51
|
Liska MG, Dela Peña I. Granulocyte-colony stimulating factor and umbilical cord blood cell transplantation: Synergistic therapies for the treatment of traumatic brain injury. Brain Circ 2017; 3:143-151. [PMID: 30276316 PMCID: PMC6057694 DOI: 10.4103/bc.bc_19_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is now characterized as a progressive, degenerative disease and continues to stand as a prevalent cause of death and disability. The pathophysiology of TBI is complex, with a variety of secondary cell death pathways occurring which may persist chronically following the initial cerebral insult. Current therapeutic options for TBI are minimal, with surgical intervention or rehabilitation therapy existing as the only viable treatments. Considering the success of stem-cell therapies in various other neurological diseases, their use has been proposed as a potential potent therapy for patients suffering TBI. Moreover, stem cells are highly amenable to adjunctive use with other therapies, providing an opportunity to overcome the inherent limitations of using a single therapeutic agent. Our research has verified this additive potential by demonstrating the efficacy of co-delivering human umbilical cord blood (hUCB) cells with granulocyte-colony stimulating factor (G-CSF) in a murine model of TBI, providing encouraging results which support the potential of this approach to treat patients suffering from TBI. These findings justify ongoing research toward uncovering the mechanisms which underlie the functional improvements exhibited by hUCB + G-CSF combination therapy, thereby facilitating its safe and effect transition into the clinic. This paper is a review article. Referred literature in this paper has been listed in the reference section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors’ experiences.
Collapse
Affiliation(s)
- Michael G Liska
- Center of Excellence for Aging and Brain Repair, Tampa, FL 33612, USA
| | - Ike Dela Peña
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, College of Pharmacy, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
52
|
Li L, Chopp M, Ding G, Li Q, Mahmood A, Jiang Q. Chronic global analysis of vascular permeability and cerebral blood flow after bone marrow stromal cell treatment of traumatic brain injury in the rat: A long-term MRI study. Brain Res 2017; 1675:61-70. [PMID: 28899758 DOI: 10.1016/j.brainres.2017.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 12/11/2022]
Abstract
Vascular permeability and hemodynamic alteration in response to the transplantation of human bone marrow stromal cells (hMSCs) after traumatic brain injury (TBI) were longitudinally investigated in non directly injured and normal-appearing cerebral tissue using magnetic resonance imaging (MRI). Male Wistar rats (300-350g, n=30) subjected to controlled cortical impact TBI were intravenously injected with 1ml of saline (at 6-h or 1-week post-injury, n=5/group) or with hMSCs in suspension (∼3×106 hMSCs, at 6-h or 1-week post-injury, n=10/group). MRI measurements of T2-weighted imaging, cerebral blood flow (CBF) and blood-to-brain transfer constant (Ki) of gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA), and neurological behavioral estimates were performed on all animals at multiple time points up to 3-months post-injury. Our long-term imaging data show that blood-brain barrier (BBB) breakdown and hemodynamic disruption after TBI, as revealed by Ki and CBF, respectively, affect both hemispheres of the brain in a diffuse manner. Our data reveal a sensitive vascular permeability and hemodynamic reaction in response to the time-dependent transplantation of hMSCs. A more rapid reduction of Ki following cell treatment is associated with a higher level of CBF in the injured brain, and acute (6h) cell administration leads to enhanced therapeutic effects on both the recovery of vascular integrity and stabilization of cerebral perfusion compared to delayed (1w) cell engraftment. Our results indicate that cell-enhanced BBB reconstitution plays an important role in underlying the restoration of CBF in the injured brain, which in turn, contributes to the improvement of functional outcome.
Collapse
Affiliation(s)
- Lian Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; Department of Physics, Oakland University, Rochester, MI 48309, USA.
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| | - Qingjiang Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| | - Asim Mahmood
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI 48208, USA.
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| |
Collapse
|
53
|
Gene Delivery Approaches for Mesenchymal Stem Cell Therapy: Strategies to Increase Efficiency and Specificity. Stem Cell Rev Rep 2017; 13:725-740. [DOI: 10.1007/s12015-017-9760-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
54
|
Huselstein C, Rahouadj R, de Isla N, Bensoussan D, Stoltz JF, Li YP. Mechanobiology of mesenchymal stem cells: Which interest for cell-based treatment? Biomed Mater Eng 2017; 28:S47-S56. [PMID: 28372277 DOI: 10.3233/bme-171623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thanks to their immune properties, the mesenchymal stem cells (MSC) are a promising source for cell therapy. Current clinical trials show that MSC administrated to patients can treat different diseases (graft-versus-host disease (GVHD), liver cirrhosis, systemic lupus, erythematosus, rheumatoid arthritis, type I diabetes…). In this case, the most common mode of cell administration is the intravenous injection, and the hemodynamic environment of cells induced by blood circulation could interfere on their behavior during the migration and homing towards the injured site. After a brief review of the mechanobiology concept, this paper will help in understanding how the mechanical environment could interact with MSC behavior once they are injected to patient in cell-based treatment.
Collapse
Affiliation(s)
- Céline Huselstein
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle, 54500 Vandœuvre-lès-Nancy, France.,Université de Lorraine, 54000 Nancy, France.,FR3209 CNRS BMCT - Bio-Ingénierie Moléculaire Cellulaire et Thérapeutique, Faculté de Médecine, F-54505 Vandœuvre-lès-Nancy, France
| | - R Rahouadj
- Université de Lorraine, 54000 Nancy, France.,UMR 7563 CNRS-Université de Lorraine, LEMTA, Vandœuvre-lès-Nancy, France
| | - N de Isla
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle, 54500 Vandœuvre-lès-Nancy, France.,Université de Lorraine, 54000 Nancy, France.,FR3209 CNRS BMCT - Bio-Ingénierie Moléculaire Cellulaire et Thérapeutique, Faculté de Médecine, F-54505 Vandœuvre-lès-Nancy, France
| | - D Bensoussan
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle, 54500 Vandœuvre-lès-Nancy, France.,Université de Lorraine, 54000 Nancy, France.,FR3209 CNRS BMCT - Bio-Ingénierie Moléculaire Cellulaire et Thérapeutique, Faculté de Médecine, F-54505 Vandœuvre-lès-Nancy, France.,CHU de Nancy, Unité de Thérapie Cellulaire, banque de Tissus, 54500 Vandœuvre-lès-Nancy, France
| | - J F Stoltz
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle, 54500 Vandœuvre-lès-Nancy, France.,Université de Lorraine, 54000 Nancy, France.,FR3209 CNRS BMCT - Bio-Ingénierie Moléculaire Cellulaire et Thérapeutique, Faculté de Médecine, F-54505 Vandœuvre-lès-Nancy, France
| | - Y P Li
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
55
|
Contreras-Kallens P, Terraza C, Oyarce K, Gajardo T, Campos-Mora M, Barroilhet MT, Álvarez C, Fuentes R, Figueroa F, Khoury M, Pino-Lagos K. Mesenchymal stem cells and their immunosuppressive role in transplantation tolerance. Ann N Y Acad Sci 2017; 1417:35-56. [PMID: 28700815 DOI: 10.1111/nyas.13364] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/13/2017] [Accepted: 03/29/2017] [Indexed: 12/23/2022]
Abstract
Since they were first described, mesenchymal stem cells (MSCs) have been shown to have important effector mechanisms and the potential for use in cell therapy. A great deal of research has been focused on unveiling how MSCs contribute to anti-inflammatory responses, including describing several cell populations involved and identifying soluble and other effector molecules. In this review, we discuss some of the contemporary evidence for use of MSCs in the field of immune tolerance, with a special emphasis on transplantation. Although considerable effort has been devoted to understanding the biological function of MSCs, additional resources are required to clarify the mechanisms of their induction of immune tolerance, which will undoubtedly lead to improved clinical outcomes for MSC-based therapies.
Collapse
Affiliation(s)
- Pamina Contreras-Kallens
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Claudia Terraza
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Karina Oyarce
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Tania Gajardo
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Mauricio Campos-Mora
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - María Teresa Barroilhet
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Carla Álvarez
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Ricardo Fuentes
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Fernando Figueroa
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Maroun Khoury
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile.,Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Karina Pino-Lagos
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
56
|
Lam PK, Wang KKW, Lo AWI, Tong CSW, Ching DWC, Wong K, Yang Z, Kong T, Lo KKY, Choy RKW, Lai PBS, Wong GKC, Poon WS. Interactome and reciprocal activation of pathways in topical mesenchymal stem cells and the recipient cerebral cortex following traumatic brain injury. Sci Rep 2017; 7:5017. [PMID: 28694468 PMCID: PMC5504061 DOI: 10.1038/s41598-017-01772-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/31/2017] [Indexed: 11/12/2022] Open
Abstract
In this study, GFP-MSCs were topically applied to the surface of cerebral cortex within 1 hour of experimental TBI. No treatment was given to the control group. Three days after topical application, the MSCs homed to the injured parenchyma and improved the neurological function. Topical MSCs triggered earlier astrocytosis and reactive microglia. TBI penumbra and hippocampus had higher cellular proliferation. Apoptosis was suppressed at hippocampus at 1 week and reduced neuronal damaged was found in the penumbral at day 14 apoptosis. Proteolytic neuronal injury biomarkers (alphaII-spectrin breakdown products, SBDPs) and glial cell injury biomarker, glial fibrillary acidic protein (GFAP)-breakdown product (GBDPs) in injured cortex were also attenuated by MSCs. In the penumbra, six genes related to axongenesis (Erbb2); growth factors (Artn, Ptn); cytokine (IL3); cell cycle (Hdac4); and notch signaling (Hes1) were up-regulated three days after MSC transplant. Transcriptome analysis demonstrated that 7,943 genes were differentially expressed and 94 signaling pathways were activated in the topical MSCs transplanted onto the cortex of brain injured rats with TBI. In conclusion, topical application offers a direct and efficient delivery of MSCs to the brain.
Collapse
Affiliation(s)
- Ping K Lam
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Chow Tai Fook-Cheng Yu Tung Surgical Stem Cell Research Center, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Anthony W I Lo
- Department of Anatomical & Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Cindy S W Tong
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Chow Tai Fook-Cheng Yu Tung Surgical Stem Cell Research Center, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Don W C Ching
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Department of Anatomical & Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Kenneth Wong
- Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Zhihui Yang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Themis Kong
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Chow Tai Fook-Cheng Yu Tung Surgical Stem Cell Research Center, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Kin K Y Lo
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Chow Tai Fook-Cheng Yu Tung Surgical Stem Cell Research Center, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Richard K W Choy
- Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Paul B S Lai
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Chow Tai Fook-Cheng Yu Tung Surgical Stem Cell Research Center, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - George K C Wong
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Chow Tai Fook-Cheng Yu Tung Surgical Stem Cell Research Center, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Wai S Poon
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- Chow Tai Fook-Cheng Yu Tung Surgical Stem Cell Research Center, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
57
|
Abstract
Shibani Pati and Todd Rasmussen summarize progress in preclinical research on cellular therapeutics for traumatic injury and its sequelae and discuss prospects for clinical translation.
Collapse
|
58
|
Boda E, Nato G, Buffo A. Emerging pharmacological approaches to promote neurogenesis from endogenous glial cells. Biochem Pharmacol 2017. [PMID: 28647491 DOI: 10.1016/j.bcp.2017.06.129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neurodegenerative disorders are emerging as leading contributors to the global disease burden. While some drug-based approaches have been designed to limit or prevent neuronal loss following acute damage or chronic neurodegeneration, regeneration of functional neurons in the adult Central Nervous System (CNS) still remains an unmet need. In this context, the exploitation of endogenous cell sources has recently gained an unprecedented attention, thanks to the demonstration that, in some CNS regions or under specific circumstances, glial cells can activate spontaneous neurogenesis or can be instructed to produce neurons in the adult mammalian CNS parenchyma. This field of research has greatly advanced in the last years and identified interesting molecular and cellular mechanisms guiding the neurogenic activation/conversion of glia. In this review, we summarize the evolution of the research devoted to understand how resident glia can be directed to produce neurons. We paid particular attention to pharmacologically-relevant approaches exploiting the modulation of niche-associated factors and the application of selected small molecules.
Collapse
Affiliation(s)
- Enrica Boda
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, I-10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, I-10043 Orbassano, Turin, Italy.
| | - Giulia Nato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, I-10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, I-10043 Orbassano, Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, I-10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, I-10043 Orbassano, Turin, Italy
| |
Collapse
|
59
|
Mao F, Tu Q, Wang L, Chu F, Li X, Li HS, Xu W. Mesenchymal stem cells and their therapeutic applications in inflammatory bowel disease. Oncotarget 2017; 8:38008-38021. [PMID: 28402942 PMCID: PMC5514968 DOI: 10.18632/oncotarget.16682] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/06/2017] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem or stromal cells (MSCs) are non-hematopoietic stem cells that facilitate tissue regeneration through mechanisms involving self-renewal and differentiation, supporting angiogenesis and tissue cell survival, and limiting inflammation. MSCs were originally identified and expanded in long-term cultures of cells from bone marrow and other organs; and their native identity was recently confined into pericytes and adventitial cells in vascularized tissue. The multipotency, as well as the trophic and immunosuppressive effects, of MSCs have prompted the rapid development of clinical applications for many diseases involving tissue inflammation and immune disorders, including inflammatory bowel disease. Although standard criteria have been established to define MSCs, their therapeutic efficacy has varied significantly among studies due to their natural heterogenicity. Thus, understanding the biological and immunological features of MSCs is critical to standardize and optimize MSCs-based therapy. In this review, we highlight the cellular and molecular mechanisms involved in MSCs-mediated tissue repair and immunosuppression. We also provide an update on the current development of MSCs-based clinical trials, with a detailed discussion of MSC-based cell therapy in inflammatory bowel disease.
Collapse
Affiliation(s)
- Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Qiang Tu
- Jiangning Hospital of Nanjing, Nanjing, Jiangsu, P.R. China
| | - Li Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Fuliang Chu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xia Li
- Department of Gastroenterology, Binzhou Medical University Yantai Affiliated Hospital, Yantai, Shandong, P.R. China
| | - Haiyan S. Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| |
Collapse
|
60
|
Armbruster N, Krieg J, Weißenberger M, Scheller C, Steinert AF. Rescued Chondrogenesis of Mesenchymal Stem Cells under Interleukin 1 Challenge by Foamyviral Interleukin 1 Receptor Antagonist Gene Transfer. Front Pharmacol 2017; 8:255. [PMID: 28536528 PMCID: PMC5422547 DOI: 10.3389/fphar.2017.00255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/24/2017] [Indexed: 12/15/2022] Open
Abstract
Background: Mesenchymal stem cells (MSCs) and their chondrogenic differentiation have been extensively investigated in vitro as MSCs provide an attractive source besides chondrocytes for cartilage repair therapies. Here we established prototype foamyviral vectors (FVV) that are derived from apathogenic parent viruses and are characterized by a broad host range and a favorable integration pattern into the cellular genome. As the inflammatory cytokine interleukin 1 beta (IL1β) is frequently present in diseased joints, the protective effects of FVV expressing the human interleukin 1 receptor antagonist protein (IL1RA) were studied in an established in vitro model (aggregate culture system) of chondrogenesis in the presence of IL1β. Materials and Methods: We generated different recombinant FVVs encoding enhanced green fluorescent protein (EGFP) or IL1RA and examined their transduction efficiencies and transgene expression profiles using different cell lines and human primary MSCs derived from bone marrow-aspirates. Transgene expression was evaluated by fluorescence microscopy (EGFP), flow cytometry (EGFP), and ELISA (IL1RA). For evaluation of the functionality of the IL1RA transgene to block the inhibitory effects of IL1β on chondrogenesis of primary MSCs and an immortalized MSC cell line (TERT4 cells), the cells were maintained following transduction as aggregate cultures in standard chondrogenic media in the presence or absence of IL1β. After 3 weeks of culture, pellets were harvested and analyzed by histology and immunohistochemistry for chondrogenic phenotypes. Results: The different FVV efficiently transduced cell lines as well as primary MSCs, thereby reaching high transgene expression levels in 6-well plates with levels of around 100 ng/ml IL1RA. MSC aggregate cultures which were maintained in chondrogenic media without IL1β supplementation revealed a chondrogenic phenotype by means of strong positive staining for collagen type II and matrix proteoglycan (Alcian blue). Addition of IL1β was inhibitory to chondrogenesis in untreated control pellets. In contrast, foamyviral mediated IL1RA expression rescued the chondrogenesis in pellets cultured in the presence of IL1β. Transduced MSC pellets reached thereby very high IL1RA transgene expression levels with a peak of 1087 ng/ml after day 7, followed by a decrease to 194 ng/ml after day 21, while IL1RA concentrations of controls were permanently below 200 pg/ml. Conclusion: Our results indicate that FVV are capable of efficient gene transfer to MSCs, while reaching IL1RA transgene expression levels, that were able to efficiently block the impacts of IL1β in vitro. FVV merit further investigation as a means to study the potential as a gene transfer tool for MSC based therapies for cartilage repair.
Collapse
Affiliation(s)
- Nicole Armbruster
- Institute for Virology and Immunobiology, University of WuerzburgWuerzburg, Germany.,Department of Orthopaedic Surgery, Klinik König-Ludwig-Haus Würzburg - Center for Musculoskeletal Research, University of WuerzburgWuerzburg, Germany
| | - Jennifer Krieg
- Institute for Virology and Immunobiology, University of WuerzburgWuerzburg, Germany.,Department of Orthopaedic Surgery, Klinik König-Ludwig-Haus Würzburg - Center for Musculoskeletal Research, University of WuerzburgWuerzburg, Germany
| | - Manuel Weißenberger
- Department of Orthopaedic Surgery, Klinik König-Ludwig-Haus Würzburg - Center for Musculoskeletal Research, University of WuerzburgWuerzburg, Germany
| | - Carsten Scheller
- Institute for Virology and Immunobiology, University of WuerzburgWuerzburg, Germany
| | - Andre F Steinert
- Department of Orthopaedic Surgery, Klinik König-Ludwig-Haus Würzburg - Center for Musculoskeletal Research, University of WuerzburgWuerzburg, Germany
| |
Collapse
|
61
|
Wang XJ, Xiang BY, Ding YH, Chen L, Zou H, Mou XZ, Xiang C. Human menstrual blood-derived mesenchymal stem cells as a cellular vehicle for malignant glioma gene therapy. Oncotarget 2017; 8:58309-58321. [PMID: 28938558 PMCID: PMC5601654 DOI: 10.18632/oncotarget.17621] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/20/2017] [Indexed: 02/06/2023] Open
Abstract
Despite many advances in conventional treatment strategies, there is no effective treatment modality for malignant gliomas. Gene therapy may offer a promising option for gliomas and several gene therapy approaches have shown anti-tumor efficiency in previous studies. Mesenchymal stem cell-based gene therapies, in which stem cells are genetically engineered to express therapeutic molecules, have shown tremendous potential because of their innate homing ability. In this study, human menstrual blood-derived MSCs (MenSC), a novel type of multipotential MSCs displays tropism for human malignant glioma when used as a gene delivery vehicle for therapeutics. Secretable trimeric TRAIL (stTRAIL) contains the receptor-binding domain of TRAIL, a death ligand that induces apoptosis in tumor cells. To overexpress stTRAIL, MenSCs were infected with efficient adenoviral serotype 35 vectors that had no influence on its broad multipotency and low immunophenotype. The modified MenSCs served as an excellent local drug delivery system for tumor site-specific targeted delivery and demonstrated therapeutic efficacy in an animal xenografts tumor model of U-87 MG cells. The MenSC-stTRAIL cells induced antitumor effects in vitro by significantly increasing apoptosis (P < 0.05). It also significantly reduced tumor burden in vivo (P < 0.05). The results showed that the proliferation of tumor cells was significantly reduced (P < 0.05). The MenSC, as a cellular delivery vehicle has a wide potential therapeutic role, which includes the treatment of tumors.
Collapse
Affiliation(s)
- Xiao-Jun Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Bing-Yu Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Ya-Hui Ding
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China.,People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Lu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hai Zou
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China.,People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310014, China
| |
Collapse
|
62
|
Cox CS, Hetz RA, Liao GP, Aertker BM, Ewing-Cobbs L, Juranek J, Savitz SI, Jackson ML, Romanowska-Pawliczek AM, Triolo F, Dash PK, Pedroza C, Lee DA, Worth L, Aisiku IP, Choi HA, Holcomb JB, Kitagawa RS. Treatment of Severe Adult Traumatic Brain Injury Using Bone Marrow Mononuclear Cells. Stem Cells 2017; 35:1065-1079. [PMID: 27800660 PMCID: PMC5367945 DOI: 10.1002/stem.2538] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/29/2016] [Accepted: 10/16/2016] [Indexed: 12/12/2022]
Abstract
Preclinical studies using bone marrow derived cells to treat traumatic brain injury have demonstrated efficacy in terms of blood-brain barrier preservation, neurogenesis, and functional outcomes. Phase 1 clinical trials using bone marrow mononuclear cells infused intravenously in children with severe traumatic brain injury demonstrated safety and potentially a central nervous system structural preservation treatment effect. This study sought to confirm the safety, logistic feasibility, and potential treatment effect size of structural preservation/inflammatory biomarker mitigation in adults to guide Phase 2 clinical trial design. Adults with severe traumatic brain injury (Glasgow Coma Scale 5-8) and without signs of irreversible brain injury were evaluated for entry into the trial. A dose escalation format was performed in 25 patients: 5 controls, followed 5 patients in each dosing cohort (6, 9, 12 ×106 cells/kg body weight), then 5 more controls. Bone marrow harvest, cell processing to isolate the mononuclear fraction, and re-infusion occurred within 48 hours after injury. Patients were monitored for harvest-related hemodynamic changes, infusional toxicity, and adverse events. Outcome measures included magnetic resonance imaging-based measurements of supratentorial and corpus callosal volumes as well as diffusion tensor imaging-based measurements of fractional anisotropy and mean diffusivity of the corpus callosum and the corticospinal tract at the level of the brainstem at 1 month and 6 months postinjury. Functional and neurocognitive outcomes were measured and correlated with imaging data. Inflammatory cytokine arrays were measured in the plasma pretreatment, posttreatment, and at 1 and 6 month follow-up. There were no serious adverse events. There was a mild pulmonary toxicity of the highest dose that was not clinically significant. Despite the treatment group having greater injury severity, there was structural preservation of critical regions of interest that correlated with functional outcomes. Key inflammatory cytokines were downregulated. Treatment of severe, adult traumatic brain injury using an intravenously delivered autologous bone marrow mononuclear cell infusion is safe and logistically feasible. There appears to be a treatment signal as evidenced by central nervous system structural preservation, consistent with previous pediatric trial data. Inflammatory biomarkers are downregulated after cell infusion. Stem Cells 2016 Video Highlight: https://youtu.be/UiCCPIe-IaQ Stem Cells 2017;35:1065-1079.
Collapse
Affiliation(s)
- Charles S Cox
- Department of Pediatric Surgery, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Robert A Hetz
- Department of Surgery, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - George P Liao
- Department of Surgery, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Benjamin M Aertker
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Linda Ewing-Cobbs
- Department of Pediatrics, The University of Texas McGovern Medical School, Houston, Texas, USA
- Department of Psychiatry and Behavioral Sciences, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Jenifer Juranek
- Department of Pediatrics, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Sean I Savitz
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Margaret L Jackson
- Department of Pediatric Surgery, The University of Texas McGovern Medical School, Houston, Texas, USA
| | | | - Fabio Triolo
- Department of Pediatric Surgery, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Claudia Pedroza
- Center for Clinical Research and Evidence-Based Medicine, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Dean A Lee
- Department of Hematology and Oncology, Nationwide Children's, Columbus, Ohio, USA
| | - Laura Worth
- Department of Pediatrics, MD Anderson Cancer Center, Houston, Texas, USA
| | - Imoigele P Aisiku
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Huimahn A Choi
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, USA
- Department of Neurosurgery, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - John B Holcomb
- Department of Surgery, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Ryan S Kitagawa
- Department of Neurosurgery, The University of Texas McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
63
|
Jackson ML, Srivastava AK, Cox CS. Preclinical progenitor cell therapy in traumatic brain injury: a meta-analysis. J Surg Res 2017. [PMID: 28624058 DOI: 10.1016/j.jss.2017.02.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND No treatment is available to reverse injury associated with traumatic brain injury (TBI). Progenitor cell therapies show promise in both preclinical and clinical studies. We conducted a meta-analysis of preclinical studies using progenitor cells to treat TBI. METHODS EMBASE, MEDLINE, Cochrane Review, Biosis, and Google Scholar were searched for articles using prespecified search strategies. Studies meeting inclusion criteria underwent data extraction. Analysis was performed using Review Manager 5.3 according to a fixed-effects model, and all studies underwent quality scoring. RESULTS Of 430 abstracts identified, 38 met inclusion criteria and underwent analysis. Average quality score was 4.32 of 8 possible points. No study achieved a perfect score. Lesion volume (LV) and neurologic severity score (NSS) outcomes favored cell treatment with standard mean difference (SMD) of 0.86 (95% CI: 0.64-1.09) and 1.36 (95% CI: 1.11-1.60), respectively. Rotarod and Morris water maze outcomes also favored treatment with improvements in SMD of 0.34 (95% CI: 0.02-0.65) and 0.46 (95% CI: 0.17-74), respectively. Although LV and NSS were robust to publication bias assessments, rotarod and Morris water maze tests were not. Heterogeneity (I2) ranged from 74%-85% among the analyses, indicating a high amount of heterogeneity among studies. Precision as a function of quality score showed a statistically significant increase in the size of the confidence interval as quality improved. CONCLUSIONS Our meta-analysis study reveals an overall positive effect of progenitor cell therapies on LV and NSS with a trend toward improved motor function and spatial learning in different TBI animal models.
Collapse
Affiliation(s)
- Margaret L Jackson
- Department of Pediatric Surgery, University of Texas Health Sciences Center at Houston, Houston, Texas.
| | - Amit K Srivastava
- Department of Pediatric Surgery, University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Charles S Cox
- Department of Pediatric Surgery, University of Texas Health Sciences Center at Houston, Houston, Texas
| |
Collapse
|
64
|
Matthay MA, Pati S, Lee JW. Concise Review: Mesenchymal Stem (Stromal) Cells: Biology and Preclinical Evidence for Therapeutic Potential for Organ Dysfunction Following Trauma or Sepsis. Stem Cells 2017; 35:316-324. [PMID: 27888550 DOI: 10.1002/stem.2551] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 12/12/2022]
Abstract
Several experimental studies have provided evidence that bone-marrow derived mesenchymal stem (stromal) cells (MSC) may be effective in treating critically ill surgical patients who develop traumatic brain injury, acute renal failure, or the acute respiratory distress syndrome. There is also preclinical evidence that MSC may be effective in treating sepsis-induced organ failure, including evidence that MSC have antimicrobial properties. This review considers preclinical studies with direct relevance to organ failure following trauma, sepsis or major infections that apply to critically ill patients. Progress has been made in understanding the mechanisms of benefit, including MSC release of paracrine factors, transfer of mitochondria, and elaboration of exosomes and microvesicles. Regardless of how well they are designed, preclinical studies have limitations in modeling the complexity of clinical syndromes, especially in patients who are critically ill. In order to facilitate translation of the preclinical studies of MSC to critically ill patients, there will need to be more standardization regarding MSC production with a focus on culture methods and cell characterization. Finally, well designed clinical trials will be needed in critically ill patient to assess safety and efficacy. Stem Cells 2017;35:316-324.
Collapse
Affiliation(s)
- Michael A Matthay
- Departments of Medicine and Anesthesia and the Cardiovascular Research Institute, University of California, San Francisco, USA
| | - Shibani Pati
- Department of Laboratory Medicine, University of California, Blood Systems Research Institute, San Francisco, USA
| | - Jae-Woo Lee
- Department of Anesthesia, University of California, San Francisco, USA
| |
Collapse
|
65
|
Földes A, Kádár K, Kerémi B, Zsembery Á, Gyires K, S Zádori Z, Varga G. Mesenchymal Stem Cells of Dental Origin-Their Potential for Antiinflammatory and Regenerative Actions in Brain and Gut Damage. Curr Neuropharmacol 2017; 14:914-934. [PMID: 26791480 PMCID: PMC5333580 DOI: 10.2174/1570159x14666160121115210] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/14/2015] [Accepted: 01/20/2016] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease, Parkinson’s disease, traumatic brain and spinal cord injury and neuroinflammatory multiple sclerosis are diverse disorders of the central nervous system. However, they are all characterized by various levels of inappropriate inflammatory/immune response along with tissue destruction. In the gastrointestinal system, inflammatory bowel disease (IBD) is also a consequence of tissue destruction resulting from an uncontrolled inflammation. Interestingly, there are many similarities in the immunopathomechanisms of these CNS disorders and the various forms of IBD. Since it is very hard or impossible to cure them by conventional manner, novel therapeutic approaches such as the use of mesenchymal stem cells, are needed. Mesenchymal stem cells have already been isolated from various tissues including the dental pulp and periodontal ligament. Such cells possess transdifferentiating capabilities for different tissue specific cells to serve as new building blocks for regeneration. But more importantly, they are also potent immunomodulators inhibiting proinflammatory processes and stimulating anti-inflammatory mechanisms. The present review was prepared to compare the immunopathomechanisms of the above mentioned neurodegenerative, neurotraumatic and neuroinflammatory diseases with IBD. Additionally, we considered the potential use of mesenchymal stem cells, especially those from dental origin to treat such disorders. We conceive that such efforts will yield considerable advance in treatment options for central and peripheral disorders related to inflammatory degeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gábor Varga
- Departments of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
66
|
Shree N, Bhonde RR. Conditioned Media From Adipose Tissue Derived Mesenchymal Stem Cells Reverse Insulin Resistance in Cellular Models. J Cell Biochem 2017; 118:2037-2043. [DOI: 10.1002/jcb.25777] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/26/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Nitya Shree
- School of Regenerative Medicine; GKVK Post Bellary Road Bangalore India
| | - Ramesh R. Bhonde
- School of Regenerative Medicine; GKVK Post Bellary Road Bangalore India
| |
Collapse
|
67
|
Dekmak A, Mantash S, Shaito A, Toutonji A, Ramadan N, Ghazale H, Kassem N, Darwish H, Zibara K. Stem cells and combination therapy for the treatment of traumatic brain injury. Behav Brain Res 2016; 340:49-62. [PMID: 28043902 DOI: 10.1016/j.bbr.2016.12.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 10/30/2016] [Accepted: 12/29/2016] [Indexed: 12/15/2022]
Abstract
TBI is a nondegenerative, noncongenital insult to the brain from an external mechanical force; for instance a violent blow in a car accident. It is a complex injury with a broad spectrum of symptoms and has become a major cause of death and disability in addition to being a burden on public health and societies worldwide. As such, finding a therapy for TBI has become a major health concern for many countries, which has led to the emergence of many monotherapies that have shown promising effects in animal models of TBI, but have not yet proven any significant efficacy in clinical trials. In this paper, we will review existing and novel TBI treatment options. We will first shed light on the complex pathophysiology and molecular mechanisms of this disorder, understanding of which is a necessity for launching any treatment option. We will then review most of the currently available treatments for TBI including the recent approaches in the field of stem cell therapy as an optimal solution to treat TBI. Therapy using endogenous stem cells will be reviewed, followed by therapies utilizing exogenous stem cells from embryonic, induced pluripotent, mesenchymal, and neural origin. Combination therapy is also discussed as an emergent novel approach to treat TBI. Two approaches are highlighted, an approach concerning growth factors and another using ROCK inhibitors. These approaches are highlighted with regard to their benefits in minimizing the outcomes of TBI. Finally, we focus on the consequent improvements in motor and cognitive functions after stem cell therapy. Overall, this review will cover existing treatment options and recent advancements in TBI therapy, with a focus on the potential application of these strategies as a solution to improve the functional outcomes of TBI.
Collapse
Affiliation(s)
- AmiraSan Dekmak
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon
| | - Sarah Mantash
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Abdullah Shaito
- Department of Biological and Chemical Sciences, Lebanese International University, Beirut, Lebanon
| | - Amer Toutonji
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Naify Ramadan
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Hussein Ghazale
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Nouhad Kassem
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon
| | - Hala Darwish
- Faculty of Medicine, Hariri School of Nursing, American University of Beirut, Beirut, Lebanon
| | - Kazem Zibara
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon; Laboratory of Cardiovascular Diseases and Stem Cells, Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
68
|
Yang X, Liang L, Zong C, Lai F, Zhu P, Liu Y, Jiang J, Yang Y, Gao L, Ye F, Zhao Q, Li R, Han Z, Wei L. Kupffer cells-dependent inflammation in the injured liver increases recruitment of mesenchymal stem cells in aging mice. Oncotarget 2016; 7:1084-95. [PMID: 26716516 PMCID: PMC4811445 DOI: 10.18632/oncotarget.6744] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 11/22/2015] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) repair tissue injury and may be used to treat immune associated diseases. In carbon tetrachloride (CCl4)-induced liver injury murine model, we administered MSCs. When MSCs were transmitted to young and old mice with liver injury, more MSCs were recruited in old mice. In old mice, inflammation, characterized by TNF-α and IL-6, was increased due to hyper-activation and hyper-function of Kupffer cells. Blocking Kupffer cells decreased MSCs migration in old mice. In vitro, Kupffer cells isolated from old mice secreted more inflammatory cytokines and chemokines. Thus, hyper-activation of Kupffer cells in old mice increased recruitment of MSCs after their therapeutic administration.
Collapse
Affiliation(s)
- Xue Yang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Lei Liang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China.,Medical College of Soochow University, Suzhou, China
| | - Chen Zong
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Fobao Lai
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Pengxi Zhu
- Department of Pharmacy, Chang Hai Hospital, The Second Military Medical University, Shanghai, China
| | - Yu Liu
- College of Art and Science, University of San Francisco, San Francisco, CA, USA
| | - Jinghua Jiang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Yang Yang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Lu Gao
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Fei Ye
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Qiudong Zhao
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Rong Li
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Zhipeng Han
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
69
|
Gugliandolo A, Bramanti P, Mazzon E. Mesenchymal stem cell therapy in Parkinson's disease animal models. Curr Res Transl Med 2016; 65:51-60. [PMID: 28466824 DOI: 10.1016/j.retram.2016.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/14/2016] [Accepted: 10/14/2016] [Indexed: 12/14/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra, and as a consequence, by decreased dopamine levels in the striatum. Currently available therapies are not able to stop or reverse the progression of the disease. A novel therapeutic approach is based on cell therapy with stem cells, in order to replace degenerated neurons. Among stem cells, mesenchymal stem cells seemed the most promising thanks to their capacities to differentiate toward dopaminergic neurons and to release neurotrophic factors. Indeed, mesenchymal stem cells are able to produce different molecules with immunomodulatory, neuroprotective, angiogenic, chemotactic effects and that stimulate differentiation of resident stem cells. Mesenchymal stem cells were isolated for the first time from bone marrow, but can be collected also from adipose tissue, umbilical cord and other tissues. In this review, we focused our attention on mesenchymal stem cells derived from different sources and their application in Parkinson's disease animal models.
Collapse
Affiliation(s)
- A Gugliandolo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - P Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - E Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
70
|
Neuroprotective Effects of Bone Marrow Mesenchymal Stem Cells on Bilateral Common Carotid Arteries Occlusion Model of Cerebral Ischemia in Rat. Behav Neurol 2016; 2016:2964712. [PMID: 27847404 PMCID: PMC5101406 DOI: 10.1155/2016/2964712] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/07/2016] [Accepted: 09/07/2016] [Indexed: 12/13/2022] Open
Abstract
Cell therapy is the most advanced treatment of the cerebral ischemia, nowadays. Herein, we discuss the neuroprotective effects of bone marrow mesenchymal stem cells (BMSCs) on rat hippocampal cells following intravenous injection of these cells in an ischemia-reperfusion model. Adult male Wistar rats were divided into 5 groups: control, sham (surgery without blockage of common carotid arteries), ischemia (common carotid arteries were blocked for 30 min prior to reperfusion), vehicle (7 days after ischemia PBS was injected via the tail vein), and treatment (injections of BMSC into the tail veins 7 days after ischemia). We performed neuromuscular and vestibulomotor function tests to assess behavioral function and, finally, brains were subjected to hematoxylin and eosin (H&E), anti-Brdu immunohistochemistry, and TUNEL staining. The ischemia group had severe apoptosis. The group treated with BMSCs had a lower mortality rate and also had significant improvement in functional recovery (P < 0.001). Ischemia-reperfusion for 30 min causes damage and extensive neuronal death in the hippocampus, especially in CA1 and CA3 regions, leading to several functional and neurological deficits. In conclusion, intravenous injection of BMSCs can significantly decrease the number of apoptotic neurons and significantly improve functional recovery, which may be a beneficial treatment method for ischemic injuries.
Collapse
|
71
|
Abstract
Trauma is a leading cause of death in both military and civilian populations worldwide. Although medical advances have improved the overall morbidity and mortality often associated with trauma, additional research and innovative advancements in therapeutic interventions are needed to optimize patient outcomes. Cell-based therapies present a novel opportunity to improve trauma and critical care at both the acute and chronic phases that often follow injury. Although this field is still in its infancy, animal and human studies suggest that stem cells may hold great promise for the treatment of brain and spinal cord injuries, organ injuries, and extremity injuries such as those caused by orthopedic trauma, burns, and critical limb ischemia. However, barriers in the translation of cell therapies that include regulatory obstacles, challenges in manufacturing and clinical trial design, and a lack of funding are critical areas in need of development. In 2015, the Department of Defense Combat Casualty Care Research Program held a joint military–civilian meeting as part of its effort to inform the research community about this field and allow for effective planning and programmatic decisions regarding research and development. The objective of this article is to provide a “state of the science” review regarding cellular therapies in trauma and critical care, and to provide a foundation from which the potential of this emerging field can be harnessed to mitigate outcomes in critically ill trauma patients.
Collapse
|
72
|
Huang S, Xu L, Sun Y, Lin S, Gu W, Liu Y, Zhang J, Chen L, Li G. Systemic Administration of Allogeneic Mesenchymal Stem Cells Does Not Halt Osteoporotic Bone Loss in Ovariectomized Rats. PLoS One 2016; 11:e0163131. [PMID: 27711227 PMCID: PMC5053541 DOI: 10.1371/journal.pone.0163131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/02/2016] [Indexed: 11/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have innate ability to self-renew and immunosuppressive functions, and differentiate into various cell types. They have become a promising cell source for treating many diseases, particular for bone regeneration. Osteoporosis is a common metabolic bone disorder with elevated systemic inflammation which in turn triggers enhanced bone loss. We hypothesize that systemic infusion of MSCs may suppress the elevated inflammation in the osteoporotic subjects and slow down bone loss. The current project was to address the following two questions: (1) Will a single dose systemic administration of allogenic MSCs have any effect on osteoporotic bone loss? (2) Will multiple administration of allogenic MSCs from single or multiple donors have similar effect on osteoporotic bone loss? 18 ovariectomized (OVX) rats were assigned into 3 groups: the PBS control group, MSCs group 1 (receiving 2x106 GFP-MSCs at Day 10, 46, 91 from the same donor following OVX) and MSCs group 2 (receiving 2x106 GFP-MSCs from three different donors at Day 10, 46, 91). Examinations included Micro-CT, serum analysis, mechanical testing, immunofluorescence staining and bone histomorphometry analysis. Results showed that BV/TV at Day 90, 135, BMD of TV and trabecular number at Day 135 in the PBS group were significantly higher than those in the MSCs group 2, whereas trabecular spacing at Day 90, 135 was significantly smaller than that in MSCs group 2. Mechanical testing data didn't show significant difference among the three groups. In addition, the ELISA assay showed that level of Rantes in serum in MSCs group 2 was significantly higher than that of the PBS group, whereas IL-6 and IL-10 were significantly lower than those of the PBS group. Bone histomorphometry analysis showed that Oc.S/BS and Oc.N/BS in the PBS group were significant lower than those in MSCs group 2; Ob.S/BS and Ob.N/BS did not show significant difference among the three groups. The current study demonstrated that systemic administration of allogenic MSCs had no obvious effect on osteoporotic bone loss in OVX rats when using the cells from the same donor; and repeated injection of allogeneic MSCs from different donors might promote bone loss in OVX rats. These findings indicate that despite allogenic MSCs systemic infusion is safe, their administration alone may not be an effective mean for preventing osteoporotic bone loss.
Collapse
Affiliation(s)
- Shuo Huang
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, PR China
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| | - Liangliang Xu
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
| | - Yuxin Sun
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
| | - Weidong Gu
- The Orthopaedic Research Laboratory, Changzhou Seventh People’s Hospital, Changzhou, Jiangshu Province, PR China
| | - Yamei Liu
- College of Fundamental Medical Sciences, Guang Zhou University of Traditional Chinese Medicine, Guang Zhou, PR China
| | - Jinfang Zhang
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| | - Lin Chen
- Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
| |
Collapse
|
73
|
Mohammadian M, Sadeghipour HR, Kashani IR, Jahromi GP, Omidi A, Nejad AK, Golchoobian R, Boskabady MH. Evaluation of Simvastatin and Bone Marrow-Derived Mesenchymal Stem Cell Combination Therapy on Airway Remodeling in a Mouse Asthma Model. Lung 2016; 194:777-785. [PMID: 27161569 DOI: 10.1007/s00408-016-9884-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/22/2016] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The effect of bone marrow-derived mesenchymal stem cells (BMSCs) on asthma treatment was shown in our previous study. Several studies have shown the effect of statins on BMSC preservation and migration to sites of inflammation. In this study, the effects of simvastatin and BMSC combination therapy in an ovalbumin-induced asthma model in mouse were examined. METHODS Four groups of BALB/c mice were studied including control group (animals were not sensitized), asthma group (animals were sensitized by ovalbumin), asthma + simvastatin group (asthmatic animals were treated with simvastatin), and asthma + BMSC + simvastatin group (asthmatic animals were treated with simvastatin and BMSCs). BMSCs were isolated, characterized, labeled with BrdU, and transferred into asthmatic mice. BMSC migration, airways histopathology, and total and differential white blood cell (WBC) count in bronchoalveolar lavage (BAL) fluid were evaluated. RESULTS A significant increase in the number of BrdU-BMSCs was found in the lungs of mice treated with simvastatin + BMSCs compared to mice treated with BMSCs. The histopathological changes, BAL total WBC counts, and the percentage of neutrophils and eosinophils were increased in asthma group compared to the control group. Treatment with simvastatin significantly decreased airway inflammation and inflammatory cell infiltration. Combination therapy improved all measured parameters higher than simvastatin. Goblet cell hyperplasia and subepithelial fibrosis were also decreased in combination therapy group. CONCLUSION These results indicated that simvastatin and BMSC combination therapy was superior to simvastatin therapy and BMSC therapy alone in reduction of airway remodeling and lung inflammation in the ovalbumin-induced asthma model in mouse.
Collapse
Affiliation(s)
- Maryam Mohammadian
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Sadeghipour
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gila Pirzad Jahromi
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amene Omidi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Kavian Nejad
- Department of Emergency Medical Services, Faculty of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ravie Golchoobian
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Boskabady
- Neurogenic Inflammation Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
74
|
Mesenchymal Stem Cell-Based Therapy for Kidney Disease: A Review of Clinical Evidence. Stem Cells Int 2016; 2016:4798639. [PMID: 27721835 PMCID: PMC5046016 DOI: 10.1155/2016/4798639] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/15/2016] [Accepted: 08/18/2016] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells form a population of self-renewing, multipotent cells that can be isolated from several tissues. Multiple preclinical studies have demonstrated that the administration of exogenous MSC could prevent renal injury and could promote renal recovery through a series of complex mechanisms, in particular via immunomodulation of the immune system and release of paracrine factors and microvesicles. Due to their therapeutic potentials, MSC are being evaluated as a possible player in treatment of human kidney disease, and an increasing number of clinical trials to assess the safety, feasibility, and efficacy of MSC-based therapy in various kidney diseases have been proposed. In the present review, we will summarize the current knowledge on MSC infusion to treat acute kidney injury, chronic kidney disease, diabetic nephropathy, focal segmental glomerulosclerosis, systemic lupus erythematosus, and kidney transplantation. The data obtained from these clinical trials will provide further insight into safety, feasibility, and efficacy of MSC-based therapy in renal pathologies and allow the design of consensus protocol for clinical purpose.
Collapse
|
75
|
Transcriptome sequencing wide functional analysis of human mesenchymal stem cells in response to TLR4 ligand. Sci Rep 2016; 6:30311. [PMID: 27444640 PMCID: PMC4957230 DOI: 10.1038/srep30311] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/30/2016] [Indexed: 12/13/2022] Open
Abstract
Due to their multipotentiality and immunomodulation, human mesenchymal stem cells (hMSCs) are widely studied for the treatment of degenerative and inflammatory diseases. Transplantation of hMSCs to damaged tissue is a promising approach for tissue regeneration. However, the physiological mechanisms and regulatory processes of MSC trafficking to injured tissue are largely unexplored. Here, we evaluated the gene expression profile and migratory potential of hMSCs upon stimulation with the TLR4 ligand lipopolysaccharide (LPS). Using RNA sequencing, we identified unique induction patterns of interferon stimulated genes, cytokines and chemokines involved in chemotaxis and homing. The −950 to +50 bp regions of many of these LPS-responsive genes were enriched with putative binding motifs for the transcription factors (TFs) interferon regulatory factor (IRF1) and nuclear factor kappa B (NF-κB1, REL), which were also induced by LPS along with other TFs. Chromatin immunoprecipitation assays showed that IRF1 bound within their target genes promoter region. In addition, IRF1 attenuation significantly down-regulated interferon stimulated genes as well as key cytokines. Furthermore, using pharmacological inhibitors, we showed that the NF-κB and phosphatidylinositol 3-kinase (PI3K) pathways regulate the migratory and cytokines/chemokines response to LPS. These unprecedented data suggest that IRF1 and NF-κB orchestrate the TLR4-primed immunomodulatory response of hMSCs and that this response also involves the PI3K pathway.
Collapse
|
76
|
Comparative effect of immature neuronal or glial cell transplantation on motor functional recovery following experimental traumatic brain injury in rats. Exp Ther Med 2016; 12:1671-1680. [PMID: 27602084 PMCID: PMC4998226 DOI: 10.3892/etm.2016.3527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/11/2016] [Indexed: 01/19/2023] Open
Abstract
The present study evaluated the comparative effect of stereotaxically transplanted immature neuronal or glial cells in brain on motor functional recovery and cytokine expression after cold-induced traumatic brain injury (TBI) in adult rats. A total of 60 rats were divided into four groups (n=15/group): Sham group; TBI only group; TBI plus neuronal cells-transplanted group (NC-G); and TBI plus glial cells-transplanted group (GC-G). Cortical lesions were induced by a touching metal stamp, frozen with liquid nitrogen, to the dura mater over the motor cortex of adult rats. Neuronal and glial cells were isolated from rat embryonic and newborn cortices, respectively, and cultured in culture flasks. Rats received neurons or glia grafts (~1×106 cells) 5 days after TBI was induced. Motor functional evaluation was performed with the rotarod test prior to and following glial and neural cell grafts. Five rats from each group were sacrificed at 2, 4 and 6 weeks post-cell transplantation. Immunofluorescence staining was performed on brain section to identify the transplanted neuronal or glial cells using neural and astrocytic markers. The expression levels of cytokines, including transforming growth factor-β, glial cell-derived neurotrophic factor and vascular endothelial growth factor, which have key roles in the proliferation, differentiation and survival of neural cells, were analyzed by immunohistochemistry and western blotting. A localized cortical lesion was evoked in all injured rats, resulting in significant motor deficits. Transplanted cells successfully migrated and survived in the injured brain lesion, and the expression of neuronal and astrocyte markers were detected in the NC-G and GC-G groups, respectively. Rats in the NC-G and GC-G cell-transplanted groups exhibited significant motor functional recovery and reduced histopathologic lesions, as compared with the TBI-G rats that did not receive neural cells (P<0.05, respectively). Furthermore, GC-G treatment induced significantly improved motor functional recovery, as compared with the NC-G group (P<0.05). Increased cytokine expression levels were detected in the NC-G and GC-G groups, as compared with the TBI-G; however, no differences were found between the two groups. These data suggested that transplanted immature neural cells may promote the survival of neural cells in cortical lesion and motor functional recovery. Furthermore, transplanted glial cells may be used as an effective therapeutic tool for TBI patients with abnormalities in motor functional recovery and cytokine expression.
Collapse
|
77
|
Darkazalli A, Ismail AAO, Abad N, Grant SC, Levenson CW. Use of human mesenchymal stem cell treatment to prevent anhedonia in a rat model of traumatic brain injury. Restor Neurol Neurosci 2016; 34:433-41. [DOI: 10.3233/rnn-150628] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ali Darkazalli
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Abdol Aziz Ould Ismail
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Nastaren Abad
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Samuel C. Grant
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Cathy W. Levenson
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, USA
| |
Collapse
|
78
|
Darkazalli A, Vied C, Badger CD, Levenson CW. Human Mesenchymal Stem Cell Treatment Normalizes Cortical Gene Expression after Traumatic Brain Injury. J Neurotrauma 2016; 34:204-212. [PMID: 27161121 DOI: 10.1089/neu.2015.4322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) results in a progressive disease state with many adverse and long-term neurological consequences. Mesenchymal stem cells (MSCs) have emerged as a promising cytotherapy and have been previously shown to reduce secondary apoptosis and cognitive deficits associated with TBI. Consistent with the established literature, we observed that systemically administered human MSCs (hMSCs) accumulate with high specificity at the TBI lesion boundary zone known as the penumbra. Substantial work has been done to illuminate the mechanisms by which MSCs, and the bioactive molecules they secrete, exert their therapeutic effect. However, no such work has been published to examine the effect of MSC treatment on gene expression in the brain post-TBI. In the present study, we use high-throughput RNA sequencing (RNAseq) of cortical tissue from the TBI penumbra to assess the molecular effects of both TBI and subsequent treatment with intravenously delivered hMSCs. RNAseq revealed that expression of almost 7000 cortical genes in the penumbra were differentially regulated by TBI. Pathway analysis using the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway database revealed that TBI regulated a large number of genes belonging to pathways involved in metabolism, receptor-mediated cell signaling, neuronal plasticity, immune cell recruitment and infiltration, and neurodegenerative disease. Remarkably, hMSC treatment was found to normalize 49% of all genes disrupted by TBI, with notably robust normalization of specific pathways within the categories mentioned above, including neuroactive receptor-ligand interactions (57%), glycolysis and gluconeogenesis (81%), and Parkinson's disease (100%). These data provide evidence in support of the multi-mechanistic nature of stem cell therapy and suggest that hMSC treatment is capable of simultaneously normalizing a wide variety of important molecular pathways that are disrupted by brain injury.
Collapse
Affiliation(s)
- Ali Darkazalli
- 1 Department of Biomedical Sciences, Florida State University College of Medicine , Tallahassee, Florida.,2 Program in Neuroscience, Florida State University College of Medicine , Tallahassee, Florida
| | - Cynthia Vied
- 1 Department of Biomedical Sciences, Florida State University College of Medicine , Tallahassee, Florida
| | - Crystal-Dawn Badger
- 1 Department of Biomedical Sciences, Florida State University College of Medicine , Tallahassee, Florida
| | - Cathy W Levenson
- 1 Department of Biomedical Sciences, Florida State University College of Medicine , Tallahassee, Florida.,2 Program in Neuroscience, Florida State University College of Medicine , Tallahassee, Florida
| |
Collapse
|
79
|
Could stem cells be the future therapy for sepsis? Blood Rev 2016; 30:439-452. [PMID: 27297212 DOI: 10.1016/j.blre.2016.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/15/2022]
Abstract
The severity and threat of sepsis is well known, and despite several decades of research, the mortality continues to be high. Stem cells have great potential to be used in various clinical disorders. The innate ability of stem cells such as pluripotency, self-renewal makes them potential agents for therapeutic intervention. The pathophysiology of sepsis is a plethora of complex mechanisms which include the initial microbial infection, followed by "cytokine storm," endothelial dysfunction, coagulation cascade, and the late phase of apoptosis and immune paralysis which ultimately results in multiple organ dysfunction. Stem cells could potentially alter each step of this complex pathophysiology of sepsis. Multiple organ dysfunction associated with sepsis most often leads to death and stem cells have shown their ability to prevent the organ damage and improve the organ function. The possible mechanisms of therapeutic potential of stem cells in sepsis have been discussed in detail. The route of administration, dose level, and timing also play vital role in the overall effect of stem cells in sepsis.
Collapse
|
80
|
Sun D. The potential of neural transplantation for brain repair and regeneration following traumatic brain injury. Neural Regen Res 2016; 11:18-22. [PMID: 26981070 PMCID: PMC4774215 DOI: 10.4103/1673-5374.169605] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury is a major health problem worldwide. Currently, there is no effective treatment to improve neural structural repair and functional recovery of patients in the clinic. Cell transplantation is a potential strategy to repair and regenerate the injured brain. This review article summarized recent development in cell transplantation studies for post-traumatic brain injury brain repair with varying types of cell sources. It also discussed the potential of neural transplantation to repair/promote recovery of the injured brain following traumatic brain injury.
Collapse
Affiliation(s)
- Dong Sun
- Department of Neurosurgery, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
81
|
Lam PK, Wang KKW, Ip AWI, Ching DWC, Tong CSW, Lau HCH, Kong THCS, Lai PBS, Wong GKC, Poon WS. Topical Therapy with Mesenchymal Stem Cells Following an Acute Experimental Head Injury Has Benefits in Motor-Behavioral Tests for Rodents. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 122:21-4. [PMID: 27165870 DOI: 10.1007/978-3-319-22533-3_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The neuroprotective effects of mesenchymal stem cells (MSCs) have been reported in rodent and in preliminary clinical studies. MSCs are usually transplanted to patients by systemic infusion. However, only a few of the infused MSCs are delivered to the brain because of pulmonary trapping and the blood-brain barrier. In this study, MSCs were topically applied to the site of traumatic brain injury (TBI) and the neuroprotective effects were assessed. MATERIALS AND METHODS TBI was induced in Sprague-Dawley (SD) rats with an electromagnetically controlled cortical impact device after craniotomy was performed between the bregma and lambda, 1 mm lateral to the midline. We applied 1.5 million MSCs, derived from the adipose tissue of transgenic green fluorescent protein (GFP)-SD rats, to the exposed cerebral cortex at the injured site. The MSCs were held in position by a thin layer of fibrin. Neurological function in the test (n = 10) and control (n = 10) animals was evaluated using the rotarod test, the water maze test, and gait analysis at different time points. RESULTS Within 5 days following topical application, GFP-positive cells were found in the brain parenchyma. These cells co-expressed with markers of Glial fibrillary acidic protein (GFAP), nestin, and NeuN. There was less neuronal death in CA1 and CA3 of the hippocampus in the test animals. Neurological functional recovery was significantly improved. CONCLUSION Topically applied MSCs can migrate to the injured brain parenchyma and offer neuroprotective effects.
Collapse
Affiliation(s)
- P K Lam
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China.,Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Kevin K W Wang
- Department of Psychiatry and Neuroscience, Center of Neuroproteomics and Biomarkers Research, University of Florida, Gainesville, FL, USA
| | - Anthony W I Ip
- Chow Tai Fook-Cheng Yu Tung Surgical Stem cell Research Center, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Don W C Ching
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China.,Chow Tai Fook-Cheng Yu Tung Surgical Stem cell Research Center, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Cindy S W Tong
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China.,Chow Tai Fook-Cheng Yu Tung Surgical Stem cell Research Center, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Henry C H Lau
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China.,Chow Tai Fook-Cheng Yu Tung Surgical Stem cell Research Center, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Themis H C S Kong
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China.,Chow Tai Fook-Cheng Yu Tung Surgical Stem cell Research Center, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Paul B S Lai
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - George K C Wong
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - W S Poon
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China.
| |
Collapse
|
82
|
Mishra PJ, Mishra PJ, Banerjee D. Keratinocyte Induced Differentiation of Mesenchymal Stem Cells into Dermal Myofibroblasts: A Role in Effective Wound Healing. ACTA ACUST UNITED AC 2016; 2016:5-32. [PMID: 27294075 DOI: 10.13052/ijts2246-8765.2016.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have previously demonstrated that human mesenchymal stem cells (hMSCs) migrate toward human keratinocytes as well as toward conditioned medium from cultured human keratinocytes (KCM) indicating that the hMSCs respond to signals from keratinocytes [1]. Using fluorescently labeled cells we now show that in vitro hMSCs appear to surround keratinocytes, and this organization is recapitulated in vivo. Incubation of hMSCs with KCM induced dermal myofibroblast like differentiation characterized by expression of cytoskeletal markers and increased expression of cytokines including SDF-1, IL-8, IL-6 and CXCL5. Interaction of keratinocytes with hMSCs appears to be important in the wound healing process. Therapeutic efficacy of hMSCs in wound healing was examined in two animal models representing normal and chronic wound healing. Accelerated wound healing was observed when hMSCs and KCM exposed hMSCs (KCMSCs) were injected near wound site in nude and NOD/SCID mice. Long term follow up of wound healing revealed that in the hMSC treated wounds there was little evidence of residual scarring. These dermal myofibroblast like hMSCs add to the wound healing process. Together, the keratinocyte and hMSCs morphed dermal myofibroblast like cells as well as the factors secreted by these cells support wound healing with minimal scarring. The ability of hMSCs to support wound healing process represents another striking example of the importance of keratinocyte and hMSCs interplay in the wound microenvironment resulting in effective wound healing with minimal scarring.
Collapse
Affiliation(s)
- Pravin J Mishra
- Intermountain Precision Genomics, Intermountain Healthcare, Dixie Regional Medical Center 292 South 1470 East, Suite 201 & 301, St. George, UT 84770, USA
| | - Prasun J Mishra
- Department of Biochemical and Cellular Pharmacology, Genentech, 1, DNA Way, South San Francisco, California 94080, USA
| | - Debabrata Banerjee
- Department of Pharmacology, Robert Wood Johnson Medical School, Graduate School of Biomedical Sciences, New Brunswick-Piscataway, Rutgers University, 675 Hoes Lane West, Piscataway, NJ 08854. USA
| |
Collapse
|
83
|
Schepers K, Fibbe WE. Unraveling mechanisms of mesenchymal stromal cell-mediated immunomodulation through patient monitoring and product characterization. Ann N Y Acad Sci 2015; 1370:15-23. [PMID: 26713608 DOI: 10.1111/nyas.12984] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mesenchymal stromal cells (MSCs) are increasingly used in the treatment of a variety of clinical conditions and to modulate immune responses in conditions related to auto-/alloimmunity, including graft-versus-host disease (GvHD). Although pilot data are promising, treatment responses have been highly variable, and further development of this as a therapeutic modality depends on increased insight into the properties of clinical MSC products and on understanding the mechanisms underlying responses in patients. Here we review the mechanisms that possibly underlie the capacity of MSCs to treat auto-/alloimmunity, and describe how patient monitoring can help to identify the in vivo mechanisms of action in the treatment of GvHD. Since MSCs used in the clinic originate from various donors and from a heterogeneous population of cells, we will also discuss recent insights into MSC heterogeneity and their implications for clinical MSC products. Finally, we describe a framework to improve our understanding of the efficacy and working mechanism of MSCs, which involves patient monitoring and more extensive characterization of the heterogeneity within and between different MSC preparations.
Collapse
Affiliation(s)
- Koen Schepers
- Department of Immunohematology and Blood Transfusion, Center for Stem Cell Therapy, Leiden University Medical Center, Leiden, the Netherlands
| | - Willem E Fibbe
- Department of Immunohematology and Blood Transfusion, Center for Stem Cell Therapy, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
84
|
Wang Y, Tan L, Jin J, Sun H, Chen Z, Tan X, Su Y, Shi C. Non-cultured dermal-derived mesenchymal cells attenuate sepsis induced by cecal ligation and puncture in mice. Sci Rep 2015; 5:16973. [PMID: 26586517 PMCID: PMC4653757 DOI: 10.1038/srep16973] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/22/2015] [Indexed: 12/21/2022] Open
Abstract
Sepsis remains a threat to critically ill patients and carries a high morbidity and mortality. Cell-based therapies have risen in prominence in recent years. Dermal-derived mesenchymal cells (DMCs) are attractive as one of the abundant sources from which to isolate mesenchymal cells for therapeutic applications and can be easily accessed with minimal harm to the donor. In this study, we described for the first time the use of non-cultured DMCs for treating sepsis in a cecal ligation and puncture (CLP) mouse model and investigated their immunomodulatory effects. We found that non-cultured DMCs administration provides a beneficial effect to improve survival in CLP-induced sepsis. This effect is partly mediated by the ability of DMCs to home to sites of injury, to reduce the inflammatory response, to inhibit apoptosis, and to stimulate macrophage migration and phagocytosis. Our further findings suggest that DMCs treatment modulates the beneficial cytoprotective effects exhibited during sepsis, at least in part, by altering miRNA expression. These discoveries provide important evidence that non-cultured DMCs therapy has a specific anti-inflammatory effect on sepsis, and provide the basis for the development of a new therapeutic strategy for managing clinical sepsis.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, China
| | - Li Tan
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, China
| | - Jie Jin
- Department of Hematology, Daping Hospital, Third Military Medical University, 10# Daping Changjiang Road, Chongqing, 400042, China
| | - Huiqin Sun
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, China
| | - Zelin Chen
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, China
| | - Xu Tan
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, China
| | - Yongping Su
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, China
| | - Chunmeng Shi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Road, Chongqing 400038, China
| |
Collapse
|
85
|
Mao Z, Zhang S, Chen H. Stem cell therapy for amyotrophic lateral sclerosis. CELL REGENERATION 2015; 4:11. [PMID: 26594318 PMCID: PMC4653876 DOI: 10.1186/s13619-015-0026-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/21/2015] [Indexed: 02/08/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the loss of motor neurons. Currently, no effective therapy is available to treat ALS, except for Riluzole, which has only limited clinical benefits. Stem-cell-based therapy has been intensively and extensively studied as a potential novel treatment strategy for ALS and has been shown to be effective, at least to some extent. In this article, we will review the current state of research on the use of stem cell therapy in the treatment of ALS and discuss the most promising stem cells for the treatment of ALS.
Collapse
Affiliation(s)
- Zhijuan Mao
- Department of Neurology of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suming Zhang
- Department of Neurology of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Department of Rehabilitation of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
86
|
Huang S, Xu L, Sun Y, Zhang Y, Li G. The fate of systemically administrated allogeneic mesenchymal stem cells in mouse femoral fracture healing. Stem Cell Res Ther 2015; 6:206. [PMID: 26503505 PMCID: PMC4621860 DOI: 10.1186/s13287-015-0198-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 07/23/2015] [Accepted: 10/05/2015] [Indexed: 12/13/2022] Open
Abstract
Introduction The fate and whereabouts of the allogenic mesenchymal stem cells (MSCs) following their transplantation are not well understood. The present study investigated the fate of systemically administrated allogeneic MSCs in mouse fracture healing by using in vivo imaging and immunohistochemistry methods. Methods Open femoral fracture with internal fixation was established in 30 FVB mice, which were assigned to three groups receiving phosphate-buffered saline (PBS) injection, MSC systemic injection, or MSC local injection. Luc-MSCs (5 × 105) isolated from the luciferase transgenic mice with FVB background were injected at 4 days after fracture. All animals were terminated at 5 weeks after fracture; examinations included bioluminescence-based in vivo imaging, micro-computer tomography, mechanical testing, histology, immunohistochemistry, and double immunofluorescence staining. Results The bioluminescence signals of the Luc-MSCs at the fracture site could be detected for 12–14 days following their injection in the Luc-MSC local injection group, whereas in the Luc-MSC systemic injection group, Luc-MSCs were initially trapped in lungs for about 8–9 days and then gradually redistributed to the fracture site. Bone mineral density, bone volume/tissue volume, ultimate load, and E-modulus in the MSC injection groups were significantly higher than those in the PBS group. Double immunostaining demonstrated that the MSC local injection group had more Luc-positive cells, and there was a higher apoptotic rate at the fracture site than the MSC systemic injection group. Both Luciferase-positive MSCs and osteoblasts were present in the callus in the MSC injection groups at 5 weeks after fracture, suggesting that some of allogenic Luc-MSCs contributed to the new bone formation. Only less than 3 % of injected Luc-MSCs remained at the fracture site in the MSC injection groups at 5 weeks following the fracture, and the rest of the injected Luc-MSCs disappeared. Conclusions Our data showed that both systemic and local injection of allogeneic MSCs promoted fracture healing through enhancing biomechanical properties, bone content, and enlarged callus sizes. Immunohistochemistry confirmed that the injected MSCs are still present in the fracture site and can differentiate into osteoblasts to participate in fracture healing even at 5 weeks following the fracture. These findings provide useful information for the use of allogenic MSCs for cell therapy applications. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0198-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuo Huang
- Department of Orthopaedics & Traumatology, Faculty of Medicine, Room 904, 9/F, Li Ka Shing Institute of Health Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, SAR, PR China. .,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, PR China.
| | - Liangliang Xu
- Department of Orthopaedics & Traumatology, Faculty of Medicine, Room 904, 9/F, Li Ka Shing Institute of Health Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, SAR, PR China. .,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, PR China.
| | - Yuxin Sun
- Department of Orthopaedics & Traumatology, Faculty of Medicine, Room 904, 9/F, Li Ka Shing Institute of Health Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, SAR, PR China. .,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, PR China.
| | - Yifeng Zhang
- Department of Orthopaedics & Traumatology, Faculty of Medicine, Room 904, 9/F, Li Ka Shing Institute of Health Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, SAR, PR China.
| | - Gang Li
- Department of Orthopaedics & Traumatology, Faculty of Medicine, Room 904, 9/F, Li Ka Shing Institute of Health Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, SAR, PR China. .,Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, PR China. .,Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong, SAR, China. .,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, No. 10, 2nd Yuexing Road, South District, Hi-tech Park, Nanshan, 518057, Shenzhen, PR China. .,Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, NT, Hong Kong, SAR, China.
| |
Collapse
|
87
|
Transplantation of human mesenchymal stem cells into the cisterna magna and its neuroprotective effects in a parkinsonian animal model. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-015-0038-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
88
|
Gennai S, Monsel A, Hao Q, Liu J, Gudapati V, Barbier EL, Lee JW. Cell-based therapy for traumatic brain injury. Br J Anaesth 2015; 115:203-12. [PMID: 26170348 DOI: 10.1093/bja/aev229] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Traumatic brain injury is a major economic burden to hospitals in terms of emergency department visits, hospitalizations, and utilization of intensive care units. Current guidelines for the management of severe traumatic brain injuries are primarily supportive, with an emphasis on surveillance (i.e. intracranial pressure) and preventive measures to reduce morbidity and mortality. There are no direct effective therapies available. Over the last fifteen years, pre-clinical studies in regenerative medicine utilizing cell-based therapy have generated enthusiasm as a possible treatment option for traumatic brain injury. In these studies, stem cells and progenitor cells were shown to migrate into the injured brain and proliferate, exerting protective effects through possible cell replacement, gene and protein transfer, and release of anti-inflammatory and growth factors. In this work, we reviewed the pathophysiological mechanisms of traumatic brain injury, the biological rationale for using stem cells and progenitor cells, and the results of clinical trials using cell-based therapy for traumatic brain injury. Although the benefits of cell-based therapy have been clearly demonstrated in pre-clinical studies, some questions remain regarding the biological mechanisms of repair and safety, dose, route and timing of cell delivery, which ultimately will determine its optimal clinical use.
Collapse
Affiliation(s)
- S Gennai
- Department of Emergency Medicine, Grenoble University Hospital, La Tronche, France
| | - A Monsel
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Q Hao
- Department of Anesthesiology, University of California San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA 94143, USA
| | - J Liu
- Department of Anesthesiology, University of California San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA 94143, USA
| | - V Gudapati
- Department of Anesthesiology, University of California San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA 94143, USA
| | - E L Barbier
- Grenoble Institut des Neurosciences, Unité Inserm U 836, La Tronche, France
| | - J W Lee
- Department of Anesthesiology, University of California San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA 94143, USA
| |
Collapse
|
89
|
Abstract
In the last year, the promising features of mesenchymal stem cells (MSCs), including their regenerative properties and ability to differentiate into diverse cell lineages, have generated great interest among researchers whose work has offered intriguing perspectives on cell-based therapies for various diseases. Currently the most commonly used adult stem cells in regenerative medicine, MSCs, can be isolated from several tissues, exhibit a strong capacity for replication in vitro, and can differentiate into osteoblasts, chondrocytes, and adipocytes. However, heterogeneous procedures for isolating and cultivating MSCs among laboratories have prompted the International Society for Cellular Therapy (ISCT) to issue criteria for identifying unique populations of these cells. Consequently, the isolation of MSCs according to ISCT criteria has produced heterogeneous, nonclonal cultures of stromal cells containing stem cells with different multipotent properties, committed progenitors, and differentiated cells. Though the nature and functions of MSCs remain unclear, nonclonal stromal cultures obtained from bone marrow and other tissues currently serve as sources of putative MSCs for therapeutic purposes, and several findings underscore their effectiveness in treating different diseases. To date, 493 MSC-based clinical trials, either complete or ongoing, appear in the database of the US National Institutes of Health. In the present article, we provide a comprehensive review of MSC-based clinical trials conducted worldwide that scrutinizes biological properties of MSCs, elucidates recent clinical findings and clinical trial phases of investigation, highlights therapeutic effects of MSCs, and identifies principal criticisms of the use of these cells. In particular, we analyze clinical trials using MSCs for representative diseases, including hematological disease, graft-versus-host disease, organ transplantation, diabetes, inflammatory diseases, and diseases in the liver, kidney, and lung, as well as cardiovascular, bone and cartilage, neurological, and autoimmune diseases.
Collapse
Affiliation(s)
- Tiziana Squillaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
| | | | | |
Collapse
|
90
|
Yang SF, Xue WJ, Duan YF, Xie LY, Lu WH, Zheng J, Yin AP. Nicotinamide Facilitates Mesenchymal Stem Cell Differentiation Into Insulin-Producing Cells and Homing to Pancreas in Diabetic Mice. Transplant Proc 2015; 47:2041-9. [DOI: 10.1016/j.transproceed.2015.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/13/2015] [Accepted: 05/15/2015] [Indexed: 01/09/2023]
|
91
|
Addington CP, Roussas A, Dutta D, Stabenfeldt SE. Endogenous repair signaling after brain injury and complementary bioengineering approaches to enhance neural regeneration. Biomark Insights 2015; 10:43-60. [PMID: 25983552 PMCID: PMC4429653 DOI: 10.4137/bmi.s20062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) affects 5.3 million Americans annually. Despite the many long-term deficits associated with TBI, there currently are no clinically available therapies that directly address the underlying pathologies contributing to these deficits. Preclinical studies have investigated various therapeutic approaches for TBI: two such approaches are stem cell transplantation and delivery of bioactive factors to mitigate the biochemical insult affiliated with TBI. However, success with either of these approaches has been limited largely due to the complexity of the injury microenvironment. As such, this review outlines the many factors of the injury microenvironment that mediate endogenous neural regeneration after TBI and the corresponding bioengineering approaches that harness these inherent signaling mechanisms to further amplify regenerative efforts.
Collapse
Affiliation(s)
- Caroline P Addington
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Adam Roussas
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Dipankar Dutta
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Sarah E Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
92
|
Turtzo LC, Budde MD, Dean DD, Gold EM, Lewis BK, Janes L, Lescher J, Coppola T, Yarnell A, Grunberg NE, Frank JA. Failure of intravenous or intracardiac delivery of mesenchymal stromal cells to improve outcomes after focal traumatic brain injury in the female rat. PLoS One 2015; 10:e0126551. [PMID: 25946089 PMCID: PMC4422703 DOI: 10.1371/journal.pone.0126551] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/03/2015] [Indexed: 01/16/2023] Open
Abstract
Mesenchymal stromal cells secrete a variety of anti-inflammatory factors and may provide a regenerative medicine option for the treatment of traumatic brain injury. The present study investigates the efficacy of multiple intravenous or intracardiac administrations of rat mesenchymal stromal cells or human mesenchymal stromal cells in female rats after controlled cortical impact by in vivo MRI, neurobehavior, and histopathology evaluation. Neither intravenous nor intracardiac administration of mesenchymal stromal cells derived from either rats or humans improved MRI measures of lesion volume or neurobehavioral outcome compared to saline treatment. Few mesenchymal stromal cells (<0.0005% of injected dose) were found within 3 days of last dosage at the site of injury after either delivery route, with no mesenchymal stromal cells being detectable in brain at 30 or 56 days post-injury. These findings suggest that non-autologous mesenchymal stromal cells therapy via intravenous or intracardiac administration is not a promising treatment after focal contusion traumatic brain injury in this female rodent model.
Collapse
Affiliation(s)
- L. Christine Turtzo
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Matthew D. Budde
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dana D. Dean
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eric M. Gold
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bobbi K. Lewis
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lindsay Janes
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jacob Lescher
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tiziana Coppola
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Angela Yarnell
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Neil E. Grunberg
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Joseph A. Frank
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
93
|
Peng W, Sun J, Sheng C, Wang Z, Wang Y, Zhang C, Fan R. Systematic review and meta-analysis of efficacy of mesenchymal stem cells on locomotor recovery in animal models of traumatic brain injury. Stem Cell Res Ther 2015; 6:47. [PMID: 25881229 PMCID: PMC4425919 DOI: 10.1186/s13287-015-0034-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/13/2015] [Accepted: 03/03/2015] [Indexed: 12/13/2022] Open
Abstract
Introduction The therapeutic potential of mesenchymal stem cells (MSCs) for traumatic brain injury (TBI) is attractive. Conducting systematic review and meta-analyses based on data from animal studies can be used to inform clinical trial design. To conduct a systematic review and meta-analysis to (i) systematically review the literatures describing the effect of MSCs therapy in animal models of TBI, (ii) determine the estimated effect size of functional locomotor recovery after experimental TBI, and (iii) to provide empirical evidence of biological factors associated with greater efficacy. Methods We conducted a systematic search of PubMed, EMBASE, and Web of Science and hand searched related references. Studies were selected if they reported the efficacy of MSCs in animal models of TBI. Two investigators independently assessed the identified studies. We extracted the details of individual study characteristics from each publication, assessed study quality, evaluated the effect sizes of MSCs treatment, and performed stratified meta-analysis and meta-regression, to assess the influence of study design on the estimated effect size. The presence of small effect sizes was investigated using funnel plots and Egger’s tests. Results Twenty-eight eligible controlled studies were identified. The study quality was modest. Between-study heterogeneity was large. Meta-analysis showed that MSCs exert statistically significant positive effects on sensorimotor and neurological motor function. For sensorimotor function, maximum effect size in studies with a quality score of 5 was found in the weight-drop impact injury TBI model established in male SD rats, to which syngeneic umbilical cord-derived MSCs intracerebrally at cell dose of (1–5) × 106 was administered r 6 hours following TBI, using ketamine as anesthetic agent. For neurological motor function, effect size was maximum for studies with a quality score of 5, in which the weight-drop impact injury TBI models of the female Wistar rats were adopted, with administration syngeneic bone marrow-derived MSCs intravenously at cell dose of 5 × 106 at 2 months after TBI, using sevofluorane as anesthetic agent. Conclusions We conclude that MSCs therapy may improve locomotor recovery after TBI. However, additional well-designed and well-reported animal studies are needed to guide further clinical studies. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0034-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weijun Peng
- Department of Integrated Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, PR China.
| | - Jing Sun
- Department of Pathology, Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China.
| | - Chenxia Sheng
- Department of Integrated Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, PR China.
| | - Zhe Wang
- Department of Integrated Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, PR China.
| | - Yang Wang
- Institute of Integrated Medicine, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan, 410008, PR China.
| | - Chunhu Zhang
- Institute of Integrated Medicine, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan, 410008, PR China.
| | - Rong Fan
- Institute of Integrated Medicine, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan, 410008, PR China.
| |
Collapse
|
94
|
Zhao J, Chen N, Shen N, Zhao H, Wang D, Shi J, Wang Y, Cui X, Yan Z, Xue H. Transplantation of human umbilical cord blood mesenchymal stem cells to treat a rat model of traumatic brain injury. Neural Regen Res 2015; 7:741-8. [PMID: 25737696 PMCID: PMC4345655 DOI: 10.3969/j.issn.1673-5374.2012.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/04/2012] [Indexed: 12/13/2022] Open
Abstract
In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated around the injury site, surviving up to 4 weeks post-transplantation. In addition, transplantation-related death did not occur, and neurological functions significantly improved. Histological detection revealed attenuated pathological injury in rat brain tissues following human umbilical cord blood mesenchymal stem cell transplantation. In addition, the number of apoptotic cells decreased. Immunohistochemistry and in situ hybridization showed increased expression of brain-derived neurotrophic factor, nerve growth factor, basic fibroblast growth factor, and vascular endothelial growth factor, along with increased microvessel density in surrounding areas of brain injury. Results demonstrated migration of transplanted human umbilical cord blood mesenchymal stem cells into the lesioned boundary zone of rats, as well as increased angiogenesis and expression of related neurotrophic factors in the lesioned boundary zone.
Collapse
Affiliation(s)
- Junjian Zhao
- Affiliated Hospital of Hebei United University, Tangshan 063000, Hebei Province, China
| | - Naiyao Chen
- Affiliated Hospital of Hebei United University, Tangshan 063000, Hebei Province, China
| | - Na Shen
- Affiliated Hospital of Hebei United University, Tangshan 063000, Hebei Province, China
| | - Hui Zhao
- Affiliated Hospital of Hebei United University, Tangshan 063000, Hebei Province, China ; Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
| | - Dali Wang
- Affiliated Hospital of Hebei United University, Tangshan 063000, Hebei Province, China
| | - Jun Shi
- Affiliated Hospital of Hebei United University, Tangshan 063000, Hebei Province, China
| | - Yang Wang
- College of Life Science, Hebei United University, Tangshan 063000, Hebei Province, China
| | - Xiufeng Cui
- Affiliated Hospital of Hebei United University, Tangshan 063000, Hebei Province, China
| | - Zhenyu Yan
- Affiliated Hospital of Hebei United University, Tangshan 063000, Hebei Province, China
| | - Hui Xue
- Affiliated Hospital of Hebei United University, Tangshan 063000, Hebei Province, China
| |
Collapse
|
95
|
Xu Y, Du S, Yu X, Han X, Hou J, Guo H. Human bone marrow mesenchymal stem cell transplantation attenuates axonal injury in stroke rats. Neural Regen Res 2015; 9:2053-8. [PMID: 25657721 PMCID: PMC4316468 DOI: 10.4103/1673-5374.147930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2014] [Indexed: 01/01/2023] Open
Abstract
Previous studies have shown that transplantation of human bone marrow mesenchymal stem cells promotes neural functional recovery after stroke, but the neurorestorative mechanisms remain largely unknown. We hypothesized that functional recovery of myelinated axons may be one of underlying mechanisms. In this study, an ischemia/reperfusion rat model was established using the middle cerebral artery occlusion method. Rats were used to test the hypothesis that intravenous transplantation of human bone marrow mesenchymal stem cells through the femoral vein could exert neuroprotective effects against cerebral ischemia via a mechanism associated with the ability to attenuate axonal injury. The results of behavioral tests, infarction volume analysis and immunohistochemistry showed that cerebral ischemia caused severe damage to the myelin sheath and axons. After rats were intravenously transplanted with human bone marrow mesenchymal stem cells, the levels of axon and myelin sheath-related proteins, including microtubule-associated protein 2, myelin basic protein, and growth-associated protein 43, were elevated, infarct volume was decreased and neural function was improved in cerebral ischemic rats. These findings suggest that intravenously transplanted human bone marrow mesenchymal stem cells promote neural function. Possible mechanisms underlying these beneficial effects include resistance to demyelination after cerebral ischemia, prevention of axonal degeneration, and promotion of axonal regeneration.
Collapse
Affiliation(s)
- Yi Xu
- Department of Neurosurgery, General Hospital of Chinese PLA, Beijing, China
| | - Shiwei Du
- Department of Neurosurgery, General Hospital of Armed Police Forces, Beijing, China
| | - Xinguang Yu
- Department of Neurosurgery, General Hospital of Chinese PLA, Beijing, China
| | - Xiao Han
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Institute of Basic Medical Sciences, Beijing, China ; Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medcal Sciences of Xuyuan Hospital, Beijing, China
| | - Jincai Hou
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Institute of Basic Medical Sciences, Beijing, China ; Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medcal Sciences of Xuyuan Hospital, Beijing, China
| | - Hao Guo
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Institute of Basic Medical Sciences, Beijing, China ; Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medcal Sciences of Xuyuan Hospital, Beijing, China
| |
Collapse
|
96
|
Huang S, Xu L, Zhang Y, Sun Y, Li G. Systemic and Local Administration of Allogeneic Bone Marrow-Derived Mesenchymal Stem Cells Promotes Fracture Healing in Rats. Cell Transplant 2015; 24:2643-55. [PMID: 25647659 DOI: 10.3727/096368915x687219] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are immune privileged and a cell source for tissue repair. Previous studies showed that there is systemic mobilization of osteoblastic precursors to the fracture site. We hypothesized that both systemic and local administration of allogeneic MSCs may promote fracture healing. Bone marrow-derived MSCs and skin fibroblasts were isolated from GFP Sprague-Dawley rats, cultured, and characterized. Closed transverse femoral fracture with internal fixation was established in 48 adult male Sprague-Dawley rats, which were randomly assigned into four groups receiving PBS injection, MSC systemic injection, fibroblast systemic injection, and MSC fracture site injection; 2 × 10(6) cells were injected at 4 days after fracture. All animals were sacrificed at 5 weeks after fracture; examinations included weekly radiograph, micro-CT, mechanical testing, histology, immunohistochemistry, and double immunofluorescence. The callus size of MSC injection groups was significantly larger among all the groups. Radiographs and 3D reconstruction images showed that the fracture gaps united in the MSC injected groups, while gaps were still seen in the fibroblast and PBS injection groups. The mechanical properties were significantly higher in the MSC injection groups than those in the fibroblast and PBS groups, but no difference was found between the MSC local and systemic injection groups. Immunohistochemistry and double immunofluorescence demonstrated that GFP-positive MSCs were present in the callus in the MSC injection groups at 5 weeks after fracture, and some differentiated into osteoblasts. Quantitative analysis revealed the number of GFP-positive cells in the callus in the MSC systemic injection group was significantly lower than that of the MSC local injection group. The proportion of GFP osteoblasts in GFP-positive cells in the MSC systemic injection group was significantly lower than that of the MSC local injection group. These findings provide critical insight for developing MSC-based therapies, and systemic injection of allogeneic MSCs may be a novel treatment method for promoting fracture repair.
Collapse
Affiliation(s)
- Shuo Huang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, PR China
| | | | | | | | | |
Collapse
|
97
|
De La Peña I, Sanberg PR, Acosta S, Lin SZ, Borlongan CV. G-CSF as an adjunctive therapy with umbilical cord blood cell transplantation for traumatic brain injury. Cell Transplant 2015; 24:447-57. [PMID: 25646620 DOI: 10.3727/096368915x686913] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Traumatic brain injury (TBI), a major contributor to deaths and permanent disability worldwide, has been recently described as a progressive cell death process rather than an acute event. TBI pathophysiology is complicated and can be distinguished by the initial primary injury and the subsequent secondary injury that ensues days after the trauma. Therapeutic opportunities for TBI remain very limited with patients subjected to surgery or rehabilitation therapy. The efficacy of stem cell-based interventions, as well as neuroprotective agents in other neurological disorders of which pathologies overlap with TBI, indicates their potential as alternative TBI treatments. Furthermore, their therapeutic limitations may be augmented when combination therapy is pursued instead of using a single agent. Indeed, we demonstrated remarkable combined efficacy of human umbilical cord blood (hUCB) cell therapy and granulocyte-colony-stimulating factor (G-CSF) treatment in TBI models, providing essential evidence for the translation of this approach to treat TBI. Further studies are warranted to determine the mechanisms underlying therapeutic benefits exerted by hUCB + G-CSF in order to enhance its safety and efficacy in the clinic.
Collapse
Affiliation(s)
- Ike De La Peña
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | | | | |
Collapse
|
98
|
Steplewski A, Fertala J, Beredjiklian P, Wang ML, Fertala A. Matrix-specific anchors: a new concept for targeted delivery and retention of therapeutic cells. Tissue Eng Part A 2015; 21:1207-16. [PMID: 25435302 DOI: 10.1089/ten.tea.2014.0401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biomedical strategies for tissue engineering and repair utilize specific cells, scaffolds, and growth factors to reconstruct elements of damaged tissue. The cellular element of these strategies is limited, however, by poor efficiency of delivery and retention of therapeutic cells in target sites. We propose that the presence of a cellular anchor that is able to specifically bind a defined element of target tissue will facilitate efficient binding and retention of therapeutic cells, thereby promoting repair of the target site. To do so, we engineered an artificial collagen-specific anchor (ACSA) that is able to specifically bind collagen I. The ACSA was engineered by creating a construct comprising rationally designed consecutive domains. The binding specificity of the ACSA was achieved by employing variable regions of a monoclonal antibody that recognizes a unique epitope present in human collagen I. Meanwhile, cell membrane localization of the ACSA was provided by the presence of a transmembrane domain. We determined that the ACSA was localized within cell membranes and interacted with its intended target, that is, collagen I. We have demonstrated that, in comparison to the control, the cells expressing the ACSA attached better to collagen I and exhibited improved retention in sites of seeding. We have also demonstrated that the presence of the ACSA did not interfere with cell proliferation, the biosynthesis of endogenous collagen I, or the biological functions of native collagen receptors. Since the presented cell delivery system utilizes a common characteristic of major connective tissues, namely the presence of collagen I, the findings described here could have a broad positive impact for improving the repair processes of tendon, ligament, bone, intervertebral disc, skin, and other collagen I-rich connective tissues. If successful, the ACSA approach to deliver cells will serve as an outline for developing cell delivery methods that target other elements of extracellular matrices, including other collagen types, laminins, and fibronectins.
Collapse
Affiliation(s)
- Andrzej Steplewski
- 1 Division of Orthopaedic Research, Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
99
|
Cell-based therapy for acute organ injury: preclinical evidence and ongoing clinical trials using mesenchymal stem cells. Anesthesiology 2014; 121:1099-121. [PMID: 25211170 DOI: 10.1097/aln.0000000000000446] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Critically ill patients often suffer from multiple organ failures involving lung, kidney, liver, or brain. Genomic, proteomic, and metabolomic approaches highlight common injury mechanisms leading to acute organ failure. This underlines the need to focus on therapeutic strategies affecting multiple injury pathways. The use of adult stem cells such as mesenchymal stem or stromal cells (MSC) may represent a promising new therapeutic approach as increasing evidence shows that MSC can exert protective effects following injury through the release of promitotic, antiapoptotic, antiinflammatory, and immunomodulatory soluble factors. Furthermore, they can mitigate metabolomic and oxidative stress imbalance. In this work, the authors review the biological capabilities of MSC and the results of clinical trials using MSC as therapy in acute organ injuries. Although preliminary results are encouraging, more studies concerning safety and efficacy of MSC therapy are needed to determine their optimal clinical use. (ANESTHESIOLOGY 2014; 121:1099-121).
Collapse
|
100
|
Chen JQ, Zhang CC, Lu H, Wang W. Assessment of traumatic brain injury degree in animal model. ASIAN PAC J TROP MED 2014; 7:991-5. [DOI: 10.1016/s1995-7645(14)60174-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/10/2014] [Accepted: 11/15/2014] [Indexed: 11/25/2022] Open
|