pia Fondazione “Card. G. Panico”, Tricase, Italy
- Department of Neurosciences, King’s College London, Institute of Psychiatry, Psychology, and Neuroscience, London, United Kingdom
| | - Roberto De Blasi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari “Aldo Moro” at Pia Fondazione “Card. G. Panico”, Tricase, Italy
- Department of Radiology, “Pia Fondazione Cardinale G. Panico”, Tricase, Italy
| | - Giovanni Rizzo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Salvatore Nigro
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari “Aldo Moro” at Pia Fondazione “Card. G. Panico”, Tricase, Italy
- Institute of Nanotechnology (NANOTEC), Lecce, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari “Aldo Moro” at Pia Fondazione “Card. G. Panico”, Tricase, Italy
- Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy
- *Correspondence: Giancarlo Logroscino,
| |
Collapse
|
75
|
Kim SH, Kim YJ, Lee BH, Lee P, Park JH, Seo SW, Jeong Y. Behavioral Reserve in Behavioral Variant Frontotemporal Dementia. Front Aging Neurosci 2022; 14:875589. [PMID: 35795232 PMCID: PMC9252599 DOI: 10.3389/fnagi.2022.875589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
“Reserve” refers to the individual clinical differences in response to a neuropathological burden. We explored the behavioral reserve (BR) and associated neural substrates in 40 participants with behavioral variant frontotemporal dementia (bvFTD) who were assessed with the frontal behavioral inventory (FBI) and magnetic resonance imaging. Because neuroimaging abnormality showed a high negative correlation with the FBI negative (but not positive) symptom scores, we developed a linear model only to calculate the nBR (BR for negative symptoms) marker using neuroimaging abnormalities and the FBI score. Participants were divided into high nBR and low nBR groups based on the nBR marker. The FBI negative symptom score was lower in the high nBR group than in the low nBR group having the same neuroimaging abnormalities. However, the high nBR group noted a steeper decline in cortical atrophy and showed less atrophy in the left frontotemporal cortices than the low nBR group. In addition, the fractional anisotropy (FA) values were greater in the high nBR than in the low nBR group, except in the sensory-motor and occipital areas. We identified an nBR-related functional network composed of bilateral frontotemporal areas and the left occipital pole. We propose the concept of BR in bvFTD, and these findings can help predict the disease progression.
Collapse
Affiliation(s)
- Su Hong Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for Health Science Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Yae Ji Kim
- KAIST Institute for Health Science Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Byung Hwa Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
- Neuroscience Center, Samsung Medical Center, Seoul, South Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, South Korea
| | - Peter Lee
- KAIST Institute for Health Science Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Ji Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
- Neuroscience Center, Samsung Medical Center, Seoul, South Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, South Korea
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
- Department of Intelligent Precision Healthcare Convergence, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea
- *Correspondence: Sang Won Seo,
| | - Yong Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for Health Science Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Yong Jeong,
| |
Collapse
|
76
|
Johnson MA, Nuckols TA, Merino P, Bagchi P, Nandy S, Root J, Taylor G, Seyfried NT, Kukar T. Proximity-based labeling reveals DNA damage-induced phosphorylation of fused in sarcoma (FUS) causes distinct changes in the FUS protein interactome. J Biol Chem 2022; 298:102135. [PMID: 35709984 PMCID: PMC9372748 DOI: 10.1016/j.jbc.2022.102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 01/18/2023] Open
Abstract
Accumulation of cytoplasmic inclusions containing fused in sarcoma (FUS), an RNA/DNA-binding protein, is a common hallmark of frontotemporal lobar degeneration and amyotrophic lateral sclerosis neuropathology. We have previously shown that DNA damage can trigger the cytoplasmic accumulation of N-terminally phosphorylated FUS. However, the functional consequences of N-terminal FUS phosphorylation are unknown. To gain insight into this question, we utilized proximity-dependent biotin labeling via ascorbate peroxidase 2 aired with mass spectrometry to investigate whether N-terminal phosphorylation alters the FUS protein-protein interaction network (interactome), and subsequently, FUS function. We report the first analysis comparing the interactomes of three FUS variants: homeostatic wildtype FUS (FUS WT), phosphomimetic FUS (FUS PM; a proxy for N-terminally phosphorylated FUS), and the toxic FUS proline 525 to leucine mutant (FUS P525L) that causes juvenile amyotrophic lateral sclerosis. We found that the phosphomimetic FUS interactome is uniquely enriched for a group of cytoplasmic proteins that mediate mRNA metabolism and translation, as well as nuclear proteins involved in the spliceosome and DNA repair functions. Furthermore, we identified and validated the RNA-induced silencing complex RNA helicase MOV10 as a novel interacting partner of FUS. Finally, we provide functional evidence that N-terminally phosphorylated FUS may disrupt homeostatic translation and steady-state levels of specific mRNA transcripts. Taken together, these results highlight phosphorylation as a unique modulator of the interactome and function of FUS.
Collapse
Affiliation(s)
- Michelle A. Johnson
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, Georgia, USA,Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Thomas A. Nuckols
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, Georgia, USA,Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Paola Merino
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, Georgia, USA,Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Srijita Nandy
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, Georgia, USA,Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Jessica Root
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, Georgia, USA,Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Georgia Taylor
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, Georgia, USA,Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Nicholas T. Seyfried
- Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA,Emory Integrated Proteomics Core, Emory University, School of Medicine, Atlanta, Georgia, USA,Department of Neurology, Emory University, School of Medicine, Atlanta, Georgia, USA,Department of Biochemistry, Emory University, School of Medicine, Atlanta, Georgia, USA
| | - Thomas Kukar
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta, Georgia, USA,Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta, Georgia, USA,Department of Neurology, Emory University, School of Medicine, Atlanta, Georgia, USA,For correspondence: Thomas Kukar
| |
Collapse
|
77
|
Ulugut H, Trieu C, Groot C, van 't Hooft JJ, Tijms BM, Scheltens P, Ossenkoppele R, Barkhof F, van den Heuvel OA, Pijnenburg YAL. Overlap of Neuroanatomical Involvement in Frontotemporal Dementia and Primary Psychiatric Disorders: A Meta-analysis. Biol Psychiatry 2022; 93:820-828. [PMID: 35965106 DOI: 10.1016/j.biopsych.2022.05.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/05/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Despite significant symptomatic overlap between behavioral variant frontotemporal dementia (bvFTD) and primary psychiatric disorders (PPDs), a potential overlap in their structural anatomical changes has not been studied systematically. METHODS In this magnetic resonance imaging-based meta-analysis, we included studies on bvFTD, schizophrenia, bipolar disorder, and autism spectrum disorder that 1) used voxel-based morphometry analysis to assess regional gray matter volumes (GMVs) and 2) reported the coordinates of the regional GMV. Separate analyses were performed comparing clusters of coordinate-based changes in the GMVs (n = 24,183) between patients and control subjects, and overlapping brain regions between bvFTD and each PPD were examined. RESULTS We found that GMV alterations in the prefrontal and anterior cingulate cortices, temporal lobe, amygdala, and insula comprise the transdiagnostic brain alterations in bvFTD and PPD. CONCLUSIONS Our meta-analysis revealed significant anatomical overlap that paves the way for future investigations of shared pathophysiological pathways, and our cross-disorder approach would provide new insights to better understand the relationship between bvFTD and PPD.
Collapse
Affiliation(s)
- Hulya Ulugut
- Departments of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Calvin Trieu
- Departments of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Colin Groot
- Departments of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jochum J van 't Hooft
- Departments of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Betty M Tijms
- Departments of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Philip Scheltens
- Departments of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Departments of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Clinical Memory Research Unit, Lunds Universitet, Lund, Sweden
| | - Frederik Barkhof
- Radiology and Nuclear Medicine, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; University College London, Institutes of Neurology and Healthcare Engineering, London, United Kingdom
| | - Odile A van den Heuvel
- Department of Psychiatry, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Departments of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
78
|
Gazzina S, Grassi M, Premi E, Alberici A, Benussi A, Archetti S, Gasparotti R, Bocchetta M, Cash DM, Todd EG, Peakman G, Convery RS, van Swieten JC, Jiskoot LC, Seelaar H, Sanchez-Valle R, Moreno F, Laforce R, Graff C, Synofzik M, Galimberti D, Rowe JB, Masellis M, Tartaglia MC, Finger E, Vandenberghe R, de Mendonça A, Tagliavini F, Butler CR, Santana I, Gerhard A, Ber IL, Pasquier F, Ducharme S, Levin J, Danek A, Sorbi S, Otto M, Rohrer JD, Borroni B. Structural brain splitting is a hallmark of Granulin-related frontotemporal dementia. Neurobiol Aging 2022; 114:94-104. [PMID: 35339292 DOI: 10.1016/j.neurobiolaging.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 10/19/2022]
Abstract
Frontotemporal dementia associated with granulin (GRN) mutations presents asymmetric brain atrophy. We applied a Minimum Spanning Tree plus an Efficiency Cost Optimization approach to cortical thickness data in order to test whether graph theory measures could identify global or local impairment of connectivity in the presymptomatic phase of pathology, where other techniques failed in demonstrating changes. We included 52 symptomatic GRN mutation carriers (SC), 161 presymptomatic GRN mutation carriers (PSC) and 341 non-carriers relatives from the Genetic Frontotemporal dementia research Initiative cohort. Group differences of global, nodal and edge connectivity in (Minimum Spanning Tree plus an Efficiency Cost Optimization) graph were tested via Structural Equation Models. Global graph perturbation was selectively impaired in SC compared to non-carriers, with no changes in PSC. At the local level, only SC exhibited perturbation of frontotemporal nodes, but edge connectivity revealed a characteristic pattern of interhemispheric disconnection, involving homologous parietal regions, in PSC. Our results suggest that GRN-related frontotemporal dementia resembles a disconnection syndrome, with interhemispheric disconnection between parietal regions in presymptomatic phases that progresses to frontotemporal areas as symptoms emerge.
Collapse
Affiliation(s)
- Stefano Gazzina
- Neurophysiology Unit, ASST Spedali Civili Hospital, Brescia, Italy
| | - Mario Grassi
- Department of Brain and Behavioral Science, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
| | - Enrico Premi
- Stroke Unit, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy
| | | | - Alberto Benussi
- Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy; Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Silvana Archetti
- Biotechnology Laboratory, Department of Diagnostics, Spedali Civili Hospital, Brescia, Italy
| | | | - Martina Bocchetta
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - David M Cash
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Emily G Todd
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Georgia Peakman
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Rhian S Convery
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | | | - Lize C Jiskoot
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Gipuzkoa, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Facultéde Médecine, Université Laval, Quebec City, Québec, Canada
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, Sweden
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tubingen, Tubingen, Germany
| | - Daniela Galimberti
- Fondazione Ca' Granda, IRCCS Ospedale Policlinico, Milan, Italy; University of Milan, Centro Dino Ferrari, Milan, Italy
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium; Neurology Service, University Hospitals Leuven, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | | | - Chris R Butler
- Nueld Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Isabel Santana
- University Hospital of Coimbra (HUC), Neurology Service, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Alexander Gerhard
- Division of Neuroscience & Experimental Psychology, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK; Departments of Geriatric Medicine and Nuclear Medicine, Essen University Hospital, Essen, Germany
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Centre de référence des démences rares ou précoces, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Reference Network for Rare Neurological Diseases (ERN-RND), Paris, France
| | | | - Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Adrian Danek
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Jonathan D Rohrer
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Barbara Borroni
- Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy.
| | | |
Collapse
|
79
|
You W, Henneberg R, Henneberg M. Healthcare services relaxing natural selection may contribute to increase of dementia incidence. Sci Rep 2022; 12:8873. [PMID: 35614150 PMCID: PMC9132962 DOI: 10.1038/s41598-022-12678-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
Ageing and genetic traits can only explain the increasing dementia incidence partially. Advanced healthcare services allow dementia patients to survive natural selection and pass their genes onto the next generation. Country-specific estimates of dementia incidence rates (all ages and 15-49 years old), Biological State Index expressing reduced natural selection (Is), ageing indexed by life expectancy e(65), GDP PPP and urbanization were obtained for analysing the global and regional correlations between reduced natural selection and dementia incidence with SPSS v. 27. Worldwide, Is significantly, but inversely, correlates with dementia incidence rates for both all ages and 15-49 years old in bivariate correlations. These relationships remain inversely correlated regardless of the competing contributing effects from ageing, GDP and urbanization in partial correlation model. Results of multiple linear regression (enter) have shown that Is is the significant predictor of dementia incidence among all ages and 15-49 years old. Subsequently, Is was selected as the variable having the greatest influence on dementia incidence in stepwise multiple linear regression. The Is correlated with dementia incidence more strongly in developed population groupings. Worldwide, reduced natural selection may be yet another significant contributor to dementia incidence with special regard to developed populations.
Collapse
Affiliation(s)
- Wenpeng You
- Biological Anthropology and Comparative Anatomy Unit, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Renata Henneberg
- Biological Anthropology and Comparative Anatomy Unit, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Unit, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
80
|
Nelson A, Russell LL, Peakman G, Convery RS, Bouzigues A, Greaves CV, Bocchetta M, Cash DM, van Swieten JC, Jiskoot L, Moreno F, Sanchez-Valle R, Laforce R, Graff C, Masellis M, Tartaglia MC, Rowe JB, Borroni B, Finger E, Synofzik M, Galimberti D, Vandenberghe R, de Mendonça A, Butler CR, Gerhard A, Ducharme S, Le Ber I, Santana I, Pasquier F, Levin J, Otto M, Sorbi S, Rohrer JD, Almeida MR, Anderl‐Straub S, Andersson C, Antonell A, Archetti S, Arighi A, Balasa M, Barandiaran M, Bargalló N, Bartha R, Bender B, Benussi A, Bertoux M, Bertrand A, Bessi V, Black S, Bocchetta M, Borrego‐Ecija S, Bras J, Brice A, Bruffaerts R, Camuzat A, Cañada M, Cantoni V, Caroppo P, Cash D, Castelo‐Branco M, Colliot O, Cope T, Deramecourt V, Arriba M, Di Fede G, Díez A, Duro D, Fenoglio C, Ferrari C, Ferreira CB, Fox N, Freedman M, Fumagalli G, Funkiewiez A, Gabilondo A, Gasparotti R, Gauthier S, Gazzina S, Giaccone G, Gorostidi A, Greaves C, Guerreiro R, Heller C, Hoegen T, Indakoetxea B, Jelic V, Karnath H, Keren R, Kuchcinski G, Langheinrich T, Lebouvier T, Leitão MJ, Lladó A, Lombardi G, Loosli S, Maruta C, Mead S, Meeter L, Miltenberger G, et alNelson A, Russell LL, Peakman G, Convery RS, Bouzigues A, Greaves CV, Bocchetta M, Cash DM, van Swieten JC, Jiskoot L, Moreno F, Sanchez-Valle R, Laforce R, Graff C, Masellis M, Tartaglia MC, Rowe JB, Borroni B, Finger E, Synofzik M, Galimberti D, Vandenberghe R, de Mendonça A, Butler CR, Gerhard A, Ducharme S, Le Ber I, Santana I, Pasquier F, Levin J, Otto M, Sorbi S, Rohrer JD, Almeida MR, Anderl‐Straub S, Andersson C, Antonell A, Archetti S, Arighi A, Balasa M, Barandiaran M, Bargalló N, Bartha R, Bender B, Benussi A, Bertoux M, Bertrand A, Bessi V, Black S, Bocchetta M, Borrego‐Ecija S, Bras J, Brice A, Bruffaerts R, Camuzat A, Cañada M, Cantoni V, Caroppo P, Cash D, Castelo‐Branco M, Colliot O, Cope T, Deramecourt V, Arriba M, Di Fede G, Díez A, Duro D, Fenoglio C, Ferrari C, Ferreira CB, Fox N, Freedman M, Fumagalli G, Funkiewiez A, Gabilondo A, Gasparotti R, Gauthier S, Gazzina S, Giaccone G, Gorostidi A, Greaves C, Guerreiro R, Heller C, Hoegen T, Indakoetxea B, Jelic V, Karnath H, Keren R, Kuchcinski G, Langheinrich T, Lebouvier T, Leitão MJ, Lladó A, Lombardi G, Loosli S, Maruta C, Mead S, Meeter L, Miltenberger G, Minkelen R, Mitchell S, Moore K, Nacmias B, Nelson A, Öijerstedt L, Olives J, Ourselin S, Padovani A, Panman J, Papma JM, Pijnenburg Y, Polito C, Premi E, Prioni S, Prix C, Rademakers R, Redaelli V, Rinaldi D, Rittman T, Rogaeva E, Rollin A, Rosa‐Neto P, Rossi G, Rossor M, Santiago B, Saracino D, Sayah S, Scarpini E, Schönecker S, Seelaar H, Semler E, Shafei R, Shoesmith C, Swift I, Tábuas‐Pereira M, Tainta M, Taipa R, Tang‐Wai D, Thomas DL, Thompson P, Thonberg H, Timberlake C, Tiraboschi P, Todd E, Van Damme P, Vandenbulcke M, Veldsman M, Verdelho A, Villanua J, Warren J, Wilke C, Wlasich E, Zetterberg H, Zulaica M. The CBI-R detects early behavioural impairment in genetic frontotemporal dementia. Ann Clin Transl Neurol 2022; 9:644-658. [PMID: 35950369 PMCID: PMC9082390 DOI: 10.1002/acn3.51544] [Show More Authors] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Behavioural dysfunction is a key feature of genetic frontotemporal dementia (FTD) but validated clinical scales measuring behaviour are lacking at present. METHODS We assessed behaviour using the revised version of the Cambridge Behavioural Inventory (CBI-R) in 733 participants from the Genetic FTD Initiative study: 466 mutation carriers (195 C9orf72, 76 MAPT, 195 GRN) and 267 non-mutation carriers (controls). All mutation carriers were stratified according to their global CDR plus NACC FTLD score into three groups: asymptomatic (CDR = 0), prodromal (CDR = 0.5) and symptomatic (CDR = 1+). Mixed-effects models adjusted for age, education, sex and family clustering were used to compare between the groups. Neuroanatomical correlates of the individual domains were assessed within each genetic group. RESULTS CBI-R total scores were significantly higher in all CDR 1+ mutation carrier groups compared with controls [C9orf72 mean 70.5 (standard deviation 27.8), GRN 56.2 (33.5), MAPT 62.1 (36.9)] as well as their respective CDR 0.5 groups [C9orf72 13.5 (14.4), GRN 13.3 (13.5), MAPT 9.4 (10.4)] and CDR 0 groups [C9orf72 6.0 (7.9), GRN 3.6 (6.0), MAPT 8.5 (13.3)]. The C9orf72 and GRN 0.5 groups scored significantly higher than the controls. The greatest impairment was seen in the Motivation domain for the C9orf72 and GRN symptomatic groups, whilst in the symptomatic MAPTgroup, the highest-scoring domains were Stereotypic and Motor Behaviours and Memory and Orientation. Neural correlates of each CBI-R domain largely overlapped across the different mutation carrier groups. CONCLUSIONS The CBI-R detects early behavioural change in genetic FTD, suggesting that it could be a useful measure within future clinical trials.
Collapse
Affiliation(s)
- Annabel Nelson
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Lucy L Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Georgia Peakman
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Rhian S Convery
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Arabella Bouzigues
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Caroline V Greaves
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | | | - Lize Jiskoot
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia Universitary Hospital, San Sebastian, Spain.,Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, Québec, Canada
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, Sweden.,Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,Center for Neurodegenerative Diseases (DZNE, Tübingen, Germany
| | - Daniela Galimberti
- Fondazione Ca' Granda, IRCCS Ospedale Policlinico, Milan, Italy.,University of Milan, Centro Dino Ferrari, Milan, Italy
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Neurology Service, University Hospitals Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK.,Department of Brain Sciences, Imperial College London, London, UK
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.,Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, Duisburg, Germany
| | - Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, QC, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Département de Neurologie, Centre de référence des démences rares ou précoces, IM2A, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France.,Reference Network for Rare Neurological Diseases (ERN-RND), European Union
| | - Isabel Santana
- University Hospital of Coimbra (HUC), Neurology Service, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Florence Pasquier
- Univ Lille, Lille, France.,Inserm 1172, Lille, France.,CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, Lille, France
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Koçoğlu C, Van Broeckhoven C, van der Zee J. How network-based approaches can complement gene identification studies in frontotemporal dementia. Trends Genet 2022; 38:944-955. [DOI: 10.1016/j.tig.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022]
|
82
|
Foster PH, Russell LL, Peakman G, Convery RS, Bouzigues A, Greaves CV, Bocchetta M, Cash DM, van Swieten JC, Jiskoot LC, Moreno F, Sanchez-Valle R, Laforce R, Graff C, Masellis M, Tartaglia C, Rowe JB, Borroni B, Finger E, Synofzik M, Galimberti D, Vandenberghe R, de Mendonça A, Butler CR, Gerhard A, Ducharme S, Le Ber I, Tagliavini F, Santana I, Pasquier F, Levin J, Danek A, Otto M, Sorbi S, Rohrer JD. Examining empathy deficits across familial forms of frontotemporal dementia within the GENFI cohort. Cortex 2022; 150:12-28. [PMID: 35325762 PMCID: PMC9067453 DOI: 10.1016/j.cortex.2022.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/14/2021] [Accepted: 01/09/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Reduced empathy is a common symptom in frontotemporal dementia (FTD). Although empathy deficits have been extensively researched in sporadic cases, few studies have explored the differences in familial forms of FTD. METHODS Empathy was examined using a modified version of the Interpersonal Reactivity Index (mIRI) in 676 participants from the Genetic FTD Initiative: 216 mutation-negative controls, 192 C9orf72 expansion carriers, 193 GRN mutation carriers and 75 MAPT mutation carriers. Using global scores from the CDR® plus NACC FTLD, mutation carriers were divided into three groups, asymptomatic (0), very mildly symptomatic/prodromal (.5), or fully symptomatic (1 or more). The mIRI Total score, as well as the subscores of Empathic Concern (EC) and Perspective Taking (PT) were assessed. Linear regression models with bootstrapping were used to assess empathy ratings across genetic groups, as well as across phenotypes in the symptomatic carriers. Neural correlates of empathy deficits were examined using a voxel-based morphometry (VBM) analysis. RESULTS All fully symptomatic groups scored lower on the mIRI Total, EC, and PT when compared to controls and their asymptomatic or prodromal counterparts (all p < .001). Prodromal C9orf72 expansion carriers also scored significantly lower than controls on the mIRI Total score (p = .046). In the phenotype analysis, all groups (behavioural variant FTD, primary progressive aphasia and FTD with amyotrophic lateral sclerosis) scored significantly lower than controls (all p < .007). VBM revealed an overlapping neural correlate of the mIRI Total score across genetic groups in the orbitofrontal lobe but with additional involvement in the temporal lobe, insula and basal ganglia in both the GRN and MAPT groups, and uniquely more posterior regions such as the parietal lobe and thalamus in the GRN group, and medial temporal structures in the MAPT group. CONCLUSIONS Significant empathy deficits present in genetic FTD, particularly in symptomatic individuals and those with a bvFTD phenotype, while prodromal deficits are only seen using the mIRI in C9orf72 expansion carriers.
Collapse
Affiliation(s)
- Phoebe H Foster
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Lucy L Russell
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Georgia Peakman
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Rhian S Convery
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Arabella Bouzigues
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Caroline V Greaves
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; Centre for Medical Image Computing, University College London, London, UK
| | | | - Lize C Jiskoot
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia Universitary Hospital, San Sebastian, Spain; Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, QC, Canada
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, Sweden; Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - James B Rowe
- University of Cambridge Department of Clinical Neurosciences, and University of Cambridge Hospitals NHS Trust, University of Cambridge, UK
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany; Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Daniela Galimberti
- Fondazione Ca' Granda, IRCCS Ospedale Policlinico, Milan, Italy; University of Milan, Centro Dino Ferrari, Milan, Italy
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium; Neurology Service, University Hospitals Leuven, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK; Department of Brain Sciences, Imperial College London, UK
| | - Alex Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK; Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, Germany
| | - Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Québec, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Reference Network for Rare Neurological Diseases (ERN-RND)
| | | | - Isabel Santana
- University Hospital of Coimbra (HUC), Neurology Service, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Florence Pasquier
- Univ Lille, France; Inserm 1172, Lille, France; CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, France
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians Universität München, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians Universität München, Munich, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
83
|
Alvarez-Mora MI, Blanco-Palmero VA, Quesada-Espinosa JF, Arteche-Lopez AR, Llamas-Velasco S, Palma Milla C, Lezana Rosales JM, Gomez-Manjon I, Hernandez-Lain A, Jimenez Almonacid J, Gil-Fournier B, Ramiro-León S, González-Sánchez M, Herrero-San Martín AO, Pérez-Martínez DA, Gómez-Tortosa E, Carro E, Bartolomé F, Gomez-Rodriguez MJ, Sanchez-Calvin MT, Villarejo-Galende A, Moreno-Garcia M. Heterozygous and Homozygous Variants in SORL1 Gene in Alzheimer's Disease Patients: Clinical, Neuroimaging and Neuropathological Findings. Int J Mol Sci 2022; 23:ijms23084230. [PMID: 35457051 PMCID: PMC9024679 DOI: 10.3390/ijms23084230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 02/05/2023] Open
Abstract
In the last few years, the SORL1 gene has been strongly implicated in the development of Alzheimer’s disease (AD). We performed whole-exome sequencing on 37 patients with early-onset dementia or family history suggestive of autosomal dominant dementia. Data analysis was based on a custom panel that included 46 genes related to AD and dementia. SORL1 variants were present in a high proportion of patients with candidate variants (15%, 3/20). We expand the clinical manifestations associated with the SORL1 gene by reporting detailed clinical and neuroimaging findings of six unrelated patients with AD and SORL1 mutations. We also present for the first time a patient with the homozygous truncating variant c.364C>T (p.R122*) in SORL1, who also had severe cerebral amyloid angiopathy. Furthermore, we report neuropathological findings and immunochemistry assays from one patient with the splicing variant c.4519+5G>A in the SORL1 gene, in which AD was confirmed by neuropathological examination. Our results highlight the heterogeneity of clinical presentation and familial dementia background of SORL1-associated AD and suggest that SORL1 might be contributing to AD development as a risk factor gene rather than as a major autosomal dominant gene.
Collapse
Affiliation(s)
- Maria Isabel Alvarez-Mora
- Genetic Service, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (J.F.Q.-E.); (A.R.A.-L.); (C.P.M.); (J.M.L.R.); (I.G.-M.); (M.J.G.-R.); (M.T.S.-C.); (M.M.-G.)
- Biochemistry and Molecular Genetic Service, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-932275400 (ext. 9940)
| | - Victor Antonio Blanco-Palmero
- Neurology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (V.A.B.-P.); (S.L.-V.); (M.G.-S.); (A.O.H.-S.M.); (D.A.P.-M.); (A.V.-G.)
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (E.C.); (F.B.)
- Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Juan Francisco Quesada-Espinosa
- Genetic Service, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (J.F.Q.-E.); (A.R.A.-L.); (C.P.M.); (J.M.L.R.); (I.G.-M.); (M.J.G.-R.); (M.T.S.-C.); (M.M.-G.)
- UdisGen—Unidad de Dismorfología y Genética, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Ana Rosa Arteche-Lopez
- Genetic Service, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (J.F.Q.-E.); (A.R.A.-L.); (C.P.M.); (J.M.L.R.); (I.G.-M.); (M.J.G.-R.); (M.T.S.-C.); (M.M.-G.)
- UdisGen—Unidad de Dismorfología y Genética, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Sara Llamas-Velasco
- Neurology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (V.A.B.-P.); (S.L.-V.); (M.G.-S.); (A.O.H.-S.M.); (D.A.P.-M.); (A.V.-G.)
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (E.C.); (F.B.)
- Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Carmen Palma Milla
- Genetic Service, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (J.F.Q.-E.); (A.R.A.-L.); (C.P.M.); (J.M.L.R.); (I.G.-M.); (M.J.G.-R.); (M.T.S.-C.); (M.M.-G.)
- UdisGen—Unidad de Dismorfología y Genética, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Jose Miguel Lezana Rosales
- Genetic Service, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (J.F.Q.-E.); (A.R.A.-L.); (C.P.M.); (J.M.L.R.); (I.G.-M.); (M.J.G.-R.); (M.T.S.-C.); (M.M.-G.)
- UdisGen—Unidad de Dismorfología y Genética, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Irene Gomez-Manjon
- Genetic Service, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (J.F.Q.-E.); (A.R.A.-L.); (C.P.M.); (J.M.L.R.); (I.G.-M.); (M.J.G.-R.); (M.T.S.-C.); (M.M.-G.)
- UdisGen—Unidad de Dismorfología y Genética, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Aurelio Hernandez-Lain
- Neuropathology Unit, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (A.H.-L.); (J.J.A.)
| | | | - Belén Gil-Fournier
- Genetic Service, Hospital Universitario de Getafe, 28905 Madrid, Spain; (B.G.-F.); (S.R.-L.)
| | - Soraya Ramiro-León
- Genetic Service, Hospital Universitario de Getafe, 28905 Madrid, Spain; (B.G.-F.); (S.R.-L.)
| | - Marta González-Sánchez
- Neurology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (V.A.B.-P.); (S.L.-V.); (M.G.-S.); (A.O.H.-S.M.); (D.A.P.-M.); (A.V.-G.)
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (E.C.); (F.B.)
- Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Alejandro Octavio Herrero-San Martín
- Neurology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (V.A.B.-P.); (S.L.-V.); (M.G.-S.); (A.O.H.-S.M.); (D.A.P.-M.); (A.V.-G.)
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (E.C.); (F.B.)
- Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - David Andrés Pérez-Martínez
- Neurology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (V.A.B.-P.); (S.L.-V.); (M.G.-S.); (A.O.H.-S.M.); (D.A.P.-M.); (A.V.-G.)
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (E.C.); (F.B.)
- Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | | | - Eva Carro
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (E.C.); (F.B.)
- Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Fernando Bartolomé
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (E.C.); (F.B.)
- Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Maria Jose Gomez-Rodriguez
- Genetic Service, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (J.F.Q.-E.); (A.R.A.-L.); (C.P.M.); (J.M.L.R.); (I.G.-M.); (M.J.G.-R.); (M.T.S.-C.); (M.M.-G.)
- UdisGen—Unidad de Dismorfología y Genética, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Network Center for Biomedical Research in Cancer (CIBERONC), 28029 Madrid, Spain
| | - María Teresa Sanchez-Calvin
- Genetic Service, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (J.F.Q.-E.); (A.R.A.-L.); (C.P.M.); (J.M.L.R.); (I.G.-M.); (M.J.G.-R.); (M.T.S.-C.); (M.M.-G.)
- UdisGen—Unidad de Dismorfología y Genética, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Alberto Villarejo-Galende
- Neurology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (V.A.B.-P.); (S.L.-V.); (M.G.-S.); (A.O.H.-S.M.); (D.A.P.-M.); (A.V.-G.)
- Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Marta Moreno-Garcia
- Genetic Service, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (J.F.Q.-E.); (A.R.A.-L.); (C.P.M.); (J.M.L.R.); (I.G.-M.); (M.J.G.-R.); (M.T.S.-C.); (M.M.-G.)
- UdisGen—Unidad de Dismorfología y Genética, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| |
Collapse
|
84
|
Arshad F, Vengalil S, Nalini A, Polavarapu K, Shamim U, Jabeen S, Nagaraj C, Ramakrishnan S, Faruq M, Alladi S. Novel TBK1 variant associated with Frontotemporal Dementia overlap syndrome. Acta Neurol Scand 2022; 145:399-406. [PMID: 34841512 DOI: 10.1111/ane.13562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/01/2021] [Accepted: 11/19/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Recently, TANK binding kinase 1 (TBK1) mutation has been reported as a causative gene for overlap frontotemporal dementia (FTD)-amyotrophic lateral sclerosis (ALS) syndrome. However, there are no reports from families of South Asian ethnicity. OBJECTIVE To report a case study of a family with the proband having overlap FTD-ALS syndrome caused by a novel TBK1 variant. MATERIALS AND METHODS Clinical, brain imaging, genetic analysis and laboratory data of the patient with FTD-ALS were performed. In addition, family-based segregation analysis of identified novel variants was also done. RESULTS This study pertains to genetic analysis in 11 members in a family with only one member affected with overlap FTD-ALS syndrome. The whole-exome sequencing analysis in the symptomatic member showed a novel loss-of-function (LoF) variant c.1810G>T(p.E604X) in the TBK1 gene. Neuroimaging showed a pattern of asymmetric frontotemporal atrophy and hypometabolism. Segregation analysis of the variation demonstrated its presence in several family members, although none of the other members was symptomatic. Further, we observed another missense variation in the NEFH gene (p.Pro683Leu) which was seen in the symptomatic and two asymptomatic family members, the pathogenicity of which is unclear. CONCLUSION This is the first study of a rare novel TBK1 variant associated with FTD-ALS from India. Asymptomatic family members with the variant have important clinical implications and necessitate the genetic evaluation and long-term follow-up of family members of patients detected with TBK1 mutations. Therefore, although infrequent, genetic screening for the TBK1 gene should be considered when encountering overlap FTD syndromes.
Collapse
Affiliation(s)
- Faheem Arshad
- Department of Neurology National Institute of Mental Health and Neurosciences (NIMHANS) Bengaluru India
| | - Seena Vengalil
- Department of Neurology National Institute of Mental Health and Neurosciences (NIMHANS) Bengaluru India
| | - Atchayaram Nalini
- Department of Neurology National Institute of Mental Health and Neurosciences (NIMHANS) Bengaluru India
| | - Kiran Polavarapu
- Department of Neurology National Institute of Mental Health and Neurosciences (NIMHANS) Bengaluru India
- Genomics and Molecular Medicine CSIR‐Institute of Genomics and Integrative Biology New Delhi India
| | - Uzma Shamim
- Division of Neurology Department of Medicine The Ottawa Hospital Ottawa Ontario Canada
| | - Shumyla Jabeen
- Department of Neuroimaging and Interventional Radiology NIMHANS Bengaluru India
| | - Chandana Nagaraj
- Department of Neuroimaging and Interventional Radiology NIMHANS Bengaluru India
| | - Subasree Ramakrishnan
- Department of Neurology National Institute of Mental Health and Neurosciences (NIMHANS) Bengaluru India
| | - Mohammad Faruq
- Division of Neurology Department of Medicine The Ottawa Hospital Ottawa Ontario Canada
| | - Suvarna Alladi
- Department of Neurology National Institute of Mental Health and Neurosciences (NIMHANS) Bengaluru India
| |
Collapse
|
85
|
Koçoğlu C, Ferrari R, Roes M, Vandeweyer G, Kooy RF, van Broeckhoven C, Manzoni C, van der Zee J. Protein interaction network analysis reveals genetic enrichment of immune system genes in frontotemporal dementia. Neurobiol Aging 2022; 116:67-79. [DOI: 10.1016/j.neurobiolaging.2022.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/09/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022]
|
86
|
Network Theoretical Approach to Explore Factors Affecting Signal Propagation and Stability in Dementia’s Protein-Protein Interaction Network. Biomolecules 2022; 12:biom12030451. [PMID: 35327643 PMCID: PMC8946103 DOI: 10.3390/biom12030451] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Dementia—a syndrome affecting human cognition—is a major public health concern given to its rising prevalence worldwide. Though multiple research studies have analyzed disorders such as Alzheimer’s disease and Frontotemporal dementia using a systems biology approach, a similar approach to dementia syndrome as a whole is required. In this study, we try to find the high-impact core regulating processes and factors involved in dementia’s protein–protein interaction network. We also explore various aspects related to its stability and signal propagation. Using gene interaction databases such as STRING and GeneMANIA, a principal dementia network (PDN) consisting of 881 genes and 59,085 interactions was achieved. It was assortative in nature with hierarchical, scale-free topology enriched in various gene ontology (GO) categories and KEGG pathways, such as negative and positive regulation of apoptotic processes, macroautophagy, aging, response to drug, protein binding, etc. Using a clustering algorithm (Louvain method of modularity maximization) iteratively, we found a number of communities at different levels of hierarchy in PDN consisting of 95 “motif-localized hubs”, out of which, 7 were present at deepest level and hence were key regulators (KRs) of PDN (HSP90AA1, HSP90AB1, EGFR, FYN, JUN, CELF2 and CTNNA3). In order to explore aspects of network’s resilience, a knockout (of motif-localized hubs) experiment was carried out. It changed the network’s topology from a hierarchal scale-free topology to scale-free, where independent clusters exhibited greater control. Additionally, network experiments on interaction of druggable genome and motif-localized hubs were carried out where UBC, EGFR, APP, CTNNB1, NTRK1, FN1, HSP90AA1, MDM2, VCP, CTNNA1 and GRB2 were identified as hubs in the resultant network (RN). We finally concluded that stability and resilience of PDN highly relies on motif-localized hubs (especially those present at deeper levels), making them important therapeutic intervention candidates. HSP90AA1, involved in heat shock response (and its master regulator, i.e., HSF1), and EGFR are most important genes in pathology of dementia apart from KRs, given their presence as KRs as well as hubs in RN.
Collapse
|
87
|
Tookey S, Greaves CV, Rohrer JD, Desai R, Stott J. Exploring experiences and needs of spousal carers of people with behavioural variant frontotemporal dementia (bvFTD) including those with familial FTD (fFTD): a qualitative study. BMC Geriatr 2022; 22:185. [PMID: 35255821 PMCID: PMC8900344 DOI: 10.1186/s12877-022-02867-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/17/2022] [Indexed: 11/10/2022] Open
Abstract
Introduction Carers of people with frontotemporal dementia (FTD) experience greater challenges than carers of people with other dementias due to the younger age of onset and the challenging presentation of symptoms. The aim of the present study was to explore experiences of spousal carers of people with bvFTD, including those with the familial form of the disease (fFTD). Method Fourteen qualitative interviews were analysed using an inductive approach to Thematic Analysis to understand experiences of spousal carers of people with bvFTD including those with fFTD. Results Five main themes were identified including: a) The “Constant Battle” – A journey toward an FTD diagnosis, b) Shock, Relief and Fear – Challenges persist post diagnosis, c) The “Life Altering” impact – The loss of the spousal relationship and shifting roles, d) Adapting, Managing Symptoms and Receiving Carer Support, e) Lack of General Knowledge – Barriers to support. Conclusions Healthcare professionals should be educated on the initial presentations of FTD, to enable carers and families receive timely diagnosis and appropriate support. Future research should investigate the impact of fFTD on carers and families, to explore positive or meaningful experiences in caring, as well as theory-driven research to identify helpful coping strategies for carers of people with FTD. Supplementary Information The online version contains supplementary material available at 10.1186/s12877-022-02867-1.
Collapse
Affiliation(s)
- Sara Tookey
- ADAPT Lab, Research Department of Clinical, Educational and Health Psychology, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
| | - Caroline V Greaves
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Roopal Desai
- ADAPT Lab, Research Department of Clinical, Educational and Health Psychology, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
| | - Joshua Stott
- ADAPT Lab, Research Department of Clinical, Educational and Health Psychology, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK.
| |
Collapse
|
88
|
Silva MC, Nandi G, Donovan KA, Cai Q, Berry BC, Nowak RP, Fischer ES, Gray NS, Ferguson FM, Haggarty SJ. Discovery and Optimization of Tau Targeted Protein Degraders Enabled by Patient Induced Pluripotent Stem Cells-Derived Neuronal Models of Tauopathy. Front Cell Neurosci 2022; 16:801179. [PMID: 35317195 PMCID: PMC8934437 DOI: 10.3389/fncel.2022.801179] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/26/2022] [Indexed: 12/21/2022] Open
Abstract
Accumulation of misfolded, aggregating proteins concurrent with disease onset and progression is a hallmark of neurodegenerative proteinopathies. An important class of these are tauopathies, such as frontotemporal dementia (FTD) and Alzheimer’s disease (AD), associated with accumulation of aberrant forms of tau protein in the brain. Pathological tau undergoes abnormal post-translational modifications, misfolding, oligomerization and changes in solubility, cellular redistribution, and spreading. Development and testing of experimental therapeutics that target these pathological tau conformers requires use of cellular models that recapitulate neuronal endogenous, non-heterologous tau expression under genomic and physiological contexts relevant to disease. In this study, we employed FTD-patient induced pluripotent stem cells (iPSC)-derived neurons, expressing a tau variant or mutation, as primary models for driving a medicinal chemistry campaign around tau targeting degrader series. Our screening goal was to establish structure-activity relationships (SAR) for the different chemical series to identify the molecular composition that most efficiently led to tau degradation in human FTD ex vivo neurons. We describe the identification of the lead compound QC-01-175 and follow-up optimization strategies for this molecule. We present three final lead molecules with tau degradation activity in mutant neurons, which establishes potential disease relevance and will drive future studies on specificity and pharmacological properties.
Collapse
Affiliation(s)
- M. Catarina Silva
- Chemical Neurobiology Laboratory, Department of Neurology and Psychiatry, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Ghata Nandi
- Chemical Neurobiology Laboratory, Department of Neurology and Psychiatry, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Katherine A. Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Quan Cai
- Department of Neurology, Harvard Medical School, Boston, MA, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Bethany C. Berry
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Radoslaw P. Nowak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Nathanael S. Gray
- Department of Neurology, Harvard Medical School, Boston, MA, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Fleur M. Ferguson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
- *Correspondence: Fleur M. Ferguson,
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Department of Neurology and Psychiatry, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
- Stephen J. Haggarty,
| |
Collapse
|
89
|
Vodičková A, Koren SA, Wojtovich AP. Site-specific mitochondrial dysfunction in neurodegeneration. Mitochondrion 2022; 64:1-18. [PMID: 35182728 PMCID: PMC9035127 DOI: 10.1016/j.mito.2022.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
Mitochondria are essential for neuronal survival and mitochondrial dysfunction is a hallmark of neurodegeneration. The loss in mitochondrial energy production, oxidative stress, and changes in calcium handling are associated with neurodegenerative diseases; however, different sites and types of mitochondrial dysfunction are linked to distinct neuropathologies. Understanding the causal or correlative relationship between changes in mitochondria and neuropathology will lead to new therapeutic strategies. Here, we summarize the evidence of site-specific mitochondrial dysfunction and mitochondrial-related clinical trials for neurodegenerative diseases. We further discuss potential therapeutic approaches, such as mitochondrial transplantation, restoration of mitochondrial function, and pharmacological alleviation of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Anežka Vodičková
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Shon A Koren
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Andrew P Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
90
|
Peakman G, Russell LL, Convery RS, Nicholas JM, Van Swieten JC, Jiskoot LC, Moreno F, Sanchez-Valle R, Laforce R, Graff C, Masellis M, Tartaglia MC, Rowe JB, Borroni B, Finger E, Synofzik M, Galimberti D, Vandenberghe R, de Mendonça A, Butler CR, Gerhard A, Ducharme S, Le Ber I, Tagliavini F, Santana I, Pasquier F, Levin J, Danek A, Otto M, Sorbi S, Rohrer JD. Comparison of clinical rating scales in genetic frontotemporal dementia within the GENFI cohort. J Neurol Neurosurg Psychiatry 2022; 93:158-168. [PMID: 34353857 PMCID: PMC8785074 DOI: 10.1136/jnnp-2021-326868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Therapeutic trials are now underway in genetic forms of frontotemporal dementia (FTD) but clinical outcome measures are limited. The two most commonly used measures, the Clinical Dementia Rating (CDR)+National Alzheimer's Disease Coordinating Center (NACC) Frontotemporal Lobar Degeneration (FTLD) and the FTD Rating Scale (FRS), have yet to be compared in detail in the genetic forms of FTD. METHODS The CDR+NACC FTLD and FRS were assessed cross-sectionally in 725 consecutively recruited participants from the Genetic FTD Initiative: 457 mutation carriers (77 microtubule-associated protein tau (MAPT), 187 GRN, 193 C9orf72) and 268 family members without mutations (non-carrier control group). 231 mutation carriers (51 MAPT, 92 GRN, 88 C9orf72) and 145 non-carriers had available longitudinal data at a follow-up time point. RESULTS Cross-sectionally, the mean FRS score was lower in all genetic groups compared with controls: GRN mutation carriers mean 83.4 (SD 27.0), MAPT mutation carriers 78.2 (28.8), C9orf72 mutation carriers 71.0 (34.0), controls 96.2 (7.7), p<0.001 for all comparisons, while the mean CDR+NACC FTLD Sum of Boxes was significantly higher in all genetic groups: GRN mutation carriers mean 2.6 (5.2), MAPT mutation carriers 3.2 (5.6), C9orf72 mutation carriers 4.2 (6.2), controls 0.2 (0.6), p<0.001 for all comparisons. Mean FRS score decreased and CDR+NACC FTLD Sum of Boxes increased with increasing disease severity within each individual genetic group. FRS and CDR+NACC FTLD Sum of Boxes scores were strongly negatively correlated across all mutation carriers (rs=-0.77, p<0.001) and within each genetic group (rs=-0.67 to -0.81, p<0.001 in each group). Nonetheless, discrepancies in disease staging were seen between the scales, and with each scale and clinician-judged symptomatic status. Longitudinally, annualised change in both FRS and CDR+NACC FTLD Sum of Boxes scores initially increased with disease severity level before decreasing in those with the most severe disease: controls -0.1 (6.0) for FRS, -0.1 (0.4) for CDR+NACC FTLD Sum of Boxes, asymptomatic mutation carriers -0.5 (8.2), 0.2 (0.9), prodromal disease -2.3 (9.9), 0.6 (2.7), mild disease -10.2 (18.6), 3.0 (4.1), moderate disease -9.6 (16.6), 4.4 (4.0), severe disease -2.7 (8.3), 1.7 (3.3). Sample sizes were calculated for a trial of prodromal mutation carriers: over 180 participants per arm would be needed to detect a moderate sized effect (30%) for both outcome measures, with sample sizes lower for the FRS. CONCLUSIONS Both the FRS and CDR+NACC FTLD measure disease severity in genetic FTD mutation carriers throughout the timeline of their disease, although the FRS may be preferable as an outcome measure. However, neither address a number of key symptoms in the FTD spectrum, for example, motor and neuropsychiatric deficits, which future scales will need to incorporate.
Collapse
Affiliation(s)
- Georgia Peakman
- Department of Neurodegenerative Disease, University College London Dementia Research Centre, London, UK
| | - Lucy L Russell
- Department of Neurodegenerative Disease, University College London Dementia Research Centre, London, UK
| | - Rhian S Convery
- Department of Neurodegenerative Disease, University College London Dementia Research Centre, London, UK
| | - Jennifer M Nicholas
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK
| | - John C Van Swieten
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lize C Jiskoot
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Hospital Universitario de Donostia, San Sebastian, Spain.,Neuroscience Area, Biodonostia Health Research Institute, Donostia-san Sebastian, Spain
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Laval University, Quebec, Quebec, Canada
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Elizabeth Finger
- Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Matthis Synofzik
- Dept. of Neurodegenerative Diseases, Eberhard Karls University Tubingen Hertie Institute for Clinical Brain Research, Tubingen, Germany.,Center for Neurodegenerative Diseases, DZNE, Tübingen, Germany
| | - Daniela Galimberti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Centro Dino Ferrari, University of Milan, Milan, Italy
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Neurology Service, KU Leuven University Hospitals Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, University of Oxford Medical Sciences Division, Oxford, UK.,Department of Brain Sciences, Imperial College London, London, UK
| | - Alex Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, The University of Manchester, Manchester, UK.,Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, Duisburg, Germany
| | - Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, Montreal, Québec, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, Québec, Canada
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, Hôpital Universitaire Pitié Salpêtrière, Paris, France.,Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, Hôpital Universitaire Pitié Salpêtrière, Paris, France.,Départment de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Isabel Santana
- University Hospital of Coimbra (HUC), Neurology Service, University of Coimbra Faculty of Medicine, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra Faculty of Medicine, Coimbra, Portugal
| | - Florence Pasquier
- University of Lille, Lille, France.,CNR-MAJ, Labex Distalz, LiCEND Lille, CHU Lille, Lille, France.,Inserm 1172, Lille, France
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munchen, Germany.,German Center for Neurodegenerative Diseases, DZNE, Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-Universität München, Munchen, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Firenze, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Firenze, Italy
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, University College London Dementia Research Centre, London, UK
| | | |
Collapse
|
91
|
Plasma Small Extracellular Vesicles with Complement Alterations in GRN/ C9orf72 and Sporadic Frontotemporal Lobar Degeneration. Cells 2022; 11:cells11030488. [PMID: 35159297 PMCID: PMC8834212 DOI: 10.3390/cells11030488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Cutting-edge research suggests endosomal/immune dysregulation in GRN/C9orf72-associated frontotemporal lobar degeneration (FTLD). In this retrospective study, we investigated plasma small extracellular vesicles (sEVs) and complement proteins in 172 subjects (40 Sporadic FTLD, 40 Intermediate/Pathological C9orf72 expansion carriers, and 49 Heterozygous/Homozygous GRN mutation carriers, 43 controls). Plasma sEVs (concentration, size) were analyzed by nanoparticle tracking analysis; plasma and sEVs C1q, C4, C3 proteins were quantified by multiplex assay. We demonstrated that genetic/sporadic FTLD share lower sEV concentrations and higher sEV sizes. The diagnostic performance of the two most predictive variables (sEV concentration/size ratio) was high (AUC = 0.91, sensitivity 85.3%, specificity 81.4%). C1q, C4, and C3 cargo per sEV is increased in genetic and sporadic FTLD. C4 (cargo per sEV, total sEV concentration) is increased in Sporadic FTLD and reduced in GRN+ Homozygous, suggesting its specific unbalance compared with Heterozygous cases. C3 plasma level was increased in genetic vs. sporadic FTLD. Looking at complement protein compartmentalization, in control subjects, the C3 and C4 sEV concentrations were roughly half that in respect to those measured in plasma; interestingly, this compartmentalization was altered in different ways in patients. These results suggest sEVs and complement proteins as potential therapeutic targets to mitigate neurodegeneration in FTLD.
Collapse
|
92
|
Zanardini R, Saraceno C, Benussi L, Squitti R, Ghidoni R. Exploring Neurofilament Light Chain and Exosomes in the Genetic Forms of Frontotemporal Dementia. Front Neurosci 2022; 16:758182. [PMID: 35145377 PMCID: PMC8821515 DOI: 10.3389/fnins.2022.758182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Differential diagnosis of neurological disorders and their subtype classification are challenging without specific biomarkers. Genetic forms of these disorders, typified by an autosomal dominant family history, could offer a window to identify potential biomarkers by exploring the presymptomatic stages of the disease. Frontotemporal dementia (FTD) is the second cause of dementia with an age of onset < 65, and its most common mutations are in GRN, C9orf72, and MAPT genes. Several studies have demonstrated that the main proteins involved in FTD pathogenesis can be secreted in exosomes, a specific subtype of extracellular vesicles able to transfer biomolecules between cells avoiding cell-to-cell contact. Neurofilament light chain (NfL) levels in central nervous system have been advocated as biomarkers of axonal injury. NfL concentrations have been found increased in FTD and have been related to disease severity and prognosis. Little information on the relationship between NfL and exosomes in FTD has been collected, deriving mainly from traumatic brain injury. Current review deals with this matter in the attempt to provide an updated discussion of the role of NfL and exosomes as biomarkers of genetic forms of FTD.
Collapse
|
93
|
Borghesani V, DeLeon J, Gorno-Tempini ML. Frontotemporal dementia: A unique window on the functional role of the temporal lobes. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:429-448. [PMID: 35964986 PMCID: PMC9793689 DOI: 10.1016/b978-0-12-823493-8.00011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Frontotemporal dementia (FTD) is an umbrella term covering a plethora of progressive changes in executive functions, motor abilities, behavior, and/or language. Different clinical syndromes have been described in relation to localized atrophy, informing on the functional networks that underlie these specific cognitive, emotional, and behavioral processes. These functional declines are linked with the underlying neurodegeneration of frontal and/or temporal lobes due to diverse molecular pathologies. Initially, the accumulation of misfolded proteins targets specifically susceptible cell assemblies, leading to relatively focal neurodegeneration that later spreads throughout large-scale cortical networks. Here, we discuss the most recent clinical, neuropathological, imaging, and genetics findings in FTD-spectrum syndromes affecting the temporal lobe. We focus on the semantic variant of primary progressive aphasia and its mirror image, the right temporal variant of FTD. Incipient focal atrophy of the left anterior temporal lobe (ATL) manifests with predominant naming, word comprehension, reading, and object semantic deficits, while cases of predominantly right ATL atrophy present with impairments of socioemotional, nonverbal semantic, and person-specific knowledge. Overall, the observations in FTD allow for crucial clinical-anatomic inferences, shedding light on the role of the temporal lobes in both cognition and complex behaviors. The concerted activity of both ATLs is critical to ensure that percepts are translated into concepts, yet important hemispheric differences should be acknowledged. On one hand, the left ATL attributes meaning to linguistic, external stimuli, thus supporting goal-oriented, action-related behaviors (e.g., integrating sounds and letters into words). On the other hand, the right ATL assigns meaning to emotional, visceral stimuli, thus guiding socially relevant behaviors (e.g., integrating body sensations into feelings of familiarity).
Collapse
Affiliation(s)
- Valentina Borghesani
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, QC, Canada; Department of Psychology, Université de Montréal, Montréal, QC, Canada.
| | - Jessica DeLeon
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, United States; Department of Neurology, Dyslexia Center, University of California, San Francisco, CA, United States
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, United States; Department of Neurology, Dyslexia Center, University of California, San Francisco, CA, United States
| |
Collapse
|
94
|
Zalyalova Z, Munasipova S. Frontotemporal dementia with cortico-basal syndrome. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:107-114. [DOI: 10.17116/jnevro2022122021107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
95
|
Vuksanović V, Staff RT, Morson S, Ahearn T, Bracoud L, Murray AD, Bentham P, Kipps CM, Harrington CR, Wischik CM. Degeneration of basal and limbic networks is a core feature of behavioural variant frontotemporal dementia. Brain Commun 2021; 3:fcab241. [PMID: 34939031 PMCID: PMC8688778 DOI: 10.1093/braincomms/fcab241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
The behavioural variant of frontotemporal dementia is a clinical syndrome characterized by changes in behaviour, cognition and functional ability. Although atrophy in frontal and temporal regions would appear to be a defining feature, neuroimaging studies have identified volumetric differences distributed across large parts of the cortex, giving rise to a classification into distinct neuroanatomical subtypes. Here, we extended these neuroimaging studies to examine how distributed patterns of cortical atrophy map onto brain network hubs. We used baseline structural magnetic resonance imaging data collected from 213 behavioural variant of frontotemporal dementia patients meeting consensus diagnostic criteria and having definite evidence of frontal and/or temporal lobe atrophy from a global clinical trial conducted in 70 sites in Canada, United States of America, Australia, Asia and Europe. These were compared with data from 244 healthy elderly subjects from a well-characterized cohort study. We have used statistical methods of hierarchical agglomerative clustering of 68 regional cortical and subcortical volumes (34 in each hemisphere) to determine the reproducibility of previously described neuroanatomical subtypes in a global study. We have also attempted to link the structural findings to clinical features defined systematically using well-validated clinical scales (Addenbrooke’s Cognitive Examination Revised, the Mini-Mental Status Examination, the Frontotemporal Dementia Rating Scale and the Functional Assessment Questionnaire) and subscales derived from them. Whilst we can confirm that the subtypes are robust, they have limited value in explaining the clinical heterogeneity of the syndrome. We have found that a common pattern of degeneration affecting a small number of subcortical, limbic and frontal nodes within highly connected networks (most previously identified as rich club members or functional binding nodes) is shared by all the anatomical subtypes. Degeneration in these core regions is correlated with cognitive and functional impairment, but less so with behavioural impairment. These findings suggest that degeneration in highly connected basal, limbic and frontal networks is a core feature of the behavioural variant of frontotemporal dementia phenotype irrespective of neuroanatomical and clinical heterogeneity, and may underly the impairment of integration in cognition, function and behaviour responsible for the loss of insight that characterizes the syndrome.
Collapse
Affiliation(s)
- Vesna Vuksanović
- Swansea University Medical School, Health Data Research UK, Swansea University, Swansea SA2 8PP, UK.,School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK.,TauRx Therapeutics, Aberdeen AB24 5RP, UK
| | - Roger T Staff
- Medical Physics, NHS Grampian, Aberdeen AB25 2ZD, UK
| | - Suzannah Morson
- TauRx Therapeutics, Aberdeen AB24 5RP, UK.,School of Psychology, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Trevor Ahearn
- Medical Physics, NHS Grampian, Aberdeen AB25 2ZD, UK
| | | | - Alison D Murray
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | | | - Christopher M Kipps
- University Hospital Southampton and University of Southampton, Southampton SO16 6YD, UK
| | - Charles R Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK.,TauRx Therapeutics, Aberdeen AB24 5RP, UK
| | - Claude M Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK.,TauRx Therapeutics, Aberdeen AB24 5RP, UK
| |
Collapse
|
96
|
Christodoulidou A, McKenna GE, Holden ST, Rowe JB, Cope TE. Are the UK genetic testing criteria for dementia too exclusive? J Neurol 2021; 269:2222-2226. [PMID: 34748083 DOI: 10.1007/s00415-021-10867-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Annita Christodoulidou
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Georgina E McKenna
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Simon T Holden
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- East Anglian Medical Genetics Service, Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Thomas E Cope
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
97
|
Sharpe JL, Harper NS, Garner DR, West RJH. Modeling C9orf72-Related Frontotemporal Dementia and Amyotrophic Lateral Sclerosis in Drosophila. Front Cell Neurosci 2021; 15:770937. [PMID: 34744635 PMCID: PMC8566814 DOI: 10.3389/fncel.2021.770937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/27/2021] [Indexed: 12/28/2022] Open
Abstract
An intronic hexanucleotide (GGGGCC) expansion in the C9orf72 gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). In the decade following its discovery, much progress has been made in enhancing our understanding of how it precipitates disease. Both loss of function caused by reduced C9orf72 transcript levels, and gain of function mechanisms, triggered by the production of repetitive sense and antisense RNA and dipeptide repeat proteins, are thought to contribute to the toxicity. Drosophila models, with their unrivaled genetic tractability and short lifespan, have played a key role in developing our understanding of C9orf72-related FTD/ALS. There is no C9orf72 homolog in fly, and although this precludes investigations into loss of function toxicity, it is useful for elucidating mechanisms underpinning gain of function toxicity. To date there are a range of Drosophila C9orf72 models, encompassing different aspects of gain of function toxicity. In addition to pure repeat transgenes, which produce both repeat RNA and dipeptide repeat proteins (DPRs), RNA only models and DPR models have been generated to unpick the individual contributions of RNA and each dipeptide repeat protein to C9orf72 toxicity. In this review, we discuss how Drosophila models have shaped our understanding of C9orf72 gain of function toxicity, and address opportunities to utilize these models for further research.
Collapse
Affiliation(s)
- Joanne L. Sharpe
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Nikki S. Harper
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Duncan R. Garner
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, The University of Sheffield, Sheffield, United Kingdom
| | - Ryan J. H. West
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, United Kingdom
- Neuroscience Institute, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
98
|
Dominguez J, Ng A, Yu J, Guevarra AC, Daroy ML, Alfon A, Catindig JA, Dizon M, Santiago J, Del Moral MC, Yu J, Jamerlan A, Ligsay A, Bagyinszky E, An SS, Kim S. Autosomal Dominant Frontotemporal Lobar Degeneration in a Filipino Family with Progranulin Mutation. Dement Geriatr Cogn Disord 2021; 49:557-564. [PMID: 33486486 DOI: 10.1159/000510106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/10/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Compared to Western populations, familial frontotemporal lobar degeneration (FTLD) is rare among Asians. Progranulin (GRN) gene mutation, which is a major cause of FTLD, is likewise rare. We present a family with FTLD from the Philippines with an autosomal dominant pattern of inheritance and GRN mutation and briefly review reports of GRN mutations in Asia. CASE PRESENTATION The proband is 66 years old with progressive nonfluent aphasia (PNFA)-corticobasal syndrome . We assessed 3 generations of her pedigree and found 11 affected relatives with heterogenous phenotypes, usually behavioral variant frontotemporal dementia (FTD) and PNFA. Neuroimaging showed atrophy and hypometabolism consistent with FTD syndromes. White matter hyperintensities were seen in affected members even in the absence of vascular risk factors. A GRN mutation R110X was found in 6 members, 3 with symptoms and 3 were asymptomatic. Plasma GRN was low (<112 ng/mL) in all mutation carriers. No mutations were found in microtubule-associated protein tau, APP, PSEN1, and PSEN2 genes, and all were APOE3. CONCLUSION This is the first Filipino family with autosomal dominant FTD documented with GRN mutation. Identifying families and cohorts would contribute to therapeutic developments in an area with FTD-GRN.
Collapse
Affiliation(s)
- Jacqueline Dominguez
- Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines,
| | - Arlene Ng
- Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines
| | - Jeryl Yu
- Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines
| | - Anne Cristine Guevarra
- Research and Biotechnology Division, St. Luke's Medical Center, Quezon City, Philippines
| | - Maria Luisa Daroy
- Research and Biotechnology Division, St. Luke's Medical Center, Quezon City, Philippines
| | - Alicia Alfon
- Research and Biotechnology Division, St. Luke's Medical Center, Quezon City, Philippines
| | - Joseree-Ann Catindig
- Memory Center-Institute for Neurosciences, St. Luke's Medical Center, Taguig City, Philippines
| | - Mercedes Dizon
- Institute of Radiology, St. Luke's Medical Center, Quezon City, Philippines
| | - Jonas Santiago
- PET Center, St. Luke's Medical Center, Quezon City, Philippines
| | | | - Justine Yu
- Memory Center-Institute for Neurosciences, St. Luke's Medical Center, Taguig City, Philippines
| | - Angelo Jamerlan
- Department of Bionano Technology, Gachon University, Seongnam, Republic of Korea
| | - Antonio Ligsay
- Section of Clinical Research, St. Luke's Medical Center - College of Medicine, Quezon City, Philippines
| | - Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Gachon University, Seongnam, Republic of Korea
| | - Seong Soo An
- Department of Bionano Technology, Gachon University, Seongnam, Republic of Korea
| | - Sangyun Kim
- Department of Neurology, Seoul National University College of Medicine & Neurocognitive Behavior Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
99
|
A comparison of automated atrophy measures across the frontotemporal dementia spectrum: Implications for trials. NEUROIMAGE-CLINICAL 2021; 32:102842. [PMID: 34626889 PMCID: PMC8503665 DOI: 10.1016/j.nicl.2021.102842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/13/2021] [Accepted: 09/23/2021] [Indexed: 11/22/2022]
Abstract
Background Frontotemporal dementia (FTD) is a common cause of young onset dementia, and whilst there are currently no treatments, there are several promising candidates in development and early phase trials. Comprehensive investigations of neuroimaging markers of disease progression across the full spectrum of FTD disorders are lacking and urgently needed to facilitate these trials. Objective To investigate the comparative performance of multiple automated segmentation and registration pipelines used to quantify longitudinal whole-brain atrophy across the clinical, genetic and pathological subgroups of FTD, in order to inform upcoming trials about suitable neuroimaging-based endpoints. Methods Seventeen fully automated techniques for extracting whole-brain atrophy measures were applied and directly compared in a cohort of 226 participants who had undergone longitudinal structural 3D T1-weighted imaging. Clinical diagnoses were behavioural variant FTD (n = 56) and primary progressive aphasia (PPA, n = 104), comprising semantic variant PPA (n = 38), non-fluent variant PPA (n = 42), logopenic variant PPA (n = 18), and PPA-not otherwise specified (n = 6). 49 of these patients had either a known pathogenic mutation or postmortem confirmation of their underlying pathology. 66 healthy controls were included for comparison. Sample size estimates to detect a 30% reduction in atrophy (80% power; 0.05 significance) were computed to explore the relative feasibility of these brain measures as surrogate markers of disease progression and their ability to detect putative disease-modifying treatment effects. Results Multiple automated techniques showed great promise, detecting significantly increased rates of whole-brain atrophy (p<0.001) and requiring sample sizes of substantially less than 100 patients per treatment arm. Across the different FTD subgroups, direct measures of volume change consistently outperformed their indirect counterparts, irrespective of the initial segmentation quality. Significant differences in performance were found between both techniques and patient subgroups, highlighting the importance of informed biomarker choice based on the patient population of interest. Conclusion This work expands current knowledge and builds on the limited longitudinal investigations currently available in FTD, as well as providing valuable information about the potential of fully automated neuroimaging biomarkers for sporadic and genetic FTD trials.
Collapse
|
100
|
Musaeus CS, Pedersen JS, Kjær TW, Johannsen P, Waldemar G, Haverberg MJN, Bacher T, Nielsen JE, Roos P. Cortical Frontoparietal Network Dysfunction in CHMP2B-Frontotemporal Dementia. Front Aging Neurosci 2021; 13:714220. [PMID: 34588974 PMCID: PMC8475188 DOI: 10.3389/fnagi.2021.714220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
A rare cause of inherited frontotemporal dementia (FTD) is a mutation in the CHMP2B gene on chromosome 3 leading to the autosomal dominantly inherited FTD (CHMP2B-FTD). Since CHMP2B-FTD is clinically well-characterized, and patients show a distinct pattern of executive dysfunction, the condition offers possible insight in the early electroencephalographic (EEG) changes in the cortical networks. Specifically, EEG microstate analysis parses the EEG signals into topographies believed to represent discrete network activations. We investigated the EEG dynamics in patients with symptomatic CHMP2B-FTD (n = 5) as well as pre-symptomatic mutation carriers (n = 5) compared to non-carrier family members (n = 6). The data was parsed into four archetypal microstates and global power was calculated. A trend was found for lower occurrence in microstate D in CHMP2B-FTD (p-value = 0.177, F-value = 2.036). Patients with recent symptom onset (<1 year) showed an increased duration of microstate D, whereas patients who had been symptomatic for longer periods (>2 years) showed decreased duration. Patients with CHMP2B-FTD present with executive dysfunction, and microstate D has previously been shown to be associated with the fronto-parietal network. The biphasic pattern may represent the pathophysiological changes in brain dynamics during neurodegeneration, which may apply to other neurodegenerative diseases.
Collapse
Affiliation(s)
- Christian Sandøe Musaeus
- Danish Dementia Research Centre (DDRC), Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jette Stokholm Pedersen
- Danish Dementia Research Centre (DDRC), Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Troels Wesenberg Kjær
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Peter Johannsen
- Danish Dementia Research Centre (DDRC), Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gunhild Waldemar
- Danish Dementia Research Centre (DDRC), Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Theis Bacher
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| | - Jørgen Erik Nielsen
- Danish Dementia Research Centre (DDRC), Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Peter Roos
- Danish Dementia Research Centre (DDRC), Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|