51
|
Kellogg EA. Genetic control of branching patterns in grass inflorescences. THE PLANT CELL 2022; 34:2518-2533. [PMID: 35258600 PMCID: PMC9252490 DOI: 10.1093/plcell/koac080] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/02/2022] [Indexed: 05/13/2023]
Abstract
Inflorescence branching in the grasses controls the number of florets and hence the number of seeds. Recent data on the underlying genetics come primarily from rice and maize, although new data are accumulating in other systems as well. This review focuses on a window in developmental time from the production of primary branches by the inflorescence meristem through to the production of glumes, which indicate the transition to producing a spikelet. Several major developmental regulatory modules appear to be conserved among most or all grasses. Placement and development of primary branches are controlled by conserved auxin regulatory genes. Subtending bracts are repressed by a network including TASSELSHEATH4, and axillary branch meristems are regulated largely by signaling centers that are adjacent to but not within the meristems themselves. Gradients of SQUAMOSA-PROMOTER BINDING-like and APETALA2-like proteins and their microRNA regulators extend along the inflorescence axis and the branches, governing the transition from production of branches to production of spikelets. The relative speed of this transition determines the extent of secondary and higher order branching. This inflorescence regulatory network is modified within individual species, particularly as regards formation of secondary branches. Differences between species are caused both by modifications of gene expression and regulators and by presence or absence of critical genes. The unified networks described here may provide tools for investigating orphan crops and grasses other than the well-studied maize and rice.
Collapse
|
52
|
Zhang J, Tang Y, Pu X, Qiu X, Wang J, Li T, Yang Z, Zhou Y, Chang Y, Liang J, Zhang H, Deng G, Long H. Genetic and transcriptomic dissection of an artificially induced paired spikelets mutant of wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2543-2554. [PMID: 35695919 DOI: 10.1007/s00122-022-04137-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Morphological, genetic and transcriptomic characterizations of an EMS-induced wheat paired spikelets (PS) mutant were performed. A novel qualitative locus WPS1 on chromosome 1D was identified. Grain yield of wheat is significantly associated with inflorescence or spike architecture. However, few genes related to wheat spike development have been identified and their underlying mechanisms are largely unknown. In this study, we characterized an ethyl methanesulfonate (EMS)-induced wheat mutant, wheat paired spikelets 1 (wps1). Unlike a single spikelet that usually develops at each node of rachis, a secondary spikelet appeared below the primary spikelet at most of the rachis nodes of wps1. The microscope observation showed that the secondary spikelet initiated later than the primary spikelet. Genetic analysis suggested that the PS of wps1 is controlled by a single dominant nuclear gene, designated WHEAT PAIRED SPIKELETS 1 (WPS1). Further RNA-seq based bulked segregant analysis and molecular marker mapping localized WPS1 in an interval of 208.18-220.92 Mb on the chromosome arm 1DL, which is different to known genes related to spike development in wheat. By using wheat omics data, TraesCS1D02G155200 encoding a HD-ZIP III transcription factor was considered as a strong candidate gene for WPS1. Transcriptomic analysis indicated that PS formation in wps1 is associated with auxin-related pathways and may be regulated by networks involving TB1, Ppd1, FT1, VRN1, etc. This study laid the solid foundation for further validation of the causal gene of WPS1 and explored its regulatory mechanism in PS formation and inflorescence development, which may benefit to kernel yield improvement of wheat based on optimization or design of spike architecture in the future.
Collapse
Affiliation(s)
- Juanyu Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yanyan Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xi Pu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuebing Qiu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jinhui Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, People's Republic of China
| | - Tao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhao Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yao Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, Guangdong, China
| | - Yuxiao Chang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, Guangdong, China
| | - Junjun Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, People's Republic of China
| | - Haili Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, People's Republic of China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
53
|
Shaw BP, Sekhar S, Panda BB, Sahu G, Chandra T, Parida AK. Genes determining panicle morphology and grain quality in rice ( Oryza sativa). FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:673-688. [PMID: 35598893 DOI: 10.1071/fp21346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
The world's increase in rice (Oryza sativa L.) production is not keeping up with the increase in its population. To boost the introduction of new high-yielding cultivars, knowledge is being gained on the genes and quantitative trait loci (QTLs) determining the panicle phenotype. The important are those determining yield of the crop, such as grain numbers per panicle and size and weight of the grains. Biochemical and molecular functions of many of them are understood in some details. Among these, OsCKX2 and OsSPL14 have been shown to increase panicle branching and grain numbers when overexpressed. Furthermore, miRNAs appear to play an important role in determining the panicle morphology by regulating the expressions of the genes like OsSPL14 and GRF4 involved in panicle branching and grain numbers and length. Mutations also greatly influence the grain shape and size. However, the information gained so far on the genetic regulation of grain filling and panicle morphology has not been successfully put into commercial application. Furthermore, the identification of the gene(s)/QTLs regulating panicle compactness is still lacking, which may enable the researchers to convert a compact-panicle cultivar into a lax/open one, and thereby increasing the chances of enhancing the yield of a desired compact-panicle cultivar obtained by the breeding effort.
Collapse
Affiliation(s)
| | - Sudhanshu Sekhar
- Institute of Life Sciences, Nalco Square, Bhubaneswar-751023, Odisha, India
| | | | - Gyanasri Sahu
- Institute of Life Sciences, Nalco Square, Bhubaneswar-751023, Odisha, India
| | - Tilak Chandra
- Institute of Life Sciences, Nalco Square, Bhubaneswar-751023, Odisha, India
| | - Ajay Kumar Parida
- Institute of Life Sciences, Nalco Square, Bhubaneswar-751023, Odisha, India
| |
Collapse
|
54
|
Zhong J, Kong F. The control of compound inflorescences: insights from grasses and legumes. TRENDS IN PLANT SCIENCE 2022; 27:564-576. [PMID: 34973922 DOI: 10.1016/j.tplants.2021.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/16/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
A major challenge in biology is to understand how organisms have increased developmental complexity during evolution. Inflorescences, with remarkable variation in branching systems, are a fitting model to understand architectural complexity. Inflorescences bear flowers that may become fruits and/or seeds, impacting crop productivity and species fitness. Great advances have been achieved in understanding the regulation of complex inflorescences, particularly in economically and ecologically important grasses and legumes. Surprisingly, a synthesis is still lacking regarding the common or distinct principles underlying the regulation of inflorescence complexity. Here, we synthesize the similarities and differences in the regulation of compound inflorescences in grasses and legumes, and propose that the emergence of novel higher-order repetitive modules is key to the evolution of inflorescence complexity.
Collapse
Affiliation(s)
- Jinshun Zhong
- School of Life Sciences, South China Agricultural University, Wushan Street 483, Guangzhou 510642, China; Institute for Plant Genetics, Heinrich-Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany; Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Köln, Germany; Cluster of Excellence on Plant Sciences, 'SMART Plants for Tomorrow's Needs', Heinrich-Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
55
|
Ouyang X, Zhong X, Chang S, Qian Q, Zhang Y, Zhu X. Partially functional NARROW LEAF1 balances leaf photosynthesis and plant architecture for greater rice yield. PLANT PHYSIOLOGY 2022; 189:772-789. [PMID: 35377451 PMCID: PMC9157069 DOI: 10.1093/plphys/kiac135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
NARROW LEAF1 (NAL1) is an elite gene in rice (Oryza sativa), given its close connection to leaf photosynthesis, hybrid vigor, and yield-related agronomic traits; however, the underlying mechanism by which this gene affects these traits remains elusive. In this study, we systematically measured leaf photosynthetic parameters, leaf anatomical parameters, architectural parameters, and agronomic traits in indica cultivar 9311, in 9311 with the native NAL1 replaced by the Nipponbare NAL1 (9311-NIL), and in 9311 with the NAL1 fully mutated (9311-nal1). Leaf length, width, and spikelet number gradually increased from lowest to highest in 9311-nal1, 9311, and 9311-NIL. In contrast, the leaf photosynthetic rate on a leaf area basis, leaf thickness, and panicle number gradually decreased from highest to lowest in 9311-nal1, 9311, and 9311-NIL. RNA-seq analysis showed that NAL1 negatively regulates the expression of photosynthesis-related genes; NAL1 also influenced expression of many genes related to phytohormone signaling, as also shown by different leaf contents of 3-Indoleacetic acid, jasmonic acid, Gibberellin A3, and isopentenyladenine among these genotypes. Furthermore, field experiments with different planting densities showed that 9311 had a larger biomass and yield advantage under low planting density compared to either 9311-NIL or 9311-nall. This study shows both direct and indirect effects of NAL1 on leaf photosynthesis; furthermore, we show that a partially functional NAL1 allele helps maintain a balanced leaf photosynthesis and plant architecture for increased biomass and grain yield in the field.
Collapse
Affiliation(s)
- Xiang Ouyang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center (HHRRC), Changsha 410125, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoyu Zhong
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center (HHRRC), Changsha 410125, China
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha 410128, China
| | - Shuoqi Chang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center (HHRRC), Changsha 410125, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Yuzhu Zhang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center (HHRRC), Changsha 410125, China
| | - Xinguang Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
56
|
Chen Q, Tian F, Cheng T, Jiang J, Zhu G, Gao Z, Lin H, Hu J, Qian Q, Fang X, Chen F. Translational repression of FZP mediated by CU-rich element/OsPTB interactions modulates panicle development in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1319-1331. [PMID: 35293072 DOI: 10.1111/tpj.15737] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Panicle development is an important determinant of the grain number in rice. A thorough characterization of the molecular mechanism underlying panicle development will lead to improved breeding of high-yielding rice varieties. Frizzy Panicle (FZP), a critical gene for panicle development, is regulated by OsBZR1 and OsARFs at the transcriptional stage. However, the translational modulation of FZP has not been reported. We reveal that the CU-rich elements (CUREs) in the 3' UTR of the FZP mRNA are crucial for efficient FZP translation. The knockout of CUREs in the FZP 3' UTR or the over-expression of the FZP 3' UTR fragment containing CUREs resulted in an increase in FZP mRNA translation efficiency. Moreover, the number of secondary branches (NSB) and the grain number per panicle (GNP) decreased in the transformed rice plants. The CUREs in the 3' UTR of FZP mRNA were verified as the targets of the polypyrimidine tract-binding proteins OsPTB1 and OsPTB2 in rice. Both OsPTB1 and OsPTB2 were highly expressed in young panicles. The knockout of OsPTB1/2 resulted in an increase in the FZP translational efficiency and a decrease in the NSB and GNP. Furthermore, the over-expression of OsPTB1/2 decreased the translation of the reporter gene fused to FZP 3' UTR in vivo and in vitro. These results suggest that OsPTB1/2 can mediate FZP translational repression by interacting with CUREs in the 3' UTR of FZP mRNA, leading to changes in the NSB and GNP. Accordingly, in addition to transcriptional regulation, FZP expression is also fine-tuned at the translational stage during rice panicle development.
Collapse
Affiliation(s)
- Qiong Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Fa'an Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tingting Cheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun'e Jiang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guanlin Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Haiyan Lin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiaohua Fang
- Genetic Resource R&D Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chang Zhou, 213001, China
| | - Fan Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| |
Collapse
|
57
|
Parida AK, Sekhar S, Panda BB, Sahu G, Shaw BP. Effect of Panicle Morphology on Grain Filling and Rice Yield: Genetic Control and Molecular Regulation. Front Genet 2022; 13:876198. [PMID: 35620460 PMCID: PMC9127237 DOI: 10.3389/fgene.2022.876198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
The demand for rice is likely to increase approximately 1.5 times by the year 2050. In contrast, the rice production is stagnant since the past decade as the ongoing rice breeding program is unable to increase the production further, primarily because of the problem in grain filling. Investigations have revealed several reasons for poor filling of the grains in the inferior spikelets of the compact panicle, which are otherwise genetically competent to develop into well-filled grains. Among these, the important reasons are 1) poor activities of the starch biosynthesizing enzymes, 2) high ethylene production leading to inhibition in expressions of the starch biosynthesizing enzymes, 3) insufficient division of the endosperm cells and endoreduplication of their nuclei, 4) low accumulation of cytokinins and indole-3-acetic acid (IAA) that promote grain filling, and 5) altered expressions of the miRNAs unfavorable for grain filling. At the genetic level, several genes/QTLs linked to the yield traits have been identified, but the information so far has not been put into perspective toward increasing the rice production. Keeping in view the genetic competency of the inferior spikelets to develop into well-filled grains and based on the findings from the recent research studies, improving grain filling in these spikelets seems plausible through the following biotechnological interventions: 1) spikelet-specific knockdown of the genes involved in ethylene synthesis and overexpression of β-CAS (β-cyanoalanine) for enhanced scavenging of CN− formed as a byproduct of ethylene biosynthesis; 2) designing molecular means for increased accumulation of cytokinins, abscisic acid (ABA), and IAA in the caryopses; 3) manipulation of expression of the transcription factors like MYC and OsbZIP58 to drive the expression of the starch biosynthesizing enzymes; 4) spikelet-specific overexpression of the cyclins like CycB;1 and CycH;1 for promoting endosperm cell division; and 5) the targeted increase in accumulation of ABA in the straw during the grain filling stage for increased carbon resource remobilization to the grains. Identification of genes determining panicle compactness could also lead to an increase in rice yield through conversion of a compact-panicle into a lax/open one. These efforts have the ability to increase rice production by as much as 30%, which could be more than the set production target by the year 2050.
Collapse
Affiliation(s)
- Ajay Kumar Parida
- Crop Improvement Group, Institute of Life Sciences, Bhubaneswar, India
| | - Sudhanshu Sekhar
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | - Binay Bhushan Panda
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, India
| | - Gyanasri Sahu
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, India
| | | |
Collapse
|
58
|
Dixon LE, Pasquariello M, Badgami R, Levin KA, Poschet G, Ng PQ, Orford S, Chayut N, Adamski NM, Brinton J, Simmonds J, Steuernagel B, Searle IR, Uauy C, Boden SA. MicroRNA-resistant alleles of HOMEOBOX DOMAIN-2 modify inflorescence branching and increase grain protein content of wheat. SCIENCE ADVANCES 2022; 8:eabn5907. [PMID: 35544571 PMCID: PMC9094671 DOI: 10.1126/sciadv.abn5907] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/25/2022] [Indexed: 05/26/2023]
Abstract
Plant and inflorescence architecture determine the yield potential of crops. Breeders have harnessed natural diversity for inflorescence architecture to improve yields, and induced genetic variation could provide further gains. Wheat is a vital source of protein and calories; however, little is known about the genes that regulate the development of its inflorescence. Here, we report the identification of semidominant alleles for a class III homeodomain-leucine zipper transcription factor, HOMEOBOX DOMAIN-2 (HB-2), on wheat A and D subgenomes, which generate more flower-bearing spikelets and enhance grain protein content. These alleles increase HB-2 expression by disrupting a microRNA 165/166 complementary site with conserved roles in plants; higher HB-2 expression is associated with modified leaf and vascular development and increased amino acid supply to the inflorescence during grain development. These findings enhance our understanding of genes that control wheat inflorescence development and introduce an approach to improve the nutritional quality of grain.
Collapse
Affiliation(s)
- Laura E. Dixon
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Marianna Pasquariello
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Roshani Badgami
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Kara A. Levin
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Gernot Poschet
- Centre of Organismal Studies (COS), University of Heidelberg, Heidelberg 69120, Germany
| | - Pei Qin Ng
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Simon Orford
- Germplasm Resources Unit, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Noam Chayut
- Germplasm Resources Unit, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Nikolai M. Adamski
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jemima Brinton
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - James Simmonds
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Burkhard Steuernagel
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Iain R. Searle
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Cristobal Uauy
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Scott A. Boden
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
| |
Collapse
|
59
|
Li J, Zhang L, G. Elbaiomy R, Chen L, Wang Z, Jiao J, Zhu J, Zhou W, Chen B, Soaud SA, Abbas M, Lin N, El-Sappah AH. Evolution analysis of FRIZZY PANICLE ( FZP) orthologs explored the mutations in DNA coding sequences in the grass family (Poaceae). PeerJ 2022; 10:e12880. [PMID: 35295554 PMCID: PMC8919851 DOI: 10.7717/peerj.12880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/13/2022] [Indexed: 01/11/2023] Open
Abstract
FRIZZY PANICLE (FZP), an essential gene that controls spikelet differentiation and development in the grass family (Poaceae), prevents the formation of axillary bud meristems and is closely associated with crop yields. It is unclear whether the FZP gene or its orthologs were selected during the evolutionary process of grass species, which possess diverse spike morphologies. In the present study, we adopted bioinformatics methods for the evolutionary analysis of FZP orthologs in species of the grass family. Thirty-five orthologs with protein sequences identical to that of the FZP gene were identified from 29 grass species. Analysis of conserved domains revealed that the AP2/ERF domains were highly conserved with almost no amino acid mutations. However, species of the tribe Triticeae, genus Oryza, and C4 plants exhibited more significant amino acid mutations in the acidic C-terminus region. Results of the phylogenetic analysis showed that the 29 grass species could be classified into three groups, namely, Triticeae, Oryza, and C4 plants. Within the Triticeae group, the FZP genes originating from the same genome were classified into the same sub-group. When selection pressure analysis was performed, significant positive selection sites were detected in species of the Triticeae and Oryza groups. Our results show that the FZP gene was selected during the grass family's evolutionary process, and functional divergence may have already occurred among the various species. Therefore, researchers investigating the FZP gene's functions should take note of the possible presence of various roles in other grass species.
Collapse
Affiliation(s)
- Jia Li
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Litian Zhang
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Xining, Qinghai, China
| | | | - Lilan Chen
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Zhenrong Wang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Jie Jiao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Jiliang Zhu
- Agriculture and Rural Bureau of Zhongjiang County, Deyang, Sichuan, China
| | - Wanhai Zhou
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Bo Chen
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Salma A. Soaud
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Manzar Abbas
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Na Lin
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Ahmed H. El-Sappah
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
60
|
Koppolu R, Chen S, Schnurbusch T. Evolution of inflorescence branch modifications in cereal crops. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102168. [PMID: 35016076 DOI: 10.1016/j.pbi.2021.102168] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Grasses are ubiquitous in our daily lives, with gramineous cereal crops such as maize, rice, and wheat constituting a large proportion of our daily staple food intake. Evolutionary forces, especially over the past ∼20 million years, have shaped grass adaptability, inflorescence architecture, and reproductive success. Here, we provide basic information on grass evolution and inflorescence structures mainly related to two inflorescence types: branched panicle- and spike-type inflorescences, the latter of which has highly modified branching. We summarize and compare known genetic pathways underlying each infloresecence type and discuss how the maize RAMOSA, rice ABERRANT PANICLE ORGANIZATION, and Triticeae COMPOSITUM pathways are regulated. Our analyses might lay the foundation for understanding species-specific gene regulatory networks that could result in improved sink capacities.
Collapse
Affiliation(s)
- Ravi Koppolu
- Independent HEISENBERG Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany.
| | - Shulin Chen
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Thorsten Schnurbusch
- Independent HEISENBERG Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany; Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany.
| |
Collapse
|
61
|
Zhu W, Yang L, Wu D, Meng Q, Deng X, Huang G, Zhang J, Chen X, Ferrándiz C, Liang W, Dreni L, Zhang D. Rice SEPALLATA genes OsMADS5 and OsMADS34 cooperate to limit inflorescence branching by repressing the TERMINAL FLOWER1-like gene RCN4. THE NEW PHYTOLOGIST 2022; 233:1682-1700. [PMID: 34767634 DOI: 10.1111/nph.17855] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
The spatiotemporal control of meristem identity is critical for determining inflorescence architecture, and thus yield, of cereal plants. However, the precise mechanisms underlying inflorescence and spikelet meristem determinacy in cereals are still largely unclear. We have generated loss-of-function and overexpression mutants of the paralogous OsMADS5 and OsMADS34 genes in rice (Oryza sativa), and analysed their panicle phenotypes. Using chromatin immunoprecipitation, electrophoretic mobility-shift and dual-luciferase assays, we have also identified RICE CENTRORADIALIS 4 (RCN4), a TFL1-like gene, as a direct downstream target of both OsMADS proteins, and have analysed RCN4 mutants. The osmads5 osmads34 mutant lines had significantly enhanced panicle branching with increased secondary, and even tertiary and quaternary, branches, compared to wild-type (WT) and osmads34 plants. The osmads34 mutant phenotype could largely be rescued by also knocking out RCN4. Moreover, transgenic panicles overexpressing RCN4 had significantly increased branching, and initiated development of c. 7× more spikelets than WT. Our results reveal a role for OsMADS5 in panicle development, and show that OsMADS5 and OsMADS34 play similar functions in limiting branching and promoting the transition to spikelet meristem identity, in part by repressing RCN4 expression. These findings provide new insights to better understand the molecular regulation of rice inflorescence architecture.
Collapse
Affiliation(s)
- Wanwan Zhu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liu Yang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Di Wu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qingcai Meng
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao Deng
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guoqiang Huang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiao Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaofei Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, 46022, Spain
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ludovico Dreni
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, 46022, Spain
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| |
Collapse
|
62
|
Liu S, Magne K, Daniel S, Sibout R, Ratet P. Brachypodium distachyon UNICULME4 and LAXATUM-A are redundantly required for development. PLANT PHYSIOLOGY 2022; 188:363-381. [PMID: 34662405 PMCID: PMC8774750 DOI: 10.1093/plphys/kiab456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
In cultivated grasses, tillering, leaf, and inflorescence architecture, as well as abscission ability, are major agronomical traits. In barley (Hordeum vulgare), maize (Zea mays), rice (Oryza sativa), and brachypodium (Brachypodium distachyon), NOOT-BOP-COCH-LIKE (NBCL) genes are essential regulators of vegetative and reproductive development. Grass species usually possess 2-4 NBCL copies and until now a single study in O. sativa showed that the disruption of all NBCL genes strongly altered O. sativa leaf development. To improve our understanding of the role of NBCL genes in grasses, we extended the study of the two NBCL paralogs BdUNICULME4 (CUL4) and BdLAXATUM-A (LAXA) in the nondomesticated grass B. distachyon. For this, we applied reversed genetics and generated original B. distachyon single and double nbcl mutants by clustered regularly interspaced short palindromic repeats - CRISPR associated protein 9 (CRISPR-Cas9) approaches and genetic crossing between nbcl targeting induced local lesions in genomes (TILLING) mutants. Through the study of original single laxa CRISPR-Cas9 null alleles, we validated functions previously proposed for LAXA in tillering, leaf patterning, inflorescence, and flower development and also unveiled roles for these genes in seed yield. Furthermore, the characterization of cul4laxa double mutants revealed essential functions for nbcl genes in B. distachyon development, especially in the regulation of tillering, stem cell elongation and secondary cell wall composition as well as for the transition toward the reproductive phase. Our results also highlight recurrent antagonist interactions between NBCLs occurring in multiple aspects of B. distachyon development.
Collapse
Affiliation(s)
- Shengbin Liu
- Université Paris-Saclay, INRAE, CNRS, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay 91405, France
| | - Kévin Magne
- Université Paris-Saclay, INRAE, CNRS, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay 91405, France
| | - Sylviane Daniel
- UR1268 BIA (Biopolymères Interactions Assemblages), INRAE, Nantes 44300, France
| | - Richard Sibout
- UR1268 BIA (Biopolymères Interactions Assemblages), INRAE, Nantes 44300, France
| | - Pascal Ratet
- Université Paris-Saclay, INRAE, CNRS, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay 91405, France
| |
Collapse
|
63
|
Kim SH, Ji SD, Lee HS, Jeon YA, Shim KC, Adeva C, Luong NH, Yuan P, Kim HJ, Tai TH, Ahn SN. A Novel Embryo Phenotype Associated With Interspecific Hybrid Weakness in Rice Is Controlled by the MADS-Domain Transcription Factor OsMADS8. FRONTIERS IN PLANT SCIENCE 2022; 12:778008. [PMID: 35069634 PMCID: PMC8769243 DOI: 10.3389/fpls.2021.778008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/03/2021] [Indexed: 05/27/2023]
Abstract
A novel hybrid weakness gene, DTE9, associated with a dark tip embryo (DTE) trait, was observed in CR6078, an introgression line derived from a cross between the Oryza sativa spp. japonica "Hwayeong" (HY) and the wild relative Oryza rufipogon. CR6078 seeds exhibit protruding embryos and flowers have altered inner floral organs. DTE9 was also associated with several hybrid weakness symptoms including decreased grain weight. Map-based cloning and transgenic approaches revealed that DTE9 is an allele of OsMADS8, a MADS-domain transcription factor. Genetic analysis indicated that two recessive complementary genes were responsible for the expression of the DTE trait. No sequence differences were observed between the two parental lines in the OsMADS8 coding region; however, numerous single nucleotide polymorphisms were detected in the promoter and intronic regions. We generated overexpression (OX) and RNA interference (RNAi) transgenic lines of OsMADS8 in HY and CR6078, respectively. The OsMADS8-OX lines showed the dark tip embryo phenotype, whereas OsMADS8-RNAi recovered the normal embryo phenotype. Changes in gene expression, including of ABCDE floral homeotic genes, were observed in the OsMADS8-OX and OsMADS8-RNAi lines. Overexpression of OsMADS8 led to decreased expression of OsEMF2b and ABA signaling-related genes including OsVP1/ABI3. HY seeds showed higher ABA content than CR6078 seeds, consistent with OsMADS8/DTE9 regulating the expression of genes related ABA catabolism in CR6078. Our results suggest that OsMADS8 is critical for floral organ determination and seed germination and that these effects are the result of regulation of the expression of OsEMF2b and its role in ABA signaling and catabolism.
Collapse
Affiliation(s)
- Sun Ha Kim
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Shi-Dong Ji
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Hyun-Sook Lee
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Yun-A Jeon
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Kyu-Chan Shim
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Cheryl Adeva
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Ngoc Ha Luong
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Pingrong Yuan
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| | | | - Thomas H. Tai
- Crops Pathology and Genetics Research Unit, USDA-ARS, Davis, CA, United States
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Sang-Nag Ahn
- Department of Agronomy, College of Agriculture & Life Sciences, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
64
|
Li G, Xu B, Zhang Y, Xu Y, Khan NU, Xie J, Sun X, Guo H, Wu Z, Wang X, Zhang H, Li J, Xu J, Wang W, Zhang Z, Li Z. RGN1 controls grain number and shapes panicle architecture in rice. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:158-167. [PMID: 34498389 PMCID: PMC8710824 DOI: 10.1111/pbi.13702] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 05/29/2023]
Abstract
Yield in rice is determined mainly by panicle architecture. Using map-based cloning, we identified an R2R3 MYB transcription factor REGULATOR OF GRAIN NUMBER1 (RGN1) affecting grain number and panicle architecture. Mutation of RGN1 caused an absence of lateral grains on secondary branches. We demonstrated that RGN1 controls lateral grain formation by regulation of LONELY GUY (LOG) expression, thus controlling grain number and shaping panicle architecture. A novel favourable allele, RGN1C , derived from the Or-I group in wild rice affected panicle architecture by means longer panicles. Identification of RGN1 provides a theoretical basis for understanding the molecular mechanism of lateral grain formation in rice; RGN1 will be an important gene resource for molecular breeding for higher yield.
Collapse
Affiliation(s)
- Gangling Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Bingxia Xu
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yanpei Zhang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yawen Xu
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Najeeb Ullah Khan
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Jianyin Xie
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xingming Sun
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Haifeng Guo
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Zhenyuan Wu
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xueqiang Wang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Hongliang Zhang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Jinjie Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Jianlong Xu
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Wensheng Wang
- Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Zhanying Zhang
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Zichao Li
- State Key Laboratory of Agrobiotechnology/Beijing Key Laboratory of Crop Genetic ImprovementCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
65
|
Yang Z, Jin H, Chen J, Li C, Wang J, Luo J, Wang Z. Identification and Analysis of the AP2 Subfamily Transcription Factors in the Pecan ( Carya illinoinensis). Int J Mol Sci 2021; 22:ijms222413568. [PMID: 34948359 PMCID: PMC8708044 DOI: 10.3390/ijms222413568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 01/10/2023] Open
Abstract
The AP2 transcriptional factors (TFs) belong to the APETALA2/ ethylene-responsive factor (AP2/ERF) superfamily and regulate various biological processes of plant growth and development, as well as response to biotic and abiotic stresses. However, genome-wide research on the AP2 subfamily TFs in the pecan (Carya illinoinensis) is rarely reported. In this paper, we identify 30 AP2 subfamily genes from pecans through a genome-wide search, and they were unevenly distributed on the pecan chromosomes. Then, a phylogenetic tree, gene structure and conserved motifs were further analyzed. The 30 AP2 genes were divided into euAP2, euANT and basalANT three clades. Moreover, the cis-acting elements analysis showed many light responsive elements, plant hormone-responsive elements and abiotic stress responsive elements are found in CiAP2 promoters. Furthermore, a qPCR analysis showed that genes clustered together usually shared similar expression patterns in euAP2 and basalANT clades, while the expression pattern in the euANT clade varied greatly. In developing pecan fruits, CiAP2-5, CiANT1 and CiANT2 shared similar expression patterns, and their expression levels decreased with fruit development. CiANT5 displayed the highest expression levels in developing fruits. The subcellular localization and transcriptional activation activity assay demonstrated that CiANT5 is located in the nucleus and functions as a transcription factor with transcriptional activation activity. These results help to comprehensively understand the pecan AP2 subfamily TFs and lay the foundation for further functional research on pecan AP2 family genes.
Collapse
|
66
|
Li G, Kuijer HNJ, Yang X, Liu H, Shen C, Shi J, Betts N, Tucker MR, Liang W, Waugh R, Burton RA, Zhang D. MADS1 maintains barley spike morphology at high ambient temperatures. NATURE PLANTS 2021; 7:1093-1107. [PMID: 34183784 DOI: 10.1038/s41477-021-00957-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 06/02/2021] [Indexed: 05/05/2023]
Abstract
Temperature stresses affect plant phenotypic diversity. The developmental stability of the inflorescence, required for reproductive success, is tightly regulated by the interplay of genetic and environmental factors. However, the mechanisms underpinning how plant inflorescence architecture responds to temperature are largely unknown. We demonstrate that the barley SEPALLATA MADS-box protein HvMADS1 is responsible for maintaining an unbranched spike architecture at high temperatures, while the loss-of-function mutant forms a branched inflorescence-like structure. HvMADS1 exhibits increased binding to target promoters via A-tract CArG-box motifs, which change conformation with temperature. Target genes for high-temperature-dependent HvMADS1 activation are predominantly associated with inflorescence differentiation and phytohormone signalling. HvMADS1 directly regulates the cytokinin-degrading enzyme HvCKX3 to integrate temperature response and cytokinin homeostasis, which is required to repress meristem cell cycle/division. Our findings reveal a mechanism by which genetic factors direct plant thermomorphogenesis, extending the recognized role of plant MADS-box proteins in floral development.
Collapse
Affiliation(s)
- Gang Li
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia.
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China.
| | - Hendrik N J Kuijer
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Xiujuan Yang
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Huiran Liu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chaoqun Shen
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Natalie Betts
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Robbie Waugh
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
- James Hutton Institute, Dundee, UK
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
| | - Rachel A Burton
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Dabing Zhang
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia.
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
67
|
Du D, Zhang D, Yuan J, Feng M, Li Z, Wang Z, Zhang Z, Li X, Ke W, Li R, Chen Z, Chai L, Hu Z, Guo W, Xing J, Su Z, Peng H, Xin M, Yao Y, Sun Q, Liu J, Ni Z. FRIZZY PANICLE defines a regulatory hub for simultaneously controlling spikelet formation and awn elongation in bread wheat. THE NEW PHYTOLOGIST 2021; 231:814-833. [PMID: 33837555 DOI: 10.1111/nph.17388] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/01/2021] [Indexed: 05/25/2023]
Abstract
Grain yield in bread wheat (Triticum aestivum L.) is largely determined by inflorescence architecture. Zang734 is an endemic Tibetan wheat variety that exhibits a rare triple spikelet (TRS) phenotype with significantly increased spikelet/floret number per spike. However, the molecular basis underlying this specific spike morphology is completely unknown. Through map-based cloning, the causal genes for TRS trait in Zang734 were isolated. Furthermore, using CRISPR/Cas9-based gene mutation, transcriptome sequencing and protein-protein interaction, the downstream signalling networks related to spikelet formation and awn elongation were defined. Results showed that the null mutation in WFZP-A together with deletion of WFZP-D led to the TRS trait in Zang734. More interestingly, WFZP plays a dual role in simultaneously repressing spikelet formation gene TaBA1 and activating awn development genes, basically through the recruitments of chromatin remodelling elements and the Mediator complex. Our findings provide insights into the molecular bases by which WFZP suppresses spikelet formation but promotes awn elongation and, more importantly, define WFZP-D as a favourable gene for high-yield crop breeding.
Collapse
Affiliation(s)
- Dejie Du
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Dongxue Zhang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jun Yuan
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Man Feng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaoju Li
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zihao Wang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaoheng Zhang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xiongtao Li
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Wensheng Ke
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Renhan Li
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaoyan Chen
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Lingling Chai
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jiewen Xing
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhenqi Su
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jie Liu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
68
|
Wolde GM, Schreiber M, Trautewig C, Himmelbach A, Sakuma S, Mascher M, Schnurbusch T. Genome-wide identification of loci modifying spike-branching in tetraploid wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1925-1943. [PMID: 33961064 PMCID: PMC8263435 DOI: 10.1007/s00122-020-03743-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/27/2020] [Indexed: 05/03/2023]
Abstract
Genetic modification of spike architecture is essential for improving wheat yield. Newly identified loci for the 'Miracle wheat' phenotype on chromosomes 1AS and 2BS have significant effects on spike traits. The wheat (Triticum ssp.) inflorescence, also known as a spike, forms an unbranched inflorescence in which the inflorescence meristem generates axillary spikelet meristems (SMs) destined to become sessile spikelets. Previously, we identified the putatively causative mutation in the branched headt (bht) gene (TtBH-A1) of tetraploid wheat (T. turgidum convar. compositum (L.f.) Filat.) responsible for the loss of SM identity, converting the non-branching spike to a branched wheat spike. In the current study, we performed whole-genome quantitative trait loci (QTL) analysis using 146 recombinant inbred lines (RILs) derived from a cross between spike-branching wheat ('Miracle wheat') and an elite durum wheat cultivar showing broad phenotypic variation for spike architecture. Besides the previously found gene at the bht-A1 locus on the short arm of chromosome 2A, we also mapped two new modifier QTL for spike-branching on the short arm of chromosome 1A, termed bht-A2, and 2BS. Using biparental mapping population and GWAS in 302 diverse accessions, the 2BS locus was highly associated with coding sequence variation found at the homoeo-allele of TtBH-B1 (bht-B1). Thus, RILs that combined both bht-A1 and bht-B1 alleles showed additive genetic effects leading to increased penetrance and expressivity of the supernumerary spikelet and/or mini-spike formation.
Collapse
Affiliation(s)
- Gizaw M Wolde
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466, Seeland, Germany.
- Department of Plant Sciences One Shields Avenue, University of California, Davis, CA, 95616, USA.
| | - Mona Schreiber
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466, Seeland, Germany
| | - Corinna Trautewig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466, Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466, Seeland, Germany
| | - Shun Sakuma
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466, Seeland, Germany
- Faculty of Agriculture, Tottori University, 4-101 Koyama-cho Minami, Tottori, 680-8553, Japan
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466, Seeland, Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466, Seeland, Germany.
- Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany.
| |
Collapse
|
69
|
Pasion EA, Badoni S, Misra G, Anacleto R, Parween S, Kohli A, Sreenivasulu N. OsTPR boosts the superior grains through increase in upper secondary rachis branches without incurring a grain quality penalty. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1396-1411. [PMID: 33544455 PMCID: PMC8313136 DOI: 10.1111/pbi.13560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 06/02/2023]
Abstract
To address the future food security in Asia, we need to improve the genetic gain of grain yield while ensuring the consumer acceptance. This study aimed to identify novel genes influencing the number of upper secondary rachis branches (USRB) to elevate superior grains without compromising grain quality by studying the genetic variance of 310 diverse O. sativa var. indica panel using single- and multi-locus genome-wide association studies (GWAS), gene set analyses and gene regulatory network analysis. GWAS of USRB identified 230 significant (q-value < 0.05) SNPs from chromosomes 1 and 2. GWAS targets narrowed down using gene set analyses identified large effect association on an important locus LOC_Os02g50790/LOC_Os02g50799 encoding a nuclear-pore anchor protein (OsTPR). The superior haplotype derived from non-synonymous SNPs identified in OsTPR was specifically associated with increase in USRB with superior grains being low chalk. Through haplotype mining, we further demonstrated the synergy of offering added yield advantage due to superior allele of OsTPR in elite materials with low glycaemic index (GI) property. We further validated the importance of OsTPR using recombinant inbred lines (RILs) population by introgressing a superior allele of OsTPR into elite materials resulted in raise in productivity in high amylose background. This confirmed a critical role for OsTPR in influencing yield while maintaining grain and nutritional quality.
Collapse
Affiliation(s)
- Erstelle A. Pasion
- Applied Functional Genomics ClusterGrain Quality and Nutrition CentreStrategic Innovation PlatformInternational Rice Research InstituteLos BañosPhilippines
| | - Saurabh Badoni
- Applied Functional Genomics ClusterGrain Quality and Nutrition CentreStrategic Innovation PlatformInternational Rice Research InstituteLos BañosPhilippines
| | - Gopal Misra
- Applied Functional Genomics ClusterGrain Quality and Nutrition CentreStrategic Innovation PlatformInternational Rice Research InstituteLos BañosPhilippines
| | - Roslen Anacleto
- Applied Functional Genomics ClusterGrain Quality and Nutrition CentreStrategic Innovation PlatformInternational Rice Research InstituteLos BañosPhilippines
| | - Sabiha Parween
- Applied Functional Genomics ClusterGrain Quality and Nutrition CentreStrategic Innovation PlatformInternational Rice Research InstituteLos BañosPhilippines
| | - Ajay Kohli
- Applied Functional Genomics ClusterGrain Quality and Nutrition CentreStrategic Innovation PlatformInternational Rice Research InstituteLos BañosPhilippines
| | - Nese Sreenivasulu
- Applied Functional Genomics ClusterGrain Quality and Nutrition CentreStrategic Innovation PlatformInternational Rice Research InstituteLos BañosPhilippines
| |
Collapse
|
70
|
Li Y, Li L, Zhao M, Guo L, Guo X, Zhao D, Batool A, Dong B, Xu H, Cui S, Zhang A, Fu X, Li J, Jing R, Liu X. Wheat FRIZZY PANICLE activates VERNALIZATION1-A and HOMEOBOX4-A to regulate spike development in wheat. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1141-1154. [PMID: 33368973 PMCID: PMC8196646 DOI: 10.1111/pbi.13535] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 05/22/2023]
Abstract
Kernel number per spike determined by the spike or inflorescence development is one important agricultural trait for wheat yield that is critical for global food security. While a few important genes for wheat spike development were identified, the genetic regulatory mechanism underlying supernumerary spikelets (SSs) is still unclear. Here, we cloned the wheat FRIZZY PANICLE (WFZP) gene from one local wheat cultivar. WFZP is specifically expressed at the sites where the spikelet meristem and floral meristem are initiated, which differs from the expression patterns of its homologs FZP/BD1 in rice and maize, indicative of its functional divergence during species differentiation. Moreover, WFZP directly activates VERNALIZATION1 (VRN1) and wheat HOMEOBOX4 (TaHOX4) to regulate the initiation and development of spikelet. The haplotypes analysis showed that the favourable alleles of WFZP associated with spikelet number per spike (SNS) were preferentially selected during breeding. Our findings provide insights into the molecular and genetic mechanisms underlying wheat spike development and characterize the WFZP as elite resource for wheat molecular breeding with enhanced crop yield.
Collapse
Affiliation(s)
- Yongpeng Li
- State Key Laboratory of Plant Cell and Chromosome EngineeringCenter for Agricultural Resources ResearchInstitute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Meicheng Zhao
- State Key Laboratory of Plant Cell and Chromosome EngineeringCenter for Agricultural Resources ResearchInstitute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Lin Guo
- State Key Laboratory of Plant Cell and Chromosome EngineeringCenter for Agricultural Resources ResearchInstitute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
- Ministry of Education Key Laboratory of Molecular and Cellular BiologyHebei Collaboration Innovation Center for Cell SignalingHebei Key Laboratory of Molecular and Cellular BiologyCollege of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Xinxin Guo
- State Key Laboratory of Plant Cell and Chromosome EngineeringCenter for Agricultural Resources ResearchInstitute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Dan Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular BiologyHebei Collaboration Innovation Center for Cell SignalingHebei Key Laboratory of Molecular and Cellular BiologyCollege of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Aamana Batool
- University of Chinese Academy of SciencesBeijingChina
- Key Laboratory of Agricultural Water ResourcesHebei Laboratory of Agricultural Water‐SavingCenter for Agricultural Resources ResearchInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesShijiazhuangChina
| | - Baodi Dong
- Key Laboratory of Agricultural Water ResourcesHebei Laboratory of Agricultural Water‐SavingCenter for Agricultural Resources ResearchInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesShijiazhuangChina
| | - Hongxing Xu
- Key Laboratory of Agricultural Water ResourcesHebei Laboratory of Agricultural Water‐SavingCenter for Agricultural Resources ResearchInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesShijiazhuangChina
- State Key Laboratory of Crop Stress Adaptation and ImprovementState Key laboratory of Cotton BiologySchool of Life SciencesHenan UniversityKaifengChina
| | - Sujuan Cui
- Ministry of Education Key Laboratory of Molecular and Cellular BiologyHebei Collaboration Innovation Center for Cell SignalingHebei Key Laboratory of Molecular and Cellular BiologyCollege of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringCenter for Agricultural Resources ResearchInstitute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome EngineeringCenter for Agricultural Resources ResearchInstitute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Junming Li
- State Key Laboratory of Plant Cell and Chromosome EngineeringCenter for Agricultural Resources ResearchInstitute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Xigang Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringCenter for Agricultural Resources ResearchInstitute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
- Ministry of Education Key Laboratory of Molecular and Cellular BiologyHebei Collaboration Innovation Center for Cell SignalingHebei Key Laboratory of Molecular and Cellular BiologyCollege of Life SciencesHebei Normal UniversityShijiazhuangChina
| |
Collapse
|
71
|
Ma PF, Liu YL, Jin GH, Liu JX, Wu H, He J, Guo ZH, Li DZ. The Pharus latifolius genome bridges the gap of early grass evolution. THE PLANT CELL 2021; 33:846-864. [PMID: 33630094 PMCID: PMC8226297 DOI: 10.1093/plcell/koab015] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/11/2021] [Indexed: 05/07/2023]
Abstract
The grass family (Poaceae) includes all commercial cereal crops and is a major contributor to biomass in various terrestrial ecosystems. The ancestry of all grass genomes includes a shared whole-genome duplication (WGD), named rho (ρ) WGD, but the evolutionary significance of ρ-WGD remains elusive. We sequenced the genome of Pharus latifolius, a grass species (producing a true spikelet) in the subfamily Pharoideae, a sister lineage to the core Poaceae including the (Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae, and Danthonioideae (PACMAD) and Bambusoideae, Oryzoideae, and Pooideae (BOP) clades. Our results indicate that the P. latifolius genome has evolved slowly relative to cereal grass genomes, as reflected by moderate rates of molecular evolution, limited chromosome rearrangements and a low rate of gene loss for duplicated genes. We show that the ρ-WGD event occurred approximately 98.2 million years ago (Ma) in a common ancestor of the Pharoideae and the PACMAD and BOP grasses. This was followed by contrasting patterns of diploidization in the Pharus and core Poaceae lineages. The presence of two FRIZZY PANICLE-like genes in P. latifolius, and duplicated MADS-box genes, support the hypothesis that the ρ-WGD may have played a role in the origin and functional diversification of the spikelet, an adaptation in grasses related directly to cereal yields. The P. latifolius genome sheds light on the origin and early evolution of grasses underpinning the biology and breeding of cereals.
Collapse
Affiliation(s)
- Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yun-Long Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Gui-Hua Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jing-Xia Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hong Wu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
| | - Jun He
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhen-Hua Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650201, China
- Author for correspondence: (D.-Z.L)
| |
Collapse
|
72
|
A Heterozygous Genotype-Dependent Branched-Spike Wheat and the Potential Genetic Mechanism Revealed by Transcriptome Sequencing. BIOLOGY 2021; 10:biology10050437. [PMID: 34068944 PMCID: PMC8157103 DOI: 10.3390/biology10050437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary This paper reported a novel type of branched spike wheat from a natural mutation event. The branched spike was controlled by a heterozygous genotype. The genetic patterns showed that gametophytic male sterility probably contributed to the heterozygous genotype responsible for the branched spike trait. Expressional levels and Wheat FRIZZY PANICLE (WFZP) sequencing between the mutant with the branched spike and the wild-type with the normal spike showed that WFZP was not the causal gene for the branched spike. Data from transcriptome sequencing indicated that carbohydrate metabolism might be involved in the formation of the branched spike trait. Abstract Wheat (Triticum aestivum L.) spike architecture is an important trait associated with spike development and grain yield. Here, we report a naturally occurring wheat mutant with branched spikelets (BSL) from its wild-type YD-16, which has a normal spike trait and confers a moderate level of resistance to wheat Fusarium head blight (FHB). The lateral meristems positioned at the basal parts of the rachis node of the BSL mutant develop into ramified spikelets characterized as multiple spikelets. The BSL mutant shows three to four-day longer growth period but less 1000-grain weight than the wild type, and it becomes highly susceptible to FHB infection, indicating that the locus controlling the BSL trait may have undergone an intensively artificial and/or natural selection in modern breeding process. The self-pollinated descendants of the lines with the BSL trait consistently segregated with an equal ratio of branched and normal spikelets (NSL) wheat, and homozygotes with the BSL trait could not be achieved even after nine cycles of self-pollination. Distinct segregation patterns both from the self-pollinated progenies of the BSL plants and from the reciprocal crosses between the BSL plants with their sister NSL plants suggested that gametophytic male sterility was probably associated with the heterozygosity for the BSL trait. Transcriptome sequencing of the RNA bulks contrasting in the two types of spike trait at the heading stage indicated that the genes on chromosome 2DS may be critical for the BSL trait formation since 329 out of 2540 differentially expressed genes (DEGs) were located on that chromosome, and most of them were down-regulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that carbohydrate metabolism may be involved in the BSL trait expression. This work provides valuable clues into understanding development and domestication of wheat spike as well as the association of the BSL trait with FHB susceptibility.
Collapse
|
73
|
Umeda M, Ikeuchi M, Ishikawa M, Ito T, Nishihama R, Kyozuka J, Torii KU, Satake A, Goshima G, Sakakibara H. Plant stem cell research is uncovering the secrets of longevity and persistent growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:326-335. [PMID: 33533118 PMCID: PMC8252613 DOI: 10.1111/tpj.15184] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 05/07/2023]
Abstract
Plant stem cells have several extraordinary features: they are generated de novo during development and regeneration, maintain their pluripotency, and produce another stem cell niche in an orderly manner. This enables plants to survive for an extended period and to continuously make new organs, representing a clear difference in their developmental program from animals. To uncover regulatory principles governing plant stem cell characteristics, our research project 'Principles of pluripotent stem cells underlying plant vitality' was launched in 2017, supported by a Grant-in-Aid for Scientific Research on Innovative Areas from the Japanese government. Through a collaboration involving 28 research groups, we aim to identify key factors that trigger epigenetic reprogramming and global changes in gene networks, and thereby contribute to stem cell generation. Pluripotent stem cells in the shoot apical meristem are controlled by cytokinin and auxin, which also play a crucial role in terminating stem cell activity in the floral meristem; therefore, we are focusing on biosynthesis, metabolism, transport, perception, and signaling of these hormones. Besides, we are uncovering the mechanisms of asymmetric cell division and of stem cell death and replenishment under DNA stress, which will illuminate plant-specific features in preserving stemness. Our technology support groups expand single-cell omics to describe stem cell behavior in a spatiotemporal context, and provide correlative light and electron microscopic technology to enable live imaging of cell and subcellular dynamics at high spatiotemporal resolution. In this perspective, we discuss future directions of our ongoing projects and related research fields.
Collapse
Affiliation(s)
- Masaaki Umeda
- Graduate School of Science and TechnologyNara Institute of Science and TechnologyIkoma630‐0192Japan
| | - Momoko Ikeuchi
- Department of BiologyFaculty of ScienceNiigata UniversityNiigata950‐2181Japan
| | - Masaki Ishikawa
- National Institute for Basic BiologyOkazaki444‐8585Japan
- Department of Basic BiologyThe Graduate University for Advanced Studies (SOKENDAI)Okazaki444‐8585Japan
| | - Toshiro Ito
- Graduate School of Science and TechnologyNara Institute of Science and TechnologyIkoma630‐0192Japan
| | | | - Junko Kyozuka
- Graduate School of Life SciencesTohoku UniversitySendai980‐8577Japan
| | - Keiko U. Torii
- Howard Hughes Medical Institute and Department of Molecular BiosciencesThe University of Texas at AustinAustinTX78712USA
- Institute of Transformative Biomolecules (WPI‐ITbM)Nagoya UniversityNagoya464‐8601Japan
| | - Akiko Satake
- Department of BiologyFaculty of ScienceKyushu UniversityFukuoka819‐0395Japan
| | - Gohta Goshima
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoya464‐8602Japan
- Sugashima Marine Biological LaboratoryGraduate School of ScienceNagoya UniversityToba517‐0004Japan
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoya464‐8601Japan
| |
Collapse
|
74
|
Wang C, Yang X, Li G. Molecular Insights into Inflorescence Meristem Specification for Yield Potential in Cereal Crops. Int J Mol Sci 2021; 22:3508. [PMID: 33805287 PMCID: PMC8037405 DOI: 10.3390/ijms22073508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
Flowering plants develop new organs throughout their life cycle. The vegetative shoot apical meristem (SAM) generates leaf whorls, branches and stems, whereas the reproductive SAM, called the inflorescence meristem (IM), forms florets arranged on a stem or an axis. In cereal crops, the inflorescence producing grains from fertilized florets makes the major yield contribution, which is determined by the numbers and structures of branches, spikelets and florets within the inflorescence. The developmental progression largely depends on the activity of IM. The proper regulations of IM size, specification and termination are outcomes of complex interactions between promoting and restricting factors/signals. Here, we focus on recent advances in molecular mechanisms underlying potential pathways of IM identification, maintenance and differentiation in cereal crops, including rice (Oryza sativa), maize (Zea mays), wheat (Triticum aestivum), and barley (Hordeum vulgare), highlighting the researches that have facilitated grain yield by, for example, modifying the number of inflorescence branches. Combinatorial functions of key regulators and crosstalk in IM determinacy and specification are summarized. This review delivers the knowledge to crop breeding applications aiming to the improvements in yield performance and productivity.
Collapse
Affiliation(s)
- Chengyu Wang
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Xiujuan Yang
- School of Agriculture, Food and Wine, Waite Research Institute, Waite Campus, The University of Adelaide, Glen Osmond, SA 5064, Australia;
| | - Gang Li
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
- School of Agriculture, Food and Wine, Waite Research Institute, Waite Campus, The University of Adelaide, Glen Osmond, SA 5064, Australia;
| |
Collapse
|
75
|
Rice RBH1 Encoding A Pectate Lyase is Critical for Apical Panicle Development. PLANTS 2021; 10:plants10020271. [PMID: 33573206 PMCID: PMC7912155 DOI: 10.3390/plants10020271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022]
Abstract
Panicle morphology is one of the main determinants of the rice yield. Panicle abortion, a typical panicle morphological defect results in yield reduction due to defective spikelet development. To further elucidate the molecular mechanism of panicle abortion in rice, a rice panicle bald head 1 (rbh1) mutant with transfer DNA (T-DNA) insertion showing severely aborted apical spikelets during panicle development was identified and characterized. The rbh1-1 mutant showed obviously altered cell morphology and structure in the degenerated spikelet. Molecular genetic studies revealed that RBH1 encodes a pectate lyase protein. Pectate lyase-specific activity of Rice panicle Bald Head 1 (RBH1) protein assay using polygalacturonic acid (PGA) as substrates illustrated that the enzyme retained a significant capacity to degrade PGA. In addition, immunohistochemical analysis showed that the degradation of pectin is inhibited in the rbh1-1 mutant. Further analysis revealed that a significant increase in reactive oxygen species (ROS) level was found in degenerated rbh1-1 spikelets. Taken together, our findings suggest that RBH1 is required for the formation of panicle and for preventing panicle abortion.
Collapse
|
76
|
Molecular and Genetic Aspects of Grain Number Determination in Rice ( Oryza sativa L.). Int J Mol Sci 2021; 22:ijms22020728. [PMID: 33450933 PMCID: PMC7828406 DOI: 10.3390/ijms22020728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Rice grain yield is a complex trait determined by three components: panicle number, grain number per panicle (GNPP) and grain weight. GNPP is the major contributor to grain yield and is crucial for its improvement. GNPP is determined by a series of physiological and biochemical steps, including inflorescence development, formation of rachis branches such as primary rachis branches and secondary rachis branches, and spikelet specialisation (lateral and terminal spikelets). The molecular genetic basis of GNPP determination is complex, and it is regulated by numerous interlinked genes. In this review, panicle development and the determination of GNPP is described briefly, and GNPP-related genes that influence its determination are categorised according to their regulatory mechanisms. We introduce genes related to rachis branch development and their regulation of GNPP, genes related to phase transition (from rachis branch meristem to spikelet meristem) and their regulation of GNPP, and genes related to spikelet specialisation and their regulation of GNPP. In addition, we describe other GNPP-related genes and their regulation of GNPP. Research on GNPP determination suggests that it is possible to cultivate rice varieties with higher grain yield by modifying GNPP-related genes.
Collapse
|
77
|
Wang X, Li L, Sun X, Xu J, Ouyang L, Bian J, Chen X, Li W, Peng X, Hu L, Cai Y, Zhou D, He X, Fu J, Fu H, He H, Zhu C. Fine Mapping of a Novel Major Quantitative Trait Locus, qPAA7, That Controls Panicle Apical Abortion in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:683329. [PMID: 34305980 PMCID: PMC8293750 DOI: 10.3389/fpls.2021.683329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/09/2021] [Indexed: 05/17/2023]
Abstract
The panicle apical abortion (PAA) causes severe yield losses in rice production, but details about its development and molecular basis remain elusive. Here, we detected PAA quantitative trait loci (QTLs) in three environments using a set of chromosome segment substitution lines (CSSLs) that was constructed with indica Changhui121 as the recurrent parent and japonica Koshihikari as the donor parent. First, we identified a novel major effector quantitative trait locus, qPAA7, and selected a severe PAA line, CSSL176, which had the highest PAA rate among CSSLs having Koshihikari segments at this locus. Next, an F2 population was constructed from a cross between CSS176 and CH121. Using F2 to make recombinantion analysis, qPAA7 was mapped to an 73.8-kb interval in chromosome 7. Among nine candidate genes within this interval, there isn't any known genes affecting PAA. According to the gene annotation, gene expression profile and alignment of genomic DNA, LOC_Os07g41220 and LOC_Os07g41280 were predicted as putative candidate genes of qPAA7. Our study provides a foundation for cloning and functional characterization of the target gene from this locus.
Collapse
|
78
|
Shang Y, Yuan L, Di Z, Jia Y, Zhang Z, Li S, Xing L, Qi Z, Wang X, Zhu J, Hua W, Wu X, Zhu M, Li G, Li C. A CYC/TB1-type TCP transcription factor controls spikelet meristem identity in barley. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7118-7131. [PMID: 32915968 DOI: 10.1093/jxb/eraa416] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/09/2020] [Indexed: 05/08/2023]
Abstract
Barley possesses a branchless, spike-shaped inflorescence where determinate spikelets attach directly to the main axis, but the developmental mechanism of spikelet identity remains largely unknown. Here we report the functional analysis of the barley gene BRANCHED AND INDETERMINATE SPIKELET 1 (BDI1), which encodes a TCP transcription factor and plays a crucial role in determining barley inflorescence architecture and spikelet development. The bdi1 mutant exhibited indeterminate spikelet meristems that continued to grow and differentiate after producing a floret meristem; some spikelet meristems at the base of the spike formed two fully developed seeds or converted to branched spikelets, producing a branched inflorescence. Map-based cloning analysis showed that this mutant has a deletion of ~600 kb on chromosome 5H containing three putative genes. Expression analysis and virus-induced gene silencing confirmed that the causative gene, BDI1, encodes a CYC/TB1-type TCP transcription factor and is highly conserved in both wild and cultivated barley. Transcriptome and regulatory network analysis demonstrated that BDI1 may integrate regulation of gene transcription cell wall modification and known trehalose-6-phosphate homeostasis to control spikelet development. Together, our findings reveal that BDI1 represents a key regulator of inflorescence architecture and meristem determinacy in cereal crop plants.
Collapse
Affiliation(s)
- Yi Shang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, China
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Lu Yuan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/ JCIC-MCP, Nanjing, Jiangsu, China
| | - Zhaocan Di
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/ JCIC-MCP, Nanjing, Jiangsu, China
| | - Yong Jia
- Western Barley Genetics Alliance, Murdoch University, Murdoch WA, Australia
| | - Zhenlan Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, China
| | - Sujuan Li
- Central Laboratory of Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Liping Xing
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/ JCIC-MCP, Nanjing, Jiangsu, China
| | - Zengjun Qi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/ JCIC-MCP, Nanjing, Jiangsu, China
| | - Xiaoyun Wang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jinghuan Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Wei Hua
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Xiaojian Wu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Minqiu Zhu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/ JCIC-MCP, Nanjing, Jiangsu, China
| | - Gang Li
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
- School of Agriculture, Food, and Wine, University of Adelaide, Waite campus, Urrbrae, South Australia, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, Murdoch University, Murdoch WA, Australia
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
79
|
Dobrovolskaya OB. Supernumerary Spikelet Wheat Forms as Models for Studying Genetic Regulation of Inflorescence Development. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420110034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
80
|
Deveshwar P, Prusty A, Sharma S, Tyagi AK. Phytohormone-Mediated Molecular Mechanisms Involving Multiple Genes and QTL Govern Grain Number in Rice. Front Genet 2020; 11:586462. [PMID: 33281879 PMCID: PMC7689023 DOI: 10.3389/fgene.2020.586462] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
Increasing the grain number is the most direct route toward enhancing the grain yield in cereals. In rice, grain number can be amplified through increasing the shoot branching (tillering), panicle branching, panicle length, and seed set percentage. Phytohormones have been conclusively shown to control the above characteristics by regulating molecular factors and their cross-interactions. The dynamic equilibrium of cytokinin levels in both shoot and inflorescence meristems, maintained by the regulation of its biosynthesis, activation, and degradation, determines the tillering and panicle branching, respectively. Auxins and gibberellins are known broadly to repress the axillary meristems, while jasmonic acid is implicated in the determination of reproductive meristem formation. The balance of auxin, gibberellin, and cytokinin determines meristematic activities in the inflorescence. Strigolactones have been shown to repress the shoot branching but seem to regulate panicle branching positively. Ethylene, brassinosteroids, and gibberellins regulate spikelet abortion and grain filling. Further studies on the optimization of endogenous hormonal levels can help in the expansion of the grain yield potential of rice. This review focuses on the molecular machinery, involving several genes and quantitative trait loci (QTL), operational in the plant that governs hormonal control and, in turn, gets governed by the hormones to regulate grain number and yield in rice.
Collapse
Affiliation(s)
- Priyanka Deveshwar
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Ankita Prusty
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Shivam Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Akhilesh K Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
81
|
Burr CA, Sun J, Yamburenko MV, Willoughby A, Hodgens C, Boeshore SL, Elmore A, Atkinson J, Nimchuk ZL, Bishopp A, Schaller GE, Kieber JJ. The HK5 and HK6 cytokinin receptors mediate diverse developmental pathways in rice. Development 2020; 147:dev191734. [PMID: 33028608 PMCID: PMC7648598 DOI: 10.1242/dev.191734] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022]
Abstract
The phytohormone cytokinin regulates diverse aspects of plant growth and development. Our understanding of the metabolism and perception of cytokinin has made great strides in recent years, mostly from studies of the model dicot Arabidopsis Here, we employed a CRISPR/Cas9-based approach to disrupt a subset of cytokinin histidine kinase (HK) receptors in rice (Oryza sativa) in order to explore the role of cytokinin in a monocot species. In hk5 and hk6 single mutants, the root growth, leaf width, inflorescence architecture and/or floral development were affected. The double hk5 hk6 mutant showed more substantial defects, including severely reduced root and shoot growth, a smaller shoot apical meristem, and an enlarged root cap. Flowering was delayed in the hk5 hk6 mutant and the panicle was significantly reduced in size and infertile due to multiple defects in floral development. The hk5 hk6 mutant also exhibited a severely reduced cytokinin response, consistent with the developmental phenotypes arising from a defect in cytokinin signaling. These results indicate that HK5 and HK6 act as cytokinin receptors, with overlapping functions to regulate diverse aspects of rice growth and development.
Collapse
Affiliation(s)
- Christian A Burr
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jinjing Sun
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Andrew Willoughby
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Charles Hodgens
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Agustus Elmore
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jonathan Atkinson
- School of Bioscience, University of Nottingham, Nottingham LE12 5RD, UK
| | - Zachary L Nimchuk
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Anthony Bishopp
- School of Bioscience, University of Nottingham, Nottingham LE12 5RD, UK
| | - G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
82
|
Molecular and genetic pathways for optimizing spikelet development and grain yield. ABIOTECH 2020; 1:276-292. [PMID: 36304128 PMCID: PMC9590455 DOI: 10.1007/s42994-020-00026-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/11/2020] [Indexed: 01/25/2023]
Abstract
The spikelet is a unique structure of inflorescence in grasses that generates one to many flowers depending on its determinate or indeterminate meristem activity. The growth patterns and number of spikelets, furthermore, define inflorescence architecture and yield. Therefore, understanding the molecular mechanisms underlying spikelet development and evolution are attractive to both biologists and breeders. Based on the progress in rice and maize, along with increasing numbers of genetic mutants and genome sequences from other grass families, the regulatory networks underpinning spikelet development are becoming clearer. This is particularly evident for domesticated traits in agriculture. This review focuses on recent progress on spikelet initiation, and spikelet and floret fertility, by comparing results from Arabidopsis with that of rice, sorghum, maize, barley, wheat, Brachypodium distachyon, and Setaria viridis. This progress may benefit genetic engineering and molecular breeding to enhance grain yield.
Collapse
|
83
|
Magne K, Liu S, Massot S, Dalmais M, Morin H, Sibout R, Bendahmane A, Ratet P. Roles of BdUNICULME4 and BdLAXATUM-A in the non-domesticated grass Brachypodium distachyon. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:645-659. [PMID: 32343459 DOI: 10.1111/tpj.14758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
In cultivated grasses, tillering, spike architecture and seed shattering represent major agronomical traits. In barley, maize and rice, the NOOT-BOP-COCH-LIKE (NBCL) genes play important roles in development, especially in ligule development, tillering and flower identity. However, compared with dicots, the role of grass NBCL genes is underinvestigated. To better understand the role of grass NBCLs and to overcome any effects of domestication that might conceal their original functions, we studied TILLING nbcl mutants in the non-domesticated grass Brachypodium distachyon. In B. distachyon, the NBCL genes BdUNICULME4 (CUL4) and BdLAXATUM-A (LAXA) are orthologous, respectively, to the barley HvUniculme4 and HvLaxatum-a, to the maize Zmtassels replace upper ears1 and Zmtassels replace upper ears2 and to the rice OsBLADE-ON-PETIOLE1 and OsBLADE-ON-PETIOLE2/3. In B. distachyon, our reverse genetics study shows that CUL4 is not essential for the establishment of the blade-sheath boundary but is necessary for the development of the ligule and auricles. We report that CUL4 also exerts a positive role in tillering and a negative role in spikelet meristem activity. On the other hand, we demonstrate that LAXA plays a negative role in tillering, positively participates in spikelet development and contributes to the control of floral organ number and identity. In this work, we functionally characterized two new NBCL genes in a context of non-domesticated grass and highlighted original roles for grass NBCL genes that are related to important agronomical traits.
Collapse
Affiliation(s)
- Kévin Magne
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Univ Evry, Université Paris-Saclay, 91405, Orsay, France
| | - Shengbin Liu
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Univ Evry, Université Paris-Saclay, 91405, Orsay, France
| | - Sophie Massot
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Univ Evry, Université Paris-Saclay, 91405, Orsay, France
| | - Marion Dalmais
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Univ Evry, Université Paris-Saclay, 91405, Orsay, France
| | - Halima Morin
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Univ Evry, Université Paris-Saclay, 91405, Orsay, France
| | - Richard Sibout
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, France
- INRAE, UR BIA, F-44316, Nantes, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Univ Evry, Université Paris-Saclay, 91405, Orsay, France
| | - Pascal Ratet
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Univ Evry, Université Paris-Saclay, 91405, Orsay, France
| |
Collapse
|
84
|
Crop reproductive meristems in the genomic era: a brief overview. Biochem Soc Trans 2020; 48:853-865. [PMID: 32573650 DOI: 10.1042/bst20190441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 11/17/2022]
Abstract
Modulation of traits beneficial for cultivation and yield is one of the main goals of crop improvement. One of the targets for enhancing productivity is changing the architecture of inflorescences since in many species it determines fruit and seed yield. Inflorescence shape and organization is genetically established during the early stages of reproductive development and depends on the number, arrangement, activities, and duration of meristems during the reproductive phase of the plant life cycle. Despite the variety of inflorescence architectures observable in nature, many key aspects of inflorescence development are conserved among different species. For instance, the genetic network in charge of specifying the identity of the different reproductive meristems, which can be indeterminate or determinate, seems to be similar among distantly related species. The availability of a large number of published transcriptomic datasets for plants with different inflorescence architectures, allowed us to identify transcription factor gene families that are differentially expressed in determinate and indeterminate reproductive meristems. The data that we review here for Arabidopsis, rice, barley, wheat, and maize, particularly deepens our knowledge of their involvement in meristem identity specification.
Collapse
|
85
|
Diverse panicle architecture results from various combinations of Prl5/GA20ox4 and Pbl6/APO1 alleles. Commun Biol 2020; 3:302. [PMID: 32528064 PMCID: PMC7289860 DOI: 10.1038/s42003-020-1036-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 05/26/2020] [Indexed: 12/02/2022] Open
Abstract
Panicle architecture directly affects crop productivity and is a key target of high-yield rice breeding. Panicle length strongly affects panicle architecture, but the underlying regulatory mechanisms are largely unknown. Here, we show that two quantitative trait loci (QTLs), PANICLE RACHIS LENGTH5 (Prl5) and PRIMARY BRANCH LENGTH6 (Pbl6), independently regulate panicle length in rice. Prl5 encodes a gibberellin biosynthesis enzyme, OsGA20ox4. The expression of Prl5 was higher in young panicles resulting in panicle rachis elongation. Pbl6 is identical to ABERRANT PANICLE ORGANIZATION 1 (APO1), encoding an F-box-containing protein. We found a novel function that higher expression of Pbl6 is responsible for primary branch elongation. RNA-seq analysis revealed that these two genes independently regulate panicle length at the level of gene expression. QTL pyramiding of both genes increased panicle length and productivity. By combining these two genes in various combinations, we designed numerous panicle architecture without trade-off relationship. Ayumi Agata et al. study the molecular mechanisms regulating panicle length which directly affects crop yield. They identify QTLs Prl5 and Pbl6 that independently regulate panicle length in rice at the gene expression level. By designing different allelic combinations, they generate desired panicle architecture and confirm their positive effect on yield in the field.
Collapse
|
86
|
Feng K, Hou XL, Xing GM, Liu JX, Duan AQ, Xu ZS, Li MY, Zhuang J, Xiong AS. Advances in AP2/ERF super-family transcription factors in plant. Crit Rev Biotechnol 2020; 40:750-776. [PMID: 32522044 DOI: 10.1080/07388551.2020.1768509] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the whole life process, many factors including external and internal factors affect plant growth and development. The morphogenesis, growth, and development of plants are controlled by genetic elements and are influenced by environmental stress. Transcription factors contain one or more specific DNA-binding domains, which are essential in the whole life cycle of higher plants. The AP2/ERF (APETALA2/ethylene-responsive element binding factors) transcription factors are a large group of factors that are mainly found in plants. The transcription factors of this family serve as important regulators in many biological and physiological processes, such as plant morphogenesis, responsive mechanisms to various stresses, hormone signal transduction, and metabolite regulation. In this review, we summarized the advances in identification, classification, function, regulatory mechanisms, and the evolution of AP2/ERF transcription factors in plants. AP2/ERF family factors are mainly classified into four major subfamilies: DREB (Dehydration Responsive Element-Binding), ERF (Ethylene-Responsive-Element-Binding protein), AP2 (APETALA2) and RAV (Related to ABI3/VP), and Soloists (few unclassified factors). The review summarized the reports about multiple regulatory functions of AP2/ERF transcription factors in plants. In addition to growth regulation and stress responses, the regulatory functions of AP2/ERF in plant metabolite biosynthesis have been described. We also discussed the roles of AP2/ERF transcription factors in different phytohormone-mediated signaling pathways in plants. Genomic-wide analysis indicated that AP2/ERF transcription factors were highly conserved during plant evolution. Some public databases containing the information of AP2/ERF have been introduced. The studies of AP2/ERF factors will provide important bases for plant regulatory mechanisms and molecular breeding.
Collapse
Affiliation(s)
- Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xi-Lin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Guo-Ming Xing
- Collaborative Innovation Center for Improving Quality and Increased Profits of Protected Vegetables in Shanxi, Taigu, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ao-Qi Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Meng-Yao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhuang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
87
|
Xu Q, Yu H, Xia S, Cui Y, Yu X, Liu H, Zeng D, Hu J, Zhang Q, Gao Z, Zhang G, Zhu L, Shen L, Guo L, Rao Y, Qian Q, Ren D. The C2H2 zinc-finger protein LACKING RUDIMENTARY GLUME 1 regulates spikelet development in rice. Sci Bull (Beijing) 2020; 65:753-764. [PMID: 36659109 DOI: 10.1016/j.scib.2020.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 01/21/2023]
Abstract
Rice (Oryza sativa) spikelets are a unique inflorescence structure and their development directly determines grain size and yield. Although many genes related to spikelet development have been reported, the molecular mechanisms underlying this process have not been fully elucidated. In this study, we identified a new recessive rice mutant, lacking rudimentary glume 1 (lrg1). The lrg1 spikelets only formed one rudimentary glume, which, along with the sterile lemmas, was homeotically transformed into lemma-like organs and acquired lemma identity. The transition from the spikelet to the floral meristem was delayed in the lrg1 mutant, resulting in the formation of an ectopic lemma-like organ between the sterile lemma and the terminal floret. In addition, we found that the abnormal lrg1 grain phenotype resulted from the alteration of cell numbers and the hull size. LRG1 encodes a ZOS4-06-C2H2 zinc-finger protein with the typical EAR motifs, and is expressed in all organs and tissues. LRG1 localizes to the nucleus and can interact with the TOPLESS-RELATED PROTEINs (TPRs) to repress the expressions of their downstream target genes. Taken together, our results reveal that LRG1 plays an important role in the regulation of spikelet organ identity and grain size.
Collapse
Affiliation(s)
- Qiankun Xu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Haiping Yu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Saisai Xia
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yuanjiang Cui
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiaoqi Yu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - He Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Dali Zeng
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Jiang Hu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Qiang Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhenyu Gao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Guangheng Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Li Zhu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Lan Shen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Longbiao Guo
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yuchun Rao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Qian Qian
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Deyong Ren
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
88
|
Huang Y, Bai X, Cheng N, Xiao J, Li X, Xing Y. Wide Grain 7 increases grain width by enhancing H3K4me3 enrichment in the OsMADS1 promoter in rice (Oryza sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:517-528. [PMID: 31830332 DOI: 10.1111/tpj.14646] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/29/2019] [Indexed: 05/22/2023]
Abstract
Grain size is a major determinant of grain weight, a key component of grain yield of rice. Here, we identified the grain size gene WIDE GRAIN 7 (WG7) from a T-DNA insertion mutant. The grain size of WG7 knockout mutants and WG7 overexpression lines indicated that WG7 is a positive regulator of grain size. WG7 encodes a cysteine-tryptophan (CW) domain-containing transcriptional activator. EMSAs and ChIP-qPCR assay confirmed that WG7 directly bound to the promoter of OsMADS1, a grain size gene, and thereby significantly activated its expression. Point mutations showed that the cis-element CATTTC motif in the promoter was the binding site of WG7. Compared with the wild-type, deletion mutants of the cis-element motif exhibited lower expression of OsMADS1 and produced narrower grains, implicating the requirement of this motif for WG7 function. ChIP-qPCR assays showed that WG7 enhanced histone H3K4me3 enrichment in the promoter of OsMADS1. WG7 underwent directional selection due to the poor fertility of the non-functional mutant. These findings demonstrated that WG7 upregulated OsMADS1 expression by directly binding to its promoter, enhanced histone H3K4me3 enrichment in the promoter and ultimately increased grain width. This study will enrich the knowledge concerning the regulatory network of grain size formation in rice.
Collapse
Affiliation(s)
- Yong Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xufeng Bai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Niannian Cheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434100, China
| |
Collapse
|
89
|
Wang SS, Chung CL, Chen KY, Chen RK. A Novel Variation in the FRIZZLE PANICLE ( FZP) Gene Promoter Improves Grain Number and Yield in Rice. Genetics 2020; 215:243-252. [PMID: 32152046 PMCID: PMC7198282 DOI: 10.1534/genetics.119.302862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/02/2020] [Indexed: 11/18/2022] Open
Abstract
Secondary branch number per panicle plays a crucial role in regulating grain number and yield in rice. Here, we report the positional cloning and functional characterization for SECONDARY BRANCH NUMBER7 (qSBN7), a quantitative trait locus affecting secondary branch per panicle and grain number. Our research revealed that the causative variants of qSBN7 are located in the distal promoter region of FRIZZLE PANICLE (FZP), a gene previously associated with the repression of axillary meristem development in rice spikelets. qSBN7 is a novel allele of FZP that causes an ∼56% decrease in its transcriptional level, leading to increased secondary branch and grain number, and reduced grain length. Field evaluations showed that qSBN7 increased grain yield by 10.9% in a temperate japonica variety, TN13, likely due to its positive effect on sink capacity. Our findings suggest that incorporation of qSBN7 can increase yield potential and improve the breeding of elite rice varieties.
Collapse
Affiliation(s)
- Sheng-Shan Wang
- Crop Improvement Division, Tainan District Agricultural Research and Extension Station, Tainan 71246, Taiwan
| | - Chia-Lin Chung
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 10617, Taiwan
| | - Kai-Yi Chen
- Department of Agronomy, National Taiwan University, Taipei 10617, Taiwan
| | - Rong-Kuen Chen
- Chiayi Branch, Tainan District Agricultural Research and Extension Station, Tainan 71246, Taiwan
| |
Collapse
|
90
|
Abstract
Fruit-size increase is one of the major changes associated with tomato domestication, and it currently represents an important objective for breeding. Regulatory mutations at the LOCULE NUMBER and FASCIATED loci, the orthologues of the Arabidopsis WUSCHEL and CLAVATA3, have mainly contributed to enlarging fruit size by altering meristem activity. Here, we identify ENO as a tomato fruit regulator, which may function by regulating WUSCHEL gene expression to restrict stem-cell proliferation in a flower-specific manner. Our findings also show that a mutation in the ENO promoter was selected during domestication to establish the background for enhancing fruit size in cultivated tomatoes, denoting that transcriptional changes in key regulators have significant effects on agronomic traits. A dramatic evolution of fruit size has accompanied the domestication and improvement of fruit-bearing crop species. In tomato (Solanum lycopersicum), naturally occurring cis-regulatory mutations in the genes of the CLAVATA-WUSCHEL signaling pathway have led to a significant increase in fruit size generating enlarged meristems that lead to flowers with extra organs and bigger fruits. In this work, by combining mapping-by-sequencing and CRISPR/Cas9 genome editing methods, we isolated EXCESSIVE NUMBER OF FLORAL ORGANS (ENO), an AP2/ERF transcription factor which regulates floral meristem activity. Thus, the ENO gene mutation gives rise to plants that yield larger multilocular fruits due to an increased size of the floral meristem. Genetic analyses indicate that eno exhibits synergistic effects with mutations at the LOCULE NUMBER (encoding SlWUS) and FASCIATED (encoding SlCLV3) loci, two central players in the evolution of fruit size in the domestication of cultivated tomatoes. Our findings reveal that an eno mutation causes a substantial expansion of SlWUS expression domains in a flower-specific manner. In vitro binding results show that ENO is able to interact with the GGC-box cis-regulatory element within the SlWUS promoter region, suggesting that ENO directly regulates SlWUS expression domains to maintain floral stem-cell homeostasis. Furthermore, the study of natural allelic variation of the ENO locus proved that a cis-regulatory mutation in the promoter of ENO had been targeted by positive selection during the domestication process, setting up the background for significant increases in fruit locule number and fruit size in modern tomatoes.
Collapse
|
91
|
Chandler JW, Werr W. A phylogenetically conserved APETALA2/ETHYLENE RESPONSE FACTOR, ERF12, regulates Arabidopsis floral development. PLANT MOLECULAR BIOLOGY 2020; 102:39-54. [PMID: 31807981 PMCID: PMC6976583 DOI: 10.1007/s11103-019-00936-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 10/30/2019] [Indexed: 05/05/2023]
Abstract
Arabidopsis ETHYLENE RESPONSE FACTOR12 (ERF12), the rice MULTIFLORET SPIKELET1 orthologue pleiotropically affects meristem identity, floral phyllotaxy and organ initiation and is conserved among angiosperms. Reproductive development necessitates the coordinated regulation of meristem identity and maturation and lateral organ initiation via positive and negative regulators and network integrators. We have identified ETHYLENE RESPONSE FACTOR12 (ERF12) as the Arabidopsis orthologue of MULTIFLORET SPIKELET1 (MFS1) in rice. Loss of ERF12 function pleiotropically affects reproductive development, including defective floral phyllotaxy and increased floral organ merosity, especially supernumerary sepals, at incomplete penetrance in the first-formed flowers. Wildtype floral organ number in early formed flowers is labile, demonstrating that floral meristem maturation involves the stabilisation of positional information for organogenesis, as well as appropriate identity. A subset of erf12 phenotypes partly defines a narrow developmental time window, suggesting that ERF12 functions heterochronically to fine-tune stochastic variation in wild type floral number and similar to MFS1, promotes meristem identity. ERF12 expression encircles incipient floral primordia in the inflorescence meristem periphery and is strong throughout the floral meristem and intersepal regions. ERF12 is a putative transcriptional repressor and genetically opposes the function of its relatives DORNRÖSCHEN, DORNRÖSCHEN-LIKE and PUCHI and converges with the APETALA2 pathway. Phylogenetic analysis suggests that ERF12 is conserved among all eudicots and appeared in angiosperm evolution concomitant with the generation of floral diversity.
Collapse
Affiliation(s)
- J. W. Chandler
- Developmental Biology, Institute of Zoology, Cologne Biocenter, University of Cologne, Zuelpicher Straße 47b, 50674 Cologne, Germany
| | - W. Werr
- Developmental Biology, Institute of Zoology, Cologne Biocenter, University of Cologne, Zuelpicher Straße 47b, 50674 Cologne, Germany
| |
Collapse
|
92
|
You X, Zhu S, Zhang W, Zhang J, Wang C, Jing R, Chen W, Wu H, Cai Y, Feng Z, Hu J, Yan H, Kong F, Zhang H, Zheng M, Ren Y, Lin Q, Cheng Z, Zhang X, Lei C, Jiang L, Wang H, Wan J. OsPEX5 regulates rice spikelet development through modulating jasmonic acid biosynthesis. THE NEW PHYTOLOGIST 2019; 224:712-724. [PMID: 31264225 DOI: 10.1111/nph.16037] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
Spikelet is the primary reproductive structure and a critical determinant of grain yield in rice. The molecular mechanisms regulating rice spikelet development still remain largely unclear. Here, we report that mutations in OsPEX5, which encodes a peroxisomal targeting sequence 1 (PTS1) receptor protein, cause abnormal spikelet morphology. We show that OsPEX5 can physically interact with OsOPR7, an enzyme involved in jasmonic acid (JA) biosynthesis and is required for its import into peroxisome. Similar to Ospex5 mutant, the knockout mutant of OsOPR7 generated via CRISPR-Cas9 technology has reduced levels of endogenous JA and also displays an abnormal spikelet phenotype. Application of exogenous JA can partially rescue the abnormal spikelet phenotype of Ospex5 and Osopr7. Furthermore, we show that OsMYC2 directly binds to the promoters of OsMADS1, OsMADS7 and OsMADS14 to activate their expression, and subsequently regulate spikelet development. Our results suggest that OsPEX5 plays a critical role in regulating spikelet development through mediating peroxisomal import of OsOPR7, therefore providing new insights into regulation of JA biosynthesis in plants and expanding our understanding of the biological role of JA in regulating rice reproduction.
Collapse
Affiliation(s)
- Xiaoman You
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Wenwei Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunming Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruonan Jing
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiwei Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Hongming Wu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Cai
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiming Feng
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinlong Hu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haigang Yan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Kong
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Zheng
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing, 100081, China
| |
Collapse
|
93
|
Gao XQ, Wang N, Wang XL, Zhang XS. Architecture of Wheat Inflorescence: Insights from Rice. TRENDS IN PLANT SCIENCE 2019; 24:802-809. [PMID: 31257155 DOI: 10.1016/j.tplants.2019.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/21/2019] [Accepted: 06/03/2019] [Indexed: 05/24/2023]
Abstract
The inflorescence architecture of grass crops affects the number of kernels and final grain yield. Great progress has been made in genetic analysis of rice inflorescence development in the past decades. However, the advances in wheat largely lag behind those in rice due to the repetitive and polyploid genomes of wheat. In view of the similar branching patterns and developmental characteristics between rice and wheat, the studies on inflorescence architecture in rice will facilitate related studies in wheat in the future. Here, we review the developmental regulation of inflorescences in rice and wheat and highlight several pathways that potentially regulate the inflorescence architecture of wheat.
Collapse
Affiliation(s)
- Xin-Qi Gao
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Ning Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xiu-Ling Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xian Sheng Zhang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
94
|
Huang Y, Bai X, Luo M, Xing Y. Short Panicle 3 controls panicle architecture by upregulating APO2/RFL and increasing cytokinin content in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:987-999. [PMID: 30302902 DOI: 10.1111/jipb.12729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 10/07/2018] [Indexed: 05/20/2023]
Abstract
Inflorescence architecture is a major determinant of spikelet numbers per panicle, a key component of grain yield in rice. In this study, Short Panicle 3 (SP3) was identified from a short panicle 3 (sp3) mutant in which T-DNA was inserted in the promoter of SP3, resulting in a knockdown mutation. SP3 encodes a DNA binding with one finger (Dof) transcriptional activator. Quantitative real time (qRT)-PCR and RNA in situ hybridization assays confirmed that SP3 is preferentially expressed in the young rice inflorescence, specifically in the branch primordial regions. SP3 acts as a negative regulator of inflorescence meristem abortion by upregulating APO2/RFL. SP3 both up- and downregulates expression of genes involved in cytokinin biosynthesis and catabolism, respectively. Consequently, cytokinin concentrations are decreased in young sp3 panicles, thereby leading to small panicles having fewer branches and spikelets. Our findings support a model in which SP3 regulates panicle architecture by modulating cytokinin homeostasis. Potential applications to rice breeding, through gene-editing of the SP3 promoter are assessed.
Collapse
Affiliation(s)
- Yong Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xufeng Bai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Meifang Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
95
|
Zhang P, Zhong K, Zhong Z, Tong H. Genome-wide association study of important agronomic traits within a core collection of rice (Oryza sativa L.). BMC PLANT BIOLOGY 2019; 19:259. [PMID: 31208337 PMCID: PMC6580581 DOI: 10.1186/s12870-019-1842-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 05/21/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Cultivated rice (Oryza sativa L.) is one of the staple food for over half of the world's population. Thus, improvement of cultivated rice is important for the development of the world. It has been shown that abundant elite genes exist in rice landraces in previous studies. RESULTS A genome-wide association study (GWAS) performed with EMMAX for 12 agronomic traits measured in both Guangzhou and Hangzhou was carried out using 150 accessions of Ting's core collection selected based on 48 phenotypic traits from 2262 accessions of Ting's collection, the GWAS included more than 3.8 million SNPs. Within Ting's core collection, which has a simple population structure, low relatedness, and rapid linkage disequilibrium (LD) decay, we found 32 peaks located closely to previously cloned genes such as Hd1, SD1, Ghd7, GW8, and GL7 or mapped QTL, and these loci might be natural variations in the cloned genes or QTL which influence potentially agronomic traits. Furthermore, we also detected 32 regions where new genes might be located, and some peaks of these new candidate genes such as the signal on chromosome 11 for heading days were even higher than that of Hd1. Detailed annotation of these significant loci were shown in this study. Moreover, according to the estimated LD decay distance of 100 to 350 kb on the 12 chromosomes in this study, we found 13 identical significant regions in the two locations. CONCLUSIONS This research provided important information for further mining these elite genes within Ting's core collection and using them for rice breeding.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Kaizhen Zhong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Zhengzheng Zhong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Hanhua Tong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| |
Collapse
|
96
|
Ali Z, Raza Q, Atif RM, Aslam U, Ajmal M, Chung G. Genetic and Molecular Control of Floral Organ Identity in Cereals. Int J Mol Sci 2019; 20:E2743. [PMID: 31167420 PMCID: PMC6600504 DOI: 10.3390/ijms20112743] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
Grasses represent a major family of monocots comprising mostly cereals. When compared to their eudicot counterparts, cereals show a remarkable morphological diversity. Understanding the molecular basis of floral organ identity and inflorescence development is crucial to gain insight into the grain development for yield improvement purposes in cereals, however, the exact genetic mechanism of floral organogenesis remains elusive due to their complex inflorescence architecture. Extensive molecular analyses of Arabidopsis and other plant genera and species have established the ABCDE floral organ identity model. According to this model, hierarchical combinatorial activities of A, B, C, D, and E classes of homeotic genes regulate the identity of different floral organs with partial conservation and partial diversification between eudicots and cereals. Here, we review the developmental role of A, B, C, D, and E gene classes and explore the recent advances in understanding the floral development and subsequent organ specification in major cereals with reference to model plants. Furthermore, we discuss the evolutionary relationships among known floral organ identity genes. This comparative overview of floral developmental genes and associated regulatory factors, within and between species, will provide a thorough understanding of underlying complex genetic and molecular control of flower development and floral organ identity, which can be helpful to devise innovative strategies for grain yield improvement in cereals.
Collapse
Affiliation(s)
- Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Sharif University of Agriculture, Multan 66000, Pakistan.
| | - Qasim Raza
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.
- Molecular Breeding Laboratory, Division of Plant Breeding and Genetics, Rice Research Institute, Kala Shah Kaku 39020, Pakistan.
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Usman Aslam
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.
| | - Muhammad Ajmal
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam 59626, Korea.
| |
Collapse
|
97
|
Jiang Q, Zeng Y, Yu B, Cen W, Lu S, Jia P, Wang X, Qin B, Cai Z, Luo J. The rice pds1 locus genetically interacts with partner to cause panicle exsertion defects and ectopic tillers in spikelets. BMC PLANT BIOLOGY 2019; 19:200. [PMID: 31092192 PMCID: PMC6521401 DOI: 10.1186/s12870-019-1805-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Rice (Oryza sativa L.) is a staple food crop worldwide. Its yield and quality are affected by its tillering pattern and spikelet development. Although many genes involved in the vegetative and reproductive development of rice have been characterized in previous studies, the genetic mechanisms that control axillary tillering, spikelet development, and panicle exsertion remain incompletely understood. RESULTS Here, we characterized a novel rice recombinant inbred line (RIL), panicle exsertion defect and aberrant spikelet (pds). It was derived from a cross between two indica varieties, S142 and 430. Intriguingly, no abnormal phenotypes were observed in the parents of pds. This RIL exhibited sheathed panicles at heading stage. Still, a small number of tillers in pds plants were fully exserted from the flag leaves. Elongated sterile lemmas and rudimentary glumes (occurred occasionally) were observed in the spikelets of the exserted panicles and were transformed into palea/lemma-like structures. Furthermore, more interestingly, tillers occasionally grew from the axils of the elongated rudimentary glumes. Via genetic linkage analysis, we found that the abnormal phenotype of pds manifesting as genetic incompatibility or hybrid weakness was caused by genetic interaction between a recessive locus, pds1, which was derived from S142 and mapped to chromosome 8, and a locus pds2, which not yet mapped from 430. We fine-mapped pds1 to an approximately 55-kb interval delimited by the markers pds-4 and 8 M3.51. Six RGAP-annotated ORFs were included in this genomic region. qPCR analysis revealed that Loc_Os080595 might be the target of pds1 locus, and G1 gene might be involved in the genetic mechanism underlying the pds phenotype. CONCLUSIONS In this study, histological and genetic analyses revealed that the pyramided pds loci resulted in genetic incompatibility or hybrid weakness in rice might be caused by a genetic interaction between pds loci derived from different rice varieties. Further isolation of pds1 and its interactor pds2, would provide new insight into the molecular regulation of grass inflorescence development and exsertion, and the evolution history of the extant rice.
Collapse
Affiliation(s)
- Qigui Jiang
- College of Life Science and technology (State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources), Guangxi University, Nanning, 530004 China
| | - Yindi Zeng
- College of Life Science and technology (State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources), Guangxi University, Nanning, 530004 China
| | - Baiyang Yu
- College of Life Science and technology (State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources), Guangxi University, Nanning, 530004 China
| | - Weijian Cen
- College of Life Science and technology (State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources), Guangxi University, Nanning, 530004 China
- Agriculture College, Guangxi University, Nanning, 530004 China
| | - Siyuan Lu
- College of Life Science and technology (State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources), Guangxi University, Nanning, 530004 China
| | - Peilong Jia
- Agriculture College, Guangxi University, Nanning, 530004 China
| | - Xuan Wang
- Agriculture College, Guangxi University, Nanning, 530004 China
| | - Baoxiang Qin
- Agriculture College, Guangxi University, Nanning, 530004 China
| | - Zhongquan Cai
- College of Life Science and technology (State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources), Guangxi University, Nanning, 530004 China
- Institute of New Rural Development, Guangxi University, Nanning, 530004 China
- Agriculture College, Guangxi University, Nanning, 530004 China
| | - Jijing Luo
- College of Life Science and technology (State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources), Guangxi University, Nanning, 530004 China
| |
Collapse
|
98
|
Ali A, Xu P, Riaz A, Wu X. Current Advances in Molecular Mechanisms and Physiological Basis of Panicle Degeneration in Rice. Int J Mol Sci 2019; 20:ijms20071613. [PMID: 30939720 PMCID: PMC6479839 DOI: 10.3390/ijms20071613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/22/2022] Open
Abstract
Panicle degeneration, also known as panicle abortion, is a serious defect and causes heavy losses to reproductive yield in cereals. Several mutants have been reported to display the phenotype of spikelet abortion in rice. Recent findings have resulted in significant breakthroughs, but comprehensive understanding about the molecular pathways and physiological basis of panicle degeneration still remain a dilemma. In this review, we have summarized all the responsible genes and mechanisms underlying the panicle development with a special focus on degeneration. Here, we hypothesized a model by using knowledge and coherent logic in order to understand the molecular regulation of panicle degeneration. In addition to this, we included all the previous discoveries, schools of thoughts, ancient working theories, and crosstalk of phytohormones and provided new insights for future studies.
Collapse
Affiliation(s)
- Asif Ali
- Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Chengdu 611130, China.
| | - Peizhou Xu
- Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Chengdu 611130, China.
| | - Asad Riaz
- Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xianjun Wu
- Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
99
|
Koppolu R, Schnurbusch T. Developmental pathways for shaping spike inflorescence architecture in barley and wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:278-295. [PMID: 30609316 DOI: 10.1111/jipb.12771] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/18/2018] [Indexed: 05/19/2023]
Abstract
Grass species display a wide array of inflorescences ranging from highly branched compound/panicle inflorescences to unbranched spike inflorescences. The unbranched spike is a characteristic feature of the species of tribe Triticeae, including economically important crops, such as wheat and barley. In this review, we describe two important developmental genetic mechanisms regulating spike inflorescence architecture in barley and wheat. These include genetic regulation of (i) row-type pathway specific to Hordeum species and (ii) unbranched spike development in barley and wheat. For a comparative understanding, we describe the branched inflorescence phenotypes of rice and maize along with unbranched Triticeae inflorescences. In the end, we propose a simplified model describing a probable mechanism leading to unbranched spike formation in Triticeae species.
Collapse
Affiliation(s)
- Ravi Koppolu
- Independant HEISENBERG-Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Thorsten Schnurbusch
- Independant HEISENBERG-Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
- Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University, Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
100
|
Gauley A, Boden SA. Genetic pathways controlling inflorescence architecture and development in wheat and barley. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:296-309. [PMID: 30325110 PMCID: PMC6900778 DOI: 10.1111/jipb.12732] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/15/2018] [Indexed: 05/18/2023]
Abstract
Modifications of inflorescence architecture have been crucial for the successful domestication of wheat and barley, which are central members of the Triticeae tribe that provide essential grains for the human diet. Investigation of the genes and alleles that underpin domestication-related traits has provided valuable insights into the molecular regulation of inflorescence development of the Triticeae, and further investigation of modified forms of architecture are proving to be equally fruitful. The identified genes are involved in diverse biological processes, including transcriptional regulation, hormone biosynthesis and metabolism, post-transcriptional and post-translational regulation, which alter inflorescence architecture by modifying the development and fertility of lateral organs, called spikelets and florets. Recent advances in sequencing capabilities and the generation of mutant populations are accelerating the identification of genes that influence inflorescence development, which is important given that genetic variation for this trait promises to be a valuable resource for optimizing grain production. This review assesses recent advances in our understanding of the genes controlling inflorescence development in wheat and barley, with the aim of highlighting the importance of improvements in developmental biology for optimizing the agronomic performance of staple crop plants.
Collapse
Affiliation(s)
- Adam Gauley
- Department of Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUnited Kingdom
| | - Scott A. Boden
- Department of Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUnited Kingdom
| |
Collapse
|