51
|
Banerjee R, Bultman SJ, Holley D, Hillhouse C, Bain JR, Newgard CB, Muehlbauer MJ, Willis MS. Non-targeted metabolomics of Brg1/Brm double-mutant cardiomyocytes reveals a novel role for SWI/SNF complexes in metabolic homeostasis. Metabolomics 2015; 11:1287-1301. [PMID: 26392817 PMCID: PMC4574504 DOI: 10.1007/s11306-015-0786-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mammalian SWI/SNF chromatin-remodeling complexes utilize either BRG1 or Brm as alternative catalytic subunits to alter the position of nucleosomes and regulate gene expression. Genetic studies have demonstrated that SWI/SNF complexes are required during cardiac development and also protect against cardiovascular disease and cancer. However, Brm constitutive null mutants do not exhibit a cardiomyocyte phenotype and inducible Brg1 conditional mutations in cardiomyocyte do not demonstrate differences until stressed with transverse aortic constriction, where they exhibit a reduction in cardiac hypertrophy. We recently demonstrated the overlapping functions of Brm and Brg1 in vascular endothelial cells and sought here to test if this overlapping function occurred in cardiomyocytes. Brg1/Brm double mutants died within 21 days of severe cardiac dysfunction associated with glycogen accumulation and mitochondrial defects based on histological and ultrastructural analyses. To determine the underlying defects, we performed nontargeted metabolomics analysis of cardiac tissue by GC/MS from a line of Brg1/Brm double-mutant mice, which lack both Brg1 and Brm in cardiomyocytes in an inducible manner, and two groups of controls. Metabolites contributing most significantly to the differences between Brg1/Brm double-mutant and control-group hearts were then determined using the variable importance in projection analysis. Increased cardiac linoleic acid and oleic acid suggest alterations in fatty acid utilization or intake are perturbed in Brg1/Brm double mutants. Conversely, decreased glucose-6-phosphate, fructose-6-phosphate, and myoinositol suggest that glycolysis and glycogen formation are impaired. These novel metabolomics findings provide insight into SWI/SNF-regulated metabolic pathways and will guide mechanistic studies evaluating the role of SWI/SNF complexes in homeostasis and cardiovascular disease prevention.
Collapse
Affiliation(s)
- Ranjan Banerjee
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Scott J. Bultman
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Darcy Holley
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Carolyn Hillhouse
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - James R. Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA. Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Christopher B. Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA. Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Michael J. Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Monte S. Willis
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA. McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
52
|
Nguyen KH, Xu F, Flowers S, Williams EAJ, Fritton JC, Moran E. SWI/SNF-Mediated Lineage Determination in Mesenchymal Stem Cells Confers Resistance to Osteoporosis. Stem Cells 2015; 33:3028-38. [PMID: 26059320 PMCID: PMC5014198 DOI: 10.1002/stem.2064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 03/24/2015] [Indexed: 12/13/2022]
Abstract
Redirecting the adipogenic potential of bone marrow‐derived mesenchymal stem cells to other lineages, particularly osteoblasts, is a key goal in regenerative medicine. Controlling lineage selection through chromatin remodeling complexes such as SWI/SNF, which act coordinately to establish new patterns of gene expression, would be a desirable intervention point, but the requirement for the complex in essentially every lineage pathway has generally precluded selectivity. However, a novel approach now appears possible by targeting the subset of SWI/SNF powered by the alternative ATPase, mammalian brahma (BRM). BRM is not required for development, which has hindered understanding of its contributions, but knockdown genetics here, designed to explore the hypothesis that BRM‐SWI/SNF has different regulatory roles in different mesenchymal stem cell lineages, shows that depleting BRM from mesenchymal stem cells has a dramatic effect on the balance of lineage selection between osteoblasts and adipocytes. BRM depletion enhances the proportion of cells expressing markers of osteoblast precursors at the expense of cells able to differentiate along the adipocyte lineage. This effect is evident in primary bone marrow stromal cells as well as in established cell culture models. The altered precursor balance has major physiological significance, which becomes apparent as protection against age‐related osteoporosis and as reduced bone marrow adiposity in adult BRM‐null mice. Stem Cells2015;33:3028–3038
Collapse
Affiliation(s)
- Kevin Hong Nguyen
- Department of Orthopaedics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Fuhua Xu
- Department of Orthopaedics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Stephen Flowers
- Department of Orthopaedics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Edek A J Williams
- Department of Orthopaedics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - J Christopher Fritton
- Department of Orthopaedics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Elizabeth Moran
- Department of Orthopaedics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| |
Collapse
|
53
|
Liao WL, Tan MW, Yuan Y, Wang GK, Wang C, Tang H, Xu ZY. Brahma-related gene 1 inhibits proliferation and migration of human aortic smooth muscle cells by directly up-regulating Ras-related associated with diabetes in the pathophysiologic processes of aortic dissection. J Thorac Cardiovasc Surg 2015; 150:1292-301.e2. [PMID: 26344687 DOI: 10.1016/j.jtcvs.2015.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/29/2015] [Accepted: 08/01/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To elucidate the mechanisms of Brahma-related gene 1 (Brg1) involvement in the pathophysiologic processes of aortic dissection. METHODS Seventeen dissecting, 4 dilated, and 10 healthy human aorta samples were collected. Expression of Brg1 in the medium of aorta was evaluated by quantitative real-time polymerase chain reaction, Western blot, and immunohistochemical staining, respectively. The regulation effect of Brg1 on proliferation and migration of human aortic smooth muscle cells (HASMCs) was analyzed in 3 ways: using cell counting, a migration chamber, and a wound scratch assay. A polymerase chain reaction array was used for screening potential target genes of Brg1. A chromatin immunoprecipitation assay was adopted for direct deoxyribonucleic acid-protein binding detection. RESULTS Expression levels of Brg1 were increased in aortic dissection and aortic dilation patients. In vitro results indicated that overexpression of Brg1 inhibited proliferation and migration of HASMCs. The candidate proliferation- and migration-related Brg1 target gene found was Ras-related associated with diabetes (RRAD), expression levels of which were enhanced in dissecting aortic specimens. The direct regulation effect of Brg1 on RRAD was verified by chromatin immunoprecipitation assay results. Furthermore, down-regulating RRAD significantly alleviated the suppression effects of Brg1 on proliferation and migration of HASMCs. CONCLUSIONS Our study illustrated that Brg1 inhibited the proliferation and migration capacity of HASMCs, via the mechanism of direct up-regulation of RRAD, thus playing an important role in the pathophysiologic processes of aortic dissection.
Collapse
MESH Headings
- Adult
- Aged
- Aortic Dissection/metabolism
- Aortic Dissection/pathology
- Aortic Dissection/physiopathology
- Aorta/metabolism
- Aorta/pathology
- Aorta/physiopathology
- Aortic Aneurysm/metabolism
- Aortic Aneurysm/pathology
- Aortic Aneurysm/physiopathology
- Case-Control Studies
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- DNA Helicases/genetics
- DNA Helicases/metabolism
- Female
- Humans
- Male
- Middle Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- RNA, Messenger/metabolism
- Signal Transduction
- Time Factors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transfection
- Up-Regulation
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Wei-Lin Liao
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Meng-Wei Tan
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yang Yuan
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Guo-Kun Wang
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Chong Wang
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Hao Tang
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China.
| | - Zhi-Yun Xu
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China.
| |
Collapse
|
54
|
Endocardial Brg1 disruption illustrates the developmental origins of semilunar valve disease. Dev Biol 2015; 407:158-72. [PMID: 26100917 DOI: 10.1016/j.ydbio.2015.06.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 11/24/2022]
Abstract
The formation of intricately organized aortic and pulmonic valves from primitive endocardial cushions of the outflow tract is a remarkable accomplishment of embryonic development. While not always initially pathologic, developmental semilunar valve (SLV) defects, including bicuspid aortic valve, frequently progress to a disease state in adults requiring valve replacement surgery. Disrupted embryonic growth, differentiation, and patterning events that "trigger" SLV disease are coordinated by gene expression changes in endocardial, myocardial, and cushion mesenchymal cells. We explored roles of chromatin regulation in valve gene regulatory networks by conditional inactivation of the Brg1-associated factor (BAF) chromatin remodeling complex in the endocardial lineage. Endocardial Brg1-deficient mouse embryos develop thickened and disorganized SLV cusps that frequently become bicuspid and myxomatous, including in surviving adults. These SLV disease-like phenotypes originate from deficient endocardial-to-mesenchymal transformation (EMT) in the proximal outflow tract (pOFT) cushions. The missing cells are replaced by compensating neural crest or other non-EMT-derived mesenchyme. However, these cells are incompetent to fully pattern the valve interstitium into distinct regions with specialized extracellular matrices. Transcriptomics reveal genes that may promote growth and patterning of SLVs and/or serve as disease-state biomarkers. Mechanistic studies of SLV disease genes should distinguish between disease origins and progression; the latter may reflect secondary responses to a disrupted developmental system.
Collapse
|
55
|
Brg-1 targeting of novel miR550a-5p/RNF43/Wnt signaling axis regulates colorectal cancer metastasis. Oncogene 2015; 35:651-61. [PMID: 25961913 DOI: 10.1038/onc.2015.124] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/07/2015] [Accepted: 03/12/2015] [Indexed: 12/25/2022]
Abstract
Metastasis is one of the main causes of death in patients with colorectal cancer (CRC). Brg-1 is a central component of the SWItch/Sucrose NonFermentable chromatin-remodeling complex, which features a bromodomain and helicase/ATPase activity. The gene encoding Brg-1 is frequently mutated or silenced in human cancers. Several reports have proposed Brg-1 as a tumor suppressor; however, little is known about its role in oncogenesis and metastasis. Here we demonstrated that decreased Brg-1 regulates a novel miR-550a-5p/RNF43/Wnt/β-catenin signaling pathway, to promote CRC metastasis in vitro and in vivo. In particular, we used high-throughput RNA-sequencing analysis to show that Brg-1 negatively regulates miR-550a-5p in CRC cells. We further found that Brg-1 inhibits the transcriptional activity of miR-550a-5p promoter, and that decreased Brg-1 expression increased miR-550a-5p expression. We also identified ring finger 43 (RNF43), an inhibitor of Wnt/β-catenin signaling, as a target of miR-550a-5p. Knockdown of Brg-1 by small interfering RNA led to decreased RNF43 expression, increased Wnt signaling and increased CRC cell migration and invasion. This novel pathway defines a new function for Brg-1 and provides potential targets for the treatment of Brg-1 mutant and loss-of-function tumors.
Collapse
|
56
|
Wiley MM, Muthukumar V, Griffin TM, Griffin CT. SWI/SNF chromatin-remodeling enzymes Brahma-related gene 1 (BRG1) and Brahma (BRM) are dispensable in multiple models of postnatal angiogenesis but are required for vascular integrity in infant mice. J Am Heart Assoc 2015; 4:jah3948. [PMID: 25904594 PMCID: PMC4579958 DOI: 10.1161/jaha.115.001972] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Mammalian SWItch/Sucrose NonFermentable (SWI/SNF) adenosine triphosphate (ATP)‐dependent chromatin‐remodeling complexes play important roles in embryonic vascular development by modulating transcription of specific target genes. We sought to determine whether SWI/SNF complexes likewise impact postnatal physiological and pathological angiogenesis. Methods and Results Brahma‐related gene 1 (BRG1) and Brahma gene (BRM) are ATPases within mammalian SWI/SNF complexes and are essential for the complexes to function. Using mice with vascular‐specific mutations in Brg1 or with a global mutation in Brm, we employed 3 models to test the role of these ATPases in postnatal angiogenesis. We analyzed neonatal retinal angiogenesis, exercise‐induced angiogenesis in adult quadriceps muscles, and tumor angiogenesis in control and mutant animals. We found no evidence of defective angiogenesis in Brg1 or Brm mutants using these 3 models. Brg1/Brm double mutants likewise show no evidence of vascular defects in the neonatal retina or tumor angiogenesis models. However, 100% of Brg1/Brm‐double mutants in which Brg1 deletion is induced at postnatal day 3 (P3) die by P19 with hemorrhaging in the small intestine and heart. Conclusions Despite their important roles in embryonic vascular development, SWI/SNF chromatin‐remodeling complexes display a surprising lack of participation in the 3 models of postnatal angiogenesis we analyzed. However, these complexes are essential for maintaining vascular integrity in specific tissue beds before weaning. These findings highlight the temporal and spatial specificity of SWI/SNF activities in the vasculature and may indicate that other chromatin‐remodeling complexes play redundant or more essential roles during physiological and pathological postnatal vascular development.
Collapse
Affiliation(s)
- Mandi M. Wiley
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (M.M.W., V.M., C.T.G.)
| | - Vijay Muthukumar
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (M.M.W., V.M., C.T.G.)
| | - Timothy M. Griffin
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (T.M.G.)
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (T.M.G.)
| | - Courtney T. Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (M.M.W., V.M., C.T.G.)
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (C.T.G.)
| |
Collapse
|
57
|
The roles of SNF2/SWI2 nucleosome remodeling enzymes in blood cell differentiation and leukemia. BIOMED RESEARCH INTERNATIONAL 2015; 2015:347571. [PMID: 25789315 PMCID: PMC4348595 DOI: 10.1155/2015/347571] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 01/27/2015] [Indexed: 12/15/2022]
Abstract
Here, we review the role of sucrose nonfermenting (SNF2) family enzymes in blood cell development. The SNF2 family comprises helicase-like ATPases, originally discovered in yeast, that can remodel chromatin by changing chromatin structure and composition. The human genome encodes 30 different SNF2 enzymes. SNF2 family enzymes are often part of multisubunit chromatin remodeling complexes (CRCs), which consist of noncatalytic/auxiliary subunit along with the ATPase subunit. However, blood cells express a limited set of SNF2 ATPases that are necessary to maintain the pool of hematopoietic stem cells (HSCs) and drive normal blood cell development and differentiation. The composition of CRCs can be altered by the association of specific auxiliary subunits. Several auxiliary CRC subunits have specific functions in hematopoiesis. Aberrant expressions of SNF2 ATPases and/or auxiliary CRC subunit(s) are often observed in hematological malignancies. Using large-scale data from the International Cancer Genome Consortium (ICGC) we observed frequent mutations in genes encoding SNF2 helicase-like enzymes and auxiliary CRC subunits in leukemia. Hence, orderly function of SNF2 family enzymes is crucial for the execution of normal blood cell developmental program, and defects in chromatin remodeling caused by mutations or aberrant expression of these proteins may contribute to leukemogenesis.
Collapse
|
58
|
Zhang X, Li B, Li W, Ma L, Zheng D, Li L, Yang W, Chu M, Chen W, Mailman RB, Zhu J, Fan G, Archer TK, Wang Y. Transcriptional repression by the BRG1-SWI/SNF complex affects the pluripotency of human embryonic stem cells. Stem Cell Reports 2014; 3:460-74. [PMID: 25241744 PMCID: PMC4266000 DOI: 10.1016/j.stemcr.2014.07.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 12/01/2022] Open
Abstract
The SWI/SNF complex plays an important role in mouse embryonic stem cells (mESCs), but it remains to be determined whether this complex is required for the pluripotency of human ESCs (hESCs). Using RNAi, we demonstrated that depletion of BRG1, the catalytic subunit of the SWI/SNF complex, led to impaired self-renewing ability and dysregulated lineage specification of hESCs. A unique composition of the BRG1-SWI/SNF complex in hESCs was further defined by the presence of BRG1, BAF250A, BAF170, BAF155, BAF53A, and BAF47. Genome-wide expression analyses revealed that BRG1 participated in a broad range of biological processes in hESCs through pathways different from those in mESCs. In addition, chromatin immunoprecipitation sequencing (ChIP-seq) demonstrated that BRG1 played a repressive role in transcriptional regulation by modulating the acetylation levels of H3K27 at the enhancers of lineage-specific genes. Our data thus provide valuable insights into molecular mechanisms by which transcriptional repression affects the self-renewal and differentiation of hESCs. We report a conserved but distinct role of SWI/SNF complex in hESC pluripotency Depletion of BAF170 in SWI/SNF complex leads to impaired pluripotency of hESCs BRG1 negatively regulates transcription of lineage-specific genes BRG1 downregulates H3K27ac levels at enhancers of lineage-specific genes
Collapse
Affiliation(s)
- Xiaoli Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Bing Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wenguo Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lijuan Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dongyan Zheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Leping Li
- Biostatistics Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Weijing Yang
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Min Chu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wei Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Richard B Mailman
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-7088, USA
| | - Trevor K Archer
- Chromatin and Gene Expression Group, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Yuan Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
59
|
Attanasio C, Nord AS, Zhu Y, Blow MJ, Biddie SC, Mendenhall EM, Dixon J, Wright C, Hosseini R, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Afzal V, Ren B, Bernstein BE, Rubin EM, Visel A, Pennacchio LA. Tissue-specific SMARCA4 binding at active and repressed regulatory elements during embryogenesis. Genome Res 2014; 24:920-9. [PMID: 24752179 PMCID: PMC4032856 DOI: 10.1101/gr.168930.113] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The SMARCA4 (also known as BRG1 in humans) chromatin remodeling factor is critical for establishing lineage-specific chromatin states during early mammalian development. However, the role of SMARCA4 in tissue-specific gene regulation during embryogenesis remains poorly defined. To investigate the genome-wide binding landscape of SMARCA4 in differentiating tissues, we engineered a Smarca4FLAG knock-in mouse line. Using ChIP-seq, we identified ∼51,000 SMARCA4-associated regions across six embryonic mouse tissues (forebrain, hindbrain, neural tube, heart, limb, and face) at mid-gestation (E11.5). The majority of these regions was distal from promoters and showed dynamic occupancy, with most distal SMARCA4 sites (73%) confined to a single or limited subset of tissues. To further characterize these regions, we profiled active and repressive histone marks in the same tissues and examined the intersection of informative chromatin states and SMARCA4 binding. This revealed distinct classes of distal SMARCA4-associated elements characterized by activating and repressive chromatin signatures that were associated with tissue-specific up- or down-regulation of gene expression and relevant active/repressed biological pathways. We further demonstrate the predicted active regulatory properties of SMARCA4-associated elements by retrospective analysis of tissue-specific enhancers and direct testing of SMARCA4-bound regions in transgenic mouse assays. Our results indicate a dual active/repressive function of SMARCA4 at distal regulatory sequences in vivo and support its role in tissue-specific gene regulation during embryonic development.
Collapse
Affiliation(s)
- Catia Attanasio
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Alex S Nord
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Yiwen Zhu
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Matthew J Blow
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Simon C Biddie
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA; Addenbrooke's Hospital, Cambridge University NHS Trust, Cambridge CB2 0QQ, United Kingdom
| | - Eric M Mendenhall
- HHMI and Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Jesse Dixon
- Ludwig Institute for Cancer Research, UCSD School of Medicine, La Jolla, California 92093, USA
| | - Crystal Wright
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Roya Hosseini
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jennifer A Akiyama
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Amy Holt
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Ingrid Plajzer-Frick
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Malak Shoukry
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Veena Afzal
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, UCSD School of Medicine, La Jolla, California 92093, USA
| | - Bradley E Bernstein
- HHMI and Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Edward M Rubin
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Axel Visel
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Len A Pennacchio
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| |
Collapse
|
60
|
Bevilacqua A, Willis MS, Bultman SJ. SWI/SNF chromatin-remodeling complexes in cardiovascular development and disease. Cardiovasc Pathol 2014; 23:85-91. [PMID: 24183004 PMCID: PMC3946279 DOI: 10.1016/j.carpath.2013.09.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 12/19/2022] Open
Abstract
Our understanding of congenital heart defects has been recently advanced by whole exome sequencing projects, which have identified de novo mutations in many genes encoding epigenetic regulators. Notably, multiple subunits of switching defective/sucrose non-fermenting (SWI/SNF) chromatin-remodeling complexes have been identified as strong candidates underlying these defects because they physically and functionally interact with cardiogenic transcription factors critical to cardiac development, such as TBX5, GATA-4, and NKX2-5. While these studies indicate a critical role of SWI/SNF complexes in cardiac development and congenital heart disease, many exciting new discoveries have identified their critical role in the adult heart in both physiological and pathological conditions involving multiple cell types in the heart, including cardiomyocytes, vascular endothelial cells, pericytes, and neural crest cells. This review summarizes the role of SWI/SNF chromatin-remodeling complexes in cardiac development, congenital heart disease, cardiac hypertrophy, and vascular endothelial cell survival. Although the clinical relevance of SWI/SNF mutations has traditionally been focused primarily on their role in tumor suppression, these recent studies illustrate their critical role in the heart whereby they regulate cell proliferation, differentiation, and apoptosis of cardiac derived cell lines.
Collapse
Affiliation(s)
- Ariana Bevilacqua
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Monte S Willis
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.
| | - Scott J Bultman
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
61
|
Ingram KG, Curtis CD, Silasi-Mansat R, Lupu F, Griffin CT. The NuRD chromatin-remodeling enzyme CHD4 promotes embryonic vascular integrity by transcriptionally regulating extracellular matrix proteolysis. PLoS Genet 2013; 9:e1004031. [PMID: 24348274 PMCID: PMC3861115 DOI: 10.1371/journal.pgen.1004031] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 10/31/2013] [Indexed: 12/31/2022] Open
Abstract
The extracellular matrix (ECM) supports vascular integrity during embryonic development. Proteolytic degradation of ECM components is required for angiogenesis, but excessive ECM proteolysis causes blood vessel fragility and hemorrhage. Little is understood about how ECM proteolysis is transcriptionally regulated during embryonic vascular development. We now show that the NuRD ATP-dependent chromatin-remodeling complex promotes vascular integrity by preventing excessive ECM proteolysis in vivo. Mice lacking endothelial CHD4--a catalytic subunit of NuRD complexes--died at midgestation from vascular rupture. ECM components surrounding rupture-prone vessels in Chd4 mutants were significantly downregulated prior to embryonic lethality. Using qPCR arrays, we found two critical mediators of ECM stability misregulated in mutant endothelial cells: the urokinase-type plasminogen activator receptor (uPAR or Plaur) was upregulated, and thrombospondin-1 (Thbs1) was downregulated. Chromatin immunoprecipitation assays showed that CHD4-containing NuRD complexes directly bound the promoters of these genes in endothelial cells. uPAR and THBS1 respectively promote and inhibit activation of the potent ECM protease plasmin, and we detected increased plasmin activity around rupture-prone vessels in Chd4 mutants. We rescued ECM components and vascular rupture in Chd4 mutants by genetically reducing urokinase (uPA or Plau), which cooperates with uPAR to activate plasmin. Our findings provide a novel mechanism by which a chromatin-remodeling enzyme regulates ECM stability to maintain vascular integrity during embryonic development.
Collapse
Affiliation(s)
- Kyle G. Ingram
- Cardiovascular Biology Research Program; Oklahoma Medical Research Foundation; Oklahoma City, Oklahoma, United States of America
- Department of Cell Biology; University of Oklahoma Health Sciences Center; Oklahoma City, Oklahoma, United States of America
| | - Carol D. Curtis
- Cardiovascular Biology Research Program; Oklahoma Medical Research Foundation; Oklahoma City, Oklahoma, United States of America
| | - Robert Silasi-Mansat
- Cardiovascular Biology Research Program; Oklahoma Medical Research Foundation; Oklahoma City, Oklahoma, United States of America
| | - Florea Lupu
- Cardiovascular Biology Research Program; Oklahoma Medical Research Foundation; Oklahoma City, Oklahoma, United States of America
- Department of Cell Biology; University of Oklahoma Health Sciences Center; Oklahoma City, Oklahoma, United States of America
- Department of Pathology; University of Oklahoma Health Sciences Center; Oklahoma City, Oklahoma, United States of America
| | - Courtney T. Griffin
- Cardiovascular Biology Research Program; Oklahoma Medical Research Foundation; Oklahoma City, Oklahoma, United States of America
- Department of Cell Biology; University of Oklahoma Health Sciences Center; Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
62
|
Regulation of Gγ-globin gene by ATF2 and its associated proteins through the cAMP-response element. PLoS One 2013; 8:e78253. [PMID: 24223142 PMCID: PMC3819381 DOI: 10.1371/journal.pone.0078253] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/10/2013] [Indexed: 01/12/2023] Open
Abstract
The upstream Gγ-globin cAMP-response element (G-CRE) plays an important role in regulating Gγ-globin expression through binding of ATF2 and its DNA-binding partners defined in this study. ATF2 knockdown resulted in a significant reduction of γ-globin expression accompanied by decreased ATF2 binding to the G-CRE. By contrast, stable ATF2 expression in K562 cells increased γ-globin transcription which was reduced by ATF2 knockdown. Moreover, a similar effect of ATF2 on γ-globin expression was observed in primary erythroid progenitors. To understand the role of ATF2 in γ-globin expression, chromatographically purified G-CRE/ATF2-interacting proteins were subjected to mass spectrometry analysis; major binding partners included CREB1, cJun, Brg1, and histone deacetylases among others. Immunoprecipitation assays demonstrated interaction of these proteins with ATF2 and in vivo GCRE binding in CD34+ cells undergoing erythroid differentiation which was correlated with γ-globin expression during development. These results suggest synergism between developmental stage-specific recruitments of the ATF2 protein complex and expression of γ-globin during erythropoiesis. Microarray studies in K562 cells support ATF2 plays diverse roles in hematopoiesis and chromatin remodeling.
Collapse
|
63
|
Fraser ST. The modern primitives: applying new technological approaches to explore the biology of the earliest red blood cells. ISRN HEMATOLOGY 2013; 2013:568928. [PMID: 24222861 PMCID: PMC3814094 DOI: 10.1155/2013/568928] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/25/2013] [Indexed: 01/01/2023]
Abstract
One of the most critical stages in mammalian embryogenesis is the independent production of the embryo's own circulating, functional red blood cells. Correspondingly, erythrocytes are the first cell type to become functionally mature during embryogenesis. Failure to achieve this invariably leads to in utero lethality. The recent application of technologies such as transcriptome analysis, flow cytometry, mutant embryo analysis, and transgenic fluorescent gene expression reporter systems has shed new light on the distinct erythroid lineages that arise early in development. Here, I will describe the similarities and differences between the distinct erythroid populations that must form for the embryo to survive. While much of the focus of this review will be the poorly understood primitive erythroid lineage, a discussion of other erythroid and hematopoietic lineages, as well as the cell types making up the different niches that give rise to these lineages, is essential for presenting an appropriate developmental context of these cells.
Collapse
Affiliation(s)
- Stuart T. Fraser
- Disciplines of Physiology, Anatomy and Histology, Bosch Institute, School of Medical Sciences, University of Sydney, Medical Foundation Building K25, 92-94 Parramatta Road, Camperdown, NSW 2050, Australia
| |
Collapse
|
64
|
Fang F, Chen D, Yu L, Dai X, Yang Y, Tian W, Cheng X, Xu H, Weng X, Fang M, Zhou J, Gao Y, Chen Q, Xu Y. Proinflammatory stimuli engage Brahma related gene 1 and Brahma in endothelial injury. Circ Res 2013; 113:986-96. [PMID: 23963727 DOI: 10.1161/circresaha.113.301296] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE Endothelial dysfunction inflicted by inflammation is found in a host of cardiovascular pathologies. One hallmark event in this process is the aggregation and adhesion of leukocyte to the vessel wall mediated by the upregulation of adhesion molecules (CAM) in endothelial cells at the transcriptional level. The epigenetic modulator(s) of CAM transactivation and its underlying pathophysiological relevance remain poorly defined. OBJECTIVE Our goal was to determine the involvement of Brahma related gene 1 (Brg1) and Brahma (Brm) in CAM transactivation and its relevance in the pathogenesis of atherosclerosis. METHODS AND RESULTS In the present study, we report that proinflammatory stimuli augmented the expression of Brg1 and Brm in vitro in cultured endothelial cells and in vivo in arteries isolated from rodents. Overexpression of Brg1 and Brm promoted while knockdown of Brg1 and Brm abrogated transactivation of adhesion molecules and leukocyte adhesion induced by inflammatory signals. Brg1 and Brm interacted with and were recruited to the CAM promoters by nuclear factor κB/p65. Conversely, depletion of Brg1 and Brm disrupted the kinetics of p65 binding on CAM promoters and crippled CAM activation. Silencing of Brg1 and Brm also altered key epigenetic changes associated with CAM transactivation. Of intrigue, 17β-estradiol antagonized both the expression and activity of Brg1/Brm. Most importantly, endothelial-targeted elimination of Brg1/Brm conferred atheroprotective effects to Apoe(-/-) mice on a Western diet. CONCLUSIONS Our data suggest that Brg1 and Brm integrate various proinflammatory cues into CAM transactivation and endothelial malfunction and, as such, may serve as potential therapeutic targets in treating inflammation-related cardiovascular diseases.
Collapse
Affiliation(s)
- Fei Fang
- From the State Key Laboratory of Reproductive Medicine, and Atherosclerosis Research Center, Provincial Key Laboratory of Cardiovascular Disease; and Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Lim PS, Li J, Holloway AF, Rao S. Epigenetic regulation of inducible gene expression in the immune system. Immunology 2013; 139:285-93. [PMID: 23521628 DOI: 10.1111/imm.12100] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/07/2013] [Accepted: 03/13/2013] [Indexed: 01/12/2023] Open
Abstract
T cells are exquisitely poised to respond rapidly to pathogens and have proved an instructive model for exploring the regulation of inducible genes. Individual genes respond to antigenic stimulation in different ways, and it has become clear that the interplay between transcription factors and the chromatin platform of individual genes governs these responses. Our understanding of the complexity of the chromatin platform and the epigenetic mechanisms that contribute to transcriptional control has expanded dramatically in recent years. These mechanisms include the presence/absence of histone modification marks, which form an epigenetic signature to mark active or inactive genes. These signatures are dynamically added or removed by epigenetic enzymes, comprising an array of histone-modifying enzymes, including the more recently recognized chromatin-associated signalling kinases. In addition, chromatin-remodelling complexes physically alter the chromatin structure to regulate chromatin accessibility to transcriptional regulatory factors. The advent of genome-wide technologies has enabled characterization of the chromatin landscape of T cells in terms of histone occupancy, histone modification patterns and transcription factor association with specific genomic regulatory regions, generating a picture of the T-cell epigenome. Here, we discuss the multi-layered regulation of inducible gene expression in the immune system, focusing on the interplay between transcription factors, and the T-cell epigenome, including the role played by chromatin remodellers and epigenetic enzymes. We will also use IL2, a key inducible cytokine gene in T cells, as an example of how the different layers of epigenetic mechanisms regulate immune responsive genes during T-cell activation.
Collapse
Affiliation(s)
- Pek Siew Lim
- Discipline of Biomedical Sciences, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, Australia.
| | | | | | | |
Collapse
|
66
|
Baron MH, Vacaru A, Nieves J. Erythroid development in the mammalian embryo. Blood Cells Mol Dis 2013; 51:213-9. [PMID: 23932234 DOI: 10.1016/j.bcmd.2013.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/25/2013] [Indexed: 12/22/2022]
Abstract
Erythropoiesis is the process by which progenitors for red blood cells are produced and terminally differentiate. In all vertebrates, two morphologically distinct erythroid lineages (primitive, embryonic, and definitive, fetal/adult) form successively within the yolk sac, fetal liver, and marrow and are essential for normal development. Red blood cells have evolved highly specialized functions in oxygen transport, defense against oxidation, and vascular remodeling. Here we review key features of the ontogeny of red blood cell development in mammals, highlight similarities and differences revealed by genetic and gene expression profiling studies, and discuss methods for identifying erythroid cells at different stages of development and differentiation.
Collapse
Affiliation(s)
- Margaret H Baron
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | | | | |
Collapse
|
67
|
Tsai YP, Wu KJ. Epigenetic regulation of hypoxia-responsive gene expression: focusing on chromatin and DNA modifications. Int J Cancer 2013; 134:249-56. [PMID: 23564219 DOI: 10.1002/ijc.28190] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 03/28/2013] [Indexed: 12/20/2022]
Abstract
Mammalian cells constantly encounter hypoxia, which is a stress condition occurring during development and physiological processes. To adapt to this inevitable condition, cells develop various mechanisms to cope with this stress and survive. In addition to the activation/stabilization of transcriptional regulators (hypoxia-inducible factors), other epigenetic mechanisms of gene regulation are used. These mechanisms are mediated by various players including transcriptional coregulators, chromatin-modifying complexes, histone modification enzymes and changes in DNA methylation status. Recent progress in all the fields mentioned above has greatly improved the knowledge of how gene regulation contributes to the hypoxic response. This review should shed light on the molecular epigenetic mechanisms of hypoxia-induced gene regulation and help understand the processes adapted by cells to cope with hypoxia.
Collapse
Affiliation(s)
- Ya-Ping Tsai
- Institute of Biochemistry & Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | | |
Collapse
|
68
|
Abstract
The establishment and maintenance of the vascular system is critical for embryonic development and postnatal life. Defects in endothelial cell development and vessel formation and function lead to embryonic lethality and are important in the pathogenesis of vascular diseases. Here, we review the underlying molecular mechanisms of endothelial cell differentiation, plasticity, and the development of the vasculature. This review focuses on the interplay among transcription factors and signaling molecules that specify the differentiation of vascular endothelial cells. We also discuss recent progress on reprogramming of somatic cells toward distinct endothelial cell lineages and its promise in regenerative vascular medicine.
Collapse
Affiliation(s)
- Changwon Park
- Department of Pharmacology, Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | | |
Collapse
|
69
|
The SWI/SNF genetic blockade: effects in cell differentiation, cancer and developmental diseases. Oncogene 2013; 33:2681-9. [PMID: 23752187 DOI: 10.1038/onc.2013.227] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/17/2013] [Accepted: 04/17/2013] [Indexed: 12/26/2022]
Abstract
Our rapidly growing knowledge about cancer genetics attests to the widespread occurrence of alterations at genes encoding different components of the SWI/SNF complex. This reveals an important new feature that sustains cancer development: the blockade of chromatin remodeling. Here, we provide an overview of our current knowledge on the gene alterations of chromatin-remodeling factors, and how they relate to cancer and human developmental diseases. We also consider the functional repercussions, particularly how the inactivation of the SWI/SNF complex impairs the appropriate cell response to nuclear receptor signaling, which, in turn, prevents cell differentiation and sustains cell growth independently of the environment.
Collapse
|
70
|
Li L, Liu D, Bu D, Chen S, Wu J, Tang C, Du J, Jin H. Brg1-dependent epigenetic control of vascular smooth muscle cell proliferation by hydrogen sulfide. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1347-55. [DOI: 10.1016/j.bbamcr.2013.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/02/2013] [Accepted: 03/03/2013] [Indexed: 12/19/2022]
|
71
|
Chiplunkar AR, Lung TK, Alhashem Y, Koppenhaver BA, Salloum FN, Kukreja RC, Haar JL, Lloyd JA. Krüppel-like factor 2 is required for normal mouse cardiac development. PLoS One 2013; 8:e54891. [PMID: 23457456 PMCID: PMC3573061 DOI: 10.1371/journal.pone.0054891] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 12/18/2012] [Indexed: 02/06/2023] Open
Abstract
Krüppel-like factor 2 (KLF2) is expressed in endothelial cells in the developing heart, particularly in areas of high shear stress, such as the atrioventricular (AV) canal. KLF2 ablation leads to myocardial thinning, high output cardiac failure and death by mouse embryonic day 14.5 (E14.5) in a mixed genetic background. This work identifies an earlier and more fundamental role for KLF2 in mouse cardiac development in FVB/N mice. FVB/N KLF2−/− embryos die earlier, by E11.5. E9.5 FVB/N KLF2−/− hearts have multiple, disorganized cell layers lining the AV cushions, the primordia of the AV valves, rather than the normal single layer. By E10.5, traditional and endothelial-specific FVB/N KLF2−/− AV cushions are hypocellular, suggesting that the cells accumulating at the AV canal have a defect in endothelial to mesenchymal transformation (EMT). E10.5 FVB/N KLF2−/− hearts have reduced glycosaminoglycans in the cardiac jelly, correlating with the reduced EMT. However, the number of mesenchymal cells migrating from FVB/N KLF2−/− AV explants into a collagen matrix is reduced considerably compared to wild-type, suggesting that the EMT defect is not due solely to abnormal cardiac jelly. Echocardiography of E10.5 FVB/N KLF2−/− embryos indicates that they have abnormal heart function compared to wild-type. E10.5 C57BL/6 KLF2−/− hearts have largely normal AV cushions. However, E10.5 FVB/N and C57BL/6 KLF2−/− embryos have a delay in the formation of the atrial septum that is not observed in a defined mixed background. KLF2 ablation results in reduced Sox9, UDP-glucose dehydrogenase (Ugdh), Gata4 and Tbx5 mRNA in FVB/N AV canals. KLF2 binds to the Gata4, Tbx5 and Ugdh promoters in chromatin immunoprecipitation assays, indicating that KLF2 could directly regulate these genes. In conclusion, KLF2−/− heart phenotypes are genetic background-dependent. KLF2 plays a role in EMT through its regulation of important cardiovascular genes.
Collapse
MESH Headings
- Animals
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Embryo, Mammalian/pathology
- Embryo, Mammalian/physiopathology
- Female
- GATA4 Transcription Factor/metabolism
- Gene Expression Regulation, Developmental
- Glycosaminoglycans/analysis
- Heart/embryology
- Heart/physiopathology
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/metabolism
- Heart Defects, Congenital/pathology
- Heart Defects, Congenital/physiopathology
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Male
- Mice/abnormalities
- Mice/embryology
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Myocardium/cytology
- Myocardium/metabolism
- Myocardium/pathology
- T-Box Domain Proteins/metabolism
Collapse
Affiliation(s)
- Aditi R. Chiplunkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Tina K. Lung
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Yousef Alhashem
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Benjamin A. Koppenhaver
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Fadi N. Salloum
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Rakesh C. Kukreja
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jack L. Haar
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Joyce A. Lloyd
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
72
|
Davis RB, Curtis CD, Griffin CT. BRG1 promotes COUP-TFII expression and venous specification during embryonic vascular development. Development 2013; 140:1272-81. [PMID: 23406903 DOI: 10.1242/dev.087379] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Arteries and veins acquire distinct molecular identities prior to the onset of embryonic blood circulation, and their specification is crucial for vascular development. The transcription factor COUP-TFII currently functions at the top of a signaling pathway governing venous fate. It promotes venous identity by inhibiting Notch signaling and subsequent arterialization of endothelial cells, yet nothing is known about what regulates COUP-TFII expression in veins. We now report that the chromatin-remodeling enzyme BRG1 promotes COUP-TFII expression in venous endothelial cells during murine embryonic development. Conditional deletion of Brg1 from vascular endothelial cells resulted in downregulated COUP-TFII expression and aberrant expression of arterial markers on veins. BRG1 promotes COUP-TFII expression by binding conserved regulatory elements within the COUP-TFII promoter and remodeling chromatin to make the promoter accessible to transcriptional machinery. This study provides the first description of a factor promoting COUP-TFII expression in vascular endothelium and highlights a novel role for chromatin remodeling in venous specification.
Collapse
Affiliation(s)
- Reema B Davis
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
73
|
Abstract
Every known SWI/SNF chromatin-remodeling complex incorporates an ARID DNA binding domain-containing subunit. Despite being a ubiquitous component of the complex, physiological roles for this domain remain undefined. Here, we show that disruption of ARID1a-DNA binding in mice results in embryonic lethality, with mutant embryos manifesting prominent defects in the heart and extraembryonic vasculature. The DNA binding-defective mutant ARID1a subunit is stably expressed and capable of assembling into a SWI/SNF complex with core catalytic properties, but nucleosome substrate binding and promoter occupancy by ARID1a-containing SWI/SNF complexes (BAF-A) are impaired. Depletion of ARID domain-dependent, BAF-A associations at THROMBOSPONDIN 1 (THBS1) led to the concomitant upregulation of this SWI/SNF target gene. Using a THBS1 promoter-reporter gene, we further show that BAF-A directly regulates THBS1 promoter activity in an ARID domain-dependent manner. Our data not only demonstrate that ARID1a-DNA interactions are physiologically relevant in higher eukaryotes but also indicate that these interactions facilitate SWI/SNF binding to target sites in vivo. These findings support the model wherein cooperative interactions among intrinsic subunit-chromatin interaction domains and sequence-specific transcription factors drive SWI/SNF recruitment.
Collapse
|
74
|
Smith-Roe SL, Bultman SJ. Combined gene dosage requirement for SWI/SNF catalytic subunits during early mammalian development. Mamm Genome 2012; 24:21-9. [PMID: 23076393 DOI: 10.1007/s00335-012-9433-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/10/2012] [Indexed: 01/17/2023]
Abstract
Mammalian SWI/SNF complexes utilize either BRG1 or BRM as alternative catalytic subunits with DNA-dependent ATPase activity to remodel chromatin. Although the two proteins are 75 % identical, broadly expressed, and have similar biochemical activities in vitro, BRG1 is essential for mouse embryonic development, while BRM is dispensable. To investigate whether BRG1 and BRM have overlapping functions during mouse embryogenesis, we performed double-heterozygous intercrosses using constitutive null mutations previously created by gene targeting. The progeny of these crosses had a distribution of genotypes that was significantly skewed relative to their combined gene dosage. This was most pronounced at the top and bottom of the gene dosage hierarchy, with a 1.5-fold overrepresentation of Brg1 (+/+) ;Brm (+/+) mice and a corresponding 1.6-fold underrepresentation of Brg1 (+/-) ;Brm (-/-) mice. To account for the underrepresentation of Brg1 (+/-) ;Brm (-/-) mice, timed matings and blastocyst outgrowth assays demonstrated that ~50 % of these embryos failed to develop beyond the peri-implantation stage. These results challenge the idea that BRG1 is the exclusive catalytic subunit of SWI/SNF complexes in ES cells and suggest that BRM also interacts with the pluripotency transcription factors to facilitate self-renewal of the inner cell mass. In contrast to implantation, the Brm genotype did not influence an exencephaly phenotype that arises because of Brg1 haploinsufficiency during neural tube closure and that results in peri-natal lethality. Taken together, these results support the idea that BRG1 and BRM have overlapping functions for certain developmental processes but not others during embryogenesis.
Collapse
Affiliation(s)
- Stephanie L Smith-Roe
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | | |
Collapse
|
75
|
Dresner E, Malishkevich A, Arviv C, Leibman Barak S, Alon S, Ofir R, Gothilf Y, Gozes I. Novel evolutionary-conserved role for the activity-dependent neuroprotective protein (ADNP) family that is important for erythropoiesis. J Biol Chem 2012; 287:40173-85. [PMID: 23071114 DOI: 10.1074/jbc.m112.387027] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND ADNP is vital for embryonic development. Is this function conserved for the homologous protein ADNP2? RESULTS Down-regulation/silencing of ADNP or ADNP2 in zebrafish embryos or mouse erythroleukemia cells inhibited erythroid maturation, with ADNP directly associating with the β-globin locus control region. CONCLUSION ADNPs are novel molecular regulators of erythropoiesis. SIGNIFICANCE New regulators of globin synthesis are suggested. Activity-dependent neuroprotective protein (ADNP) and its homologue ADNP2 belong to a homeodomain, the zinc finger-containing protein family. ADNP is essential for mouse embryonic brain formation. ADNP2 is associated with cell survival, but its role in embryogenesis has not been evaluated. Here, we describe the use of the zebrafish model to elucidate the developmental roles of ADNP and ADNP2. Although we expected brain defects, we were astonished to discover that the knockdown zebrafish embryos were actually lacking blood and suffered from defective hemoglobin production. Evolutionary conservation was established using mouse erythroleukemia (MEL) cells, a well studied erythropoiesis model, in which silencing of ADNP or ADNP2 produced similar results as in zebrafish. Exogenous RNA encoding ADNP/ADNP2 rescued the MEL cell undifferentiated state, demonstrating phenotype specificity. Brg1, an ADNP-interacting chromatin-remodeling protein involved in erythropoiesis through regulation of the globin locus, was shown here to interact also with ADNP2. Furthermore, chromatin immunoprecipitation revealed recruitment of ADNP, similar to Brg1, to the mouse β-globin locus control region in MEL cells. This recruitment was apparently diminished upon dimethyl sulfoxide (DMSO)-induced erythrocyte differentiation compared with the nondifferentiated state. Importantly, exogenous RNA encoding ADNP/ADNP2 significantly increased β-globin expression in MEL cells in the absence of any other differentiation factors. Taken together, our results reveal an ancestral role for the ADNP protein family in maturation and differentiation of the erythroid lineage, associated with direct regulation of β-globin expression.
Collapse
Affiliation(s)
- Efrat Dresner
- Adams Super Center for Brain Studies, Lily and Avraham Gildor Chair for the Investigation of Growth Factors, Department of Human Molecular Genetics and Biochemistry, Sagol School of Neuroscience, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Willis MS, Homeister JW, Rosson GB, Annayev Y, Holley D, Holly SP, Madden VJ, Godfrey V, Parise LV, Bultman SJ. Functional redundancy of SWI/SNF catalytic subunits in maintaining vascular endothelial cells in the adult heart. Circ Res 2012; 111:e111-22. [PMID: 22740088 DOI: 10.1161/circresaha.112.265587] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RATIONALE Mating type switching/sucrose non-fermenting (SWI/SNF) chromatin-remodeling complexes utilize either BRG1 or BRM as a catalytic subunit to alter nucleosome position and regulate gene expression. BRG1 is required for vascular endothelial cell (VEC) development and embryonic survival, whereas BRM is dispensable. OBJECTIVE To circumvent embryonic lethality and study Brg1 function in adult tissues, we used conditional gene targeting. To evaluate possible Brg1-Brm redundancy, we analyzed Brg1 mutant mice on wild-type and Brm-deficient backgrounds. METHODS AND RESULTS The inducible Mx1-Cre driver was used to mutate Brg1 in adult mice. These conditional-null mutants exhibited a tissue-specific phenotype and unanticipated functional compensation between Brg1 and Brm. Brg1 single mutants were healthy and had a normal lifespan, whereas Brg1/Brm double mutants exhibited cardiovascular defects and died within 1 month. BRG1 and BRM were required for the viability of VECs but not other cell types where both genes were also knocked out. The VEC phenotype was most evident in the heart, particularly in the microvasculature of the outer myocardium, and was recapitulated in primary cells ex vivo. VEC death resulted in vascular leakage, cardiac hemorrhage, secondary death of cardiomyocytes due to ischemia, and ventricular dissections. CONCLUSIONS BRG1-catalyzed SWI/SNF complexes are particularly important in cardiovascular tissues. However, in contrast to embryonic development, in which Brm does not compensate, Brg1 is required in adult VECs only when Brm is also mutated. These results demonstrate for the first time that Brm functionally compensates for Brg1 in vivo and that there are significant changes in the relative importance of BRG1- and BRM-catalyzed SWI/SNF complexes during the development of an essential cell lineage.
Collapse
Affiliation(s)
- Monte S Willis
- 120 Mason Farm Rd, Genetic Medicine Bldg, Room 5060, Chapel Hill, NC 27516-7264, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Chromatin-remodeling complex specificity and embryonic vascular development. Cell Mol Life Sci 2012; 69:3921-31. [PMID: 22618247 DOI: 10.1007/s00018-012-1023-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/12/2012] [Accepted: 05/02/2012] [Indexed: 12/27/2022]
Abstract
Vascular development is a dynamic process that relies on the coordinated expression of numerous genes, but the factors that regulate gene expression during blood vessel development are not well defined. ATP-dependent chromatin-remodeling complexes are gaining attention for their specific temporal and spatial effects on gene expression during vascular development. Genetic mutations in chromatin-remodeling complex subunits are revealing roles for the complexes in vascular signaling pathways at discrete developmental time points. Phenotypic analysis of these models at various stages of vascular development will continue to expand our understanding of how chromatin remodeling impacts new blood vessel growth. Such research could also provide novel therapeutic targets for the treatment of vascular pathologies.
Collapse
|
78
|
The chromatin-remodeling enzymes BRG1 and CHD4 antagonistically regulate vascular Wnt signaling. Mol Cell Biol 2012; 32:1312-20. [PMID: 22290435 DOI: 10.1128/mcb.06222-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Canonical Wnt signaling plays an important role in embryonic and postnatal blood vessel development. We previously reported that the chromatin-remodeling enzyme BRG1 promotes vascular Wnt signaling. Vascular deletion of Brg1 results in aberrant yolk sac blood vessel morphology, which is rescued by pharmacological stimulation of Wnt signaling with lithium chloride (LiCl). We have now generated embryos lacking the chromatin-remodeling enzyme Chd4 in vascular endothelial cells. Unlike Brg1 mutants, Chd4 mutant embryos had normal yolk sac vascular morphology. However, concomitant deletion of Chd4 and Brg1 rescued vascular abnormalities seen in Brg1 mutant yolk sacs to the same extent as LiCl treatment. We hypothesized that Wnt signaling was upregulated in Chd4 mutant yolk sac vasculature. Indeed, we found that Chd4 deletion resulted in upregulation of the Wnt-responsive transcription factor Tcf7 and an increase in Wnt target gene expression in endothelial cells. Furthermore, we identified one Wnt target gene, Pitx2, that was downregulated in Brg1 mutant endothelial cells but was rescued following LiCl treatment and in Brg1 Chd4 double mutant vasculature, suggesting that PITX2 helps to mediate the restoration of yolk sac vascular remodeling under both conditions. We conclude that BRG1 and CHD4 antagonistically modulate Wnt signaling in developing yolk sac vessels to mediate normal vascular remodeling.
Collapse
|
79
|
Wu JI. Diverse functions of ATP-dependent chromatin remodeling complexes in development and cancer. Acta Biochim Biophys Sin (Shanghai) 2012; 44:54-69. [PMID: 22194014 DOI: 10.1093/abbs/gmr099] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mammalian SWI/SNF like Brg1/Brm associated factors (BAF) chromatin-remodeling complexes are able to use energy derived from adenosine triphosphate (ATP) hydrolysis to change chromatin structures and regulate nuclear processes such as transcription. BAF complexes contain multiple subunits and the diverse subunit compositions provide functional specificities to BAF complexes. In this review, we summarize the functions of BAF subunits during mammalian development and in progression of various cancers. The mechanisms underlying the functional diversity and specificities of BAF complexes will be discussed.
Collapse
Affiliation(s)
- Jiang I Wu
- Department of Physiology and Developmental Biology, University of Texas Southwestern Medical Center at Dallas, 75390-9133, USA.
| |
Collapse
|
80
|
Melvin A, Rocha S. Chromatin as an oxygen sensor and active player in the hypoxia response. Cell Signal 2012; 24:35-43. [PMID: 21924352 PMCID: PMC3476533 DOI: 10.1016/j.cellsig.2011.08.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 08/29/2011] [Indexed: 12/28/2022]
Abstract
Changes in the availability or demand for oxygen induce dramatic changes at the cellular level. Primarily, activation of a family of oxygen labile transcription factors, Hypoxia Inducible Factor (HIF), initiates a variety of cellular processes required to re-instate oxygen homeostasis. Oxygen is sensed by molecular dioxygenases in cells, such as the prolyl-hydroxylases (PHDs), enzymes which are responsible for the oxygen-dependent regulation of HIF. As HIF is a transcription factor it must bind DNA sequences of its target genes possibly in the context of a complex chromatin structure. How chromatin structure changes in response to hypoxia is currently unknown. However, the identification of a novel class of histone demethylases as true dioxygenases suggests that chromatin can act as an oxygen sensor and plays an active role in the coordination of the cellular response to hypoxia. This review will discuss the current knowledge on how hypoxia engages with different proteins involved in chromatin organisation and dynamics.
Collapse
Key Words
- hif, hypoxia inducible factor
- arnt, aryl hydrocarbon nuclear translocator
- vhl, von hippel lindau
- phd, prolyl-hydroxylase
- fih, factor inhibiting hif
- chip, chromatin immunoprecipitation
- swi/snf, switch/sucrose nonfermentable
- iswi, imitation switch
- chd, chromodomain helicase dna-binding
- nurf, nucleosome remodelling factor
- chrac, chromatin remodelling and assembly complex
- acf, atp-utilising chromatin remodelling and assembly factor
- norc, nucleolar remodelling complex
- rsf, remodelling and spacing factor
- wich, wstf–iswi chromatin remodelling complex
- nurd, nucleosome remodelling and histone deacetylase
- srcap, snf2-related cbp activator protein
- trrap, transformation/transcription domain-associated protein/tip60
- hat, histone acetyl transferase
- hdac, histone deacetylase
- lsd1, lysine-specific demethylase-1
- jmjc, jumonji c domain
- hypoxia
- chromatin
- hif
- transcription
- chromatin remodellers
- jmjc demethylases
Collapse
Affiliation(s)
| | - Sonia Rocha
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee, DD1 5EH, Scotland, United Kingdom
| |
Collapse
|
81
|
Abstract
The cardiovascular system is broadly composed of the heart, which pumps blood, and the blood vessels, which carry blood to and from tissues of the body. Heart malformations are the most serious common birth defect, affecting at least 2% of newborns and leading to significant morbidity and mortality. Severe heart malformations cause heart failure in fetuses, infants, and children, whereas milder heart defects may not trigger significant heart dysfunction until early or midadulthood. Severe vasculogenesis or angiogenesis defects in embryos are incompatible with life, and anomalous arterial patterning may cause vascular aberrancies that often require surgical treatment. It is therefore important to understand the underlying mechanisms that control cardiovascular development. Understanding developmental mechanisms will also help us design better strategies to regenerate cardiovascular tissues for therapeutic purposes. An important mechanism regulating genes involves the modification of chromatin, the higher-order structure in which DNA is packaged. Recent studies have greatly expanded our understanding of the regulation of cardiovascular development at the chromatin level, including the remodeling of chromatin and the modification of histones. Chromatin-level regulation integrates multiple inputs and coordinates broad gene expression programs. Thus, understanding chromatin-level regulation will allow for a better appreciation of gene regulation as a whole and may set a fundamental basis for cardiovascular disease. This review focuses on how chromatin-remodeling and histone-modifying factors regulate gene expression to control cardiovascular development.
Collapse
Affiliation(s)
- Ching-Pin Chang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | |
Collapse
|
82
|
SWI/SNF complexes containing Brahma or Brahma-related gene 1 play distinct roles in smooth muscle development. Mol Cell Biol 2011; 31:2618-31. [PMID: 21518954 DOI: 10.1128/mcb.01338-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SWI/SNF ATP-dependent chromatin-remodeling complexes containing either Brahma-related gene 1 (Brg1) or Brahma (Brm) play important roles in mammalian development. In this study we examined the roles of Brg1 and Brm in smooth muscle development, in vivo, through generation and analysis of mice harboring a smooth muscle-specific knockout of Brg1 on wild-type and Brm null backgrounds. Knockout of Brg1 from smooth muscle in Brg1(flox/flox) mice expressing Cre recombinase under the control of the smooth muscle myosin heavy-chain promoter resulted in cardiopulmonary defects, including patent ductus arteriosus, in 30 to 40% of the mice. Surviving knockout mice exhibited decreased expression of smooth muscle-specific contractile proteins in the gastrointestinal tract, impaired contractility, shortened intestines, disorganized smooth muscle cells, and an increase in apoptosis of intestinal smooth muscle cells. Although Brm knockout mice had normal intestinal structure and function, knockout of Brg1 on a Brm null background exacerbated the effects of knockout of Brg1 alone, resulting in an increase in neonatal lethality. These data show that Brg1 and Brm play critical roles in regulating development of smooth muscle and that Brg1 has specific functions within vascular and gastrointestinal smooth muscle that cannot be performed by Brm.
Collapse
|
83
|
Yu S, Cui K, Jothi R, Zhao DM, Jing X, Zhao K, Xue HH. GABP controls a critical transcription regulatory module that is essential for maintenance and differentiation of hematopoietic stem/progenitor cells. Blood 2011; 117:2166-78. [PMID: 21139080 PMCID: PMC3062326 DOI: 10.1182/blood-2010-09-306563] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 11/30/2010] [Indexed: 12/15/2022] Open
Abstract
Maintaining a steady pool of self-renewing hematopoietic stem cells (HSCs) is critical for sustained production of multiple blood lineages. Many transcription factors and molecules involved in chromatin and epigenetic modifications have been found to be critical for HSC self-renewal and differentiation; however, their interplay is less understood. The transcription factor GA binding protein (GABP), consisting of DNA-binding subunit GABPα and transactivating subunit GABPβ, is essential for lymphopoiesis as shown in our previous studies. Here we demonstrate cell-intrinsic, absolute dependence on GABPα for maintenance and differentiation of hematopoietic stem/progenitor cells. Through genome-wide mapping of GABPα binding and transcriptomic analysis of GABPα-deficient HSCs, we identified Zfx and Etv6 transcription factors and prosurvival Bcl-2 family members including Bcl-2, Bcl-X(L), and Mcl-1 as direct GABP target genes, underlying its pivotal role in HSC survival. GABP also directly regulates Foxo3 and Pten and hence sustains HSC quiescence. Furthermore, GABP activates transcription of DNA methyltransferases and histone acetylases including p300, contributing to regulation of HSC self-renewal and differentiation. These systematic analyses revealed a GABP-controlled gene regulatory module that programs multiple aspects of HSC biology. Our studies thus constitute a critical first step in decoding how transcription factors are orchestrated to regulate maintenance and multipotency of HSCs.
Collapse
Affiliation(s)
- Shuyang Yu
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Takeuchi JK, Lou X, Alexander JM, Sugizaki H, Delgado-Olguín P, Holloway AK, Mori AD, Wylie JN, Munson C, Zhu Y, Zhou YQ, Yeh RF, Henkelman RM, Harvey RP, Metzger D, Chambon P, Stainier DYR, Pollard KS, Scott IC, Bruneau BG. Chromatin remodelling complex dosage modulates transcription factor function in heart development. Nat Commun 2011; 2:187. [PMID: 21304516 PMCID: PMC3096875 DOI: 10.1038/ncomms1187] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 01/11/2011] [Indexed: 02/07/2023] Open
Abstract
Dominant mutations in cardiac transcription factor genes cause human inherited congenital heart defects (CHDs); however, their molecular basis is not understood. Interactions between transcription factors and the Brg1/Brm-associated factor (BAF) chromatin remodelling complex suggest potential mechanisms; however, the role of BAF complexes in cardiogenesis is not known. In this study, we show that dosage of Brg1 is critical for mouse and zebrafish cardiogenesis. Disrupting the balance between Brg1 and disease-causing cardiac transcription factors, including Tbx5, Tbx20 and Nkx2-5, causes severe cardiac anomalies, revealing an essential allelic balance between Brg1 and these cardiac transcription factor genes. This suggests that the relative levels of transcription factors and BAF complexes are important for heart development, which is supported by reduced occupancy of Brg1 at cardiac gene promoters in Tbx5 haploinsufficient hearts. Our results reveal complex dosage-sensitive interdependence between transcription factors and BAF complexes, providing a potential mechanism underlying transcription factor haploinsufficiency, with implications for multigenic inheritance of CHDs.
Collapse
Affiliation(s)
- Jun K. Takeuchi
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158, USA
- Cardiovascular Regeneration, Institute of Molecular and Cellular Biosciences, and Biological Sciences, Graduate School of Sciences, The University of Tokyo Bunkyo-ku, Tokyo 113-0032, JST PRESTO, Japan
- These authors contributed equally to this work
| | - Xin Lou
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- These authors contributed equally to this work
| | - Jeffrey M. Alexander
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158, USA
- Programs in Biomedical Sciences and Developmental and Stem Cell Biology, University of California, San Francisco, California 94143, USA
| | - Hiroe Sugizaki
- Cardiovascular Regeneration, Institute of Molecular and Cellular Biosciences, and Biological Sciences, Graduate School of Sciences, The University of Tokyo Bunkyo-ku, Tokyo 113-0032, JST PRESTO, Japan
| | - Paul Delgado-Olguín
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158, USA
| | - Alisha K. Holloway
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158, USA
| | - Alessandro D. Mori
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158, USA
| | - John N. Wylie
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158, USA
| | - Chantilly Munson
- Cardiovascular Research Institute, University of California, San Francisco, California 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| | - Yonghong Zhu
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Yu-Qing Zhou
- The Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Ru-Fang Yeh
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California 94107, USA
| | - R. Mark Henkelman
- The Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Richard P. Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, Sydney 2010, Australia
- Faculty of Medicine, University of New South Wales, Kensington 2052, Australia
| | - Daniel Metzger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, Illkirch 67404, France
| | - Pierre Chambon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, Illkirch 67404, France
| | - Didier Y. R. Stainier
- Programs in Biomedical Sciences and Developmental and Stem Cell Biology, University of California, San Francisco, California 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, California 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| | - Katherine S. Pollard
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California 94107, USA
| | - Ian C. Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Benoit G. Bruneau
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158, USA
- Programs in Biomedical Sciences and Developmental and Stem Cell Biology, University of California, San Francisco, California 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, California 94158, USA
- Department of Pediatrics, University of California, San Francisco, California 94143, USA
| |
Collapse
|
85
|
Han P, Hang CT, Yang J, Chang CP. Chromatin remodeling in cardiovascular development and physiology. Circ Res 2011; 108:378-96. [PMID: 21293009 PMCID: PMC3079363 DOI: 10.1161/circresaha.110.224287] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 11/12/2010] [Indexed: 11/16/2022]
Abstract
Chromatin regulation provides an important means for controlling cardiac gene expression under different physiological and pathological conditions. Processes that direct the development of normal embryonic hearts and pathology of stressed adult hearts may share general mechanisms that govern cardiac gene expression by chromatin-regulating factors. These common mechanisms may provide a framework for us to investigate the interactions among diverse chromatin remodelers/modifiers and various transcription factors in the fine regulation of gene expression, essential for all aspects of cardiovascular biology. Aberrant cardiac gene expression, triggered by a variety of pathological insults, can cause heart diseases in both animals and humans. The severity of cardiomyopathy and heart failure correlates strongly with abnormal cardiac gene expression. Therefore, controlling cardiac gene expression presents a promising approach to the treatment of human cardiomyopathy. This review focuses on the roles of ATP-dependent chromatin-remodeling factors and chromatin-modifying enzymes in the control of gene expression during cardiovascular development and disease.
Collapse
Affiliation(s)
- Pei Han
- Division of Cardiovascular Medicine, Department of Medicine, Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Calvin T. Hang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Jin Yang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Ching-Pin Chang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
86
|
The chromatin-remodeling enzyme BRG1 modulates vascular Wnt signaling at two levels. Proc Natl Acad Sci U S A 2011; 108:2282-7. [PMID: 21262838 DOI: 10.1073/pnas.1013751108] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The ATP-dependent chromatin-remodeling enzyme brahma-related gene 1 (BRG1) regulates transcription of specific target genes during embryonic and postnatal development. Deletion of Brg1 from embryonic blood vessels results in yolk sac vascular remodeling defects. We now report that misregulation of the canonical Wnt signaling pathway underlies many Brg1 mutant vascular phenotypes. Brg1 deletion resulted in down-regulation of several Wnt receptors of the frizzled family, degradation of the intracellular Wnt signaling molecule β-catenin, and an overall decrease in Wnt signaling in endothelial cells. Pharmacological stabilization of β-catenin significantly rescued Brg1 mutant vessel morphology and transcription of Wnt target genes. Our data demonstrate that BRG1 impacts the canonical Wnt pathway at two different levels in vascular endothelium: through transcriptional regulation of both Wnt receptor genes and Wnt target genes. These findings establish an epigenetic mechanism for the modulation of Wnt signaling during embryonic vascular development.
Collapse
|
87
|
Bottardi S, Zmiri FA, Bourgoin V, Ross J, Mavoungou L, Milot E. Ikaros interacts with P-TEFb and cooperates with GATA-1 to enhance transcription elongation. Nucleic Acids Res 2011; 39:3505-19. [PMID: 21245044 PMCID: PMC3089448 DOI: 10.1093/nar/gkq1271] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ikaros is associated with both gene transcriptional activation and repression in lymphocytes. Ikaros acts also as repressor of human γ-globin (huγ-) gene transcription in fetal and adult erythroid cells. Whether and eventually, how Ikaros can function as a transcriptional activator in erythroid cells remains poorly understood. Results presented herein demonstrate that Ikaros is a developmental-specific activator of huγ-gene expression in yolk sac erythroid cells. Molecular analysis in primary cells revealed that Ikaros interacts with Gata-1 and favors Brg1 recruitment to the human β-globin Locus Control Region and the huγ-promoters, supporting long-range chromatin interactions between these regions. Additionally, we demonstrate that Ikaros contributes to transcription initiation and elongation of the huγ-genes, since it is not only required for TBP and RNA Polymerase II (Pol II) assembly at the huγ-promoters but also for conversion of Pol II into the elongation-competent phosphorylated form. In agreement with the latter, we show that Ikaros interacts with Cyclin-dependent kinase 9 (Cdk9), which contributes to efficient transcription elongation by phosphorylating the C-terminal domain of the large subunit of Pol II on Serine 2, and favours Cdk9 recruitment to huγ-promoters. Our results show that Ikaros exerts dual functionality during gene activation, by promoting efficient transcription initiation and elongation.
Collapse
Affiliation(s)
- Stefania Bottardi
- Maisonneuve-Rosemont Hospital Research Center, Maisonneuve-Rosemont Hospital and Faculty of Medicine, University of Montreal, 5415 boulevard l'Assomption, Montreal, Quebec, Canada H1T 2M4
| | | | | | | | | | | |
Collapse
|
88
|
Shinnick KM, Eklund EA, McGarry TJ. Geminin deletion from hematopoietic cells causes anemia and thrombocytosis in mice. J Clin Invest 2011; 120:4303-15. [PMID: 21041951 DOI: 10.1172/jci43556] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 09/08/2010] [Indexed: 12/27/2022] Open
Abstract
HSCs maintain the circulating blood cell population. Defects in the orderly pattern of hematopoietic cell division and differentiation can lead to leukemia, myeloproliferative disorders, or marrow failure; however, the factors that control this pattern are incompletely understood. Geminin is an unstable regulatory protein that regulates the extent of DNA replication and is thought to coordinate cell division with cell differentiation. Here, we set out to determine the function of Geminin in hematopoiesis by deleting the Geminin gene (Gmnn) from mouse bone marrow cells. This severely perturbed the pattern of blood cell production in all 3 hematopoietic lineages (erythrocyte, megakaryocyte, and leukocyte). Red cell production was virtually abolished, while megakaryocyte production was greatly enhanced. Leukocyte production transiently decreased and then recovered. Stem and progenitor cell numbers were preserved, and Gmnn(–/–) HSCs successfully reconstituted hematopoiesis in irradiated mice. CD34(+) Gmnn(–/–) leukocyte precursors displayed DNA overreplication and formed extremely small granulocyte and monocyte colonies in methylcellulose. While cultured Gmnn(–/–) mega-karyocyte-erythrocyte precursors did not form erythroid colonies, they did form greater than normal numbers of megakaryocyte colonies. Gmnn(–/–) megakaryocytes and erythroblasts had normal DNA content. These data led us to postulate that Geminin regulates the relative production of erythrocytes and megakaryocytes from megakaryocyte-erythrocyte precursors by a replication-independent mechanism.
Collapse
Affiliation(s)
- Kathryn M Shinnick
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | |
Collapse
|
89
|
The ARID family transcription factor bright is required for both hematopoietic stem cell and B lineage development. Mol Cell Biol 2011; 31:1041-53. [PMID: 21199920 DOI: 10.1128/mcb.01448-10] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bright/Arid3a has been characterized both as an activator of immunoglobulin heavy-chain transcription and as a proto-oncogene. Although Bright expression is highly B lineage stage restricted in adult mice, its expression in the earliest identifiable hematopoietic stem cell (HSC) population suggests that Bright might have additional functions. We showed that >99% of Bright(-/-) embryos die at midgestation from failed hematopoiesis. Bright(-/-) embryonic day 12.5 (E12.5) fetal livers showed an increase in the expression of immature markers. Colony-forming assays indicated that the hematopoietic potential of Bright(-/-) mice is markedly reduced. Rare survivors of lethality, which were not compensated by the closely related paralogue Bright-derived protein (Bdp)/Arid3b, suffered HSC deficits in their bone marrow as well as B lineage-intrinsic developmental and functional deficiencies in their peripheries. These include a reduction in a natural antibody, B-1 responses to phosphocholine, and selective T-dependent impairment of IgG1 class switching. Our results place Bright/Arid3a on a select list of transcriptional regulators required to program both HSC and lineage-specific differentiation.
Collapse
|
90
|
He S, Pirity MK, Wang WL, Wolf L, Chauhan BK, Cveklova K, Tamm ER, Ashery-Padan R, Metzger D, Nakai A, Chambon P, Zavadil J, Cvekl A. Chromatin remodeling enzyme Brg1 is required for mouse lens fiber cell terminal differentiation and its denucleation. Epigenetics Chromatin 2010; 3:21. [PMID: 21118511 PMCID: PMC3003251 DOI: 10.1186/1756-8935-3-21] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 11/30/2010] [Indexed: 12/18/2022] Open
Abstract
Background Brahma-related gene 1 (Brg1, also known as Smarca4 and Snf2β) encodes an adenosine-5'-triphosphate (ATP)-dependent catalytical subunit of the (switch/sucrose nonfermentable) (SWI/SNF) chromatin remodeling complexes. SWI/SNF complexes are recruited to chromatin through multiple mechanisms, including specific DNA-binding factors (for example, heat shock transcription factor 4 (Hsf4) and paired box gene 6 (Pax6)), chromatin structural proteins (for example, high-mobility group A1 (HMGA1)) and/or acetylated core histones. Previous studies have shown that a single amino acid substitution (K798R) in the Brg1 ATPase domain acts via a dominant-negative (dn) mechanism. Genetic studies have demonstrated that Brg1 is an essential gene for early (that is, prior implantation) mouse embryonic development. Brg1 also controls neural stem cell maintenance, terminal differentiation of multiple cell lineages and organs including the T-cells, glial cells and limbs. Results To examine the roles of Brg1 in mouse lens development, a dnBrg1 transgenic construct was expressed using the lens-specific αA-crystallin promoter in postmitotic lens fiber cells. Morphological studies revealed abnormal lens fiber cell differentiation in transgenic lenses resulting in cataract. Electron microscopic studies showed abnormal lens suture formation and incomplete karyolysis (that is, denucleation) of lens fiber cells. To identify genes regulated by Brg1, RNA expression profiling was performed in embryonic day 15.5 (E15.5) wild-type and dnBrg1 transgenic lenses. In addition, comparisons between differentially expressed genes in dnBrg1 transgenic, Pax6 heterozygous and Hsf4 homozygous lenses identified multiple genes coregulated by Brg1, Hsf4 and Pax6. DNase IIβ, a key enzyme required for lens fiber cell denucleation, was found to be downregulated in each of the Pax6, Brg1 and Hsf4 model systems. Lens-specific deletion of Brg1 using conditional gene targeting demonstrated that Brg1 was required for lens fiber cell differentiation, for expression of DNase IIβ, for lens fiber cell denucleation and indirectly for retinal development. Conclusions These studies demonstrate a cell-autonomous role for Brg1 in lens fiber cell terminal differentiation and identified DNase IIβ as a potential direct target of SWI/SNF complexes. Brg1 is directly or indirectly involved in processes that degrade lens fiber cell chromatin. The presence of nuclei and other organelles generates scattered light incompatible with the optical requirements for the lens.
Collapse
Affiliation(s)
- Shuying He
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Bakshi R, Hassan MQ, Pratap J, Lian JB, Montecino MA, van Wijnen AJ, Stein JL, Imbalzano AN, Stein GS. The human SWI/SNF complex associates with RUNX1 to control transcription of hematopoietic target genes. J Cell Physiol 2010; 225:569-76. [PMID: 20506188 DOI: 10.1002/jcp.22240] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The acute myeloid leukemia 1 (AML1, RUNX1) transcription factor is a key regulator of hematopoietic differentiation that forms multi-protein complexes with co-regulatory proteins. These complexes are assembled at target gene promoters in nuclear microenvironments to mediate phenotypic gene expression and chromatin-related epigenetic modifications. Here, immunofluorescence microscopy and biochemical assays are used to show that RUNX1 associates with the human ATP-dependent SWI/SNF chromatin remodeling complex. The SWI/SNF subunits BRG1 and INI1 bind in vivo to RUNX1 target gene promoters (e.g., GMCSF, IL3, MCSF-R, MIP, and p21). These interactions correlate with histone modifications characteristic of active chromatin, including acetylated H4 and dimethylated H3 lysine 4. Downregulation of RUNX1 by RNA interference diminishes the binding of BRG1 and INI1 at selected target genes. Taken together, our findings indicate that RUNX1 interacts with the human SWI/SNF complex to control hematopoietic-specific gene expression.
Collapse
Affiliation(s)
- Rachit Bakshi
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
D'Amico G, Robinson SD, Germain M, Reynolds LE, Thomas GJ, Elia G, Saunders G, Fruttiger M, Tybulewicz V, Mavria G, Hodivala-Dilke KM. Endothelial-Rac1 is not required for tumor angiogenesis unless alphavbeta3-integrin is absent. PLoS One 2010; 5:e9766. [PMID: 20339539 PMCID: PMC2842301 DOI: 10.1371/journal.pone.0009766] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 03/01/2010] [Indexed: 12/25/2022] Open
Abstract
Endothelial cell migration is an essential aspect of tumor angiogenesis. Rac1 activity is needed for cell migration in vitro implying a requirement for this molecule in angiogenesis in vivo. However, a precise role for Rac1 in tumor angiogenesis has never been addressed. Here we show that depletion of endothelial Rac1 expression in adult mice, unexpectedly, has no effect on tumor growth or tumor angiogenesis. In addition, repression of Rac1 expression does not inhibit VEGF-mediated angiogenesis in vivo or ex vivo, nor does it affect chemotactic migratory responses to VEGF in 3-dimensions. In contrast, the requirement for Rac1 in tumor growth and angiogenesis becomes important when endothelial beta3-integrin levels are reduced or absent: the enhanced tumor growth, tumor angiogenesis and VEGF-mediated responses in beta3-null mice are all Rac1-dependent. These data indicate that in the presence of alphavbeta3-integrin Rac1 is not required for tumor angiogenesis.
Collapse
Affiliation(s)
- Gabriela D'Amico
- Adhesion and Angiogenesis Laboratory, Institute of Cancer, Bart's and The London, Queen Mary's School of Medicine and Dentistry, London, United Kingdom
| | - Stephen D. Robinson
- Adhesion and Angiogenesis Laboratory, Institute of Cancer, Bart's and The London, Queen Mary's School of Medicine and Dentistry, London, United Kingdom
| | - Mitchel Germain
- Adhesion and Angiogenesis Laboratory, Institute of Cancer, Bart's and The London, Queen Mary's School of Medicine and Dentistry, London, United Kingdom
| | - Louise E. Reynolds
- Adhesion and Angiogenesis Laboratory, Institute of Cancer, Bart's and The London, Queen Mary's School of Medicine and Dentistry, London, United Kingdom
| | - Gareth J. Thomas
- Centre for Tumour Biology, Institute of Cancer, Bart's and The London, Queen Mary's School of Medicine and Dentistry, London, United Kingdom
| | - George Elia
- Adhesion and Angiogenesis Laboratory, Institute of Cancer, Bart's and The London, Queen Mary's School of Medicine and Dentistry, London, United Kingdom
| | - Garry Saunders
- Adhesion and Angiogenesis Laboratory, Institute of Cancer, Bart's and The London, Queen Mary's School of Medicine and Dentistry, London, United Kingdom
| | - Marcus Fruttiger
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Victor Tybulewicz
- Division of Immune Cell Biology, National Institute for Medical Research, London, United Kingdom
| | - Georgia Mavria
- Cancer Research UK Centre for Cell and Molecular Biology, Institute of Cancer Research, London, United Kingdom
| | - Kairbaan M. Hodivala-Dilke
- Adhesion and Angiogenesis Laboratory, Institute of Cancer, Bart's and The London, Queen Mary's School of Medicine and Dentistry, London, United Kingdom
| |
Collapse
|
93
|
Bonifer C, Bowen DT. Epigenetic mechanisms regulating normal and malignant haematopoiesis: new therapeutic targets for clinical medicine. Expert Rev Mol Med 2010; 12:e6. [PMID: 20152067 DOI: 10.1017/s1462399410001377] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is now well established that epigenetic phenomena and aberrant gene regulation play a major role in carcinogenesis. These include aberrant gene silencing by imposing inactive histone marks on promoters, aberrant methylation of DNA at CpG islands, and the active repression of promoters by oncoproteins. In addition, many malignant cells also show aberrant gene activation due to constitutively active signalling. The next frontier in cancer research will be to examine how, at the molecular level, small mutations that alter the regulatory phenotype of a cell give rise after a number of cell divisions to the vast deregulation phenomena seen in malignant cells. This review outlines recent insights into how normal cell differentiation in the haematopoietic system is subverted in leukaemia and it introduces the molecular players involved in this process. It also summarises the results of recent clinical trials trying to reverse aberrant epigenetic regulation by employing agents influencing global epigenetic regulators.
Collapse
Affiliation(s)
- Constanze Bonifer
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, St James's University Hospital, University of Leeds, Leeds, LS97TF, UK.
| | | |
Collapse
|
94
|
Huang C, Gu S, Yu P, Yu F, Feng C, Gao N, Du J. Deficiency of smarcal1 causes cell cycle arrest and developmental abnormalities in zebrafish. Dev Biol 2009; 339:89-100. [PMID: 20036229 DOI: 10.1016/j.ydbio.2009.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 12/14/2009] [Accepted: 12/15/2009] [Indexed: 11/19/2022]
Abstract
Mutations in SMARCAL1 cause Schimke Immuno-Osseous Dysplasia (SIOD), an autosomal recessive multisystem developmental disease characterized by growth retardation, T-cell deficiency, bone marrow failure, anemia and renal failure. SMARCAL1 encodes an ATP-driven annealing helicase. However, the biological function of SMARCAL1 and the molecular basis of SIOD remain largely unclear. In this work, we cloned the zebrafish homologue of the human SMARCAL1 gene and found that smarcal1 regulated cell cycle progression. Morpholino knockdown of smarcal1 in zebrafish recapitulated developmental abnormalities in SIOD patients, including growth retardation, craniofacial abnormality, and haematopoietic and vascular defects. Lack of smarcal1 caused G0/G1 cell cycle arrest and induced cell apoptosis. Furthermore, using Electrophoretic Mobility Shift Assay and reporter assay, we found that SMARCAL1 was transcriptionally inhibited by E2F6, an important cell cycle regulator. Over-expression of E2F6 in zebrafish embryos reduced the expression of smarcal1 mRNA and induced developmental defects similar to those in smarcal1 morphants. These results suggest that SIOD may be caused by defects in cell cycle regulation. Our study provides a model of SIOD and reveals its cellular and molecular bases.
Collapse
Affiliation(s)
- Cheng Huang
- Institute for Nutritional Sciences and Key Laboratory of Nutrition and Metabolism, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | | | | | | | | | | | | |
Collapse
|
95
|
D'Amico G, Jones DT, Nye E, Sapienza K, Ramjuan AR, Reynolds LE, Robinson SD, Kostourou V, Martinez D, Aubyn D, Grose R, Thomas GJ, Spencer-Dene B, Zicha D, Davies D, Tybulewicz V, Hodivala-Dilke KM. Regulation of lymphatic-blood vessel separation by endothelial Rac1. Development 2009; 136:4043-53. [PMID: 19906871 PMCID: PMC2778747 DOI: 10.1242/dev.035014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2009] [Indexed: 12/29/2022]
Abstract
Sprouting angiogenesis and lymphatic-blood vessel segregation both involve the migration of endothelial cells, but the precise migratory molecules that govern the decision of blood vascular endothelial cells to segregate into lymphatic vasculature are unknown. Here, we deleted endothelial Rac1 in mice (Tie1-Cre(+);Rac1(fl/fl)) and revealed, unexpectedly, that whereas blood vessel morphology appeared normal, lymphatic-blood vessel separation was impaired, with corresponding edema, haemorrhage and embryonic lethality. Importantly, normal levels of Rac1 were essential for directed endothelial cell migratory responses to lymphatic-inductive signals. Our studies identify Rac1 as a crucial part of the migratory machinery required for endothelial cells to separate and form lymphatic vasculature.
Collapse
MESH Headings
- Animals
- Blood Vessels/metabolism
- Cell Separation/methods
- Cells, Cultured
- Embryo, Mammalian
- Endothelial Cells/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/embryology
- Endothelium, Vascular/metabolism
- Fluorescent Antibody Technique, Direct
- Fluorescent Dyes/metabolism
- Galactosides/metabolism
- Gene Deletion
- Gene Expression Regulation, Developmental
- Immunohistochemistry
- Indoles/metabolism
- Lymphatic Vessels/metabolism
- Mice
- Mice, Transgenic
- Neovascularization, Physiologic/genetics
- Neovascularization, Physiologic/physiology
- RNA, Small Interfering/metabolism
- Receptor, TIE-2/genetics
- Receptor, TIE-2/metabolism
- Transfection
- beta-Galactosidase/metabolism
- rac1 GTP-Binding Protein/analysis
- rac1 GTP-Binding Protein/genetics
- rac1 GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Gabriela D'Amico
- Adhesion and Angiogenesis Laboratory, Institute of Cancer and Cancer Research UK, Bart's & The London Queen Mary's School of Medicine & Dentistry, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Dylan T. Jones
- Adhesion and Angiogenesis Laboratory, Institute of Cancer and Cancer Research UK, Bart's & The London Queen Mary's School of Medicine & Dentistry, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Emma Nye
- Experimental Histopathology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
| | - Karen Sapienza
- Centre for Tumour Biology, Institute of Cancer and Cancer Research UK, Bart's & The London Queen Mary's School of Medicine & Dentistry, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Antoine R. Ramjuan
- Adhesion and Angiogenesis Laboratory, Institute of Cancer and Cancer Research UK, Bart's & The London Queen Mary's School of Medicine & Dentistry, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Louise E. Reynolds
- Adhesion and Angiogenesis Laboratory, Institute of Cancer and Cancer Research UK, Bart's & The London Queen Mary's School of Medicine & Dentistry, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Stephen D. Robinson
- Adhesion and Angiogenesis Laboratory, Institute of Cancer and Cancer Research UK, Bart's & The London Queen Mary's School of Medicine & Dentistry, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Vassiliki Kostourou
- Adhesion and Angiogenesis Laboratory, Institute of Cancer and Cancer Research UK, Bart's & The London Queen Mary's School of Medicine & Dentistry, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
- BSRC Alexander Fleming, 34 Fleming street, 166 72 Vari, Athens, Greece
| | - Dolores Martinez
- Fluorescence Activated Cell Sorting Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
| | - Deborah Aubyn
- Light Microscopy Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
| | - Richard Grose
- Growth Factor Signalling Laboratory, Institute of Cancer and Cancer Research UK, Bart's & The London Queen Mary's School of Medicine & Dentistry, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Gareth J. Thomas
- Centre for Tumour Biology, Institute of Cancer and Cancer Research UK, Bart's & The London Queen Mary's School of Medicine & Dentistry, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - Bradley Spencer-Dene
- Experimental Histopathology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
- Histopathology, Imperial College London, London, W12 0NN, UK
| | - Daniel Zicha
- Light Microscopy Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
| | - Derek Davies
- Fluorescence Activated Cell Sorting Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
| | - Victor Tybulewicz
- Division of Immune Cell Biology, National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | - Kairbaan M. Hodivala-Dilke
- Adhesion and Angiogenesis Laboratory, Institute of Cancer and Cancer Research UK, Bart's & The London Queen Mary's School of Medicine & Dentistry, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| |
Collapse
|
96
|
Ryme J, Asp P, Böhm S, Cavellán E, Farrants AKO. Variations in the composition of mammalian SWI/SNF chromatin remodelling complexes. J Cell Biochem 2009; 108:565-76. [PMID: 19650111 DOI: 10.1002/jcb.22288] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The ATP-dependent chromatin remodelling complexes SWI/SNF alter the chromatin structure in transcriptional regulation. Several classes of mammalian SWI/SNF complex have been isolated biochemically, distinguished by a few specific subunits, such as the BAF-specific BAF250A, BAF250B and BRM, and the PBAF-specific BAF180. We have determined the complex compositions using low stringency immunoprecipitation (IP) and shown that the pattern of subunit interactions was more diverse than previously defined classes had predicted. The subunit association at five gene promoters that depend on the SWI/SNF activity varied and the sequential chromatin immunoprecipitations revealed that different class-specific subunits occupied the promoters at the same time. The low-stringency IP showed that the BAF-specific BAF250A and BAF250B and the PBAF-specific BAF180 co-exist in a subset of SWI/SNF complexes, and fractionation of nuclear extract on size-exclusion chromatography demonstrated that sub-complexes with unorthodox subunit compositions were present in the cell. We propose a model in which the constellations of SWI/SNF complexes are "tailored" for each specific chromatin target and depend on the local chromatin environment to which complexes and sub-complexes are recruited.
Collapse
Affiliation(s)
- Jessica Ryme
- Department of Cell Biology, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
97
|
Kim SI, Bresnick EH, Bultman SJ. BRG1 directly regulates nucleosome structure and chromatin looping of the alpha globin locus to activate transcription. Nucleic Acids Res 2009; 37:6019-6027. [PMID: 19696073 PMCID: PMC2764439 DOI: 10.1093/nar/gkp677] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/13/2009] [Accepted: 07/31/2009] [Indexed: 12/12/2022] Open
Abstract
Alpha globin expression must be regulated properly to prevent the occurrence of alpha-thalassemias, yet many questions remain unanswered regarding the mechanism of transcriptional activation. Identifying factors that regulate chromatin structure of the endogenous alpha globin locus in developing erythroblasts will provide important mechanistic insight. Here, we demonstrate that the BRG1 catalytic subunit of SWI/SNF-related complexes co-immunoprecipitates with GATA-1 and EKLF in murine fetal liver cells in vivo and is recruited to the far-upstream major-regulatory element (MRE) and alpha2 promoter. Furthermore, based on our analysis of Brg1(null/ENU1) mutant mice, BRG1 regulates DNase I sensitivity, H3ac, and H3K4me2 but not CpG methylation at both sites. Most importantly, BRG1 is required for chromatin loop formation between the MRE and alpha2 promoter and for maximal RNA Polymerase II occupancy at the alpha2 promoter. Consequently, Brg1 mutants express alpha globin mRNA at only 5-10% of wild-type levels and die at mid-gestation. These data identify BRG1 as a chromatin-modifying factor required for nucleosome remodeling and transcriptional activation of the alpha globin locus. These data also demonstrate that chromatin looping between the MRE and alpha2 promoter is required as part of the transcriptional activation mechanism.
Collapse
Affiliation(s)
- Shin-Il Kim
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Medical Sciences Center, Madison, WI and Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Emery H. Bresnick
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Medical Sciences Center, Madison, WI and Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Scott J. Bultman
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Medical Sciences Center, Madison, WI and Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| |
Collapse
|
98
|
Lelièvre SA. Contributions of extracellular matrix signaling and tissue architecture to nuclear mechanisms and spatial organization of gene expression control. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1790:925-35. [PMID: 19328836 PMCID: PMC2728154 DOI: 10.1016/j.bbagen.2009.03.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 03/13/2009] [Accepted: 03/15/2009] [Indexed: 12/22/2022]
Abstract
Post-translational modification of histones, ATP-dependent chromatin remodeling, and DNA methylation are interconnected nuclear mechanisms that ultimately lead to the changes in chromatin structure necessary to carry out epigenetic gene expression control. Tissue differentiation is characterized by a specific gene expression profile in association with the acquisition of a defined tissue architecture and function. Elements critical for tissue differentiation, like extracellular stimuli, adhesion and cell shape properties, and transcription factors all contribute to the modulation of gene expression and thus, are likely to impinge on the nuclear mechanisms of epigenetic gene expression control. In this review, we analyze how these elements modify chromatin structure in a hierarchical manner by acting on the nuclear machinery. We discuss how mechanotransduction via the structural continuum of the cell and biochemical signaling to the cell nucleus integrate to provide a comprehensive control of gene expression. The role of nuclear organization in this control is highlighted, with a presentation of differentiation-induced nuclear structure and the concept of nuclear organization as a modulator of the response to incoming signals.
Collapse
Affiliation(s)
- Sophie A Lelièvre
- Department of Basic Medical Sciences and Cancer Center, Purdue University, Lynn, West Lafayette, IN 47907-2026, USA.
| |
Collapse
|
99
|
Flowers S, Nagl NG, Beck GR, Moran E. Antagonistic roles for BRM and BRG1 SWI/SNF complexes in differentiation. J Biol Chem 2009; 284:10067-75. [PMID: 19144648 PMCID: PMC2665061 DOI: 10.1074/jbc.m808782200] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 01/13/2009] [Indexed: 11/06/2022] Open
Abstract
The mammalian SWI/SNF chromatin-remodeling complex is essential for the multiple changes in gene expression that occur during differentiation. However, the basis within the complex for specificity in effecting positive versus negative changes in gene expression has only begun to be elucidated. The catalytic core of the complex can be either of two closely related ATPases, BRM or BRG1, with the potential that the choice of alternative subunits is a key determinant of specificity. Short hairpin RNA-mediated depletion of the ATPases was used to explore their respective roles in the well characterized multistage process of osteoblast differentiation. The results reveal an unexpected role for BRM-specific complexes. Instead of impeding differentiation as was seen with BRG1 depletion, depletion of BRM caused accelerated progression to the differentiation phenotype. Multiple tissue-specific differentiation markers, including the tightly regulated late stage marker osteocalcin, become constitutively up-regulated in BRM-depleted cells. Chromatin immunoprecipitation analysis of the osteocalcin promoter as a model for the behavior of the complexes indicates that the promoter is a direct target of both BRM- and BRG1-containing complexes. BRG1 complexes, which are required for activation, are associated with the promoter well before induction, but the concurrent presence of BRM-specific complexes overrides their activation function. BRM-specific complexes are present only on the repressed promoter and are required for association of the co-repressor HDAC1. These findings reveal an unanticipated degree of specialization of function linked with the choice of ATPase and suggest a new paradigm for the roles of the alternative subunits during differentiation.
Collapse
Affiliation(s)
- Stephen Flowers
- Department of Orthopaedics, New Jersey Medical School-University Hospital Cancer Center, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | | | | | |
Collapse
|
100
|
Kenneth NS, Mudie S, van Uden P, Rocha S. SWI/SNF regulates the cellular response to hypoxia. J Biol Chem 2009; 284:4123-31. [PMID: 19097995 DOI: 10.1074/jbc.m808491200] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hypoxia induces a variety of cellular responses such as cell cycle arrest, apoptosis, and autophagy. Most of these responses are mediated by the hypoxia-inducible factor-1alpha. To induce target genes, hypoxia-inducible factor-1alpha requires a chromatin environment conducive to allow binding to specific sequences. Here, we have studied the role of the chromatin-remodeling complex SWI/SNF in the cellular response to hypoxia. We find that SWI/SNF is required for several of the cellular responses induced by hypoxia. Surprisingly, hypoxia-inducible factor-1alpha is a direct target of the SWI/SNF chromatin-remodeling complex. SWI/SNF components are found associated with the hypoxia-inducible factor-1alpha promoter and modulation of SWI/SNF levels results in pronounced changes in hypoxia-inducible factor-1alpha expression and its ability to transactivate target genes. Furthermore, impairment of SWI/SNF function renders cells resistant to hypoxia-induced cell cycle arrest. These results reveal a previously uncharacterized dependence of hypoxia signaling on the SWI/SNF complex and demonstrate a new level of control over the hypoxia-inducible factor-1alpha system.
Collapse
Affiliation(s)
- Niall S Kenneth
- College of Life Sciences, Wellcome Trust Centre for Gene Regulation and Expression, MSI/WTB/JBC Complex, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | | | |
Collapse
|