51
|
Mahler S, Huang YX, Ismagilov M, Álvarez-Chou D, Abedi A, Tyszka JM, Lo YT, Russin J, Pantera RL, Liu C, Yang C. Portable Six-Channel Laser Speckle System for Simultaneous Cerebral Blood Flow and Volume Measurement with Potential Application for Characterization of Brain Injury. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.30.24316429. [PMID: 39574861 PMCID: PMC11581064 DOI: 10.1101/2024.10.30.24316429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
In regional cerebrovascular monitoring, cerebral blood flow (CBF) and cerebral blood volume (CBV) are key metrics. Simultaneous, non-invasive measurement of CBF and CBV at different brain locations would advance cerebrovascular monitoring and pave the way for brain injury detection, as current brain injury diagnostic methods are often constrained by high costs, limited sensitivity, and reliance on subjective symptom reporting. This study's aim is to develop a multi-channel non-invasive optical system for measuring CBF and CBV at different regions of the brain simultaneously with a cost-effective, reliable, and scalable system capable of detecting potential differences in CBF and CBV across different regions of the brain. The system is based on speckle contrast optical spectroscopy (SCOS) and consists of laser diodes and board cameras which have been both tested and investigated for safe use on the human head. Results on a cohort of five healthy subjects indicated that the dynamics of both CBF and CBV were synchronized and exhibited similar cardiac period waveforms across all six channels. As a preliminary investigation, we also explored the potential use of our six-channel system for detecting the physiological sequela of brain injury, involving a subject with significant structural brain damage compared to another with lesser structural brain damage. The six-point CBF and CBV measurements were compared to MRI scans, revealing that regions with altered blood dynamics closely correlated with the injury sites identified by MRI.
Collapse
|
52
|
Siahaan AMP, Ivander A, Indharty RS, Tandean S, Ginting AGM, Ginting M, Khosasi F, Elbert. Role of nonpharmacological concussion management in children: systematic review of randomized controlled trials. Clin Exp Pediatr 2024; 67:569-579. [PMID: 39463340 DOI: 10.3345/cep.2023.01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/10/2024] [Indexed: 10/29/2024] Open
Abstract
Concussion is a global public health problem that affects many children worldwide. Most patients present with postconcussion syndrome and normal brain imaging findings. Despite the high incidence of concussion in children, published research on nonpharmacological management is lacking and much more often concerns pharmacological interventions. This systematic review aimed to evaluate the role of nonpharmacological interventions in managing concussion based on randomized controlled trials. The PubMed, Scopus, Web of Science, and Cochrane databases were extensively searched for articles published between January 2013 and July 2023. A modified patient intervention, comparison, and outcome framework was used to construct the search strategy and eligibility criteria. Risk of bias was assessed using the Risk of Bias-2 tool. A total of 16 studies conducted between January 2013 and July 2023 were analyzed. Three studies were conducted in an acute care setting (<24-hour postinjury) involving rest, computer time, and doing nothing, while the other 13 studies were conducted in a chronic care setting (>24-hour postinjury) and included aerobic exercise, collaborative care intervention, cervical spine rehabilitation, education by physiotherapists, a hyperbaric oxygen therapy protocol, family intervention therapy, virtual reality, traditional occupational therapy, virtual rehabilitation, oculomotor control exercises, vestibular rehabilitation, coordination exercises, and balance exercises. This systematic review highlights the importance of nonpharmacological therapy in pediatric concussion cases. Active rehabilitation may yield promising outcomes. Another interesting approach may be useful in pediatric concussion management. However, this systematic review shows a lack of high-quality literature supporting nonpharmacological pediatric concussion treatments.
Collapse
Affiliation(s)
| | - Alvin Ivander
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Rr Suzy Indharty
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Steven Tandean
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | | | - Masrini Ginting
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Felix Khosasi
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Elbert
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
53
|
Gomes D, Eagle S, Mehmel B, Albrecht T, Versace A, Lima Santos JP, Trbovich A, Stiffler R, Martinez L, Holland CL, Zynda AJ, Collins MW, Kontos AP. Impact of Sex and Pubertal Development on Anxiety in Adolescents After Concussion. J Neurotrauma 2024; 41:2385-2394. [PMID: 38407975 PMCID: PMC11631804 DOI: 10.1089/neu.2023.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Concussion often results in psychological symptoms, including anxiety. Post-concussion anxiety has been well documented, although much of this research has focused on collegiate athletes. The purpose of this study was to compare (1) anxiety symptoms in concussed and healthy controls over time and (2) to explore sex differences in post-concussion anxiety within the context of pubertal development. Participants (N = 126, mean age = 15.1 years old), including concussed (n = 86) and healthy adolescents (n = 40), completed the Pubertal Development Scale (PDS) and the Screen for Child Anxiety and Related Disorders (SCARED-C). The concussed groups completed SCARED-C at three visits (<10 days, 4 weeks, 3 months). Results of an analysis of covariance (ANCOVA) and multi-variate analysis of covariance (MANCOVA) found concussed adolescents reported higher SCARED-C total, generalized, and panic anxiety scores than healthy controls, after controlling for sex, age, and PDS score (PDSS). A three-way mixed ANCOVA examined the effects of sex, PDSS, time, and their interaction on SCARED-C total score in concussed adolescents while controlling for age. There was a significant three-way interaction between sex, age, and PDSS on SCARED-C total score while controlling for age. Overall, we observed increased anxiety in concussed adolescents, compared with controls, as well as greater post-concussion anxiety reported by females compared with males, including within PDSS groups. Concussion providers should be prepared to receive training to administer well-validated measures of psychopathology and should consider that female adolescents, compared with males, regardless of pubertal development, may be at greater risk for post-concussion anxiety.
Collapse
Affiliation(s)
- Dean Gomes
- Department of Orthopaedic Surgery/UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shawn Eagle
- Department of Orthopaedic Surgery/UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bindal Mehmel
- Department of Orthopaedic Surgery/UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ted Albrecht
- Department of Orthopaedic Surgery/UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amelia Versace
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Alicia Trbovich
- Department of Orthopaedic Surgery/UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Richelle Stiffler
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Laramie Martinez
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cyndi L. Holland
- Department of Orthopaedic Surgery/UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aaron J. Zynda
- Department of Orthopaedic Surgery/UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael W. Collins
- Department of Orthopaedic Surgery/UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony P. Kontos
- Department of Orthopaedic Surgery/UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
54
|
Ignacio DA, Babikian T, Dennis EL, Bickart KC, Choe M, Snyder AR, Brown A, Giza CC, Asarnow RF. The neurocognitive correlates of DTI indicators of white matter disorganization in pediatric moderate-to-severe traumatic brain injury. Front Hum Neurosci 2024; 18:1470710. [PMID: 39545147 PMCID: PMC11560760 DOI: 10.3389/fnhum.2024.1470710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/04/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction Neuroimaging has expanded our understanding of pediatric brain disorders in which white matter organization and connectivity are crucial to functioning. Paralleling the known pathobiology of many neurodevelopmental disorders, traumatic brain injury (TBI) in childhood can alter trajectories of brain development. Specifically, diffusion tensor imaging (DTI) studies in TBI have demonstrated white matter (WM) abnormalities that suggest microstructural disruptions that may underlie atypical neurodevelopment. The neurocognitive correlates of these previous findings will be explored in this study. Methods Indicators of WM organization were collected in 44 pediatric patients with moderate/severe TBI and 76 controls over two post-injury time points: T1 (8-20 weeks) and T2 (54-96 weeks). Our previous work identified two TBI subgroups based on information processing differences: one with slower interhemispheric transfer times (IHTT) of visual information than controls and another with comparable IHTT. We extend this prior work by evaluating neurocognitive trajectories associated with divergent WM structure post-injury in slow and normal IHTT TBI subgroups. Results At T1, both TBI subgroups performed significantly worse than controls on a norm-referenced working memory index (WMI), but only the Normal IHTT TBI subgroup significantly improved over the 12-month follow-up period (p = 0.014) to match controls (p = 0.119). In contrast, the Slow IHTT TBI subgroup did not show any recovery in working memory performance over time and performed more poorly than the control group (p < 0.001) at T2. Improvement in one of the two WMI subtests was associated with DTI indicators of WM disorganization in CC tracts to the precentral, postcentral, frontal, and parietal cortices. IHTT and WM mean diffusivity predicted 79% of the variance in cognitive recovery from T1 to T2 when also accounting for other known predictors of TBI recovery. Discussion In the year following TBI, some pediatric patients experienced persisting working memory disturbance while others exhibited recovery; stratification was based on an event-related potential marker. More or less improvement in neurocognition was also associated with the degree of WM disorganization. IHTT, measured post-acutely after TBI, and progression of WM disorganization over time predicted neurocognitive trajectories at the chronic timeframe - potentially representing a prognostic biomarker.
Collapse
Affiliation(s)
- Daniel A. Ignacio
- Steve Tisch Brain SPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Talin Babikian
- Steve Tisch Brain SPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Emily L. Dennis
- Department of Neurology, School of Medicine, The University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Kevin C. Bickart
- Steve Tisch Brain SPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Meeryo Choe
- Steve Tisch Brain SPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Division of Pediatric Neurology, UCLA Mattel Children’s Hospital, Los Angeles, Los Angeles, CA, United States
| | - Aliyah R. Snyder
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Anne Brown
- Steve Tisch Brain SPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Division of Pediatric Neurology, UCLA Mattel Children’s Hospital, Los Angeles, Los Angeles, CA, United States
| | - Christopher C. Giza
- Steve Tisch Brain SPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Division of Pediatric Neurology, UCLA Mattel Children’s Hospital, Los Angeles, Los Angeles, CA, United States
| | - Robert F. Asarnow
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
55
|
Coenen J, Strohm M, Reinsberger C. Impact of moderate aerobic exercise on small-world topology and characteristics of brain networks after sport-related concussion: an exploratory study. Sci Rep 2024; 14:25296. [PMID: 39455593 PMCID: PMC11511817 DOI: 10.1038/s41598-024-74474-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Sport-related concussion (SRC) is a complex brain injury. By applying graph-theoretical analysis to networks derived from neuroimaging techniques, studies have shown that despite an overall retention of small-world topology, changes in small-world properties occur after brain injury. Less is known about how exercise during athletes' return to sport (RTS) influences these brain network properties. Therefore, in the present study dense electroencephalography (EEG) datasets were collected pre- and post-moderate aerobic exercise. Small-world properties of whole brain (WB) and the default mode network (DMN) were extracted from the EEG datasets of 21 concussed athletes and 21 healthy matched controls. More specifically, path length (LP), clustering coefficient (CP), and small-world index (SWI) in binary and weighted graphs were calculated in the alpha frequency band (7-13 Hz). Pre-exercise, SRC athletes had higher DMN-CP values compared to controls, while post-exercise SRC athletes had higher WB-LP compared to controls. Weighted WB analysis revealed a significant association between SRC and the absence of small-world topology (SWI ≤ 1) post-exercise. This explorative study provides preliminary evidence that moderate aerobic exercise during athletes' RTS induces an altered network response. Furthermore, this altered response may be related to the clinical characteristics of the SRC athlete.
Collapse
Affiliation(s)
- Jessica Coenen
- Institute of Sports Medicine, Department of Exercise and Health, Paderborn University, Warburger Straße 100, Paderborn, 33098, Germany
| | - Michael Strohm
- Institute of Sports Medicine, Department of Exercise and Health, Paderborn University, Warburger Straße 100, Paderborn, 33098, Germany
| | - Claus Reinsberger
- Institute of Sports Medicine, Department of Exercise and Health, Paderborn University, Warburger Straße 100, Paderborn, 33098, Germany.
- Division of Sports Neurology and Neurosciences, Department of Neurology, Mass General Brigham, Boston, MA, USA.
| |
Collapse
|
56
|
Zuleger TM, Slutsky-Ganesh AB, Kim H, Anand M, Warren SM, Grooms DR, Yuan W, Riley MA, Gore RK, Myer GD, Diekfuss JA. Differential neural mechanisms for movement adaptations following neuromuscular training in young female athletes with a history of sports-related concussion. Neuroscience 2024; 558:70-80. [PMID: 39154844 PMCID: PMC11457832 DOI: 10.1016/j.neuroscience.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/22/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
Sports-related concussion (SRC) in adolescent athletes is associated with an increased risk of subsequent lower extremity injury. Neuromuscular training (NMT) has shown promise for reducing lower extremity injuries following SRC, however, neural adaptations in response to changes in lower extremity biomechanics following NMT in athletes with a history of SRC (HxSRC) remains poorly understood. Therefore, the purpose of this study was to identify changes in neural activity associated with lower extremity movement adaptations following a six-week NMT intervention in athletes with a HxSRC. Thirty-two right-hand/foot-dominant female adolescent athletes (16 with self-reported HxSRC, 16 age- and anthropometrically-matched controls) completed a bilateral leg press task with 3D motion analysis during functional magnetic resonance imaging (fMRI). Movement adaptations were defined as a change in frontal and sagittal plane range of motion (ROM) during the fMRI bilateral leg press task. Significant pre- to post-NMT reductions were observed in the non-dominant (left) mean frontal plane ROM. Whole-brain neural correlate analysis revealed that increased cerebellar activity was significantly associated with reduced mean left-knee frontal ROM for matched controls. Exploratory within group analyses identified neural correlates in the postcentral gyrus for the HxSRC group which was associated with reduced mean left-knee frontal plane ROM. These distinct longitudinal changes provide preliminary evidence of differential neural activity associated with NMT to support knee frontal plane control in athletes with and without a HxSRC.
Collapse
Affiliation(s)
- Taylor M Zuleger
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA; Emory Sports Medicine Center, Atlanta, GA, USA; Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA.
| | - Alexis B Slutsky-Ganesh
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA; Emory Sports Medicine Center, Atlanta, GA, USA; Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA; Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - HoWon Kim
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, OH, USA
| | - Manish Anand
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA; Emory Sports Medicine Center, Atlanta, GA, USA; Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA; Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Shayla M Warren
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA; Emory Sports Medicine Center, Atlanta, GA, USA; Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Dustin R Grooms
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, OH, USA; Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, OH, USA; Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Science and Professions, Ohio University, Grover Center, Athens, OH, USA
| | - Weihong Yuan
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Michael A Riley
- Department of Rehabilitation, Exercise, & Nutrition Sciences, University of Cincinnati, Cincinnati, OH, USA; Human Performance & Neuromechanics Lab, University of Cincinnati Digital Futures, Cincinnati, OH, USA
| | - Russell K Gore
- Shepherd Center, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Gregory D Myer
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA; Emory Sports Medicine Center, Atlanta, GA, USA; Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA; The Micheli Center for Sports Injury Prevention, Waltham, MA, USA; Youth Physical Development Centre, Cardiff Metropolitan University, Wales, UK
| | - Jed A Diekfuss
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA; Emory Sports Medicine Center, Atlanta, GA, USA; Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
57
|
Solar KG, Ventresca M, Zamyadi R, Zhang J, Jetly R, Vartanian O, Rhind SG, Dunkley BT. Repetitive subconcussion results in disrupted neural activity independent of concussion history. Brain Commun 2024; 6:fcae348. [PMID: 39440300 PMCID: PMC11495223 DOI: 10.1093/braincomms/fcae348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/31/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024] Open
Abstract
Concussion is a public health crisis that results in a complex cascade of neurochemical changes that can have life-changing consequences. Subconcussions are generally considered less serious, but we now realize repetitive subconcussions can lead to serious neurological deficits. Subconcussions are common in contact sports and the military where certain personnel are exposed to repetitive occupational blast overpressure. Post-mortem studies show subconcussion is a better predictor than concussion for chronic traumatic encephalopathy-a progressive and fatal neurodegenerative tauopathy, only diagnosable post-mortem-thus, an in vivo biomarker would be transformative. Magnetoencephalography captures the dynamics of neuronal electrochemical action, and functional MRI shows that functional connectivity is associated with tauopathy patterns. Therefore, both imaging modalities could provide surrogate markers of tauopathy. In this cross-sectional study, we examined the effects of repetitive subconcussion on neuronal activity and functional connectivity using magnetoencephalography and functional MRI, and on neurological symptoms and mental health in a military sample. For magnetoencephalography and outcome analyses, 81 participants were split into 'high' and 'low' blast exposure groups using the generalized blast exposure value: n = 41 high blast (26.4-65.7 years; 4 females) and n = 40 low blast (28.0-63.3 years; 8 females). For functional MRI, two high blast male participants without data were excluded: n = 39 (29.6-65.7 years). Magnetoencephalography revealed disrupted neuronal activity in participants with a greater history of repetitive subconcussions, including neural slowing (higher delta activity) in right fronto-temporal lobes and subcortical regions (hippocampus, amygdala, caudate, pallidum and thalamus), and functional dysconnectivity in the posterior default mode network (lower connectivity at low and high gamma). These abnormalities were independent of concussion or traumatic stress history, and magnetoencephalography showed functional dysconnectivity not detected in functional MRI. Besides magnetoencephalography changes, those with higher blast exposure had poorer somatic and cognitive outcomes, with no blast-related differences in mental health or associations between neurological symptoms and neuronal activity. This study suggests that repetitive subconcussions have deleterious effects on brain function and that magnetoencephalography provides an avenue for both treatment targets by identifying affected brain regions and in prevention by identifying those at risk of cumulative subconcussive neurotrauma.
Collapse
Affiliation(s)
- Kevin Grant Solar
- Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4
| | - Matthew Ventresca
- Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4
| | - Rouzbeh Zamyadi
- Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4
| | - Jing Zhang
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada M3K 2C9
| | - Rakesh Jetly
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada K1A 0K6
| | - Oshin Vartanian
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada M3K 2C9
| | - Shawn G Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada M3K 2C9
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada M5S 2W6
| | - Benjamin T Dunkley
- Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada M5G 1X8
- Department of Diagnostic and Interventional Radiology, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
- Department of Psychology, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
58
|
Rezaei A, Wang T, Titina C, Wu L. Immediate and Transient Perturbances in EEG Within Seconds Following Controlled Soccer Head Impact. Ann Biomed Eng 2024; 52:2897-2910. [PMID: 39136891 DOI: 10.1007/s10439-024-03602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/08/2024] [Indexed: 09/17/2024]
Abstract
Athletes in contact and collision sports can sustain frequent subconcussive head impacts. Although most impacts exhibit low kinematics around or below 10 g of head linear acceleration, there is growing concern regarding the cumulative effects of repetitive sports head impacts. Even mild impacts can lead to brain deformations as shown through neuroimaging and finite element modeling, and thus may result in mild and transient effects on the brain, prompting further investigations of the biomechanical dose-brain response relationship. Here we report findings from a novel laboratory study with continuous monitoring of brain activity through electroencephalography (EEG) during controlled soccer head impacts. Eight healthy participants performed simulated soccer headers at 2 mild levels (6 g, 4 rad/s and 10 g, 8 rad/s) and three directions (frontal, oblique left, oblique right). Participants were instrumented with an inertial measurement unit (IMU) bite bar and EEG electrodes for synchronized head kinematics and brain activity measurements throughout the experiment. After an impact, EEG exhibited statistically significant elevation of relative and absolute delta power that recovered within two seconds from the impact moment. These changes were statistically significantly higher for 10 g impacts compared with 6 g impacts in some topographical regions, and oblique impacts resulted in contralateral delta power increases. Post-session resting state measurements did not indicate any cumulative effects. Our findings suggest that even mild soccer head impacts could lead to immediate, transient neurophysiological changes. This study paves the way for further dose-response studies to investigate the cumulative effects of mild sports head impacts, with implications for long-term athlete brain health.
Collapse
Affiliation(s)
- Ahmad Rezaei
- Department of Mechanical Engineering, University of British Columbia, 6250 Applied Science Ln Room 2054, Vancouver, BC, V6T 1Z4, Canada
| | - Timothy Wang
- School of Biomedical Engineering, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 2B9, Canada
| | - Cyrus Titina
- Department of Mechanical Engineering, University of British Columbia, 6250 Applied Science Ln Room 2054, Vancouver, BC, V6T 1Z4, Canada
| | - Lyndia Wu
- Department of Mechanical Engineering, University of British Columbia, 6250 Applied Science Ln Room 2054, Vancouver, BC, V6T 1Z4, Canada.
- School of Biomedical Engineering, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 2B9, Canada.
| |
Collapse
|
59
|
Powell JR, Zong X, Weinstein JM, DeLellis SM, Kane SF, Means GE, Mihalik JP. Mild Traumatic Brain Injury and Career Stage Associate with Visible Perivascular Spaces in Special Operations Forces Soldiers. Ann Biomed Eng 2024; 52:2812-2817. [PMID: 38396272 DOI: 10.1007/s10439-024-03468-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
Mild traumatic brain injury (mTBI) and occupational blast exposure in military Service Members may lead to impaired brain waste clearance which increases neurological disease risk. Perivascular spaces (PVS) are a key part of the glymphatic system which supports brain waste clearance, preferentially during sleep. Visible PVS on clinical magnetic resonance imaging have been previously observed in patients with neurodegenerative diseases and animal neurotrauma models. The purpose of this study was to determine associations between PVS morphological characteristics, military career stage, and mTBI history in Special Operations Forces (SOF) Soldiers. Participants underwent T2-weighed neuroimaging to capture three-dimensional whole brain volumes. Segmentation was performed using a previously validated, multi-scale deep convolutional encoder-decoder neural network. Only PVS clusters within the white matter mask were quantified for analyses. Due to non-normal PVS metric distribution, non-parametric Mann-Whitney U tests were used to determine group differences in PVS outcomes. In total, 223 healthy SOF combat Soldiers (age = 33.1 ± 4.3yrs) were included, 217 reported career stage. Soldiers with mTBI history had greater PVS number (z = 2.51, P = 0.013) and PVS volume (z = 2.42, P = 0.016). In-career SOF combat Soldiers had greater PVS number (z = 2.56, P = 0.01) and PVS volume (z = 2.28, P = 0.02) compared to a baseline cohort. Mild TBI history is associated with increased PVS burden in SOF combat Soldiers that are clinically recovered from mTBI. This may indicate ongoing physiological changes that could lead to impaired waste clearance via the glymphatic system. Future studies should determine if PVS number and volume are meaningful neurobiological outcomes for neurodegenerative disease risk and if clinical interventions such as improving sleep can reduce PVS burden.
Collapse
Affiliation(s)
- Jacob R Powell
- Human Movement Science, Department of Health Sciences, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xiaopeng Zong
- School of Biomedical Engineering, ShanghaiTech University, Pudong, Shanghai, China
| | - Joshua M Weinstein
- Department of Health Policy and Management, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, USA
| | | | - Shawn F Kane
- Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gary E Means
- United States Army Special Operations Command, Fort Liberty, NC, USA
| | - Jason P Mihalik
- Human Movement Science, Department of Health Sciences, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Matthew Gfeller Center, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
60
|
Daugherty JC, García-Navas-Menchero M, Fernández-Fillol C, Hidalgo-Ruzzante N, Pérez-García M. Tentative Causes of Brain and Neuropsychological Alterations in Women Victims of Intimate Partner Violence. Brain Sci 2024; 14:996. [PMID: 39452010 PMCID: PMC11505674 DOI: 10.3390/brainsci14100996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Victims of Intimate Partner Violence Against Women (IPVAW) experience neuropsychological and cerebral changes, which have been linked to several tentative causal mechanisms, including elevated cortisol levels, psychopathological disorders, traumatic brain injury (TBI), hypoxic/ischemic brain damage, and medical conditions related to IPVAW. While these mechanisms and their effects on brain function and neuropsychological health are well-documented in other clinical populations, they manifest with unique characteristics in women affected by IPVAW. Specifically, IPVAW is chronic and repeated in nature, and mechanisms are often cumulative and may interact with other comorbid conditions. Thus, in light of existing literature on neuropsychological alterations in other populations, and recognizing the distinct features in women who experience IPVAW, we propose a new theoretical model-the Neuro-IPVAW model. This framework aims to explain the complex interplay between these mechanisms and their impact on cognitive and brain health in IPVAW victims. We anticipate that this theoretical model will be valuable for enhancing our understanding of neuropsychological and brain changes related to intimate partner violence, identifying research gaps in these mechanisms, and guiding future research directions in this area.
Collapse
Affiliation(s)
- Julia C. Daugherty
- Laboratory of Social and Cognitive Psychology (UCA-LAPSCO), CNRS, University of Clermont Auvergne, 63000 Clermont-Ferrand, France;
| | - Maripaz García-Navas-Menchero
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, 18011 Granada, Spain; (C.F.-F.); (N.H.-R.); (M.P.-G.)
| | - Carmen Fernández-Fillol
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, 18011 Granada, Spain; (C.F.-F.); (N.H.-R.); (M.P.-G.)
- Department of Health Sciences, Valencian International University, 46002 Valencia, Spain
- Faculty of Health Sciences, Isabel I University, 09003 Burgos, Spain
| | - Natalia Hidalgo-Ruzzante
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, 18011 Granada, Spain; (C.F.-F.); (N.H.-R.); (M.P.-G.)
- Department of Developmental and Educational Psychology, University of Granada, 18011 Granada, Spain
| | - Miguel Pérez-García
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, 18011 Granada, Spain; (C.F.-F.); (N.H.-R.); (M.P.-G.)
- Department of Personality, Evaluation and Psychological Treatment, University of Granada, 18011 Granada, Spain
| |
Collapse
|
61
|
Andersson MJ, Kenttä G, Claesdotter-Knutsson E, Håkansson A. Mental health symptom burden in elite ice hockey players and its association with self-reported concussive events. BMC Sports Sci Med Rehabil 2024; 16:197. [PMID: 39313839 PMCID: PMC11421113 DOI: 10.1186/s13102-024-00989-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Some studies suggest that elite athletes experience adverse mental health symptoms at rates commensurate with the general population, despite the well-established buffering effects of exercise. Within contact sports, such as ice-hockey, recurrent concussions may be a source of this discrepancy. We compared the point prevalence of various mental health outcomes with other athlete and general population samples, as well as investigated their relationship with concussive events. METHODS We surveyed 648 active ice hockey players from the top two men's tiers and the top women's tier in Swedish elite ice hockey on lifetime concussive events, hazardous alcohol use, problematic social media use, depression, anxiety, and burnout. RESULTS Hazardous alcohol use was more prevalent among male ice hockey players (29.5% AUDIT-C ≥ 6) compared to other athlete and general population samples, while other mental health symptoms were less common. Female ice hockey players reported higher hazardous alcohol consumption (36.4% AUDIT-C ≥ 4) than another athlete sample and more burnout (19.1%) than the general population. After adjusting for covariates, athletes with 3+ concussive events had 2.1 times the odds of elevated depressive symptoms and 3.5 times the odds of elevated burnout symptoms compared to those with no concussion history. Treating lifetime concussive events as a continuous predictor revealed positive correlations with all outcomes except for hazardous alcohol use. CONCLUSIONS Mental health outcome rates among active elite ice hockey athletes differ from those of other athlete and general population samples, whilst concussive events may be particularly linked to elevated symptoms of depression and burnout.
Collapse
Affiliation(s)
- Mitchell J Andersson
- Department of Clinical Sciences Lund, Psychiatry, Lund University, Lund, Sweden.
- Clinical Sports and Mental Health Unit, Malmö Addiction Center, Region Skåne, Malmö, Sweden.
| | - Göran Kenttä
- The Swedish School of Sport and Health Sciences, Stockholm, Sweden
- The Swedish Sports Confederation, Stockholm, Sweden
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Emma Claesdotter-Knutsson
- Department of Clinical Sciences Lund, Psychiatry, Lund University, Lund, Sweden
- Child and Adolescent Psychiatry Outpatient Clinic, Region Skåne, Lund, Sweden
| | - Anders Håkansson
- Department of Clinical Sciences Lund, Psychiatry, Lund University, Lund, Sweden
- Clinical Sports and Mental Health Unit, Malmö Addiction Center, Region Skåne, Malmö, Sweden
| |
Collapse
|
62
|
Tabor JB, Penner LC, Galarneau JM, Josafatow N, Cooper J, Ghodsi M, Huang J, Fraser DD, Smirl J, Esser MJ, Yeates KO, Wellington CL, Debert CT, Emery CA. Plasma Biomarkers of Traumatic Brain Injury in Adolescents With Sport-Related Concussion. JAMA Netw Open 2024; 7:e2431959. [PMID: 39235809 PMCID: PMC11378000 DOI: 10.1001/jamanetworkopen.2024.31959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Importance Blood-based biomarkers may clarify underlying neuropathology and potentially assist in clinical management of adolescents with sport-related concussion (SRC). Objective To investigate the association between SRC and plasma biomarkers in adolescents. Design, Setting, and Participants Prospective cohort study in Canadian sport and clinic settings (Surveillance in High Schools and Community Sport to Reduce Concussions and Their Consequences study; September 2019 to November 2022). Participants were a convenience sample of 849 adolescent (ages 10-18 years) sport participants with blood samples. Data were analyzed from February to September 2023. Exposures Blood collection and clinical testing preseason (uninjured) and post-SRC follow-ups (ie, ≤72 hours, 1 week, and biweekly until medical clearance to return to play [RTP]). Main Outcomes and Measures Plasma glial fibrillary acidic protein (GFAP), ubiquitin c-terminal hydrolase-L1 (UCH-L1), neurofilament light (NfL), and total tau (t-tau) were assayed. Group-level comparisons of biomarker levels were conducted between uninjured and post-SRC intervals (postinjury day [PID] 0-3, 4-10, 11-28, and >28) considering age and sex as modifiers. Secondary analyses explored associations between biomarker concentrations and clinical outcomes (Sport Concussion Assessment Tool, Fifth Edition [SCAT5] symptom scores and time to RTP). Results This study included 1023 plasma specimens from 695 uninjured participants (467 male participants [67.2%]; median [IQR] age, 15.90 [15.13-16.84] years) and 154 participants with concussion (78 male participants [51.0%]; median [IQR] age, 16.12 [15.31-17.11] years). Acute (PID 0-3) differences relative to uninjured levels were found for GFAP (female participants: 17.8% increase; β = 0.164; 95% CI, 0.064 to 0.263; P = .001; male participants: 17.1% increase; β = 0.157; 95% CI, 0.086 to 0.229; P < .001), UCH-L1 (female participants: 43.4% increase; β = 0.361; 95% CI, 0.125 to 0.596; P = .003), NfL (male participants: 19.0% increase; β = 0.174; 95% CI, 0.087 to 0.261; P < .001), and t-tau (female participants: -22.9%; β = -0.260; 95% CI, -0.391 to -0.130; P < .001; male participants: -18.4%; β = -0.203; 95% CI, -0.300 to -0.106; P < .001). Differences were observed for all biomarkers at PID 4 to 10, 11 to 28, and greater than 28 compared with uninjured groups. GFAP, NfL, and t-tau were associated with SCAT5 symptom scores across several PID intervals. Higher GFAP after 28 days post-SRC was associated with earlier clearance to RTP (hazard ratio, 4.78; 95% CI, 1.59 to 14.31; P = .01). Male participants exhibited lower GFAP (-9.7%), but higher UCH-L1 (21.3%) compared with female participants. Age was associated with lower GFAP (-5.4% per year) and t-tau (-5.3% per year). Conclusions and Relevance In this cohort study of 849 adolescents, plasma biomarkers differed between uninjured participants and those with concussions, supporting their continued use to understand concussion neuropathology. Age and sex are critical considerations as these biomarkers progress toward clinical validation.
Collapse
Affiliation(s)
- Jason B Tabor
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Linden C Penner
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jean-Michel Galarneau
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Nik Josafatow
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer Cooper
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mohammad Ghodsi
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Johnny Huang
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Douglas D Fraser
- Department of Pediatrics and Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Jonathan Smirl
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Michael J Esser
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Keith Owen Yeates
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chantel T Debert
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Carolyn A Emery
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Pediatrics and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
63
|
Miutz LN, Burma JS, Brassard P, Phillips AA, Emery CA, Smirl JD. Comparison of the Buffalo Concussion Treadmill Test With a Physiologically Informed Cycle Test: Calgary Concussion Cycle Test. Sports Health 2024; 16:837-850. [PMID: 38149331 PMCID: PMC11346228 DOI: 10.1177/19417381231217744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Sport-related concussions are a complex injury requiring multifaceted assessment, including physical exertion. Currently, concussion testing relies primarily on a treadmill-based protocol for assessing exertion-related symptoms in persons after concussion. This study compared a modified cycle protocol (Calgary Concussion Cycle Test [CCCT]) with the clinically adopted standard, the Buffalo Concussion Treadmill Test (BCTT), across multiple physiological parameters. HYPOTHESIS Treadmill and cycle matched workload protocols would produce similar results for cerebral blood velocity, mean arterial pressure (MAP), and end-tidal carbon dioxide partial pressure (PETCO2), but heart rate (HR) and oxygen consumption (VO2) would be higher on the treadmill than the cycle modality. STUDY DESIGN Crossover study design. LEVEL OF EVIDENCE Level 3. METHODS A total of 17 healthy adults (8 men, 9 women; age, 26 ± 3 years; body mass index, 23.8 ± 2.7 kg/m2) completed the BCTT and CCCT protocols, 7 days apart in a randomized order. During both exertional protocols, the physiological parameters measured were middle cerebral artery mean blood velocity (MCAv), MAP, PETCO2, VO2, and HR. Analysis of variance with effect size computations, coefficient of variation, and Bland-Altman plots with 95% limits of agreement were used to compare exercise tests. RESULTS The BCTT and CCCT produced comparable results for both male and female participants with no significant differences for average MCAv, MAP, and PETCO2 (all P > 0.05; all generalized eta squared [η2G] < 0.02 [negligible]; P value range, 0.29-0.99) between stages. When accounting for exercise stage and modality, VO2 (P < 0.01) and HR (P < 0.01) were higher on the treadmill compared with the cycle. Aside from the final few stages, all physiology measures displayed good-to-excellent agreeability/variability. CONCLUSION The CCCT was physiologically similar to the BCTT in terms of MCAv, PETCO2, and MAP; however, HR and VO2 differed between modalities. CLINICAL RELEVANCE Providing a cycle-based modality to exertional testing after injury mayincrease accessibility to determine symptom thresholds in the future.
Collapse
Affiliation(s)
- Lauren N. Miutz
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Department of Health and Sport Science, University of Dayton, Dayton, Ohio
| | - Joel S. Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, University Laval, Québec, Canada
- Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Aaron A. Phillips
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Physiology and Pharmacology, Clinical Neurosciences, Cardiac Sciences, Biomedical Engineering, and Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Carolyn A. Emery
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D. Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
64
|
Patel A, Taksande A, Khandelwal R, Jain A. A Narrative Review of Post-traumatic Neuroinflammation: Relevance to Pediatrics. Cureus 2024; 16:e69512. [PMID: 39416533 PMCID: PMC11483164 DOI: 10.7759/cureus.69512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
This is a narrative review that explores the complex interaction between post-traumatic neuroinflammation and its importance in pediatric traumatic brain injuries (TBIs). For immediate and long-term consequences of TBI, neuroinflammation, manifested by activation of microglia and astrocytes, secretion of pro-inflammatory cytokines, as well as breakdown of the blood-brain barrier, are critical factors. While inflammation is an essential part of the brain's repair systems, excessive or prolonged neuroinflammation can lead to more significant neuronal damage, which, in turn, causes persistent cognitive and behavioral deficits over time. In this regard, the paper synthesizes existing evidence concerning molecular and cellular mechanisms that underlie neuroinflammation in relation to TBI among children, paying attention to age disparities in inflammatory response and their implications for treatment and recovery. Furthermore, it explores how targeted anti-inflammatory therapies are highly likely to improve outcomes for pediatric patients. The outcomes emphasize that there is a need for a more comprehensive understanding of child neuroinflammatory processes and age-specific therapeutic approaches aimed at lessening the effects' negative impacts after brain injury occurs.
Collapse
Affiliation(s)
- Ankita Patel
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amar Taksande
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Rahul Khandelwal
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Aditya Jain
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
65
|
Visser K, Ciubotariu D, de Koning ME, Jacobs B, van Faassen M, van der Ley C, Mayer AR, Meier TB, Bourgonje AR, Kema IP, van Goor H, van der Naalt J, van der Horn HJ. Exploring the kynurenine pathway in mild traumatic brain injury: A longitudinal study. J Neurochem 2024; 168:2710-2721. [PMID: 38770668 DOI: 10.1111/jnc.16137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/26/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
A potential source of novel biomarkers for mTBI is the kynurenine pathway (KP), a metabolic pathway of tryptophan (Trp), that is up-regulated by neuroinflammation and stress. Considering that metabolites of the KP (kynurenines) are implicated in various neuropsychiatric diseases, exploration of this pathway could potentially bridge the gap between physiological and psychological factors in the recovery process after mTBI. This study, therefore, set out to characterize the KP after mTBI and to examine associations with long-term outcome. Patients were prospectively recruited at the emergency department (ED), and blood samples were obtained in the acute phase (<24 h; N = 256) and at 1-month follow-up (N = 146). A comparison group of healthy controls (HC; N = 32) was studied at both timepoints. Trp, kynurenines, and interleukin (IL)-6 and IL-10 were quantified in plasma. Clinical outcome was measured at six months post-injury. Trp, xanthurenic acid (XA), and picolinic acid (PA) were significantly reduced in patients with mTBI relative to HC, corrected for age and sex. For Trp (d = -0.57 vs. d = -0.29) and XA (d = -0.98 vs. d = -0.32), larger effects sizes were observed during the acute phase compared to one-month follow-up, while for PA (d = -0.49 vs. d = -0.52) effect sizes remained consistent. Findings for other kynurenines (e.g., kynurenine, kynurenic acid, and quinolinic acid) were non-significant after correction for multiple testing. Within the mTBI group, lower acute Trp levels were significantly related to incomplete functional recovery and higher depression scores at 6 months post-injury. No significant relationships were found for Trp, XA, and PA with IL-6 or IL-10 concentrations. In conclusion, our findings indicate that perturbations of the plasma KP in the hyperacute phase of mTBI and 1 month later are limited to the precursor Trp, and glutamate system modulating kynurenines XA and PA. Correlations between acute reductions of Trp and unfavorable outcomes may suggest a potential substrate for pharmacological intervention.
Collapse
Affiliation(s)
- Koen Visser
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Diana Ciubotariu
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Myrthe E de Koning
- Department of Neurology, Medical Spectrum Twente, Enschede, The Netherlands
| | - Bram Jacobs
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Claude van der Ley
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andrew R Mayer
- The Mind Research Network and LBERI, Albuquerque, New Mexico, USA
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Arno R Bourgonje
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Harry van Goor
- Division of Pathology of the Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joukje van der Naalt
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Harm J van der Horn
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- The Mind Research Network and LBERI, Albuquerque, New Mexico, USA
| |
Collapse
|
66
|
Thorne J, Hellewell SC, Cowen G, Ring A, Jefferson A, Chih H, Gozt AK, Buhagiar F, Thomas E, Papini M, Bynevelt M, Celenza A, Xu D, Honeybul S, Pestell CF, Fatovich D, Fitzgerald M. Symptoms Associated With Exercise Intolerance and Resting Heart Rate Following Mild Traumatic Brain Injury. J Head Trauma Rehabil 2024; 39:E381-E392. [PMID: 38453632 DOI: 10.1097/htr.0000000000000928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
OBJECTIVES People may experience a myriad of symptoms after mild traumatic brain injury (mTBI), but the relationship between symptoms and objective assessments is poorly characterized. This study sought to investigate the association between symptoms, resting heart rate (HR), and exercise tolerance in individuals following mTBI, with a secondary aim to examine the relationship between symptom-based clinical profiles and recovery. METHODS Prospective observational study of adults aged 18 to 65 years who had sustained mTBI within the previous 7 days. Symptoms were assessed using the Post-Concussion Symptom Scale, HR was measured at rest, and exercise tolerance was assessed using the Buffalo Concussion Bike Test. Symptom burden and symptom-based clinical profiles were examined with respect to exercise tolerance and resting HR. RESULTS Data from 32 participants were assessed (mean age 36.5 ± 12.6 years, 41% female, 5.7 ± 1.1 days since injury). Symptom burden (number of symptoms and symptom severity) was significantly associated with exercise intolerance ( P = .002 and P = .025, respectively). Physiological and vestibular-ocular clinical profile composite groups were associated with exercise tolerance ( P = .001 and P = .014, respectively), with individuals who were exercise intolerant having a higher mean number of symptoms in each profile than those who were exercise tolerant. Mood-related and autonomic clinical profiles were associated with a higher resting HR (>80 bpm) ( P = .048 and P = .028, respectively), suggesting altered autonomic response for participants with symptoms relating to this profile. After adjusting for age and mechanism of injury (sports- or non-sports-related), having a higher mood-related clinical profile was associated with persisting symptoms at 3 months postinjury (adjusted odds ratio = 2.08; 95% CI, 1.11-3.90; P = .013). CONCLUSION Symptom-based clinical profiles, in conjunction with objective measures such as resting HR and exercise tolerance, are important components of clinical care for those having sustained mTBI. These results provide preliminary support for the concept that specific symptoms are indicative of autonomic dysfunction following mTBI.
Collapse
Affiliation(s)
- Jacinta Thorne
- Author Affiliations: School of Allied Health (Ms Thorne and Mr Ring) and Curtin Medical School (Drs Cowen, Jefferson, and Xu), Faculty of Health Sciences, Curtin Health Innovation Research Institute (Mss Thorne and Papini and Drs Hellewell, Cowen, Gozt, Pestell, and Fitzgerald), and School of Population Health (Drs Chih, Thomas, and Xu), Curtin University, Bentley, Western Australia; Perron Institute for Neurological and Translational Science, Nedlands, Western Australia (Mss Thorne and Papini and Drs Hellewell, Gozt, and Fitzgerald); Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia (Mr Ring); School of Psychological Science (Drs Buhagiar and Pestell) and Divisions of Surgery (Dr Thomas) and Emergency Medicine (Dr Celenza), School of Medicine, The University of Western Australia, Nedlands, Western Australia; Neurological Intervention & Imaging Service of Western Australia (Dr Bynevelt) and Emergency Department (Dr Celenza), Sir Charles Gairdner Hospital, Nedlands, Western Australia; The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China (Dr Xu); Sir Charles Gairdner, Royal Perth and Fiona Stanley Hospitals, Perth, Western Australia (Dr Honeybul); Emergency Medicine, Royal Perth Hospital, University of Western Australia (Dr Fatovich); and Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Nedlands, Western Australia (Dr Fatovich)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Sas AR, Popovich MJ, Gillenkirk A, Greer C, Grant J, Almeida A, Ichesco IK, Lorincz MT, Eckner JT. Orthostatic Vital Signs After Sport-Related Concussion: A Cohort Study. Am J Sports Med 2024; 52:2902-2910. [PMID: 39190299 DOI: 10.1177/03635465241270289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
BACKGROUND The 6th International Consensus Statement on Concussion in Sport guidelines identified that measuring autonomic nervous system dysfunction using orthostatic vital signs (VSs) is an important part of the clinical evaluation; however, there are limited data on the frequency of autonomic nervous system dysfunction captured via orthostatic VSs after concussion. PURPOSE To compare orthostatic changes in heart rate (HR), systolic blood pressure (SBP), and diastolic blood pressure (DBP) between athletes with acute sport-related concussion (SRC) and control athletes. STUDY DESIGN Cross-sectional study; Level of evidence, 3. METHODS We compared 133 athletes (mean age, 15.3 years; age range, 8-28 years; 45.9% female) with acute SRC (<30 days after injury) with 100 control athletes (mean age, 15.7 years; age range, 10-28 years; 54.0% female). Given the broad age range eligible for study inclusion, participants were subdivided into child (younger than 13 years of age), adolescent (13-17 years of age), and adult (18 years of age and older) age groups for subanalyses. Participants completed a single standard orthostatic VS evaluation including HR, SBP, and DBP in the supine position then immediately and 2 minutes after standing. Linear regression was used to compare delayed supine-to-standing changes in HR, SBP, and DBP as a continuous variable (ΔHR, ΔSPB, and ΔDBP) between groups, and logistic regression was used to compare patients with positive orthostatic VS changes (sustained HR increase ≥30 beats per minute [bpm], SBP decrease ≥20 mm Hg, and DBP ≥10 mm Hg at 2 minutes) between groups, accounting for age and sex. RESULTS Between-group differences were present for delayed ΔHR (18.4 ± 12.7 bpm in patients with SRC vs 13.2 ± 11.0 bpm in controls; P = .002) and ΔSPB (-3.1 ± 6.6 bpm in patients with SRC vs -0.4 ± 6.5 bpm in controls; P = .001), with positive orthostatic HR changes present more frequently in patients with SRC (18% vs 7%; odds ratio, 2.79; P = .027). In the SRC group, a weak inverse relationship was present between age and ΔHR (r = -0.171; P = .049), with positive orthostatic HR findings occurring primarily in the child and adolescent SRC subgroups. CONCLUSION Patients with acute SRC had greater orthostatic VS changes compared with controls, the most prominent being sustained HR elevations. Clinical evaluation of autonomic change after SRC via standard orthostatic VS assessment may be a helpful clinical biomarker in the assessment of SRC, especially in children and adolescents.
Collapse
Affiliation(s)
- Andrew R Sas
- Department of Neurology, Ohio State University Medical Center, Columbus, Ohio, USA
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael J Popovich
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Concussion Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Aleah Gillenkirk
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Cindy Greer
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - John Grant
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrea Almeida
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Concussion Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Ingrid K Ichesco
- Concussion Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew T Lorincz
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Concussion Center, University of Michigan, Ann Arbor, Michigan, USA
| | - James T Eckner
- Concussion Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
68
|
Cordingley DM, Gomez A, Ellis M, Zeiler FA. Identifying the Cerebral Physiologic Response to Aerobic Exercise Following Concussion: A Scoping Review. J Head Trauma Rehabil 2024; 39:E407-E418. [PMID: 38482939 DOI: 10.1097/htr.0000000000000930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
OBJECTIVE The purpose of this study was to identify the cerebral physiologic response to aerobic exercise in individuals with a symptomatic concussion, highlighting available knowledge and knowledge gaps in the literature. DESIGN A systematic scoping review was conducted and reported in keeping with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension for scoping reviews. A search of EMBASE, MEDLINE, SCOPUS, BIOSIS, and Cochrane libraries was conducted on June 15, 2023 (from database inception). An online systematic/scoping review management system was used to remove duplicates, and the remaining articles were screened for inclusion by 2 researchers. Inclusion criteria required articles to be original research published in peer-reviewed journals. Additionally, studies were required to have an aerobic exercise component, include a measure of cerebral physiology during a bout of aerobic exercise, exclude moderate and/or severe traumatic brain injury (TBI) populations, and be in the English language. Both human and animal studies were included, with participants of any age who were diagnosed with a mild TBI/concussion only (ie, Glasgow Coma Scale score ≥ 13). Studies could be of any design as long as a measure of cerebral physiologic response to a bout of aerobic exercise was included. RESULTS The search resulted in 1773 articles to be screened and data from 3 eligible studies were extracted. CONCLUSIONS There are currently too few studies investigating the cerebral physiologic response to aerobic exercise following concussion or mild TBI to draw definitive conclusions. Further research on this topic is necessary since understanding the cerebral physiologic response to aerobic exercise in the concussion and mild TBI populations could assist in optimizing exercise-based treatment prescription and identifying other targeted therapies.
Collapse
Affiliation(s)
- Dean M Cordingley
- Author Affiliation :Pan Am Clinic Foundation, Winnipeg, Manitoba, Canada (Mr Cordingley and Dr Zeiler); Applied Health Sciences Program, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada (Mr Cordingley); Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada (Drs Gomez, Ellis, and Zeiler); Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada (Drs Gomez and Zeiler); Pan Am Clinic, Winnipeg, and Children's Hospital Research Institute of Manitoba, Winnipeg, and Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada (Dr Ellis); and Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada, and Centre on Aging, University of Manitoba, Winnipeg, Manitoba, Canada, and Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, England (Dr Zeiler)
| | | | | | | |
Collapse
|
69
|
Massé I, Moquin L, Bouchard C, Gratton A, De Beaumont L. Uninterrupted in vivo cerebral microdialysis measures of the acute neurochemical response to a single or repeated concussion in a rat model combining force and rotation. Brain Res 2024; 1838:148998. [PMID: 38754802 DOI: 10.1016/j.brainres.2024.148998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Altered extracellular amino acid concentrations following concussion or mild traumatic brain injury can result in delayed neuronal damage through overactivation of NMDA glutamatergic receptors. However, the consequences of repeated concussions prior to complete recovery are not well understood. In this study, we utilized in vivo cerebral microdialysis and a weight-drop model to investigate the acute neurochemical response to single and repeated concussions in adult rats that were fully conscious. A microdialysis probe was inserted into the hippocampus and remained in place during impact. Primary outcomes included concentrations of glutamate, GABA, taurine, glycine, glutamine, and serine, while secondary outcomes were righting times and excitotoxic indices. Compared to sham injury, the first concussion resulted in significant increases in glutamate, GABA, taurine, and glycine levels, longer righting times, and higher excitotoxic indices. Following the second concussion, righting times were significantly longer, suggesting cumulative effects of repeated concussion while only partial increases were observed in glutamate and taurine levels. GABA and glycine levels, and excitotoxic indices were comparable to sham injury. These findings suggest that single and repeated concussions may induce acute increases in several amino acids, while repeated concussions could exacerbate neurological symptoms despite less pronounced neurochemical changes.
Collapse
Affiliation(s)
- Ian Massé
- Research Center, Hôpital du Sacré-Cœur de Montréal, 5400 Gouin Ouest Blvd, Montreal, Quebec H4J 1C5, Canada.
| | - Luc Moquin
- Research Center, Douglas Institute, 6875 LaSalle Blvd, Montreal, Quebec H4H 1R3, Canada
| | - Caroline Bouchard
- Research Center, Hôpital du Sacré-Cœur de Montréal, 5400 Gouin Ouest Blvd, Montreal, Quebec H4J 1C5, Canada
| | - Alain Gratton
- Research Center, Douglas Institute, 6875 LaSalle Blvd, Montreal, Quebec H4H 1R3, Canada
| | - Louis De Beaumont
- Research Center, Hôpital du Sacré-Cœur de Montréal, 5400 Gouin Ouest Blvd, Montreal, Quebec H4J 1C5, Canada; Department of Surgery, Université de Montréal, 2900 Edouard-Montpetit Blvd, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
70
|
Moody JN, Howard E, Nolan KE, Prieto S, Logue MW, Hayes JP. Traumatic Brain Injury and Genetic Risk for Alzheimer's Disease Impact Cerebrospinal Fluid β-Amyloid Levels in Vietnam War Veterans. Neurotrauma Rep 2024; 5:760-769. [PMID: 39184178 PMCID: PMC11342050 DOI: 10.1089/neur.2024.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Traumatic brain injuries (TBIs) may increase the risk for Alzheimer's disease (AD) and its neuropathological correlates, although the mechanisms of this relationship are unclear. The current study examined the synergistic effects of TBI and genetic risk for AD on β-amyloid (Aβ) levels among Vietnam War Veterans. We hypothesized that the combination of TBI and higher polygenic risk score (PRS) for AD would be associated with lower cerebrospinal fluid (CSF) Aβ42/40. Data were obtained from the Department of Defense Alzheimer's Disease Neuroimaging Initiative. Participants included Vietnam War Veterans without dementia who identified as White non-Hispanic/Latino and had available demographic, clinical assessment, genetic, and CSF biomarker data. Lifetime TBI history was assessed using The Ohio State University TBI Identification Method. Participants were categorized into those with and without TBI. Among those with a prior TBI, injury severity was defined as either mild or moderate/severe. CSF Aβ42/40 ratios were calculated. Genetic propensity for AD was assessed using PRSs. Hierarchical linear regression models examined the interactive effects of TBI and PRS for AD on Aβ42/40. Exploratory analyses examined the interaction between TBI severity and PRS. The final sample included 88 male Vietnam War Veterans who identified as White non-Hispanic/Latino (M age = 68.3 years), 49 of whom reported a prior TBI. There was a significant interaction between TBI and PRS, such that individuals with TBI and higher PRS for AD had lower Aβ42/40 (B = -0.45, 95% CI: -0.86 to -0.05, p = 0.03). This relationship may be stronger with increasing TBI severity (p = 0.05). Overall, TBI was associated with lower Aβ42/40, indicating greater amyloid deposition in the brain, in the context of greater polygenic risk for AD. These findings highlight who may be at increased risk for AD neuropathology following TBI.
Collapse
Affiliation(s)
- Jena N. Moody
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Erica Howard
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Kate E. Nolan
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Sarah Prieto
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Mark W. Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, Massachusetts, USA
- Psychiatry and Biomedical Genetics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Jasmeet P. Hayes
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
- Chronic Brain Injury Initiative, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
71
|
Javra R, Burma JS, Johnson NE, Smirl JD. Feasibility of superimposed supine cycling and lower body negative pressure as an effective means of prolonging exercise tolerance in individuals experiencing persisting post-concussive symptoms: Preliminary results. Exp Physiol 2024. [PMID: 39102430 DOI: 10.1113/ep091677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
To examine the feasibility, utility and safety of superimposed lower body negative pressure (LBNP) and tilt during supine cycling in individuals suffering from persisting post-concussive symptoms (PPCS). Eleven individuals aged 17-31 (6 females/5 males) participated in two randomized separate visits, 1 week apart. A ramp-incremental test was performed during both visits until volitional failure. Visits included no pressure (control) or LBNP at -40 Torr (experimental) with head-up tilt at 15 degrees (females) or 30 degrees (males). Transcranial Doppler ultrasound was utilized to quantify middle cerebral artery velocity (MCAv), while symptom reports were filled out before and 0, 10, and 60 min post-exertion. Ratings of exertion and overall condition followed similar trends for participants across both tests. The relative increase in MCAv was blunted during the experimental condition (8%) compared to control (24%), while a greater heart rate (17 beats/min) was achieved during the LBNP condition (P = 0.047). Symptom severity at the 0 and 10 min post-exertion time points displayed negligible-to-small effect sizes between conditions (Wilcoxon's r < 0.11). Symptom reporting was lower at the 60 min post-exertion time point with these displaying a moderate effect size (Wilcoxon's r = 0.31). The combination of LBNP and tilt during supine cycling did not change the participants' subjective interpretation of the exertional test but attenuated the hyperpnia-induced vasodilatory MCAv response, while also enabling participants to achieve a higher heart rate during exercise and reduced symptoms 1 h later. As this protocol is safe and feasible, further research is warranted in this area for developing PPCS treatment options. HIGHLIGHTS: What is the central question of this study? What are the feasibility, safety and utility of combining head-up tilt with lower body negative pressure during supine cycling for blunting the increase in cerebral blood velocity seen during moderate-intensity exercise in individuals experiencing persisting post-concussion symptoms? What is the main finding and its importance? Although no differences were found in symptoms between conditions within the first 10 min following exertion, symptom severity scores showed a clinically meaningful reduction 60 min following the experimental condition compared to the non-experimental control condition.
Collapse
Affiliation(s)
- Raelyn Javra
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Joel S Burma
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Nathan E Johnson
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
72
|
Papageorgakopoulou MA, Bania A, Lagogianni IA, Birmpas K, Assimakopoulou M. The Role of Glia Telomere Dysfunction in the Pathogenesis of Central Nervous System Diseases. Mol Neurobiol 2024; 61:5868-5881. [PMID: 38240992 PMCID: PMC11249767 DOI: 10.1007/s12035-024-03947-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/09/2024] [Indexed: 07/16/2024]
Abstract
Maintaining the telomere length is decisive for the viability and homeostasis process of all the cells of an organism, including human glial cells. Telomere shortening of microglial cells has been widely associated with the onset and progression of neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Additionally, traumatic brain injury appears to have a positive correlation with the telomere-shortening process of microglia, and telomere length can be used as a non-invasive biomarker for the clinical management of these patients. Moreover, telomere involvement through telomerase reactivation and homologous recombination also known as the alternative lengthening of telomeres (ALT) has been described in gliomagenesis pathways, and particular focus has been given in the translational significance of these mechanisms in gliomas diagnosis and prognostic classification. Finally, glia telomere shortening is implicated in some psychiatric diseases. Given that telomere dysfunction of glial cells is involved in the central nervous system (CNS) disease pathogenesis, it represents a promising drug target that could lead to the incorporation of new tools in the medicinal arsenal for the management of so far incurable conditions.
Collapse
Affiliation(s)
| | - Angelina Bania
- School of Medicine, University of Patras, 26504, Patras, Greece
| | | | | | - Martha Assimakopoulou
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, Preclinical Medicine Department Building, 1 Asklipiou, 26504, Patras, Greece.
| |
Collapse
|
73
|
Conti F, McCue JJ, DiTuro P, Galpin AJ, Wood TR. Mitigating Traumatic Brain Injury: A Narrative Review of Supplementation and Dietary Protocols. Nutrients 2024; 16:2430. [PMID: 39125311 PMCID: PMC11314487 DOI: 10.3390/nu16152430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Traumatic brain injuries (TBIs) constitute a significant public health issue and a major source of disability and death in the United States and worldwide. TBIs are strongly associated with high morbidity and mortality rates, resulting in a host of negative health outcomes and long-term complications and placing a heavy financial burden on healthcare systems. One promising avenue for the prevention and treatment of brain injuries is the design of TBI-specific supplementation and dietary protocols centred around nutraceuticals and biochemical compounds whose mechanisms of action have been shown to interfere with, and potentially alleviate, some of the neurophysiological processes triggered by TBI. For example, evidence suggests that creatine monohydrate and omega-3 fatty acids (DHA and EPA) help decrease inflammation, reduce neural damage and maintain adequate energy supply to the brain following injury. Similarly, melatonin supplementation may improve some of the sleep disturbances often experienced post-TBI. The scope of this narrative review is to summarise the available literature on the neuroprotective effects of selected nutrients in the context of TBI-related outcomes and provide an evidence-based overview of supplementation and dietary protocols that may be considered in individuals affected by-or at high risk for-concussion and more severe head traumas. Prophylactic and/or therapeutic compounds under investigation include creatine monohydrate, omega-3 fatty acids, BCAAs, riboflavin, choline, magnesium, berry anthocyanins, Boswellia serrata, enzogenol, N-Acetylcysteine and melatonin. Results from this analysis are also placed in the context of assessing and addressing important health-related and physiological parameters in the peri-impact period such as premorbid nutrient and metabolic health status, blood glucose regulation and thermoregulation following injury, caffeine consumption and sleep behaviours. As clinical evidence in this research field is rapidly emerging, a comprehensive approach including appropriate nutritional interventions has the potential to mitigate some of the physical, neurological, and emotional damage inflicted by TBIs, promote timely and effective recovery, and inform policymakers in the development of prevention strategies.
Collapse
Affiliation(s)
- Federica Conti
- School of Physics, University of Sydney, Sydney, NSW 2050, Australia;
| | - Jackson J. McCue
- School of Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Paul DiTuro
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | - Andrew J. Galpin
- Center for Sport Performance, California State University, Fullerton, CA 92831, USA;
| | - Thomas R. Wood
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Institute for Human and Machine Cognition, Pensacola, FL 32502, USA
| |
Collapse
|
74
|
Mavroudis I, Petridis F, Petroaie AD, Ciobica A, Kamal FZ, Honceriu C, Iordache A, Ionescu C, Novac B, Novac O. Exploring Symptom Overlaps: Post-COVID-19 Neurological Syndrome and Post-Concussion Syndrome in Athletes. Biomedicines 2024; 12:1587. [PMID: 39062160 PMCID: PMC11274969 DOI: 10.3390/biomedicines12071587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The COVID-19 pandemic has introduced new challenges in managing neurological conditions, particularly among athletes. This paper explores the intersection of post-COVID-19 neurological syndrome (PCNS/PASC) and post-concussion syndrome (PCS), focusing on their implications in sports medicine. Our analysis covers the symptomatology, pathophysiology, and management strategies for PCNS/PASC and PPCS, with special attention paid to the unique challenges faced by athletes recovering from these conditions, including the risk of symptom exacerbation and prolonged recovery. Key findings reveal that both PCNS/PASC and PPCS present with overlapping symptoms such as cognitive difficulties, exercise intolerance, and mental health issues, but differ in specific manifestations like anosmia and ageusia, unique to COVID-19. Pathophysiological analysis reveals similarities in blood-brain barrier disruption (BBB) but differences in the extent of immune activation. Management strategies emphasize a gradual increase in physical activity, close symptom monitoring, and psychological support, with a tailored approach for athletes. Specific interventions include progressive aerobic exercises, resistance training, and cognitive rehabilitation. Furthermore, our study highlights the importance of integrating neurology, psychiatry, physical therapy, and sports medicine to develop comprehensive care strategies. Our findings underscore the dual challenge of COVID-19 and concussion in athletes, necessitating a nuanced, interdisciplinary approach to effective management. Future research should focus on the long-term neurological effects of both conditions and optimizing treatment protocols to improve patient outcomes. This comprehensive understanding is crucial for advancing the management of athletes affected by these overlapping conditions and ensuring their safe return to sports.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neuroscience, Leeds Teaching Hospitals NHS Trust, Leeds LS2 9JT, UK;
- Faculty of Medicine, Leeds University, Leeds LS2 9JT, UK
| | - Foivos Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Antoneta Dacia Petroaie
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania; (A.I.); (O.N.)
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I no. 20A, 700505 Iasi, Romania; (A.C.); (C.I.)
- Centre of Biomedical Research, Romanian Academy, Bd. Carol I, no. 8, 700506 Iasi, Romania
- Academy of Romanian Scientists, Str. Splaiul Independentei no. 54, Sector 5, 050094 Bucharest, Romania
- “Ioan Haulica” Institute, Apollonia University, Pãcurari Street 11, 700511 Iasi, Romania
| | - Fatima Zahra Kamal
- Higher Institute of Nursing Professions and Health Techniques, Marrakesh 40000, Morocco
- Laboratory of Physical Chemistry of Processes and Materials, Faculty of Sciences and Techniques, Hassan First University, B.P. 539, Settat 26000, Morocco
| | - Cezar Honceriu
- Faculty of Physical Education, Alexandru Ioan Cuza University of Iasi, Bd. Carol I no. 20A, 700505 Iasi, Romania;
| | - Alin Iordache
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania; (A.I.); (O.N.)
| | - Cătălina Ionescu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I no. 20A, 700505 Iasi, Romania; (A.C.); (C.I.)
- Clinical Department, Apollonia University, Păcurari Street 11, 700511 Iasi, Romania
| | - Bogdan Novac
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania; (A.I.); (O.N.)
| | - Otilia Novac
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street No. 16, 700115 Iasi, Romania; (A.I.); (O.N.)
| |
Collapse
|
75
|
Lau JS, Lust CAC, Lecques JD, Hillyer LM, Mountjoy M, Kang JX, Robinson LE, Ma DWL. n-3 PUFA ameliorate functional outcomes following repetitive mTBI in the fat-1 mouse model. Front Nutr 2024; 11:1410884. [PMID: 39070251 PMCID: PMC11272621 DOI: 10.3389/fnut.2024.1410884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Purpose Repeated mild traumatic brain injuries (mTBI) are a continuing healthcare concern worldwide, given its potential for enduring adverse neurodegenerative conditions. Past research suggests a potential protective effect of n-3 polyunsaturated fatty acids (PUFA) in experimental models of mTBI. The aim of this study was to investigate whether the neuroprotective benefits of n-3 PUFA persist following repetitive weight drop injury (WDI). Methods Male fat-1 mice (n = 12), able to endogenously convert n-6 PUFA to n-3 PUFA, and their wild type (WT) counterparts (n = 12) were maintained on a 10% w/w safflower diet. At 9-10 weeks of age, both groups received one mild low-impact WDI on the closed cranium daily, for three consecutive days. Following each WDI, time to righting reflex and seeking behaviour were measured. Neurological recovery, cognitive, motor, and neurobehavioural outcomes were assessed using the Neurological Severity Score (NSS) over 7 days (168 h) post-last WDI. Brains were assessed for cerebral microhemorrhages by Prussian blue and cellular damage by glial fibrillary acidic protein (GFAP) staining. Results Fat-1 mice exhibited significantly faster righting reflex and seeking behaviour time, and lower mean NSS scores and at all post-WDI time points (p ≤ 0.05) compared to WT mice. Immunohistochemistry showed no significant difference in presence of cerebral microhemorrhage however, fat-1 mice had significantly lower GFAP staining in comparison to WT mice (p ≤ 0.05). Conclusion n-3 PUFA is effective in restoring cognitive, motor, and behavioural function after repetitive WDI, which may be mediated through reduced cellular damage of the brain.
Collapse
Affiliation(s)
- Jessi S. Lau
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Cody A. C. Lust
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | | | - Lyn M. Hillyer
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Margo Mountjoy
- Department of Family Medicine, McMaster University, Hamilton, ON, Canada
| | - Jing X. Kang
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lindsay E. Robinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - David W. L. Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
76
|
Gerhalter T, Chen AM, Dehkharghani S, Peralta R, Gajdosik M, Zarate A, Bushnik T, Silver JM, Im BS, Wall SP, Madelin G, Kirov II. Longitudinal changes in sodium concentration and in clinical outcome in mild traumatic brain injury. Brain Commun 2024; 6:fcae229. [PMID: 39035416 PMCID: PMC11258572 DOI: 10.1093/braincomms/fcae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/10/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
Ionic imbalances and sodium channel dysfunction, well-known sequelae of traumatic brain injury (TBI), promote functional impairment in affected subjects. Therefore, non-invasive measurement of sodium concentrations using 23Na MRI has the potential to detect clinically relevant injury and predict persistent symptoms. Recently, we reported diffusely lower apparent total sodium concentrations (aTSC) in mild TBI patients compared to controls, as well as correlations between lower aTSC and worse clinical outcomes. The main goal of this study was to determine whether these aTSC findings, and their changes over time, predict outcomes at 3- and 12-month from injury. Twenty-seven patients previously studied with 23Na MRI and outcome measures at 22 ± 10 days (average ± standard deviation) after injury (visit-1, v1) were contacted at 3- (visit-2, v2) and 12-month after injury (visit-3, v3) to complete the Rivermead post-concussion symptoms questionnaire (RPQ), the extended Glasgow outcome scale (GOSE), and the brief test of adult cognition by telephone (BTACT). Follow-up 1H and 23Na MRI were additionally scheduled at v2. Linear regression was used to calculate aTSC in global grey and white matters. Six hypotheses were tested in relation to the serial changes in outcome measures and in aTSC, and in relation to the cross-sectional and serial relationships between aTSC and outcome. Twenty patients contributed data at v2 and fifteen at v3. Total RPQ and composite BTACT z-scores differed significantly for v2 and v3 in comparison to v1 (each P < 0.01), reflecting longitudinally reduced symptomatology and improved performance on cognitive testing. No associations between aTSC and outcome were observed at v2. Previously lower grey and white matter aTSC normalized at v2 in comparison to controls, in line with a statistically detectable longitudinal increase in grey matter aTSC between v1 and v2 (P = 0.0004). aTSC values at v1 predicted a subset of future BTACT subtest scores, but not future RPQ scores nor GOSE-defined recovery status. Similarly, aTSC rates of change correlated with BTACT rates of change, but not with those of RPQ. Tissue aTSC, previously shown to be diffusely decreased compared to controls at v1, was no longer reduced by v2, suggesting normalization of the sodium ionic equilibrium. These changes were accompanied by marked improvement in outcome. The results support the notion that early aTSC from 23Na MRI predicts future BTACT, but not RPQ scores, nor future GOSE status.
Collapse
Affiliation(s)
- Teresa Gerhalter
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anna M Chen
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Seena Dehkharghani
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Rosemary Peralta
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Mia Gajdosik
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alejandro Zarate
- Department of Rehabilitation Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Tamara Bushnik
- Department of Rehabilitation Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jonathan M Silver
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Brian S Im
- Department of Rehabilitation Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Stephen P Wall
- Ronald O. Perelman Department of Emergency Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Guillaume Madelin
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ivan I Kirov
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
77
|
Kennedy CM, Burma JS, Smirl JD. Sensor-Assisted Analysis of Autonomic and Cerebrovascular Dysregulation following Concussion in an Individual with a History of Ten Concussions: A Case Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:4404. [PMID: 39001186 PMCID: PMC11244393 DOI: 10.3390/s24134404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
INTRODUCTION Concussion is known to cause transient autonomic and cerebrovascular dysregulation that generally recovers; however, few studies have focused on individuals with an extensive concussion history. METHOD The case was a 26-year-old male with a history of 10 concussions, diagnosed for bipolar type II disorder, mild attention-deficit hyperactivity disorder, and a history of migraines/headaches. The case was medicated with Valproic Acid and Escitalopram. Sensor-based baseline data were collected within six months of his injury and on days 1-5, 10, and 14 post-injury. Symptom reporting, heart rate variability (HRV), neurovascular coupling (NVC), and dynamic cerebral autoregulation (dCA) assessments were completed using numerous biomedical devices (i.e., transcranial Doppler ultrasound, 3-lead electrocardiography, finger photoplethysmography). RESULTS Total symptom and symptom severity scores were higher for the first-week post-injury, with physical and emotional symptoms being the most impacted. The NVC response showed lowered activation in the first three days post-injury, while autonomic (HRV) and autoregulation (dCA) were impaired across all testing visits occurring in the first 14 days following his concussion. CONCLUSIONS Despite symptom resolution, the case demonstrated ongoing autonomic and autoregulatory dysfunction. Larger samples examining individuals with an extensive history of concussion are warranted to understand the chronic physiological changes that occur following cumulative concussions through biosensing devices.
Collapse
Affiliation(s)
- Courtney M Kennedy
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
78
|
Zhao M, Li X, Li F, Hu X, Wang J, Liu Y, Zhang C, Bai J, Edden RAE, Gao F, Su M, Ren F. Identification of neurotransmitter imbalances in the cingulate cortex of NMOSD patients using magnetic resonance spectroscopy. Cereb Cortex 2024; 34:bhae304. [PMID: 39073381 PMCID: PMC11284173 DOI: 10.1093/cercor/bhae304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Cognitive impairment affects 29-67% of patients with neuromyelitis optica spectrum disorder. Previous studies have reported glutamate homeostasis disruptions in astrocytes, leading to imbalances in gamma-aminobutyric acid levels. However, the association between these neurotransmitter changes and cognitive deficits remains inadequately elucidated. Point RESolved Spectroscopy and Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy techniques were utilized to evaluate gamma-aminobutyric acid, glutamate, glutathione levels, and excitation/inhibition balance in the anterior cingulate cortex, posterior cingulate cortex, and occipital cortex of 39 neuromyelitis optica spectrum disorder patients and 41 healthy controls. Cognitive function was assessed using neurocognitive scales. Results showed decreased gamma-aminobutyric acid levels alongside increased glutamate, glutathione, and excitation/inhibition ratio in the anterior cingulate cortex and posterior cingulate cortex of neuromyelitis optica spectrum disorder patients. Specifically, within the posterior cingulate cortex of neuromyelitis optica spectrum disorder patients, decreased gamma-aminobutyric acid levels and increased excitation/inhibition ratio correlated significantly with anxiety scores, whereas glutathione levels predicted diminished executive function. The results suggest that neuromyelitis optica spectrum disorder patients exhibit dysregulation in the GABAergic and glutamatergic systems in their brains, where the excitation/inhibition imbalance potentially acts as a neuronal metabolic factor contributing to emotional disorders. Additionally, glutathione levels in the posterior cingulate cortex region may serve as predictors of cognitive decline, highlighting the potential benefits of reducing oxidative stress to safeguard cognitive function in neuromyelitis optica spectrum disorder patients.
Collapse
Affiliation(s)
- Min Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Radiology, Linyi Central Hospital, Linyi, China
| | - Xiao Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Fuyan Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Xin Hu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Jing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Yuxi Liu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Chuanchen Zhang
- Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Jie Bai
- Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Meixia Su
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Fuxin Ren
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| |
Collapse
|
79
|
Neill MG, Burma JS, Miutz LN, Kennedy CM, Penner LC, Newel KT, Smirl JD. Transcranial Doppler Ultrasound and Concussion-Supplemental Symptoms with Physiology: A Systematic Review. J Neurotrauma 2024; 41:1509-1523. [PMID: 38468559 DOI: 10.1089/neu.2023.0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Sport-related concussion (SRC) can impair the cerebrovasculature both acutely and chronically. Transcranial Doppler (TCD) ultrasound assessment has the potential to illuminate the mechanisms of impairment and provide an objective evaluation of SRC. The current systematic review investigated studies employing TCD ultrasound assessment of intracranial arteries across three broad categories of cerebrovascular regulation: neurovascular coupling (NVC), cerebrovascular reactivity (CVR), and dynamic cerebral autoregulation (dCA). The current review was registered in the International Prospective Register of Systematic Reviews (PROSPERO) database (CRD42021275627). The search strategy was applied to PubMed, as this database indexes all biomedical journals. Original articles on TCD for athletes with medically diagnosed SRC were included. Title/abstract and full-text screening were completed by three authors. Two authors completed data extraction and risk of bias using the Methodological Index for Non-Randomized Studies and Scottish Intercollegiate Guideline Network checklists. Of the 141 articles identified, 14 met the eligibility criteria. One article used an NVC challenge, eight assessed CVR, and six investigated dCA. Methodologies varied widely among studies, and results were heterogeneous. There was evidence of cerebrovascular impairment in all three domains roughly 2 days post-SRC, but the magnitude and recovery of these impairments were not clear. There was evidence that clinical symptom resolution occurred before cerebrovascular function, indicating that physiological deficits may persist despite clinical recovery and return to play. Collectively, this emphasizes an opportunity for the use of TCD to illuminate the cerebrovascular deficits caused by SRC. It also highlights that there is need for consistent methodological rigor when employing TCD in a SRC population.
Collapse
Affiliation(s)
- Matthew G Neill
- Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Joel S Burma
- Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Lauren N Miutz
- Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Department of Health and Sport Science, University of Dayton, Dayton, Ohio, USA
| | - Courtney M Kennedy
- Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Linden C Penner
- Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Kailey T Newel
- Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, University of Calgary, Calgary, Alberta, Canada
- School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia, Kelowna, British Columbia, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
80
|
Roby PR, Mozel AE, Grady MF, Master CL, Arbogast KB. Neurovascular Coupling in Acutely Concussed Adolescent Patients. J Neurotrauma 2024; 41:e1660-e1667. [PMID: 38468544 PMCID: PMC11564851 DOI: 10.1089/neu.2023.0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Neurovascular coupling (NVC) uniquely describes cerebrovascular response to neural activation and has demonstrated impairments following concussion in adult patients. It is currently unclear how adolescent patients experience impaired NVC acutely following concussion during this dynamic phase of physiological development. The purpose of this study was to investigate NVC in acutely concussed adolescent patients relative to controls. We recruited patients presenting to a sports medicine practice within 28 days of a concussion or a musculoskeletal injury (controls). Transcranial Doppler ultrasound was used to measure changes in patients' posterior cerebral artery (PCA) velocity in response to two progressively challenging visual tasks: (1) reading and (2) visual search. Each task was presented in five 1-min trials (20 sec eyes closed/40 sec eyes open). Resting PCA velocity data were derived by averaging PCA velocity across a 2-min baseline period that preceded the visual tasks. Filtered task data were converted to time-series curves representing 40 consecutive 1-sec averages for each trial. Curves were then averaged across the five trials and time-aligned to stimulus onset (eyes open) to generate a single ensemble-averaged 40-sec curve representing NVC response for each participant for each task. Independent t tests were used to assess group differences (concussion vs. control) in resting PCA velocity. Separate linear mixed-effects models were used to evaluate group differences (concussion vs. control) in NVC response profiles for both visual tasks and group-by-task interaction. Twenty-one concussion patients (female = 8 [38.1%]; age = 14.4 ± 1.9 years) and 20 controls (female = 7 [35.0%]; age = 14.4 ± 1.9 years) were included in our analysis. Average resting PCA velocity did not significantly differ between concussion patients (36.6 ± 8.0 cm/sec) and controls (39.3 ± 8.5 cm/sec) (t39 = 1.06; p = 0.30). There were no significant group differences in relative NVC response curves during the reading task (F1,1560 = 2.23; p = 0.14) or the visual search task (F1,1521 = 2.04; p = 0.15). In contrast, the differential response to task (e.g., increase from reading task to visual search task) was significantly greater in concussion patients than in controls (p < 0.0001). The NVC response to the visual search task was 7.1% higher than the response to reading in concussion patients relative to being 5.5% higher in controls. Our data indicate that concussed patients present with a significantly greater response to more difficult tasks than do controls, suggesting that concussed adolescents require increased neural resource allocation as task difficulty increases. The study provides insight into the neurophysiological consequences of concussion in adolescent patients.
Collapse
Affiliation(s)
- Patricia R. Roby
- Center for Injury Research and Prevention, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Anne E. Mozel
- Center for Injury Research and Prevention, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Matthew F. Grady
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Sports Medicine Performance Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christina L. Master
- Center for Injury Research and Prevention, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Sports Medicine Performance Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kristy B. Arbogast
- Center for Injury Research and Prevention, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Emergency Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
81
|
McIntosh SJ, Mercier LJ, Boucher C, Yip R, Batycky JM, Joyce J, Stokoe M, Harris AD, Debert CT. Assessment of sleep parameters in adults with persistent post-concussive symptoms. Sleep Med 2024; 119:406-416. [PMID: 38772222 DOI: 10.1016/j.sleep.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/22/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
OBJECTIVES The primary aim of this study was to characterize sleep in adults with persistent post-concussive symptoms (PPCS). Secondary aims explored relationships between sleep parameters, injury characteristics, and symptom questionnaires. METHODS This case-controlled, cross-sectional study recruited adults (18-65yrs) diagnosed with PPCS and age and sex-matched controls. Participants wore a wrist-worn actigraph for 3-7 nights and completed daily sleep diaries. Participants completed questionnaires examining daytime sleepiness, fatigue, anxiety/depressive symptoms, and sedentariness. Sleep parameters were compared between groups using Mann-Whitney U tests. Secondary analyses used two-way ANOVA and Spearman's rank correlations. RESULTS Fifty adults with PPCS (43.7 ± 10.6yrs, 78 % female) and 50 controls (43.6 ± 11.0yrs) were included in this study. Adults with PPCS had significantly longer sleep onset latency (PPCS 16.99 ± 14.51min, Controls 8.87 ± 6.44min, p < 0.001) and total sleep time (PPCS 8.3 ± 1.0hrs, Control 7.6 ± 0.9hrs, p = 0.030) compared to controls, but woke up later (PPCS 7:57:27 ± 1:36:40, Control 7:17:16 ± 0:50:08, p = 0.026) and had poorer sleep efficiency (PPCS 77.9 ± 7.5 %, Control 80.8 ± 6.0 %, p = 0.019) than controls. Adults with PPCS reported more daytime sleepiness (Epworth Sleepiness Scale: PPCS 8.70 ± 4.61, Control 4.28 ± 2.79, p < 0.001) and fatigue (Fatigue Severity Scale: PPCS 56.54 ± 12.92, Control 21.90 ± 10.38, p < 0.001). Injury characteristics did not significantly affect sleep parameters in adults with PPCS. Actigraphy parameters were not significantly correlated to questionnaire measures. CONCLUSION Several actigraphy sleep parameters were significantly altered in adults with PPCS compared to controls, but did not correlate with sleep questionnaires, suggesting both are useful tools in characterizing sleep in PPCS. Further, this study provides potential treatment targets to improve sleep difficulties in adults with PPCS.
Collapse
Affiliation(s)
- Samantha J McIntosh
- Department of Clinical Neuroscience Division of Physical Medicine and Rehabilitation - University of Calgary, 1403 29 St NW, Calgary, AB, T2N 2T9, Canada; Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
| | - Leah J Mercier
- Department of Clinical Neuroscience Division of Physical Medicine and Rehabilitation - University of Calgary, 1403 29 St NW, Calgary, AB, T2N 2T9, Canada; Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
| | - Chloe Boucher
- Department of Clinical Neuroscience Division of Physical Medicine and Rehabilitation - University of Calgary, 1403 29 St NW, Calgary, AB, T2N 2T9, Canada; Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
| | - Raven Yip
- Faculty of Medicine and Dentistry - University of Alberta, Calgary, AB, Canada
| | - Julia M Batycky
- Department of Clinical Neuroscience Division of Physical Medicine and Rehabilitation - University of Calgary, 1403 29 St NW, Calgary, AB, T2N 2T9, Canada; Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada
| | - Julie Joyce
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada; Department of Radiology - University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada
| | - Mehak Stokoe
- Department of Radiology - University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada; Werklund School of Education - University of Calgary, Calgary, AB, Canada
| | - Ashley D Harris
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada; Department of Radiology - University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada; Alberta Children's Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada
| | - Chantel T Debert
- Department of Clinical Neuroscience Division of Physical Medicine and Rehabilitation - University of Calgary, 1403 29 St NW, Calgary, AB, T2N 2T9, Canada; Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
82
|
Boucher ML, Conley G, Morriss NJ, Ospina-Mora S, Qiu J, Mannix R, Meehan WP. Time-Dependent Long-Term Effect of Memantine following Repetitive Mild Traumatic Brain Injury. J Neurotrauma 2024; 41:e1736-e1758. [PMID: 38666723 DOI: 10.1089/neu.2023.0423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Repetitive mild traumatic brain injury (rmTBI, e.g., sports concussions) may be associated with both acute and chronic symptoms and neurological changes. Despite the common occurrence of these injuries, therapeutic strategies are limited. One potentially promising approach is N-methyl-D-aspartate receptor (NMDAR) blockade to alleviate the effects of post-injury glutamatergic excitotoxicity. Initial pre-clinical work using the NMDAR antagonist, memantine, suggests that immediate treatment following rmTBI improves a variety of acute outcomes. It remains unclear (1) whether acute memantine treatment has long-term benefits and (2) whether delayed treatment following rmTBI is beneficial, which are both clinically relevant concerns. To test this, animals were subjected to rmTBI via a weight drop model with rotational acceleration (five hits in 5 days) and randomized to memantine treatment immediately, 3 months, or 6 months post-injury, with a treatment duration of one month. Behavioral outcomes were assessed at 1, 4, and 7 months post-injury. Neuropathological outcomes were characterized at 7 months post-injury. We observed chronic changes in behavior (anxiety-like behavior, motor coordination, spatial learning, and memory), as well as neuroinflammation (microglia, astrocytes) and tau phosphorylation (T231). Memantine treatment, either immediately or 6 months post-injury, appears to confer greater rescue of neuroinflammatory changes (microglia) than vehicle or treatment at the 3-month time point. Although memantine is already being prescribed chronically to address persistent symptoms associated with rmTBI, this study represents the first evidence of which we are aware to suggest a small but durable effect of memantine treatment in mild, concussive injuries. This effect suggests that memantine, although potentially beneficial, is insufficient to treat all aspects of rmTBI alone and should be combined with other therapeutic agents in a multi-therapy approach, with attention given to the timing of treatment.
Collapse
Affiliation(s)
- Masen L Boucher
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Nicholas J Morriss
- University of Rochester School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Jianhua Qiu
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - William P Meehan
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Sports Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts, USA
| |
Collapse
|
83
|
Gülersoy E, Balıkçı C, Şahan A, Günal İ, Atlı MO. NMR-based metabolomic investigation of dogs with acute flaccid paralysis due to tick paralysis. Vet Med Sci 2024; 10:e1528. [PMID: 38952268 PMCID: PMC11217601 DOI: 10.1002/vms3.1528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Acute flaccid paralysis (AFP) is a complex clinical syndrome with various aetiologies. If untreated, AFP may lead to death due to failure of respiratory muscles. Tick paralysis, which is a noninfectious neurologic syndrome of AFP, occurs following tick attachment, engorgement, and injection of tick saliva toxins. There is no specific diagnostic test for tick paralysis, and mortality increases as definitive diagnosis is delayed. Although metabolomic investigation of tick saliva was conducted, there is a lack of research on metabolomic evaluation of hosts affected by tick paralysis. OBJECTIVES Thus, the aim of this study is to investigate metabolomic changes in serum samples of dogs with tick paralysis due to Rhipicephalus sanguineus using NMR-based metabolomics and to identify potential diagnostic/prognostic markers. MATERIALS AND METHODS Forty dogs infested with R. sanguineus, with clinical findings compatible with AFP and with a confirmed tick paralysis diagnosis ex juvantibus, constituted the Paralysis Group. Ten healthy dogs, which were admitted either for vaccination and/or check-up purposes, constituted the Control Group. After the confirmation tick paralysis, medical history, vaccination and nutritional status, body surface area and estimated tick numbers of all the dogs were noted. Physical examination included body temperature, heart and respiratory rate, capillary refill time evaluation and Modified Glasgow Coma Scale calculation. Serum samples were extracted from venous blood samples of all the dogs and were prepared for NMR analysis, and NMR-based metabolomics identification and quantification were performed. RESULTS NMR-based serum metabolomics of the present study revealed distinct up/down-regulated expressions, presenting a promising avenue. Moreover, it was observed that energy metabolism and especially liver functions were impaired in dogs with tick paralysis, and not only the respiratory system but also the kidneys were affected. CONCLUSION It was concluded that the present approach may help to better understand the pathological mechanisms developing in cases of AFP due to tick paralysis.
Collapse
Affiliation(s)
- Erdem Gülersoy
- Veterinary FacultyDepartment of Internal MedicineHarran UniversityŞanlıurfaTurkey
| | - Canberk Balıkçı
- Veterinary FacultyDepartment of Internal MedicineHarran UniversityŞanlıurfaTurkey
| | - Adem Şahan
- Veterinary FacultyDepartment of Internal MedicineHarran UniversityŞanlıurfaTurkey
| | - İsmail Günal
- Veterinary FacultyDepartment of Internal MedicineHarran UniversityŞanlıurfaTurkey
| | - Mehmet Osman Atlı
- Veterinary FacultyDepartment of Reproduction and Artificial InseminationHarran UniversityŞanlıurfaTurkey
| |
Collapse
|
84
|
Callahan CE, Donnelly KZ, Gaylord SA, Faurot KR, DeFreese JD, Kiefer AW, Register-Mihalik JK. Feasibility and Preliminary Effectiveness of an Online Meditation Intervention in Young Adults With Concussion History. J Sport Rehabil 2024; 33:346-355. [PMID: 38843862 DOI: 10.1123/jsr.2023-0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/23/2024] [Accepted: 04/04/2024] [Indexed: 06/26/2024]
Abstract
CONTEXT Mindfulness interventions (yoga, meditation) in traumatic brain injury populations show promising improvements in injury outcomes. However, most studies include all injury severities and use in-person, general programming lacking accessibility and specificity to the nuance of concussion. Therefore, this study investigated the feasibility and preliminary effectiveness of an online, concussion-focused meditation intervention among young adults with a concussion history. DESIGN Unblinded, single-arm, pilot intervention. METHODS Fifteen young adults aged 18 to 30 with a concussion history within the past 5 years completed 10 to 20 minutes per day of online, guided meditations for 6 weeks. Feasibility was assessed using the Feasibility of Intervention Measure. Concussion symptoms were measured using the Rivermead Post-Concussion Symptom Questionnaire, perceived stress the Perceived Stress Scale-10, and mindfulness the Five Facet Mindfulness Questionnaire. Descriptive statistics described the study sample and determined intervention adherence and feasibility. Paired sample t tests were used to examine preintervention/postintervention changes in concussion symptoms, perceived stress, and mindfulness, with descriptive statistics further detailing significant t tests. RESULTS Fifteen participants were enrolled, and 12 completed the intervention. The majority completed 5+ days per week of the meditations, and Feasibility of Intervention Measure (17.4 [1.8]) scores indicated high feasibility. Concussion symptom severity significantly decreased after completing the meditation intervention (11.3 [10.3]) compared with before the intervention (24.5 [17.2]; t[11] = 3.0, P = .01). The number of concussion symptoms reported as worse than before their concussion significantly decreased after completing the meditation intervention (2.7 [3.9]) compared with before the intervention (8.0 [5.7]; t[11] = 3.7, P = .004). Postintervention, 83.33% (n = 10) reported lower concussion symptom severity, and 75.00% (n = 9) reported less concussion symptoms as a mild, moderate, or severe problem (ie, worse than before injury). CONCLUSIONS Findings suggest positive adherence and feasibility of the meditation intervention, with the majority reporting concussion symptom improvement postintervention. Future research is necessary to expand these pilot findings into a large trial investigating concussion-specific meditation programming.
Collapse
Affiliation(s)
- Christine E Callahan
- Headspace, Santa Monica, CA, USA
- Human Movement Science Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Susan A Gaylord
- Department of Physical Medicine and Rehabilitation, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keturah R Faurot
- Department of Physical Medicine and Rehabilitation, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J D DeFreese
- Department of Exercise and Sports Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Matthew Gfeller Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam W Kiefer
- Department of Exercise and Sports Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Matthew Gfeller Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- STAR Heel Performance Laboratory, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Johna K Register-Mihalik
- Department of Exercise and Sports Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Matthew Gfeller Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- STAR Heel Performance Laboratory, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
85
|
Ahmed ME, Suhail H, Nematullah M, Hoda MN, Giri S, Ahmad AS. Loss of AMPK potentiates inflammation by activating the inflammasome after traumatic brain injury in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600422. [PMID: 38979231 PMCID: PMC11230198 DOI: 10.1101/2024.06.25.600422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Traumatic brain injury (TBI) is a significant public health concern characterized by a complex cascade of cellular events. TBI induces adenosine monophosphate-activated protein kinase (AMPK) dysfunction impairs energy balance activates inflammatory cytokines and leads to neuronal damage. AMPK is a key regulator of cellular energy homeostasis during inflammatory responses. Recent research has revealed its key role in modulating the inflammatory process in TBI. Following TBI the activation of AMPK can influence various important pathways and mechanisms including metabolic pathways and inflammatory signaling. Our study investigated the effects of post-TBI loss of AMPK function on functional outcomes inflammasome activation, and inflammatory cytokine production. Male C57BL/6 adult wild-type (WT) and AMPK knockout (AMPK-KO) mice were subjected to a controlled cortical impact (CCI) model of TBI or sham surgery. The mice were tested for behavioral impairment at 24 h post-TBI thereafter, mice were anesthetized, and their brains were quickly removed for histological and biochemical evaluation. In vitro we investigated inflammasome activation in mixed glial cells stimulated with lipopolysaccharides+ Interferon-gamma (LI) (0.1 μg/20 ng/ml LPS/IFNg) for 6 h to induce an inflammatory response. Estimating the nucleotide-binding domain, leucine-rich-containing family pyrin domain containing western blotting ELISA and qRT-PCR performed 3 (NLRP3) inflammasome activation and cytokine production. Our findings suggest that TBI leads to reduced AMPK phosphorylation in WT mice and that the loss of AMPK correlates with worsened behavioral deficits at 24 h post-TBI in AMPK-KO mice as compared to WT mice. Moreover compared with the WT mice AMPK-KO mice exhibit exacerbated NLRP3 inflammasome activation and increased expression of proinflammatory mediators such as IL-1b IL-6 TNF-a iNOS and Cox 2. These results align with the in vitro studies using brain glial cells under inflammatory conditions, demonstrating greater activation of inflammasome components in AMPK-KO mice than in WT mice. Our results highlighted the critical role of AMPK in TBI outcomes. We found that the absence of AMPK worsens behavioral deficits and heightens inflammasome-mediated inflammation thereby exacerbating brain injury after TBI. Restoring AMPK activity after TBI could be a promising therapeutic approach for alleviating TBI-related damage.
Collapse
Affiliation(s)
| | - Hamid Suhail
- Department of Neurology, Henry Ford Health, Detroit, MI 48202
| | | | - Md Nasrul Hoda
- Department of Neurology, Henry Ford Health, Detroit, MI 48202
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health, Detroit, MI 48202
| | | |
Collapse
|
86
|
Glendon K, Blenkinsop G, Belli A, Pain MTG. Does early exercise intolerance effect time to return to play, symptom burden, neurocognition, Vestibular-Ocular-Motor (VOM) function and academic ability in acutely concussed student-athletes? Brain Inj 2024:1-11. [PMID: 38910338 DOI: 10.1080/02699052.2024.2367477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/08/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Early Exercise Intolerance (EEI) is associated with delayed recovery and longer time to Return To Play (RTP), but this has not been established.Participants; (n = 52, male n = 30) UK university-aged rugby-union student-athletes. METHODS Student-athletes completed baseline screening (July-October 2021 and 2022). The test battery was repeated within 48 h, 4, 8 and 14 days after a Sports-Related Concussion (SRC) with the Buffalo Concussion Bike or Treadmill Test to set sub-symptom heart rate threshold. Student-athletes then completed a controlled early exercise protocol in-between reassessment (days 3, 5-7 and 9-13). Those with EEI were compared to those with early-exercise tolerance. OUTCOME MEASURES Post-Concussion Symptom Scale, Immediate Post-Concussion and Cognitive Test, Vestibular-Ocular Motor Screening Tool and the Revised Perceived Academic Impact Tool. RESULTS EEI was seen throughout the initial 14-days post-SRC (23.8%, 22.4%, 25.5%. 25.0%). EEI was associated with a slower reaction time within 48 h (-0.01 (-0.030-0.043) Vs 0.06 (0.033-0.24), p = 0.004) and greater VOMS scores within 48 h; (0.00 (0.00-4.00) Vs 5.50 (2.75-9.00), p = 0.016) and 4 days (0.00 (0.00-2.00) Vs 5.00 (0.00-6.00), p = 0.044). RTP was 12.5 days longer in those with EEI at 14-days post-SRC. CONCLUSION EEI is prevalent following an SRC in university-aged student-athletes and was associated with delayed recovery and RTP.
Collapse
Affiliation(s)
- K Glendon
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - G Blenkinsop
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - A Belli
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - M T G Pain
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
87
|
Popovich MJ, Wright BS, Bretzin AC, Roberts MT, Alsalaheen B, Almeida AA, Lorincz MT, Eckner JT. Headache Characteristics of Pediatric Sport-Related Concussion. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:813. [PMID: 39063391 PMCID: PMC11276358 DOI: 10.3390/ijerph21070813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Headache is among the most common symptoms following concussion, yet headache after concussion (HAC) remains poorly characterized. This study describes headache characteristics over the first four weeks following pediatric sport-related concussion. METHODS This is a retrospective case series of 87 athletes (mean: 14.9 years; range: 8.4-18.8 years; 38% female) treated in a specialty sports concussion clinic within 28 days of injury. Primary outcomes of headache consistency, frequency, duration, and associated migrainous symptoms were assessed at immediate (0 to 48 h) and weekly time points over the first 28 days post-injury. Generalized mixed linear models compared headache characteristics across time points. Secondary analyses compared each outcome by as-needed analgesic use. RESULTS During the immediate post-injury period, headache was more often constant (p = 0.002) and associated with migrainous symptoms (p < 0.001). By the third week post-injury, episodic headache was more prevalent (p < 0.001). Most patients (54%) transitioned from constant, migrainous headache to episodic, non-migrainous headache. This finding was uninfluenced by as-needed analgesic medication use. CONCLUSIONS These findings document the trajectory of HAC. Future studies should assess relationships between initial headache characteristics and recovery.
Collapse
Affiliation(s)
- Michael J. Popovich
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (M.T.R.); (A.A.A.); (M.T.L.)
| | - Brandon S. Wright
- Department of Kinesiology, University of Michigan, Ann Abror, MI 48109, USA;
| | - Abigail C. Bretzin
- Injury Prevention Center, Department of Emergency Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Mark T. Roberts
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (M.T.R.); (A.A.A.); (M.T.L.)
| | - Bara Alsalaheen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (M.T.R.); (A.A.A.); (M.T.L.)
| | - Andrea A. Almeida
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (M.T.R.); (A.A.A.); (M.T.L.)
| | - Matthew T. Lorincz
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (M.T.R.); (A.A.A.); (M.T.L.)
| | - James T. Eckner
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
88
|
Huibregtse ME, Cooper JJ, Ross DA. Hieroglyphs and Head Injuries: Sex Differences in Traumatic Brain Injury. Biol Psychiatry 2024; 95:e25-e27. [PMID: 38811076 DOI: 10.1016/j.biopsych.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/31/2024]
Affiliation(s)
- Megan E Huibregtse
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia.
| | - Joseph J Cooper
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - David A Ross
- Department of Psychiatry, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| |
Collapse
|
89
|
Pybus AF, Bitarafan S, Brothers RO, Rohrer A, Khaitan A, Moctezuma FR, Udeshi K, Davies B, Triplett S, Griffin MN, Dammer EB, Rangaraju S, Buckley EM, Wood LB. Profiling the neuroimmune cascade in 3xTg-AD mice exposed to successive mild traumatic brain injuries. J Neuroinflammation 2024; 21:156. [PMID: 38872143 PMCID: PMC11177462 DOI: 10.1186/s12974-024-03128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/12/2024] [Indexed: 06/15/2024] Open
Abstract
Repetitive mild traumatic brain injuries (rmTBI) sustained within a window of vulnerability can result in long term cognitive deficits, depression, and eventual neurodegeneration associated with tau pathology, amyloid beta (Aβ) plaques, gliosis, and neuronal and functional loss. However, a comprehensive study relating acute changes in immune signaling and glial reactivity to neuronal changes and pathological markers after single and repetitive mTBIs is currently lacking. In the current study, we addressed the question of how repeated injuries affect the brain neuroimmune response in the acute phase of injury (< 24 h) by exposing the 3xTg-AD mouse model of tau and Aβ pathology to successive (1x-5x) once-daily weight drop closed-head injuries and quantifying immune markers, pathological markers, and transcriptional profiles at 30 min, 4 h, and 24 h after each injury. We used young adult 2-4 month old 3xTg-AD mice to model the effects of rmTBI in the absence of significant tau and Aβ pathology. We identified pronounced sexual dimorphism in this model, with females eliciting more diverse changes after injury compared to males. Specifically, females showed: (1) a single injury caused a decrease in neuron-enriched genes inversely correlated with inflammatory protein expression and an increase in AD-related genes within 24 h, (2) each injury significantly increased a group of cortical cytokines (IL-1α, IL-1β, IL-2, IL-9, IL-13, IL-17, KC) and MAPK phospho-proteins (phospho-Atf2, phospho-Mek1), several of which co-labeled with neurons and correlated with phospho-tau, and (3) repetitive injury caused increased expression of genes associated with astrocyte reactivity and macrophage-associated immune function. Collectively our data suggest that neurons respond to a single injury within 24 h, while other cell types, including astrocytes, transition to inflammatory phenotypes within days of repetitive injury.
Collapse
Affiliation(s)
- Alyssa F Pybus
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sara Bitarafan
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rowan O Brothers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Alivia Rohrer
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Arushi Khaitan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Felix Rivera Moctezuma
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kareena Udeshi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brae Davies
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sydney Triplett
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Martin N Griffin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eric B Dammer
- Center for Neurodegenerative Diseases, School of Medicine, Emory University, Atlanta, GA, USA
| | - Srikant Rangaraju
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, USA
| | - Erin M Buckley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA.
- Children's Healthcare of Atlanta, Atlanta, GA, USA.
| | - Levi B Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
90
|
Donahue CC, Resch JE. Concussion and the Sleeping Brain. SPORTS MEDICINE - OPEN 2024; 10:68. [PMID: 38853235 PMCID: PMC11162982 DOI: 10.1186/s40798-024-00736-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Emerging research has suggested sleep to be a modifier of the trajectory of concussion recovery in adolescent and adult populations. Despite the growing recognition of the relationship between sleep and concussion, the mechanisms and physiological processes governing this association have yet to be established. MAIN BODY Following a concussion, a pathophysiologic cascade of events occurs, characterized by numerous factors including microglia activation, ionic imbalance, and release of excitatory neurotransmitters. Importantly, each of these factors plays a role in the regulation of the sleep-wake cycle. Therefore, dysregulation of sleep following injury may be a function of the diffuse disruption of cerebral functioning in the wake of both axonal damage and secondary physiological events. As the onset of sleep-related symptoms is highly variable following a concussion, clinicians should be aware of when and how these symptoms present. Post-injury changes in sleep have been reported in the acute, sub-acute, and chronic phases of recovery and can prolong symptom resolution, affect neurocognitive performance, and influence mood state. Though these changes support sleep as a modifier of recovery, limited guidance exists for clinicians or their patients in the management of sleep after concussion. This may be attributed to the fact that research has correlated sleep with concussion recovery but has failed to explain why the correlation exists. Sleep is a complex, multifactorial process and the changes seen in sleep that are seen following concussion are the result of interactions amongst numerous processes that regulate the sleep-wake cycle. SHORT CONCLUSION The assessment and management of sleep by identifying and considering the biological, sociological, and psychological interactions of this multifactorial process will allow for clinicians to address the dynamic nature of changes in sleep following concussion.
Collapse
Affiliation(s)
- Catherine C Donahue
- Department of Orthopedics, University of Colorado School of Medicine, Children's Hospital Colorado, 13123 E. 16th Ave, Box 060, 80045, Aurora, CO, USA.
| | - Jacob E Resch
- Department of Kinesiology, University of Virginia, 550 Brandon Ave, Charlottesville, VA, 22908, USA
| |
Collapse
|
91
|
Andersson MJ, Kapetanovic S, Håkansson A, Claesdotter-Knutsson E. Concussion history associated with adolescent psychological distress but not hazardous gambling: a cross-sectional study. BMC Psychol 2024; 12:329. [PMID: 38840182 DOI: 10.1186/s40359-024-01830-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Sustaining multiple concussions over one's lifetime may be associated with behavioral and mood changes beyond the acute phase of injury. The present cross-sectional study examined the relationship between concussion history, the incidence of current moderate-severe psychological distress, and lifetime adolescent hazardous gambling in high school students. METHODS Four-hundred fifty-nine high school students from southern Sweden (age: 16.81 ± 0.83, 58.2% male) completed a survey assessing concussion history (0,1,2…>8), psychological distress using the Kessler-6 scale, and lifetime hazardous gambling using the NODS-CLiP scale. RESULTS Participants who self-reported three or more concussions were more likely to endorse moderate-severe symptoms of psychological distress than those with no concussion history while controlling for covariates, OR = 2.71, 95% CI [1.19, 6.18]. In contrast, concussion history was not associated with hazardous gambling after controlling for confounding variables. CONCLUSIONS Self-reporting three or more concussions was associated with increased current psychological distress beyond the acute phase of injury among high school students. Adolescents who have sustained multiple concussions should undergo mental health evaluations beyond the acute phase of injury to identify and treat psychological distress, but probing for hazardous gambling may not be clinically relevant in this previously concussed adolescent population.
Collapse
Affiliation(s)
- Mitchell J Andersson
- Faculty of Medicine, Department of Clinical Sciences, Psychiatry, Lund University, Lund, Sweden.
- Clinical Sports and Mental Health Unit, Malmö Addiction Center, Region Skåne, Malmö, Sweden.
| | - Sabina Kapetanovic
- Department of Social and Behavioral Sciences, University West, Trollhättan, Sweden
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Anders Håkansson
- Faculty of Medicine, Department of Clinical Sciences, Psychiatry, Lund University, Lund, Sweden
- Clinical Sports and Mental Health Unit, Malmö Addiction Center, Region Skåne, Malmö, Sweden
| | - Emma Claesdotter-Knutsson
- Faculty of Medicine, Department of Clinical Sciences, Psychiatry, Lund University, Lund, Sweden
- Child and Adolescent Psychiatry Outpatient Clinic, Region Skåne, Lund, Sweden
| |
Collapse
|
92
|
Oesterschlink J, Reinsberger C. [Head injuries: What the team physician needs to know]. ORTHOPADIE (HEIDELBERG, GERMANY) 2024; 53:415-419. [PMID: 38740669 DOI: 10.1007/s00132-024-04507-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
A concussion is the mildest form of a mild traumatic brain injury (tbi) and resembles the most prevalent type of sports associated tbi. Diffuse axonal injuries, the main pathophysiological mechanism of concussion, leads to disruption of communication between different brain areas. The resulting clinical symptoms may relate to several clinical domains (cognition, fatigue, anxiety disorders, headaches/migraines or vestibulo-ocular problems), all of which need to be assessed in a clinical screening during an evaluation for possible concussion. Appropriate and consensus-based protocols to conduct clinical exams are provided by the Concussion in Sport Group (Sport Concussion Assessment Tool (SCAT), Sport Concussion Office Assessment Tool (SCOAT)) and should be used in the most up-to-date version. Therapeutically, slowly and incrementally increasing sub symptomatic activation consisting of daily routine activities, aerobic and cognitive exercises should be introduced early after the trauma. Education about concussion should be geared towards target audiences and will then greatly contribute to adherence and acceptance of medical management.
Collapse
Affiliation(s)
- Julian Oesterschlink
- Department Sport und Gesundheit, Sportmedizinisches Institut, Universität Paderborn, Warburger Straße 100, 33098, Paderborn, Deutschland
| | - Claus Reinsberger
- Department Sport und Gesundheit, Sportmedizinisches Institut, Universität Paderborn, Warburger Straße 100, 33098, Paderborn, Deutschland.
- Division of Sports Neurology and Neurosciences, Mass General Brigham, Harvard Medical School, Boston, USA.
| |
Collapse
|
93
|
Corwin DJ, Myers SR, Arbogast KB, Lim MM, Elliott JE, Metzger KB, LeRoux P, Elkind J, Metheny H, Berg J, Pettijohn K, Master CL, Kirschen MP, Cohen AS. Head Injury Treatment With Healthy and Advanced Dietary Supplements: A Pilot Randomized Controlled Trial of the Tolerability, Safety, and Efficacy of Branched Chain Amino Acids in the Treatment of Concussion in Adolescents and Young Adults. J Neurotrauma 2024; 41:1299-1309. [PMID: 38468511 PMCID: PMC11339555 DOI: 10.1089/neu.2023.0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Concussion is a common injury in the adolescent and young adult populations. Although branched chain amino acid (BCAA) supplementation has shown improvements in neurocognitive and sleep function in pre-clinical animal models of mild-to-moderate traumatic brain injury (TBI), to date, no studies have been performed evaluating the efficacy of BCAAs in concussed adolescents and young adults. The goal of this pilot trial was to determine the efficacy, tolerability, and safety of varied doses of oral BCAA supplementation in a group of concussed adolescents and young adults. The study was conducted as a pilot, double-blind, randomized controlled trial of participants ages 11-34 presenting with concussion to outpatient clinics (sports medicine and primary care), urgent care, and emergency departments of a tertiary care pediatric children's hospital and an urban tertiary care adult hospital, between June 24, 2014 and December 5, 2020. Participants were randomized to one of five study arms (placebo and 15 g, 30 g, 45 g, and 54 g BCAA treatment daily) and followed for 21 days after enrollment. Outcome measures included daily computerized neurocognitive tests (processing speed, the a priori primary outcome; and attention, visual learning, and working memory), symptom score, physical and cognitive activity, sleep/wake alterations, treatment compliance, and adverse events. In total, 42 participants were randomized, 38 of whom provided analyzable data. We found no difference in our primary outcome of processing speed between the arms; however, there was a significant reduction in total symptom score (decrease of 4.4 points on a 0-54 scale for every 500 g of study drug consumed, p value for trend = 0.0036, [uncorrected]) and return to physical activity (increase of 0.503 points on a 0-5 scale for every 500 g of study drug consumed, p value for trend = 0.005 [uncorrected]). There were no serious adverse events. Eight of 38 participants reported a mild (not interfering with daily activity) or moderate (limitation of daily activity) adverse event; there were no differences in adverse events by arm, with only two reported mild adverse events (both gastrointestinal) in the highest (45 g and 54 g) BCAA arms. Although limited by slow enrollment, small sample size, and missing data, this study provides the first demonstration of efficacy, as well as safety and tolerability, of BCAAs in concussed adolescents and young adults; specifically, a dose-response effect in reducing concussion symptoms and a return to baseline physical activity in those treated with higher total doses of BCAAs. These findings provide important preliminary data to inform a larger trial of BCAA therapy to expedite concussion recovery.
Collapse
Affiliation(s)
- Daniel J. Corwin
- Division of Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sage R. Myers
- Division of Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kristy B. Arbogast
- Division of Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Miranda M. Lim
- Oregon Alzheimer's Disease Research Center & Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
- Research Service and VA RR&D VISN20 Northwest Mental Illness Research Education and Clinical Center (MIRECC), VA Portland Health Care System, Portland, Oregon, USA
| | - Jonathan E. Elliott
- Oregon Alzheimer's Disease Research Center & Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| | - Kristina B. Metzger
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Peter LeRoux
- Department of Neurosurgery, University of Rochester Medical Center and Bassett Medical Center, Cooperstown, New York, USA
| | - Jaclynn Elkind
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hannah Metheny
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jeffrey Berg
- Department of Family Medicine, Suburban Community Hospital, East Norriton, Pennsylvania, USA
| | - Kevin Pettijohn
- Division of Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christina L. Master
- Division of Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Sports Medicine and Performance Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Matthew P. Kirschen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Akiva S. Cohen
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
94
|
Hagopian M, Jorgensen MP, Lehmann H, O’Hagan F. Navigating uncertainty: exploring parents' knowledge of concussion management and neuropsychological baseline testing. Front Sports Act Living 2024; 6:1360329. [PMID: 38799030 PMCID: PMC11116697 DOI: 10.3389/fspor.2024.1360329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/28/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Parents play an important role in preventing and managing sport-related concussions among youth sport participants. Research indicates that parents understand the severity and consequences associated with the injury but gaps exist in their knowledge of its management. Neuropsychological baseline testing (NBT) is a modality that has gained interest in youth sport to purportedly better manage concussion injuries. Little is known about parents' perspectives on the use of NBT in the management process. Methods The present qualitative study used Protection Motivation Theory as a guiding framework and employed focus groups (N = 2) with parents (N = 11) to gain insight into parents' perceptions and experiences with concussion management, specifically focusing on NBT. Results Inductive Content Analysis developed a core theme of navigating uncertainty. Participants expressed uncertainty about the nature of concussion and its management process, where concussion was not always easy to identify, youth were not always reliable reporters, and there was no prescribed or proscribed path for recovery. Personal experience and concussion management policy provided participants with a degree of certainty in managing concussions. Participants gave NBT mixed reviews in potentially promoting greater certainty but also held reservations about its usefulness in concussion management. Discussion We discuss findings relative to existing knowledge and theory in youth sport concussion and identify implications for practice.
Collapse
Affiliation(s)
- Matthew Hagopian
- Department of Psychology, Trent University, Peterborough, ON, Canada
| | - Michael P. Jorgensen
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Hugo Lehmann
- Department of Psychology, Trent University, Peterborough, ON, Canada
| | - Fergal O’Hagan
- Department of Psychology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
95
|
Karvandi E, Barrett L, Newcombe V, Hutchinson P, Helmy A. Digital health interventions for remote follow-up after mild traumatic brain injury. Br J Neurosurg 2024:1-7. [PMID: 38711206 DOI: 10.1080/02688697.2024.2346564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND After a mild traumatic brain injury (mild TBI,) a significant number of patients may experience persistent symptoms and disabilities for months to years. Early identification and timely management of persistent symptoms may help to reduce the long-term impacts of mild TBIs. There is currently no formalised method for identifying patients with persistent symptoms after mild TBI once they are discharged from emergency department. OBJECTIVE Assess the feasibility of a remote monitoring tool for early identification of persistent symptoms after mild TBI in the outpatient setting using digital tools. METHODS Electronic surveys were sent to patients with mild TBI who presented to the emergency department at a Major Trauma Centre in England. The surveys were completed at three different timepoints (within days of injury (S1), 1 month (S2), and 3 months (S3) after injury). The indicators used to assess feasibility were engagement, number of eligible patients for follow-up evidence of need for the intervention, and consistency with the literature. Feedback was sought from participants. RESULTS Of the 200 people invited to participate, 134 (67.0%) completed S1, 115 (57.5%) completed S2, and 95 (47.5%) completed S3. The rates of persistent symptoms ranged from 17.9%-62.6% depending on the criteria used, and we found a significant proportion of the participants experienced morbidity 1 and 3 months after injury. The electronic follow-up tool was deemed an acceptable and user-friendly method for service delivery by participants. CONCLUSION Using digital tools to monitor and screen mild TBI patients for persistent symptoms is feasible. This could be a scalable, cost-effective, and convenient solution which could improve access to healthcare and reduce healthcare inequalities. This could enable early identification of patients with further medical needs and facilitate timely intervention to improve the clinical workflows, patient satisfaction, and health outcomes for people with persistent morbidities after mild TBIs.
Collapse
Affiliation(s)
- Elika Karvandi
- Division of Neurosurgery, University of Cambridge, Cambridge, UK
| | - Liam Barrett
- PACE, Department of Medicine, University of Cambridge, Cambridge, UK
- Emergency Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Virginia Newcombe
- PACE, Department of Medicine, University of Cambridge, Cambridge, UK
- Emergency Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Peter Hutchinson
- Division of Neurosurgery, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery, University of Cambridge, Cambridge, UK
| |
Collapse
|
96
|
Wing S, Caiquo J, Butler C, Giza C, Babikian T. Framing racial disparities within sports related concussion (SRC): an ecological framework for understanding biases and disparities in concussion care for black athletes. Int Rev Psychiatry 2024; 36:254-271. [PMID: 39255024 DOI: 10.1080/09540261.2024.2387186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/11/2024] [Indexed: 09/11/2024]
Abstract
Privilege and marginalization associated with racial background have been posited as contributors to why Black athletes face disparities within their care, treatment, and recovery from sport-related concussion (SRC). However, empirical findings have limited exploration on how disparate outcomes have emerged, and the interaction with systems of biases, power and disenfranchisement. To understand concussion care disparities, a qualitative content analysis was conducted in three phases: [I] identifying salient literature on racial differences for Black athletes with SRC (N = 29), [II] qualitative analysis of literature to determine salient topics, themes and patterns within the literature, and [III] constructing a novel ecological-systems framework that encapsulates the 'why' and 'how' related to psychosocial and sociocultural experiences of power, access, and biases for Black athletes. The content analysis yielded two patterns, where concussion care decisions are influenced by (1) biased, unconscious beliefs that posit Black athletes as uniquely invincible to injury and pain, and (2) inadequate access to concussion knowledge and resources, which both moderate SRC injury risk, diagnosis, recovery and outcomes. Ultimately, our novel framework provides a clear thread on how historical, macro-level policy and perceptions can impact micro-level clinical care and decision-making for Black athletes with SRC.
Collapse
Affiliation(s)
- Sydney Wing
- Steve Tisch BrainSPORT Program, University of California at Los Angeles, Los Angeles, CA, USA
- Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| | - Joshua Caiquo
- Steve Tisch BrainSPORT Program, University of California at Los Angeles, Los Angeles, CA, USA
- California Rehabilitation Institute, UCLA Health and Cedars-Sinai, Los Angeles, CA, USA
| | | | - Christopher Giza
- Steve Tisch BrainSPORT Program, University of California at Los Angeles, Los Angeles, CA, USA
- Pediatric Neurology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Talin Babikian
- Steve Tisch BrainSPORT Program, University of California at Los Angeles, Los Angeles, CA, USA
- Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
97
|
Anderson M, Reynolds E, Gilliland T, Hammonds K, Driver S. The Association Among Clinical Profiles, Modifiers, and Prolonged Recovery in Adolescents With Sport-Related Concussion. Clin J Sport Med 2024; 34:266-272. [PMID: 37937954 DOI: 10.1097/jsm.0000000000001197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023]
Abstract
OBJECTIVE The purposes were to (1) describe the prevalence of clinical profiles and modifiers, (2) examine the association between clinical profiles and prolonged recovery, and (3) examine the interaction between clinical profiles and modifiers and prolonged recovery in adolescents with sport-related concussion (SRC). DESIGN Retrospective, cross-sectional. SETTING Interdisciplinary specialty sports concussion clinic. PATIENTS Patients (n = 299) aged 12 to 19 years who were diagnosed with SRC within 30 days of injury. INDEPENDENT VARIABLES Clinical profiles and modifiers were decided by the clinical judgment of the clinical neuropsychologist and sports medicine physician, using data from the Clinical Profile Screen and information gathered from the clinical interview, neurocognitive, and vestibular and ocular motor testing. MAIN OUTCOME MEASURES Prolonged recovery was defined as ≥28 days from the date of injury to the date of clearance. RESULTS The most common clinical profiles were migraine (34.8%) and cognitive-fatigue (23.4%). There were no significant relationships between clinical profiles and prolonged recovery (Wald = 5.89, df = 4, P = 0.21). The presence of a modifier did not significantly affect the relationship between clinical profiles and prolonged recovery ( = 6.5, df = 5, P = 0.26). The presence of any modifier yielded a 10-day increase in median recovery time within the cognitive/fatigue clinical profile (Wilcoxon rank-sum = 268.5, P = 0.01). CONCLUSIONS Although patients with a clinical profile and modifier may not experience prolonged recovery, they may experience longer recovery time than patients with a clinical profile and no modifier.
Collapse
Affiliation(s)
- Morgan Anderson
- Baylor Scott & White Sports Therapy and Research, Frisco, Texas
- Baylor Scott & White Research Institute, Dallas, Texas
| | - Erin Reynolds
- Baylor Scott & White Sports Concussion Program, Frisco, Texas; and
| | - Taylor Gilliland
- Baylor Scott & White Sports Therapy and Research, Frisco, Texas
- Baylor Scott & White Research Institute, Dallas, Texas
| | | | - Simon Driver
- Baylor Scott & White Sports Therapy and Research, Frisco, Texas
- Baylor Scott & White Research Institute, Dallas, Texas
| |
Collapse
|
98
|
Abadie A, McKeag I, Springer D, Hale MH, Fernández JR. Differences in Volatile Organic Compounds Between Concussed and Non-concussed Division I Athletes. Cureus 2024; 16:e61241. [PMID: 38939283 PMCID: PMC11210574 DOI: 10.7759/cureus.61241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction Diagnosing a concussion is challenging because of complex and variable symptoms. Establishing a viable biomarker of injury may rely on physiologic measurements rather than symptomology. Volatile organic compounds (VOCs) such as breath acetone have been identified as potential physiological markers that can capture changes in the utilization of energy substrates post-concussion. Here, we aimed to explore whether differences in VOCs exist between concussed and non-concussed athletes at the initial and later stages of injury recovery. Methods Six (N=6) non-concussed athletes were enrolled as control participants prior to the competitive season. Control participants' breath acetone, heart rate, and anthropometric measures were obtained at rest and throughout a single exercise challenge by breathalyzer. Six (N=6) athletes diagnosed with concussion during the competitive season had breath acetone measured daily until cleared to return to activity or approximately four weeks following enrollment where they participated in an exit exercise challenge having breath acetone, heart rate, and anthropometric measures obtained. Comparisons were made between at-rest measures of concussed and non-concussed participants at multiple time points during the recovery period. Paired t-test comparisons with individuals serving as their own control were used to determine individual differences in recovery. Visual graphs were used to demonstrate differences in obtained measures amongst individuals and between groups during the exercise challenges. Results Results demonstrated statistically significant differences in breath acetone between concussed and control participants when the highest day measured during the first week of concussion was compared to the control participant's resting values (P=0.017). Additionally, when the concussed participants served as their own control and their highest measured day of the first week post-concussion was compared to values when cleared to return to activity or at 26 days post-concussion, there was a significant difference in breath acetone (P=0.028). Comparing breath acetone during exercise between non-concussed and cleared concussed participants or four weeks post-injury, demonstrated no significant differences throughout the challenge or at rest prior. Visual graph comparisons in a single participant before and after concussion suggest differences may appear following exercise during the recovery period. Discussion These results suggest VOCs, particularly breath acetone, have the potential to serve as diagnostic markers of concussion. However, longitudinal research within larger cohorts and with equipment able to expel VOCs other than acetone from measures are needed to make informed recommendations.
Collapse
Affiliation(s)
- Allyn Abadie
- Department of Nutrition Sciences, University of Alabama Birmingham, Birmingham, USA
| | - Ian McKeag
- Department of Family and Community Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, USA
| | - Dan Springer
- Department of Athletics, University of Alabama Birmingham, Birmingham, USA
| | - Matthew H Hale
- Department of Family and Community Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, USA
- Department of Athletics, University of Alabama Birmingham, Birmingham, USA
| | - José R Fernández
- Department of Nutrition Sciences, University of Alabama Birmingham, Birmingham, USA
| |
Collapse
|
99
|
Ingram BM, DeFreese JD, Kerr ZY, Oyesanya TO, Picha KJ, Register-Mihalik JK. Applying the National Institute on Minority Health and Health Disparities Research Framework to Social Determinants of Health in the Context of Sport-Related Concussion: A Clinical Commentary. J Athl Train 2024; 59:447-457. [PMID: 38446622 PMCID: PMC11127672 DOI: 10.4085/1062-6050-0370.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Sport-related concussion (SRC) is a prevalent injury. Significant disparities in SRC outcomes exist across racial and ethnic groups. These disparities may be attributed to the unequal distribution of political power (or influence) and resource allocation in various communities, shaping individuals' social determinants of health (SDOH). However, the influence of SDOH on SRC outcomes remains understudied. In this clinical commentary, we use the National Institute on Minority Health and Health Disparities Research Framework and describe how its application can help address gaps in our understanding of SDOH and SRC. This framework provides a comprehensive approach to investigating and addressing health disparities by considering SDOH along multiple levels and domains of influence. Using this framework, athletic trainers can identify areas requiring intervention and better understand how SDOH influence SRC outcomes. This understanding can help athletic trainers develop tailored interventions to promote equitable care for patients with SRC.
Collapse
Affiliation(s)
- Brittany M. Ingram
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill
| | - J. D. DeFreese
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill
| | - Zachary Yukio Kerr
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill
| | | | - Kelsey J. Picha
- Department of Interdisciplinary Health Sciences, A.T. Still University, Mesa, AZ
| | | |
Collapse
|
100
|
Smith MA, McNinch NL, Chaney D, Shauver L, Murray T, Kline P, Lesak A, Franco-MacKendrick L, Scott L, Logan K, Ichesco IK, Liebig C, Congeni J. Reduced Concussion Symptom Burden in Early Adolescent Athletes Using a Head-Neck Cooling Device. Clin J Sport Med 2024; 34:247-255. [PMID: 38180057 PMCID: PMC11042520 DOI: 10.1097/jsm.0000000000001198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/02/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE To determine whether an investigational head-neck cooling device, Pro2cool, can better reduce symptom severity compared with standard postconcussion care in early adolescent athletes after a sports-related concussion. DESIGN Prospective, longitudinal, randomized trial design conducted over a 28-day period. SETTING Six pediatric medical centers in Ohio and Michigan. PARTICIPANTS The study enrolled 167 male and female 12- to 19-year-old athletes who experienced a sports-related concussion within 8 days of study enrollment and registering a Sports Concussion Assessment Tool 5 (SCAT5) composite score >7. INTERVENTIONS Pro2cool, an investigational head-neck cooling therapy device, was applied at 2 postinjury time points compared with postconcussion standard of care only. MAIN OUTCOME MEASURES Baseline SCAT5 composite symptom severity scores were determined for all subjects. Sports Concussion Assessment Tool 5 scores for concussed athletes receiving cooling treatment were analyzed across 6 independent postenrollment time points compared with subjects who did not receive cooling therapy and only standard care. Adverse reactions and participate demographics were also compared. RESULTS Athletes who received Pro2cool cooling therapy (n = 79) experienced a 14.4% greater reduction in SCAT5 symptom severity scores at the initial visit posttreatment, a 25.5% greater reduction at the 72-hour visit posttreatment, and a 3.4% greater reduction at the 10-day visit compared with subjects receiving only standard care (n = 88). Overall, 36 adverse events (increased blood pressure, decreased pulse, and dizziness) were reported, with 13 events associated with the device, of which 3 were classified as moderate in severity. CONCLUSIONS This study demonstrates the efficacy and safety of head and neck cooling for the management of concussion symptoms in adolescent athletes of an age group for which little to no prior data are available.
Collapse
Affiliation(s)
- Matthew A. Smith
- Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, Ohio
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Neil L. McNinch
- Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, Ohio
| | - Danielle Chaney
- Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, Ohio
| | - Lisa Shauver
- Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, Ohio
| | - Tamara Murray
- Department of Sports Medicine, Akron Children's Hospital, Akron, Ohio
| | - Peyton Kline
- Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, Ohio
| | - Alexandria Lesak
- Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, Ohio
| | | | - Lora Scott
- Department of Sports Medicine, Dayton Children's Hospital, Dayton Ohio
| | - Kelsey Logan
- Division of Sports Medicine, Cincinnati Children's Hospital, Cincinnati, Ohio; and
| | - Ingrid K. Ichesco
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | | | - Joseph Congeni
- Department of Sports Medicine, Akron Children's Hospital, Akron, Ohio
| |
Collapse
|