51
|
He M, Zhang R, Jiao S, Zhang F, Ye D, Wang H, Sun Y. Nanog safeguards early embryogenesis against global activation of maternal β-catenin activity by interfering with TCF factors. PLoS Biol 2020; 18:e3000561. [PMID: 32702011 PMCID: PMC7402524 DOI: 10.1371/journal.pbio.3000561] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 08/04/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Maternal β-catenin activity is essential and critical for dorsal induction and its dorsal activation has been thoroughly studied. However, how the maternal β-catenin activity is suppressed in the nondorsal cells remains poorly understood. Nanog is known to play a central role for maintenance of the pluripotency and maternal -zygotic transition (MZT). Here, we reveal a novel role of Nanog as a strong repressor of maternal β-catenin signaling to safeguard the embryo against hyperactivation of maternal β-catenin activity and hyperdorsalization. In zebrafish, knockdown of nanog at different levels led to either posteriorization or dorsalization, mimicking zygotic or maternal activation of Wnt/β-catenin activities, and the maternal zygotic mutant of nanog (MZnanog) showed strong activation of maternal β-catenin activity and hyperdorsalization. Although a constitutive activator-type Nanog (Vp16-Nanog, lacking the N terminal) perfectly rescued the MZT defects of MZnanog, it did not rescue the phenotypes resulting from β-catenin signaling activation. Mechanistically, the N terminal of Nanog directly interacts with T-cell factor (TCF) and interferes with the binding of β-catenin to TCF, thereby attenuating the transcriptional activity of β-catenin. Therefore, our study establishes a novel role for Nanog in repressing maternal β-catenin activity and demonstrates a transcriptional switch between β-catenin/TCF and Nanog/TCF complexes, which safeguards the embryo from global activation of maternal β-catenin activity. Maternal β-catenin activity induces the primary dorsal axis during early development, but how the activity is suppressed in the non-dorsal cells remains poorly understood. This study reveals Nanog as a strong repressor of nuclear β-catenin to safeguard embryogenesis against global activation of maternal β-catenin activity and hyper-dorsalization in zebrafish.
Collapse
Affiliation(s)
- Mudan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ru Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shengbo Jiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fenghua Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Houpeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
52
|
Biasini A, Smith AAT, Abdulkarim B, Ferreira da Silva M, Tan JY, Marques AC. The Contribution of lincRNAs at the Interface between Cell Cycle Regulation and Cell State Maintenance. iScience 2020; 23:101291. [PMID: 32619701 PMCID: PMC7334372 DOI: 10.1016/j.isci.2020.101291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/24/2020] [Accepted: 06/15/2020] [Indexed: 12/27/2022] Open
Abstract
Cell cycle progression is controlled by the interplay of established cell cycle regulators. Changes in these regulators' activity underpin differences in cell cycle kinetics between cell types. We investigated whether long intergenic noncoding RNAs (lincRNAs) contribute to embryonic stem cell cycle adaptations. Using single-cell RNA sequencing data for mouse embryonic stem cells (mESCs) staged as G1, S, or G2/M we found differentially expressed lincRNAs are enriched among cell cycle-regulated genes. These lincRNAs (CC-lincRNAs) are co-expressed with genes involved in cell cycle regulation. We tested the impact of two CC-lincRNA candidates and show using CRISPR activation that increasing their expression is associated with deregulated cell cycle progression. Interestingly, CC-lincRNAs are often differentially expressed between G1 and S, their promoters are enriched in pluripotency transcription factor (TF) binding sites, and their transcripts are frequently co-regulated with genes involved in the maintenance of pluripotency, suggesting a contribution of CC-lincRNAs to mESC cell cycle adaptations. Genes differentially expressed between mESC cell cycle stages are enriched in lincRNAs CC-lincRNAs are co-expressed with cell cycle and pluripotency genes CC-lincRNAs are often mESC specific and their promoters enriched in pluripotency TFs Upregulation of two CC-lincRNAs results in deregulated mESC cell cycle progression
Collapse
Affiliation(s)
- Adriano Biasini
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | | | - Baroj Abdulkarim
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | | | - Jennifer Yihong Tan
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Ana Claudia Marques
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
53
|
Patra SK. Roles of OCT4 in pathways of embryonic development and cancer progression. Mech Ageing Dev 2020; 189:111286. [PMID: 32531293 DOI: 10.1016/j.mad.2020.111286] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/08/2020] [Accepted: 06/06/2020] [Indexed: 12/11/2022]
Abstract
Somatic cells may be reprogrammed to pluripotent state by ectopic expression of certain transcription factors; namely, OCT4, SOX2, KLF4 and c-MYC. However, the molecular and cellular mechanisms are not adequately understood, especially for human embryonic development. Studies during the last five years implicated importance of OCT4 in human zygotic genome activation (ZGA), patterns of OCT4 protein folding and role of specialized sequences in binding to DNA for modulation of gene expression during development. Epigenetic modulation of OCT4 gene and post translational modifications of OCT4 protein activity in the context of multiple cancers are important issues. A consensus is emerging that chromatin organization and epigenetic landscape play crucial roles for the interactions of transcription factors, including OCT4 with the promoters and/or regulatory sequences of genes associated with human embryonic development (ZGA through lineage specification) and that when the epigenome niche is deregulated OCT4 helps in cancer progression, and how OCT4 silencing in somatic cells of adult organisms may impact ageing.
Collapse
Affiliation(s)
- Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
54
|
Desai D, Khanna A, Pethe P. Inhibition of RING1B alters lineage specificity in human embryonic stem cells. Cell Biol Int 2020; 44:1299-1311. [PMID: 32068319 DOI: 10.1002/cbin.11325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/16/2020] [Indexed: 02/05/2023]
Abstract
Polycomb group (PcG) proteins are histone modifiers which are known to perform transcriptional repression and have been shown to be critical during murine embryonic development. PcGs are broadly characterized into polycomb repressive complex 1 (PRC1) and 2 and (PRC2). RING1B, core catalytic unit of PRC1 performs H2AK119 monoubiquitination leading to transcriptional repression. We used human embryonic stem cell (hESC) line to study the fate of pluripotent stem cells (PSCs) under inhibition of RING1B, as its role in human development is still to be completely explored. Embryoid bodies (EBs) were generated to differentiate hESCs using hanging drop method. PRT4165 (synthetic RING1B catalytic activity inhibitor) was added to undifferentiated and differentiated cells for 24 h. When we inhibited RING1B in undifferentiated cells, OCT4 levels remained unchanged indicating RING1B does not regulate pluripotency. The drug when added to differentiated cells led to decrease in the levels of RING1B, BMI1, and H2AK119ub1. Interestingly, we also report that the differentiated cells show an increased expression of neuroectodermal markers: SOX1 and PAX6 as well as expression of other neuroectodermal markers such as TUJ1, FOXG1, and NCAM. However, there was reduction in expression of endodermal (SOX17 and FOXA2) mesodermal marker BRACHYURY and TBX5 in treated EBs compared with control EBs. In summary, alteration of RING1B catalytic activity in hESCs during differentiation promotes neuroectodermal differentiation thus, we demonstrate critical role of RING1B in regulating neural differentiation. The strategy of inhibiting RING1B could be used to direct PSCs towards early neuronal fate.
Collapse
Affiliation(s)
- Divya Desai
- Department of Biological Sciences, NMIMS Sunandan Divatia School of Science, NMIMS (deemed to-be) University, Mumbai, 400056, India
| | - Aparna Khanna
- Department of Biological Sciences, NMIMS Sunandan Divatia School of Science, NMIMS (deemed to-be) University, Mumbai, 400056, India
| | - Prasad Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University, Pune, 412115, India
| |
Collapse
|
55
|
Phosphoproteomics identifies a bimodal EPHA2 receptor switch that promotes embryonic stem cell differentiation. Nat Commun 2020; 11:1357. [PMID: 32170114 PMCID: PMC7070061 DOI: 10.1038/s41467-020-15173-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/25/2020] [Indexed: 11/08/2022] Open
Abstract
Embryonic Stem Cell (ESC) differentiation requires complex cell signalling network dynamics, although the key molecular events remain poorly understood. Here, we use phosphoproteomics to identify an FGF4-mediated phosphorylation switch centred upon the key Ephrin receptor EPHA2 in differentiating ESCs. We show that EPHA2 maintains pluripotency and restrains commitment by antagonising ERK1/2 signalling. Upon ESC differentiation, FGF4 utilises a bimodal strategy to disable EPHA2, which is accompanied by transcriptional induction of EFN ligands. Mechanistically, FGF4-ERK1/2-RSK signalling inhibits EPHA2 via Ser/Thr phosphorylation, whilst FGF4-ERK1/2 disrupts a core pluripotency transcriptional circuit required for Epha2 gene expression. This system also operates in mouse and human embryos, where EPHA receptors are enriched in pluripotent cells whilst surrounding lineage-specified trophectoderm expresses EFNA ligands. Our data provide insight into function and regulation of EPH-EFN signalling in ESCs, and suggest that segregated EPH-EFN expression coordinates cell fate with compartmentalisation during early embryonic development.
Collapse
|
56
|
Uribe-Etxebarria V, García-Gallastegui P, Pérez-Garrastachu M, Casado-Andrés M, Irastorza I, Unda F, Ibarretxe G, Subirán N. Wnt-3a Induces Epigenetic Remodeling in Human Dental Pulp Stem Cells. Cells 2020; 9:cells9030652. [PMID: 32156036 PMCID: PMC7140622 DOI: 10.3390/cells9030652] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022] Open
Abstract
Dental pulp stem cells (DPSCs) from adult teeth show the expression of a very complete repertoire of stem pluripotency core factors and a high plasticity for cell reprogramming. Canonical Wnt and Notch signaling pathways regulate stemness and the expression of pluripotency core factors in DPSCs, and even very short-term (48 h) activations of the Wnt pathway induce a profound remodeling of DPSCs at the physiologic and metabolic levels. In this work, DPSC cultures were exposed to treatments modulating Notch and Wnt signaling, and also induced to differentiate to osteo/adipocytes. DNA methylation, histone acetylation, histone methylation, and core factor expression levels where assessed by mass spectroscopy, Western blot, and qPCR. A short-term activation of Wnt signaling by WNT-3A induced a genomic DNA demethylation, and increased histone acetylation and histone methylation in DPSCs. The efficiency of cell reprogramming methods relies on the ability to surpass the epigenetic barrier, which determines cell lineage specificity. This study brings important information about the regulation of the epigenetic barrier by Wnt signaling in DPSCs, which could contribute to the development of safer and less aggressive reprogramming methodologies with a view to cell therapy.
Collapse
Affiliation(s)
- Verónica Uribe-Etxebarria
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain; (V.U.-E.); (P.G.-G.); (M.P.-G.); (M.C.-A.); (I.I.); (F.U.)
- Pathology Department, New York University, 550 1st Avenue, New York, NY 10016, USA
| | - Patricia García-Gallastegui
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain; (V.U.-E.); (P.G.-G.); (M.P.-G.); (M.C.-A.); (I.I.); (F.U.)
| | - Miguel Pérez-Garrastachu
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain; (V.U.-E.); (P.G.-G.); (M.P.-G.); (M.C.-A.); (I.I.); (F.U.)
| | - María Casado-Andrés
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain; (V.U.-E.); (P.G.-G.); (M.P.-G.); (M.C.-A.); (I.I.); (F.U.)
- Unité Mixte de Recherche UMR1029. INSERM-Université de Bordeaux, 33000 Bordeaux, France
| | - Igor Irastorza
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain; (V.U.-E.); (P.G.-G.); (M.P.-G.); (M.C.-A.); (I.I.); (F.U.)
| | - Fernando Unda
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain; (V.U.-E.); (P.G.-G.); (M.P.-G.); (M.C.-A.); (I.I.); (F.U.)
| | - Gaskon Ibarretxe
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain; (V.U.-E.); (P.G.-G.); (M.P.-G.); (M.C.-A.); (I.I.); (F.U.)
- Correspondence: ; Tel.: +34-94-601-3218
| | - Nerea Subirán
- Physiology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena, S/N, 48940 Leioa, Spain;
| |
Collapse
|
57
|
Li D, Kishta MS, Wang J. Regulation of pluripotency and reprogramming by RNA binding proteins. Curr Top Dev Biol 2020; 138:113-138. [PMID: 32220295 DOI: 10.1016/bs.ctdb.2020.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Embryonic stem cells have the capacities of self-renewal and pluripotency. Pluripotency establishment (somatic cell reprogramming), maintenance, and execution (differentiation) require orchestrated regulatory mechanisms of a cell's molecular machinery, including signaling pathways, epigenetics, transcription, translation, and protein degradation. RNA binding proteins (RBPs) take part in every process of RNA regulation and recent studies began to address their important functions in the regulation of pluripotency and reprogramming. Here, we discuss the roles of RBPs in key regulatory steps in the control of pluripotency and reprogramming. Among RNA binding proteins are a group of RNA helicases that are responsible for RNA structure remodeling with important functional implications. We highlight the largest family of RNA helicases, DDX (DEAD-box) helicase family and our current understanding of their functions specifically in the regulation of pluripotency and reprogramming.
Collapse
Affiliation(s)
- Dan Li
- Department of Cell, Developmental and Regenerative Biology; The Black Family Stem Cell Institute; Icahn School of Medicine at Mount Sinai, New York, NY, United States; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mohamed S Kishta
- Hormones Department, Medical Research Division, National Research Centre, Cairo, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt; Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY, United States
| | - Jianlong Wang
- Department of Cell, Developmental and Regenerative Biology; The Black Family Stem Cell Institute; Icahn School of Medicine at Mount Sinai, New York, NY, United States; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY, United States.
| |
Collapse
|
58
|
Cell Biology of Intracellular Adaptation of Mycobacterium leprae in the Peripheral Nervous System. Microbiol Spectr 2020; 7. [PMID: 31322104 DOI: 10.1128/microbiolspec.bai-0020-2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mammalian nervous system is invaded by a number of intracellular bacterial pathogens which can establish and progress infection in susceptible individuals. Subsequent clinical manifestation is apparent with the impairment of the functional units of the nervous system, i.e., the neurons and the supporting glial cells that produce myelin sheaths around axons and provide trophic support to axons and neurons. Most of these neurotrophic bacteria display unique features, have coevolved with the functional sophistication of the nervous system cells, and have adapted remarkably to manipulate neural cell functions for their own advantage. Understanding how these bacterial pathogens establish intracellular adaptation by hijacking endogenous pathways in the nervous system, initiating myelin damage and axonal degeneration, and interfering with myelin maintenance provides new knowledge not only for developing strategies to combat neurodegenerative conditions induced by these pathogens but also for gaining novel insights into cellular and molecular pathways that regulate nervous system functions. Since the pathways hijacked by bacterial pathogens may also be associated with other neurodegenerative diseases, it is anticipated that detailing the mechanisms of bacterial manipulation of neural systems may shed light on common mechanisms, particularly of early disease events. This chapter details a classic example of neurodegeneration, that caused by Mycobacterium leprae, which primarily infects glial cells of the peripheral nervous system (Schwann cells), and how it targets and adapts intracellularly by reprogramming Schwann cells to stem cells/progenitor cells. We also discuss implications of this host cell reprogramming by leprosy bacilli as a model in a wider context.
Collapse
|
59
|
King DM, Hong CKY, Shepherdson JL, Granas DM, Maricque BB, Cohen BA. Synthetic and genomic regulatory elements reveal aspects of cis-regulatory grammar in mouse embryonic stem cells. eLife 2020; 9:41279. [PMID: 32043966 PMCID: PMC7077988 DOI: 10.7554/elife.41279] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/07/2020] [Indexed: 01/08/2023] Open
Abstract
In embryonic stem cells (ESCs), a core transcription factor (TF) network establishes the gene expression program necessary for pluripotency. To address how interactions between four key TFs contribute to cis-regulation in mouse ESCs, we assayed two massively parallel reporter assay (MPRA) libraries composed of binding sites for SOX2, POU5F1 (OCT4), KLF4, and ESRRB. Comparisons between synthetic cis-regulatory elements and genomic sequences with comparable binding site configurations revealed some aspects of a regulatory grammar. The expression of synthetic elements is influenced by both the number and arrangement of binding sites. This grammar plays only a small role for genomic sequences, as the relative activities of genomic sequences are best explained by the predicted occupancy of binding sites, regardless of binding site identity and positioning. Our results suggest that the effects of transcription factor binding sites (TFBS) are influenced by the order and orientation of sites, but that in the genome the overall occupancy of TFs is the primary determinant of activity. Transcription factors are proteins that flip genetic switches; their role is to control when and where genes are active. They do this by binding to short stretches of DNA called cis-regulatory sequences. Each sequence can have several binding sites for different transcription factors, but it is largely unclear whether the transcription factors binding to the same regulatory sequence actually work together. It is possible that each transcription factor may work independently and there only needs to be critical mass of transcription factors bound to throw the genetic switch. If this is the case, the most important features of a cis-regulatory sequence should be the number of binding sites it contains, and how tightly the transcription factors bind to those sites. The more transcription factors and the more strongly they bind, the more active the gene should be. An alternative option is that certain transcription factors may work better together, enhancing each other's effects such that the total effect is more than the sum of its parts. If this is true, the order, orientation and spacing of the binding sites within a sequence should matter more than the number. One way to investigate to distinguish between these possibilities is to study mouse embryonic stem cells, which have a core set of four transcription factors. Looking directly at a real genome, however, can be confusing and it is difficult to measure the effects of different cis-regulatory sequences because genes differ in so many other ways. To tackle this problem, King et al. created a synthetic set of cis-regulatory sequences based on the four core transcription factors found in mouse stem cells. The synthetic set had every combination of two, three or four of the binding sites, with each site either facing forwards or backwards along the DNA strand. King et al. attached each of the synthetic cis-regulatory sequences to a reporter gene to find out how well each sequence performed. This revealed that the cis-regulatory sequences with the most binding sites and the tightest binding affinities work best, suggesting that transcription factors mainly work independently. There was evidence of some interaction between some transcription factors, because, of the synthetic sequences with four binding sites, some worked better than others, and there were patterns in the most effective binding site combinations. However, these effects were small and when King et al. went on to test sequences from the real mouse genome, the most important factor by far was the number of binding sites. Synthetic libraries of DNA sequences allow researchers to examine gene regulation more clearly than is possible in real genomes. Yet this approach does have its limitations and it is impossible to capture every type of cis-regulatory sequence in one library. The next step to extend this work is to combine the two approaches, taking sequences from the real genome and manipulating them one by one. This could help to unravel the rules that govern how cis-regulatory sequences work in real cells.
Collapse
Affiliation(s)
- Dana M King
- Edison Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, United States.,Department of Genetics, Washington University in St. Louis, St. Louis, United States
| | - Clarice Kit Yee Hong
- Edison Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, United States.,Department of Genetics, Washington University in St. Louis, St. Louis, United States
| | - James L Shepherdson
- Edison Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, United States.,Department of Genetics, Washington University in St. Louis, St. Louis, United States
| | - David M Granas
- Edison Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, United States.,Department of Genetics, Washington University in St. Louis, St. Louis, United States
| | - Brett B Maricque
- Edison Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, United States.,Department of Genetics, Washington University in St. Louis, St. Louis, United States
| | - Barak A Cohen
- Edison Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, United States.,Department of Genetics, Washington University in St. Louis, St. Louis, United States
| |
Collapse
|
60
|
Torres-Mejía E, Trümbach D, Kleeberger C, Dornseifer U, Orschmann T, Bäcker T, Brenke JK, Hadian K, Wurst W, López-Schier H, Desbordes SC. Sox2 controls Schwann cell self-organization through fibronectin fibrillogenesis. Sci Rep 2020; 10:1984. [PMID: 32029747 PMCID: PMC7005302 DOI: 10.1038/s41598-019-56877-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 12/09/2019] [Indexed: 02/03/2023] Open
Abstract
The extracellular matrix is known to modulate cell adhesion and migration during tissue regeneration. However, the molecular mechanisms that fine-tune cells to extra-cellular matrix dynamics during regeneration of the peripheral nervous system remain poorly understood. Using the RSC96 Schwann cell line, we show that Sox2 directly controls fibronectin fibrillogenesis in Schwann cells in culture, to provide a highly oriented fibronectin matrix, which supports their organization and directional migration. We demonstrate that Sox2 regulates Schwann cell behaviour through the upregulation of multiple extracellular matrix and migration genes as well as the formation of focal adhesions during cell movement. We find that mouse primary sensory neurons and human induced pluripotent stem cell-derived motoneurons require the Sox2-dependent fibronectin matrix in order to migrate along the oriented Schwann cells. Direct loss of fibronectin in Schwann cells impairs their directional migration affecting the alignment of the axons in vitro. Furthermore, we show that Sox2 and fibronectin are co-expressed in proregenerative Schwann cells in vivo in a time-dependent manner during sciatic nerve regeneration. Taken together, our results provide new insights into the mechanisms by which Schwann cells regulate their own extracellular microenvironment in a Sox2-dependent manner to ensure the proper migration of neurons.
Collapse
Affiliation(s)
- Elen Torres-Mejía
- Stem Cells in Neural Development and Disease group, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Munich-Neuherberg, Germany.,Research Unit Sensory Biology and Organogenesis, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Munich-Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Munich-Neuherberg, Germany
| | - Dietrich Trümbach
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Munich-Neuherberg, Germany
| | - Charlotte Kleeberger
- Department of Plastic, Reconstructive, Hand and Burn Surgery, Academic Hospital Bogenhausen, Munich, 81925, Germany
| | - Ulf Dornseifer
- Department of Plastic, Reconstructive, Hand and Burn Surgery, Academic Hospital Bogenhausen, Munich, 81925, Germany
| | - Tanja Orschmann
- Stem Cells in Neural Development and Disease group, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Munich-Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Munich-Neuherberg, Germany.,Stem Cell Based-Assay Development Platform (SCADEV), Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Munich-Neuherberg, Germany
| | - Theresa Bäcker
- Stem Cells in Neural Development and Disease group, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Munich-Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Munich-Neuherberg, Germany.,Stem Cell Based-Assay Development Platform (SCADEV), Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Munich-Neuherberg, Germany
| | - Jara Kerstin Brenke
- Assay Development and Screening Platform, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Munich-Neuherberg, Germany
| | - Kamyar Hadian
- Assay Development and Screening Platform, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Munich-Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Munich-Neuherberg, Germany.,Chair of Developmental Genetics, Technische Universität München-Weihenstephan, 85350, Freising-Weihenstephan, Germany.,German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany
| | - Hernán López-Schier
- Research Unit Sensory Biology and Organogenesis, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Munich-Neuherberg, Germany
| | - Sabrina C Desbordes
- Stem Cells in Neural Development and Disease group, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Munich-Neuherberg, Germany. .,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Munich-Neuherberg, Germany. .,Stem Cell Based-Assay Development Platform (SCADEV), Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Munich-Neuherberg, Germany. .,ISAR Bioscience GmbH, Institute for Stem Cell & Applied Regenerative Medicine Research, Semmelweisstr. 5, 82152, Munich, Germany.
| |
Collapse
|
61
|
Naddafpour A, Ghazvini Zadegan F, Hajian M, Hosseini SM, Jafarpour F, Rahimi M, Habibi R, Nasr Esfahani MH. Effects of abundances of OCT-4 mRNA transcript on goat pre-implantation embryonic development. Anim Reprod Sci 2020; 215:106286. [PMID: 32216939 DOI: 10.1016/j.anireprosci.2020.106286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/18/2019] [Accepted: 01/16/2020] [Indexed: 12/27/2022]
Abstract
Unlike in mice, the function of pluripotent markers in early embryonic development of domestic animals remains to be elucidated and this may account for the failure to establish embryonic stem cell lines for these species. To study the functions of the OCT-4 protein which has important actions in maintenance of pluripotent and self-renewal processes during early embryonic development, there was induced reduction in relative abundance of OCT-4 mRNA transcript during goat early embryonic development by using RNA interference techniques. The injection of OCT-4 siRNA into goat IVF presumptive zygotes resulted in a decrease in the relative abundance of OCT-4 mRNA transcript; however, there was development of these embryos to the blastocyst stage at the same rate as there was in the control group. The blastocysts from the treated groups had a similar number of TE, ICM, and total cells compared to those from the control group. Although there was a greater relative abundance of NANOG, REX1, and CDX2 mRNA transcript in the embryos injected with siRNA at the 8-16 cell stage, the relative transcript abundances were similar for the control and treatment groups at the blastocyst stage. The relative abundance of SOX2 mRNA transcript was similar for the treatment and control group. It, therefore, is concluded that inhibition of abundances of OCT-4 mRNA transcript to about 20 % of that of the untreated control group did not affect blastocyst formation rate in goats. The functions of OCT-4 in maintaining ICM and TE integrity, however, remains to be assessed.
Collapse
Affiliation(s)
- Azadeh Naddafpour
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Department of Biology, University of Science and Culture, Tehran, Iran
| | - Faezeh Ghazvini Zadegan
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mehdi Hajian
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sayyed Morteza Hosseini
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farnoosh Jafarpour
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Rahimi
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Razieh Habibi
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Department of Biology, University of Science and Culture, Tehran, Iran
| | - Mohammad Hossein Nasr Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
62
|
Zhou S, Fu Y, Zhang XB, Pei M. Liver Kinase B1 Fine-Tunes Lineage Commitment of Human Fetal Synovium-Derived Stem Cells. J Orthop Res 2020; 38:258-268. [PMID: 31429977 PMCID: PMC7294510 DOI: 10.1002/jor.24449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/25/2019] [Indexed: 02/04/2023]
Abstract
Liver kinase B1 (LKB1), a serine/threonine protein, is a key regulator in stem cell function and energy metabolism. Herein, we describe the role of LKB1 in modulating the differentiation of synovium-derived stem cells (SDSCs) toward chondrogenic, adipogenic, and osteogenic lineages. Human fetal SDSCs were transduced with CRISPR associated protein 9 (Cas9)-single-guide RNA vectors to knockout or lentiviral vectors to overexpress the LKB1 gene. Analyses including ICE (Inference of CRISPR Edits) data from Sanger sequencing and quantitative polymerase chain reaction (qPCR) as well as Western blot demonstrated successful knockout (KO) or overexpression (OE) of LKB1 in human fetal SDSCs without any detectable side effects in morphology, proliferation rate, and cell cycle. LKB1 KO increased CD146 expression; interestingly, LKB1 OE increased SSEA4 level. The qPCR data showed that LKB1 KO upregulated the levels of SOX2 and NANOG while LKB1 OE lowered the expression of POU5F1 and KLF4. Furthermore, LKB1 KO enhanced, and LKB1 OE inhibited, chondrogenic and adipogenic differentiation potential. However, perhaps due to the inherent inability to achieve osteogenesis, LKB1 did not obviously affect osteogenic differentiation. These data demonstrate that LKB1 plays a significant role in determining human SDSCs' adipogenic and chondrogenic differentiation, which might provide an approach for fine-tuning the direction of stem cell differentiation in tissue engineering and regeneration. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:258-268, 2020.
Collapse
Affiliation(s)
- Sheng Zhou
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, 26506, USA,Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yawen Fu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Tianjin, China,Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Tianjin, China,Department of Medicine, Loma Linda University, Loma Linda, CA, USA,Co-corresponding author: Xiao-Bing Zhang, PhD. Division of Regenerative Medicine MC1528B, Department of Medicine, Loma Linda University, 11234 Anderson Street, Loma Linda, CA 92350, USA. Phone: 909-651-5886. Fax: 909-558-0428.
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, 26506, USA,WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA,Corresponding author: Ming Pei MD, PhD, Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196, USA, Telephone: 304-293-1072; Fax: 304-293-7070;
| |
Collapse
|
63
|
In Vivo Quantitative Estimation of DNA-Dependent Interaction of Sox2 and Oct4 Using BirA-Catalyzed Site-Specific Biotinylation. Biomolecules 2020; 10:biom10010142. [PMID: 31963153 PMCID: PMC7022529 DOI: 10.3390/biom10010142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 11/25/2022] Open
Abstract
Protein–protein interactions of core pluripotency transcription factors play an important role during cell reprogramming. Cell identity is controlled by a trio of transcription factors: Sox2, Oct4, and Nanog. Thus, methods that help to quantify protein–protein interactions may be useful for understanding the mechanisms of pluripotency at the molecular level. Here, a detailed protocol for the detection and quantitative analysis of in vivo protein–protein proximity of Sox2 and Oct4 using the proximity-utilizing biotinylation (PUB) method is described. The method is based on the coexpression of two proteins of interest fused to a biotin acceptor peptide (BAP)in one case and a biotin ligase enzyme (BirA) in the other. The proximity between the two proteins leads to more efficient biotinylation of the BAP, which can be either detected by Western blotting or quantified using proteomics approaches, such as a multiple reaction monitoring (MRM) analysis. Coexpression of the fusion proteins BAP-X and BirA-Y revealed strong biotinylation of the target proteins when X and Y were, alternatively, the pluripotency transcription factors Sox2 and Oct4, compared with the negative control where X or Y was green fluorescent protein (GFP), which strongly suggests that Sox2 and Oct4 come in close proximity to each other and interact.
Collapse
|
64
|
Linneberg-Agerholm M, Wong YF, Romero Herrera JA, Monteiro RS, Anderson KGV, Brickman JM. Naïve human pluripotent stem cells respond to Wnt, Nodal and LIF signalling to produce expandable naïve extra-embryonic endoderm. Development 2019; 146:dev.180620. [PMID: 31740534 DOI: 10.1242/dev.180620] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022]
Abstract
Embryonic stem cells (ESCs) exist in at least two states that transcriptionally resemble different stages of embryonic development. Naïve ESCs resemble peri-implantation stages and primed ESCs the pre-gastrulation epiblast. In mouse, primed ESCs give rise to definitive endoderm in response to the pathways downstream of Nodal and Wnt signalling. However, when these pathways are activated in naïve ESCs, they differentiate to a cell type resembling early primitive endoderm (PrE), the blastocyst-stage progenitor of the extra-embryonic endoderm. Here, we apply this context dependency to human ESCs, showing that activation of Nodal and Wnt signalling drives the differentiation of naïve pluripotent cells toward extra-embryonic PrE, or hypoblast, and these can be expanded as an in vitro model for naïve extra-embryonic endoderm (nEnd). Consistent with observations made in mouse, human PrE differentiation is dependent on FGF signalling in vitro, and we show that, by inhibiting FGF receptor signalling, we can simplify naïve pluripotent culture conditions, such that the inhibitor requirements closer resemble those used in mouse. The expandable nEnd cultures reported here represent stable extra-embryonic endoderm, or human hypoblast, cell lines.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Madeleine Linneberg-Agerholm
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Yan Fung Wong
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Jose Alejandro Romero Herrera
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Rita S Monteiro
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Kathryn G V Anderson
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Joshua M Brickman
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
65
|
Wu T, Kamikawa YF, Donohoe ME. Brd4's Bromodomains Mediate Histone H3 Acetylation and Chromatin Remodeling in Pluripotent Cells through P300 and Brg1. Cell Rep 2019; 25:1756-1771. [PMID: 30428346 DOI: 10.1016/j.celrep.2018.10.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/10/2016] [Accepted: 09/28/2018] [Indexed: 12/22/2022] Open
Abstract
The pluripotent state of embryonic stem cells (ESCs) is defined by its transcriptome and epigenome. The chromatin reader Brd4 determines ESC identity. Although Brd4 regulation in gene transcription has been well described, its contribution to the chromatin landscape is less known. Here, we show that Brd4's bromodomains partner with the histone acetyltransferase P300, increasing its enzymatic activities. Augmenting histone acetylation by Brd4-P300 interaction recruits the chromatin remodeler Brg1 altering chromatin structure. This pathway is important for maintaining the expression and chromatin patterns of pluripotency-associated genes, such as Oct4, Nanog, and the X chromosome regulatory long noncoding RNAs Tsix and Xite. Furthermore, we show that the Brd4-P300 interaction regulates the de novo formation of chromatin marks during ESC differentiation, as exemplified by controlling the master regulators of mesoderm formation. Collectively, we delineate the function of Brd4 in organizing the chromatin structure that contributes to gene transcriptional regulation and cell fate determination.
Collapse
Affiliation(s)
- Tao Wu
- Burke Medical Research Institute, White Plains, NY 10605, USA; Department of Neuroscience, Brain Mind Research Institute, Department of Cell & Development, Weill Cornell Medical College, New York, NY 10065, USA
| | - Yasunao F Kamikawa
- Burke Medical Research Institute, White Plains, NY 10605, USA; Department of Neuroscience, Brain Mind Research Institute, Department of Cell & Development, Weill Cornell Medical College, New York, NY 10065, USA
| | - Mary E Donohoe
- Burke Medical Research Institute, White Plains, NY 10605, USA; Department of Neuroscience, Brain Mind Research Institute, Department of Cell & Development, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
66
|
Barral A, Rollan I, Sanchez-Iranzo H, Jawaid W, Badia-Careaga C, Menchero S, Gomez MJ, Torroja C, Sanchez-Cabo F, Göttgens B, Manzanares M, Sainz de Aja J. Nanog regulates Pou3f1 expression at the exit from pluripotency during gastrulation. Biol Open 2019; 8:bio046367. [PMID: 31791948 PMCID: PMC6899006 DOI: 10.1242/bio.046367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Pluripotency is regulated by a network of transcription factors that maintain early embryonic cells in an undifferentiated state while allowing them to proliferate. NANOG is a critical factor for maintaining pluripotency and its role in primordial germ cell differentiation has been well described. However, Nanog is expressed during gastrulation across all the posterior epiblast, and only later in development is its expression restricted to primordial germ cells. In this work, we unveiled a previously unknown mechanism by which Nanog specifically represses genes involved in anterior epiblast lineage. Analysis of transcriptional data from both embryonic stem cells and gastrulating mouse embryos revealed Pou3f1 expression to be negatively correlated with that of Nanog during the early stages of differentiation. We have functionally demonstrated Pou3f1 to be a direct target of NANOG by using a dual transgene system for the controlled expression of Nanog Use of Nanog null ES cells further demonstrated a role for Nanog in repressing a subset of anterior neural genes. Deletion of a NANOG binding site (BS) located nine kilobases downstream of the transcription start site of Pou3f1 revealed this BS to have a specific role in the regionalization of the expression of this gene in the embryo. Our results indicate an active role of Nanog inhibiting neural regulatory networks by repressing Pou3f1 at the onset of gastrulation.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Antonio Barral
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Isabel Rollan
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Hector Sanchez-Iranzo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Wajid Jawaid
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0AW, UK
| | - Claudio Badia-Careaga
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Sergio Menchero
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Manuel J Gomez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Carlos Torroja
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Fatima Sanchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Berthold Göttgens
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0AW, UK
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Madrid 28049, Spain
| | - Julio Sainz de Aja
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| |
Collapse
|
67
|
Cancer Stem Cells and Osteosarcoma: Opportunities and Limitations. Tech Orthop 2019. [DOI: 10.1097/bto.0000000000000408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
68
|
Lee MH, Wu X, Zhu Y. RNA-binding protein PUM2 regulates mesenchymal stem cell fate via repression of JAK2 and RUNX2 mRNAs. J Cell Physiol 2019; 235:3874-3885. [PMID: 31595981 DOI: 10.1002/jcp.29281] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022]
Abstract
The differentiation of mesenchymal stem cells (MSCs) into unwanted lineages can generate potential problems in clinical trials. Thus, understanding the molecular mechanisms, involved in this process, would help prevent unexpected complications. Regulation of gene expression, at the posttranscriptional level, is a new approach in cell therapies. PUMILIO is a conserved posttranscriptional regulator. However, the underlying mechanisms of PUMILIO, in vertebrate stem cells, remain elusive. Here, we show that depletion of PUMILIO2 (PUM2) blocks MSC adipogenesis and enhances osteogenesis. We also demonstrate that PUM2 works as a negative regulator on the 3'-untranslated regions of JAK2 and RUNX2 via direct binding. CRISPR/Cas9-mediated gene silencing of Pum2 inhibited lipid accumulation and induced excessive bone formation in zebrafish larvae. Our findings reveal novel roles of PUM2 in MSCs and provide potential therapeutic targets for related diseases.
Collapse
Affiliation(s)
- Myon-Hee Lee
- Department of Internal Medicine, Hematology/Oncology Division, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Xinjun Wu
- Department of Biology, East Carolina University, Greenville, North Carolina
| | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, North Carolina
| |
Collapse
|
69
|
Pantier R, Tatar T, Colby D, Chambers I. Endogenous epitope-tagging of Tet1, Tet2 and Tet3 identifies TET2 as a naïve pluripotency marker. Life Sci Alliance 2019; 2:2/5/e201900516. [PMID: 31582397 PMCID: PMC6776666 DOI: 10.26508/lsa.201900516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 01/18/2023] Open
Abstract
Expression of TET proteins in pluripotent cell types is visualised by epitope tagging of endogenous alleles. Tet1, Tet2, and Tet3 encode DNA demethylases that play critical roles during stem cell differentiation and reprogramming to pluripotency. Although all three genes are transcribed in pluripotent cells, little is known about the expression of the corresponding proteins. Here, we tagged all the endogenous Tet family alleles using CRISPR/Cas9, and characterised TET protein expression in distinct pluripotent cell culture conditions. Whereas TET1 is abundantly expressed in both naïve and primed pluripotent cells, TET2 expression is restricted to the naïve state. Moreover, TET2 is expressed heterogeneously in embryonic stem cells (ESCs) cultured in serum/leukemia inhibitory factor, with expression correlating with naïve pluripotency markers. FACS-sorting of ESCs carrying a Tet2Flag-IRES-EGFP reporter demonstrated that TET2-negative cells have lost the ability to form undifferentiated ESC colonies. We further show that TET2 binds to the transcription factor NANOG. We hypothesize that TET2 and NANOG co-localise on chromatin to regulate enhancers associated with naïve pluripotency genes.
Collapse
Affiliation(s)
- Raphaël Pantier
- UK Medical Research Council Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Tülin Tatar
- UK Medical Research Council Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Douglas Colby
- UK Medical Research Council Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Ian Chambers
- UK Medical Research Council Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
70
|
Stafman LL, Williams AP, Marayati R, Aye JM, Markert HR, Garner EF, Quinn CH, Lallani SB, Stewart JE, Yoon KJ, Whelan K, Beierle EA. Focal Adhesion Kinase Inhibition Contributes to Tumor Cell Survival and Motility in Neuroblastoma Patient-Derived Xenografts. Sci Rep 2019; 9:13259. [PMID: 31519958 PMCID: PMC6744403 DOI: 10.1038/s41598-019-49853-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/24/2019] [Indexed: 12/29/2022] Open
Abstract
Patient-derived xenografts (PDXs) provide an opportunity to evaluate the effects of therapies in an environment that more closely resembles the human condition than that seen with long-term passage cell lines. In the current studies, we investigated the effects of FAK inhibition on two neuroblastoma PDXs in vitro. Cells were treated with two small molecule inhibitors of FAK, PF-573,228 (PF) and 1,2,4,5-benzentetraamine tetrahydrochloride (Y15). Following FAK inhibition, cell survival and proliferation decreased significantly and cell cycle arrest was seen in both cell lines. Migration and invasion assays were used to determine the effect of FAK inhibition on cell motility, which decreased significantly in both cell lines in the presence of either inhibitor. Finally, tumor cell stemness following FAK inhibition was evaluated with extreme limiting dilution assays as well as with immunoblotting and quantitative real-time PCR for the expression of stem cell markers. FAK inhibition decreased formation of tumorspheres and resulted in a corresponding decrease in established stem cell markers. FAK inhibition decreased many characteristics of the malignant phenotype, including cancer stem cell like features in neuroblastoma PDXs, making FAK a candidate for further investigation as a potential target for neuroblastoma therapy.
Collapse
Affiliation(s)
- Laura L Stafman
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, AL, 35205, USA
| | - Adele P Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, AL, 35205, USA
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, AL, 35205, USA
| | - Jamie M Aye
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama, Birmingham, AL, 35233, USA
| | - Hooper R Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, AL, 35205, USA
| | - Evan F Garner
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, AL, 35205, USA
| | - Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, AL, 35205, USA
| | - Shoeb B Lallani
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, AL, 35205, USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama, Birmingham, AL, 35233, USA
| | - Kimberly Whelan
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama, Birmingham, AL, 35233, USA
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, AL, 35205, USA.
| |
Collapse
|
71
|
Zhang X, Li X, Li R, Zhang Y, Li Y, Li S. Transcriptomic profile of early zebrafish PGCs by single cell sequencing. PLoS One 2019; 14:e0220364. [PMID: 31412047 PMCID: PMC6693734 DOI: 10.1371/journal.pone.0220364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/15/2019] [Indexed: 12/30/2022] Open
Abstract
Single cell RNA-seq is a powerful and sensitive way to capture the genome-wide gene expression. Here, single cell RNA-seq was utilized to study the transcriptomic profile of early zebrafish PGCs (primordial germ cells) at three different developmental stages. The three stages were 6, 11 and 24 hpf (hours post fertilization). For each developmental stage, three zebrafish PGCs from one embryo were collected, and 9 samples in total were used in this experiment. Single cell RNA-seq results showed that 5099–7376 genes were detected among the 9 samples, and the number of expressed genes decreased as development progressed. Based on the gene expression pattern, samples from 6 and 11 hpf clustered closely, while samples from 24 hpf were more dispersed. By WGCNA (weighted gene co-expression network analysis), the two biggest modules that had inverse gene expression patterns were found to be related to PGC formation or migration. Functional enrichment analysis for these two modules showed that PGCs mainly conducted migration and cell division in early development (6/11 hpf) and translation activity became active in late development (24 hpf). Differentially expressed gene analyses showed that more genes were downregulated than upregulated between two adjacent stages, and genes related to PGC formation or migration reported by previous studies decreased significantly from 11 to 24 hpf. Our results provide base knowledge about zebrafish PGC development at the single cell level and can be further studied by other researchers interested in biological development.
Collapse
Affiliation(s)
- Xiaoyuan Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xintian Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ronghong Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yunbin Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yiping Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shifeng Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
72
|
Ohira T, Kojima H, Kuroda Y, Aoki S, Inaoka D, Osaki M, Wanibuchi H, Okada F, Oshimura M, Kugoh H. PITX1 protein interacts with ZCCHC10 to regulate hTERT mRNA transcription. PLoS One 2019; 14:e0217605. [PMID: 31404068 PMCID: PMC6690549 DOI: 10.1371/journal.pone.0217605] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/29/2019] [Indexed: 01/21/2023] Open
Abstract
Telomerase is a ribonucleoprotein ribonucleic enzyme that is essential for cellular immortalization via elongation of telomere repeat sequences at the end of chromosomes. Human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase holoenzyme, is a key regulator of telomerase activity. Telomerase activity, which has been detected in the majority of cancer cells, is accompanied by hTERT expression, suggesting that this enzyme activity contributes to an unlimited replication potential of cancer cells via regulation of telomere length. Thus, hTERT is an attractive target for cancer-specific treatments. We previously reported that pared-like homeodomain 1 (PITX1) is a negative regulator of hTERT through direct binding to the hTERT promoter. However, the mechanism by which the function of PITX1 contributes to transcriptional silencing of the hTERT gene remains to be clarified. Here, we show that PITX1 and zinc finger CCHC-type containing 10 (ZCCHC10) proteins cooperate to facilitate the transcriptional regulation of the hTERT gene by functional studies via FLAG pull-down assay. Co-expression of PITX1 and ZCCHC10 resulted in inhibition of hTERT transcription, in melanoma cell lines, whereas mutate-deletion of homeodomain in PITX1 that interact with ZCCHC10 did not induce similar phenotypes. In addition, ZCCHC10 expression levels showed marked decrease in the majority of melanoma cell lines and tissues. Taken together, these results suggest that ZCCHC10-PITX1 complex is the functional unit that suppresses hTERT transcription, and may play a crucial role as a novel tumor suppressor complex.
Collapse
Affiliation(s)
- Takahito Ohira
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, Japan
| | - Hirotada Kojima
- Department of Immunology, Graduate School of Medicine, Osaka City University, Asahi-machi, Abeno-ku, Osaka, Japan
| | - Yuko Kuroda
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan
| | - Sayaka Aoki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan
| | - Daigo Inaoka
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan
| | - Mitsuhiko Osaki
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, Japan
- Division of Pathological Biochemistry, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Graduate School of Medicine, Osaka City University, Asahi-machi, Abeno-ku, Osaka, Japan
| | - Futoshi Okada
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, Japan
- Division of Pathological Biochemistry, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, Japan
| | - Hiroyuki Kugoh
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, Japan
- * E-mail:
| |
Collapse
|
73
|
Savchenko V, Kalinin S, Boullerne AI, Kowal K, Lin SX, Feinstein DL. Effects of the CRMP2 activator lanthionine ketimine ethyl ester on oligodendrocyte progenitor cells. J Neuroimmunol 2019; 334:576977. [PMID: 31177034 DOI: 10.1016/j.jneuroim.2019.576977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/15/2019] [Accepted: 05/30/2019] [Indexed: 01/24/2023]
Abstract
We previously showed LKE (lanthionine ketimine ester) reduces disease in the EAE model of multiple sclerosis, however whether LKE affects oligodendrocytes (OLGs) was not tested. In OLG progenitor cells (OPCs), LKE increased process number and area, but not PDGF-receptor-alpha expressing cells. In contrast, PDGF increased OPC numbers, but reduced process number and area. LKE increased collapsin response mediator protein-2 (CRMP2) expression, an LKE target, and CRMP2-expressing OLGs expressed myelin basic protein. LKE increased markers of OPC maturation, while PDGF, but not LKE, increased Sox2 expression. Our findings suggest that effects on OPCs may contribute to LKE beneficial actions in EAE.
Collapse
Affiliation(s)
| | - Sergey Kalinin
- University of Illinois, Chicago, IL 60612, United States of America
| | - Anne I Boullerne
- University of Illinois, Chicago, IL 60612, United States of America
| | - Kathy Kowal
- University of Illinois, Chicago, IL 60612, United States of America
| | - Shao Xia Lin
- University of Illinois, Chicago, IL 60612, United States of America
| | - Douglas L Feinstein
- University of Illinois, Chicago, IL 60612, United States of America; Jesse Brown VA Medical Center, Chicago, IL 60612, United States of America.
| |
Collapse
|
74
|
Sybirna A, Wong FCK, Surani MA. Genetic basis for primordial germ cells specification in mouse and human: Conserved and divergent roles of PRDM and SOX transcription factors. Curr Top Dev Biol 2019; 135:35-89. [PMID: 31155363 DOI: 10.1016/bs.ctdb.2019.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Primordial germ cells (PGCs) are embryonic precursors of sperm and egg that pass on genetic and epigenetic information from one generation to the next. In mammals, they are induced from a subset of cells in peri-implantation epiblast by BMP signaling from the surrounding tissues. PGCs then initiate a unique developmental program that involves comprehensive epigenetic resetting and repression of somatic genes. This is orchestrated by a set of signaling molecules and transcription factors that promote germ cell identity. Here we review significant findings on mammalian PGC biology, in particular, the genetic basis for PGC specification in mice and human, which has revealed an evolutionary divergence between the two species. We discuss the importance and potential basis for these differences and focus on several examples to illustrate the conserved and divergent roles of critical transcription factors in mouse and human germline.
Collapse
Affiliation(s)
- Anastasiya Sybirna
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, United Kingdom; Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.
| | - Frederick C K Wong
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, United Kingdom
| | - M Azim Surani
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, United Kingdom; Wellcome Trust/Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
75
|
Qi Z, Chen M, Song Y, Wang X, Li B, Chen ZF, Tsang SY, Cai Z. Acute exposure to triphenyl phosphate inhibits the proliferation and cardiac differentiation of mouse embryonic stem cells and zebrafish embryos. J Cell Physiol 2019; 234:21235-21248. [PMID: 31032947 DOI: 10.1002/jcp.28729] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
Attention has recently paid to the interaction of triphenyl phosphate (TPHP) and body tissues, particularly within the reproductive and development systems, due to its endocrine-disrupting properties. However, the acute effects of TPHP on early embryonic development remain unclear. Here, we used mouse embryonic stem cells (mESC) and zebrafish embryos to investigate whether TPHP is an embryo toxicant. First, we found that continuous exposure of TPHP decreased the proliferation and increased the apoptotic populations of mESCs in a concentration-dependent manner. Results of mass spectrometry showed that the intracellular concentration of TPHP reached 39.45 ± 7.72 µg/g w/w after 3 hr of acute exposure with TPHP (38.35 μM) but gradually decreased from 3 hr to 48 hr. Additionally, DNA damage was detected in mESCs after a short-term treatment with TPHP, which in turn, activated DNA damage responses, leading to cell cycle arrest by changing the expression levels of p53, proliferating cell nuclear antigen, and Y15-phosphorylated Cdk I. Furthermore, our results revealed that short-term treatment with TPHP disturbed cardiac differentiation by decreasing the expression levels of Oct4, Sox2, and Nanog and transiently reduced the glycolysis capacity in mESCs. In zebrafish embryos, exposure to TPHP resulted in broad, concentration-dependent developmental defects and coupled with heart malformation and reduced heart rate. In conclusion, the two models demonstrate that acute exposure to TPHP affects early embryonic development and disturbs the cardiomyogenic differentiation.
Collapse
Affiliation(s)
- Zenghua Qi
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Min Chen
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Xiya Wang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingkun Li
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Zhi-Feng Chen
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Suk Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Zongwei Cai
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong, China.,State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
76
|
Sainz de Aja J, Menchero S, Rollan I, Barral A, Tiana M, Jawaid W, Cossio I, Alvarez A, Carreño‐Tarragona G, Badia‐Careaga C, Nichols J, Göttgens B, Isern J, Manzanares M. The pluripotency factor NANOG controls primitive hematopoiesis and directly regulates Tal1. EMBO J 2019; 38:embj.201899122. [PMID: 30814124 PMCID: PMC6443201 DOI: 10.15252/embj.201899122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 02/02/2023] Open
Abstract
Progenitors of the first hematopoietic cells in the mouse arise in the early embryo from Brachyury-positive multipotent cells in the posterior-proximal region of the epiblast, but the mechanisms that specify primitive blood cells are still largely unknown. Pluripotency factors maintain uncommitted cells of the blastocyst and embryonic stem cells in the pluripotent state. However, little is known about the role played by these factors during later development, despite being expressed in the postimplantation epiblast. Using a dual transgene system for controlled expression at postimplantation stages, we found that Nanog blocks primitive hematopoiesis in the gastrulating embryo, resulting in a loss of red blood cells and downregulation of erythropoietic genes. Accordingly, Nanog-deficient embryonic stem cells are prone to erythropoietic differentiation. Moreover, Nanog expression in adults prevents the maturation of erythroid cells. By analysis of previous data for NANOG binding during stem cell differentiation and CRISPR/Cas9 genome editing, we found that Tal1 is a direct NANOG target. Our results show that Nanog regulates primitive hematopoiesis by directly repressing critical erythroid lineage specifiers.
Collapse
Affiliation(s)
- Julio Sainz de Aja
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| | - Sergio Menchero
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| | - Isabel Rollan
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| | - Antonio Barral
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| | - Maria Tiana
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| | - Wajid Jawaid
- Wellcome‐Medical Research Council Cambridge Stem Cell InstituteCambridgeUK,Department of HaematologyCambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - Itziar Cossio
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| | - Alba Alvarez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain
| | - Gonzalo Carreño‐Tarragona
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain,Department of HaematologyHospital 12 de OctubreMadridSpain
| | | | - Jennifer Nichols
- Wellcome‐Medical Research Council Cambridge Stem Cell InstituteCambridgeUK,Department of PhysiologyDevelopment and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Berthold Göttgens
- Wellcome‐Medical Research Council Cambridge Stem Cell InstituteCambridgeUK,Department of HaematologyCambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - Joan Isern
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC)MadridSpain,Department of Experimental & Health SciencesUniversity Pompeu Fabra (UPF)BarcelonaSpain
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| |
Collapse
|
77
|
Kuan II, Lee CC, Chen CH, Lu J, Kuo YS, Wu HC. The extracellular domain of epithelial cell adhesion molecule (EpCAM) enhances multipotency of mesenchymal stem cells through EGFR-LIN28-LET7 signaling. J Biol Chem 2019; 294:7769-7786. [PMID: 30926604 DOI: 10.1074/jbc.ra119.007386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/19/2019] [Indexed: 11/06/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are widely considered to be an attractive cell source for regenerative therapies, but maintaining multipotency and self-renewal in cultured MSCs is especially challenging. Hence, the development and mechanistic description of strategies that help promote multipotency in MSCs will be vital to future clinical use. Here, using an array of techniques and approaches, including cell biology, RT-quantitative PCR, immunoblotting, immunofluorescence, flow cytometry, and ChIP assays, we show that the extracellular domain of epithelial cell adhesion molecule (EpCAM) (EpEX) significantly increases the levels of pluripotency factors through a signaling cascade that includes epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), and Lin-28 homolog A (LIN28) and enhances the proliferation of human bone marrow MSCs. Moreover, we found that EpEX-induced LIN28 expression reduces the expression of the microRNA LET7 and up-regulates that of the transcription factor high-mobility group AT-hook 2 (HMGA2), which activates the transcription of pluripotency factors. Surprisingly, we found that EpEX treatment also enhances osteogenesis of MSCs under differentiation conditions, as evidenced by increases in osteogenic markers, including Runt-related transcription factor 2 (RUNX2). Taken together, our results indicate that EpEX stimulates EGFR signaling and thereby context-dependently controls MSC states and activities, promoting cell proliferation and multipotency under maintenance conditions and osteogenesis under differentiation conditions.
Collapse
Affiliation(s)
- I-I Kuan
- From the Institute of Cellular and Organismic Biology and
| | - Chi-Chiu Lee
- From the Institute of Cellular and Organismic Biology and
| | - Chien-Hsu Chen
- From the Institute of Cellular and Organismic Biology and
| | - Jean Lu
- Genomic Research Center, Academia Sinica, Taipei 115 and
| | - Yuan-Sung Kuo
- the Department of Surgery, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Han-Chung Wu
- From the Institute of Cellular and Organismic Biology and .,Genomic Research Center, Academia Sinica, Taipei 115 and
| |
Collapse
|
78
|
Yu J, Lu W, Ge T, Huang R, Chen B, Ye M, Bai Y, Shi G, Songyang Z, Ma W, Huang J. Interaction Between Sympk and Oct4 Promotes Mouse Embryonic Stem Cell Proliferation. Stem Cells 2019; 37:743-753. [PMID: 30801858 DOI: 10.1002/stem.2992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/20/2018] [Accepted: 01/17/2019] [Indexed: 01/23/2023]
Abstract
The scaffold protein Symplekin (Sympk) is involved in cytoplasmic RNA polyadenylation, transcriptional modulation, and the regulation of epithelial differentiation and proliferation via tight junctions. It is highly expressed in embryonic stem cells (ESCs), in which its role remains unknown. In this study, we found Sympk overexpression in mouse ESCs significantly increased colony formation, and Sympk deletion via CRISPR/Cas9 decreased colony formation. Sympk promoted ESC growth and its overexpression sustained ESC pluripotency, as assessed by teratoma and chimeric mouse formation. Genomic stability was preserved in these cells after long-term passage. The domain of unknown function 3453 (DUF3453) in Sympk was required for its interaction with the key pluripotent factor Oct4, and its depletion led to impaired colony formation. Sympk activated proliferation-related genes and suppressed differentiation-related genes. Our results indicate that Sympk interacts with Oct4 to promote self-renewal and pluripotency in ESCs and preserves genome integrity; accordingly, it has potential value for stem cell therapies. Stem Cells 2019;37:743-753.
Collapse
Affiliation(s)
- Jianping Yu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China
| | - Weisi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Tianyu Ge
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China
| | - Rui Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China
| | - Bohong Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China
| | - Miaoman Ye
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China
| | - Yaofu Bai
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China
| | - Guang Shi
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenbin Ma
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Reproductive Medicine of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
79
|
Mahalaxmi I, Devi SM, Kaavya J, Arul N, Balachandar V, Santhy KS. New insight into NANOG: A novel therapeutic target for ovarian cancer (OC). Eur J Pharmacol 2019; 852:51-57. [PMID: 30831081 DOI: 10.1016/j.ejphar.2019.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 02/07/2023]
Abstract
Cancer incidence, metastasis, drug resistance and recurrence are still the critical issues of oncological diseases especially Ovarian cancer (OC). It has been suggested that drug resistance and disease relapse are the main causes for the aggressive nature of OC. There is an immediate need to develop novel strategies to understand the mechanism to overcome chemoresistance. Nanog has been found to regulate stemness like cells inside the cancer cells that are termed as Cancer Stem Cells (CSCs). These cells show high self-renewal capacity with a peculiar potential in tumour initiation, heterogeneity, progression, metastasis, recurrence, radiotherapy and multi drug resistance. Recent studies have demonstrated that Nanog, a key transcription factor for pluripotency, has been playing a major role in chemoresistance. In this review, we address the functions of Nanog in both normal and cancer cells, how Nanog is involved in OC tumorigenesis and chemoresistance. This review also highlights the methods that are used for targeting Nanog as a remedy for treating OC. Thus, through this review, we predict that these concepts will open new avenues of research in ovarian cancer stem cells, and would propose Nanog as a target to improve the outcome of chemotherapy.
Collapse
Affiliation(s)
- Iyer Mahalaxmi
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, India.
| | | | - Jayaramayya Kaavya
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, India
| | - Narayanasamy Arul
- Department of Zoology, Bharathiar University, Coimbatore 641046, India
| | - Vellingiri Balachandar
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, India
| | - Kumaran Sivanandan Santhy
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, India
| |
Collapse
|
80
|
Lettnin AP, Wagner EF, Carrett-Dias M, Dos Santos Machado K, Werhli A, Cañedo AD, Trindade GS, de Souza Votto AP. Silencing the OCT4-PG1 pseudogene reduces OCT-4 protein levels and changes characteristics of the multidrug resistance phenotype in chronic myeloid leukemia. Mol Biol Rep 2019; 46:1873-1884. [PMID: 30721421 DOI: 10.1007/s11033-019-04639-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/23/2019] [Indexed: 12/31/2022]
Abstract
Cancer stem cells show epigenetic plasticity and intrinsic resistance to anti-cancer therapy, rendering capable of initiating cancer relapse and progression. Transcription factor OCT-4 regulates various pathways in stem cells, but its expression can be regulated by pseudogenes. This work evaluated how OCT4-PG1 pseudogene can affect OCT-4 expression and mechanisms related to the multidrug resistance (MDR) phenotype in FEPS cells. Considering that OCT-4 protein is a transcription factor that regulates expression of ABC transporters, level of gene expression, activity of ABC proteins and cell sensitivity to chemotherapy were evaluated after OCT4-PG1 silencing. Besides we set up a STRING network. Results showed that after OCT4-PG1 silencing, cells expressed OCT-4 gene and protein to a lesser extent than mock cells. The gene and protein expression of ABCB1, as well as its activity were reduced. On the other hand, ALOX5 and ABCC1 genes was increased even as the activity of this transporter. Moreover, the silencing cells become sensitive to two chemotherapics tested. The network structure demonstrated that OCT4-PG1 protein interacts directly with OCT-4, SOX2, and NANOG and indirectly with ABC transporters. We conclude that OCT4-PG1 pseudogene plays a key role in the regulation OCT-4 transcription factor, which alters MDR phenotype in the FEPS cell line.
Collapse
Affiliation(s)
- Aline Portantiolo Lettnin
- Post-Graduate Program in Physiological Sciences - PPGCF, Federal University of Rio Grande -FURG, Avenue Itália, Km 8, Rio Grande, RS, Zip Code 96203-900, Brazil.,Laboratory of Cell Culture, Institute of Biological Sciences - ICB, Federal University of Rio Grande -FURG, Avenue Itália, Km 8, Rio Grande, RS, Zip Code 96203-900, Brazil
| | - Eduardo Felipe Wagner
- Laboratory of Cell Culture, Institute of Biological Sciences - ICB, Federal University of Rio Grande -FURG, Avenue Itália, Km 8, Rio Grande, RS, Zip Code 96203-900, Brazil
| | - Michele Carrett-Dias
- Post-Graduate Program in Physiological Sciences - PPGCF, Federal University of Rio Grande -FURG, Avenue Itália, Km 8, Rio Grande, RS, Zip Code 96203-900, Brazil
| | - Karina Dos Santos Machado
- Center of Computational Sciences - C3, Federal University of Rio Grande -FURG, Avenue Itália, Km 8, Rio Grande, RS, Zip Code 96203-900, Brazil
| | - Adriano Werhli
- Center of Computational Sciences - C3, Federal University of Rio Grande -FURG, Avenue Itália, Km 8, Rio Grande, RS, Zip Code 96203-900, Brazil
| | - Andrés Delgado Cañedo
- Federal University of Pampa - UNIPAMPA, Avenue Antônio Trilha, 1847, São Gabriel, RS, Zip Code 97300-000, Brazil
| | - Gilma Santos Trindade
- Post-Graduate Program in Physiological Sciences - PPGCF, Federal University of Rio Grande -FURG, Avenue Itália, Km 8, Rio Grande, RS, Zip Code 96203-900, Brazil
| | - Ana Paula de Souza Votto
- Post-Graduate Program in Physiological Sciences - PPGCF, Federal University of Rio Grande -FURG, Avenue Itália, Km 8, Rio Grande, RS, Zip Code 96203-900, Brazil. .,Laboratory of Cell Culture, Institute of Biological Sciences - ICB, Federal University of Rio Grande -FURG, Avenue Itália, Km 8, Rio Grande, RS, Zip Code 96203-900, Brazil. .,Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Avenida Itália, Km 8, s/n, Rio Grande, RS, Zip Code 96203-900, Brazil.
| |
Collapse
|
81
|
AMPK Promotes SPOP-Mediated NANOG Degradation to Regulate Prostate Cancer Cell Stemness. Dev Cell 2018; 48:345-360.e7. [PMID: 30595535 DOI: 10.1016/j.devcel.2018.11.033] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/11/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022]
Abstract
NANOG is an essential transcriptional factor for the maintenance of embryonic stem cells (ESCs) and cancer stem cells (CSCs) in prostate cancer (PCa). However, the regulation mechanism of NANOG protein stability in cancer progression is still elusive. Here, we report that NANOG is degraded by SPOP, a frequently mutated tumor suppressor of PCa. Cancer-associated mutations of SPOP or the mutation of NANOG at S68Y abrogates the SPOP-mediated NANOG degradation, leading to elevated PCa cancer stemness and poor prognosis. In addition, SPOP-mediated NANOG degradation is controlled by the AMPK-BRAF signal axis through the phosphorylation of NANOG at Ser68, which blocked the interaction between SPOP and NANOG. Thus, our study provides a regulation mechanism of PCa stemness controlled by phosphorylation-mediated NANOG stability, which helps to identify novel drug targets and improve therapeutic strategy for PCa.
Collapse
|
82
|
Gatchalian J, Malik S, Ho J, Lee DS, Kelso TWR, Shokhirev MN, Dixon JR, Hargreaves DC. A non-canonical BRD9-containing BAF chromatin remodeling complex regulates naive pluripotency in mouse embryonic stem cells. Nat Commun 2018; 9:5139. [PMID: 30510198 PMCID: PMC6277444 DOI: 10.1038/s41467-018-07528-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022] Open
Abstract
The role of individual subunits in the targeting and function of the mammalian BRG1-associated factors (BAF) complex in embryonic stem cell (ESC) pluripotency maintenance has not yet been elucidated. Here we find that the Bromodomain containing protein 9 (BRD9) and Glioma tumor suppressor candidate region gene 1 (GLTSCR1) or its paralog GLTSCR1-like (GLTSCR1L) define a smaller, non-canonical BAF complex (GBAF complex) in mouse ESCs that is distinct from the canonical ESC BAF complex (esBAF). GBAF and esBAF complexes are targeted to different genomic features, with GBAF co-localizing with key regulators of naive pluripotency, which is consistent with its specific function in maintaining naive pluripotency gene expression. BRD9 interacts with BRD4 in a bromodomain-dependent fashion, which leads to the recruitment of GBAF complexes to chromatin, explaining the functional similarity between these epigenetic regulators. Together, our results highlight the biological importance of BAF complex heterogeneity in maintaining the transcriptional network of pluripotency. The BAF complex is a multi-subunit chromatin remodeling complex that plays important roles in transcription regulation. Here the authors provide evidence that BRD9 and GLTSCR1/BICRA or its paralog GLTSCR1-like/BICRAL define a non-canonical BAF complex that regulates naive pluripotency in mouse embryonic stem cells.
Collapse
Affiliation(s)
- Jovylyn Gatchalian
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Shivani Malik
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Josephine Ho
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Dong-Sung Lee
- Peptide Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Timothy W R Kelso
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Jesse R Dixon
- Peptide Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Diana C Hargreaves
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
83
|
Zammit V, Brincat MR, Cassar V, Muscat-Baron Y, Ayers D, Baron B. MiRNA influences in mesenchymal stem cell commitment to neuroblast lineage development. Noncoding RNA Res 2018; 3:232-242. [PMID: 30533571 PMCID: PMC6257889 DOI: 10.1016/j.ncrna.2018.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal Stem Cells (MSCs) are widely used in therapeutic applications. Their plasticity and predisposition to differentiate into a variety of cell types, including those of the neuronal lineage, makes them ideal to study whether a selection of miRNAs may direct the differentiation of MSCs into neuroblasts or neuroblastoma to mature neurons. Following a short-listing, miR-107, 124 and 381 were selected as the most promising candidates for this differentiation. MSCs differentiated into cells of the neural lineage (Conditioned Cells) upon addition of conditioned medium (rich in microvesicles containing miRNAs) obtained from cultured SH-SY5Y neuroblastoma cells. Characterisation of stemness (including SOX2, OCT4, Nanog and HCG) and neural markers (including Nestin, MASH1, TUBB3 and NeuN1) provided insight regarding the neuronal state of each cell type. This was followed by transfection of the three miRNA antagonists and mimics, and quantification of their respective target genes. MiRNA target gene expression following transfection of MSCs with miRNA inhibitors and mimics demonstrated that these three miRNAs were not sufficient to induce differentiation. In conditioned cells the marginal changes in the miRNA target expression levels reflected potential for the modulation of intermediate neural progenitors and immature neuron cell types. Transfection of various combinations of miRNA inhibitors and/or mimics revealed more promise. Undoubtedly, a mix of biomolecules is being released by the SH-SY5Y in culture that induce MSCs to differentiate. Screening for those biomolecules acting synergistically with specific miRNAs will allow further combinatorial testing to elucidate the role of miRNA modulation.
Collapse
Affiliation(s)
- Vanessa Zammit
- National Blood Transfusion Service, St. Luke's Hospital, G'Mangia, PTA1010, Malta.,School of Biomedical Science and Physiology, University of Wolverhampton, Wolverhampton, WV1 1LY, UK
| | - Mark R Brincat
- Dept. of Obstetrics & Gynaecology, Mater Dei Hospital, Msida, MSD2090, Malta
| | - Viktor Cassar
- Dept. of Obstetrics & Gynaecology, Mater Dei Hospital, Msida, MSD2090, Malta
| | - Yves Muscat-Baron
- Dept. of Obstetrics & Gynaecology, Mater Dei Hospital, Msida, MSD2090, Malta
| | - Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD2080, Malta.,School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD2080, Malta
| |
Collapse
|
84
|
Wu C, Jiao Y, Shen M, Pan C, Cheng G, Jia D, Zhu J, Zhang L, Zheng M, Jia J. Clustering-local-unique-enriched-signals (CLUES) promotes identification of novel regulators of ES cell self-renewal and pluripotency. PLoS One 2018; 13:e0206844. [PMID: 30399165 PMCID: PMC6219791 DOI: 10.1371/journal.pone.0206844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/19/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Key regulators of developmental processes can be prioritized through integrated analysis of ChIP-Seq data of master transcriptional factors (TFs) such as Nanog and Oct4, active histone modifications (HMs) such as H3K4me3 and H3K27ac, and repressive HMs such as H3K27me3. Recent studies show that broad enrichment signals such as super-enhancers and broad H3K4me3 enrichment signals play more dominant roles than short enrichment signals of the master TFs and H3K4me3 in epigenetic regulatory mechanism. Besides the broad enrichment signals, up to ten thousands of short enrichment signals of these TFs and HMs exist in genome. Prioritization of these broad enrichment signals from ChIP-Seq data is a prerequisite for such integrated analysis. RESULTS Here, we present a method named Clustering-Local-Unique-Enriched-Signals (CLUES), which uses an adaptive-size-windows strategy to identify enriched regions (ERs) and cluster them into broad enrichment signals. Tested on 62 ENCODE ChIP-Seq datasets of Ctcf and Nrsf, CLUES performs equally well as MACS2 regarding prioritization of ERs with the TF's motif. Tested on 165 ENCODE ChIP-Seq datasets of H3K4me3, H3K27me3, and H3K36me3, CLUES performs better than existing algorithms on prioritizing broad enrichment signals implicating cell functions influenced by epigenetic regulatory mechanism in cells. Most importantly, CLUES helps to confirm several novel regulators of mouse ES cell self-renewal and pluripotency through integrated analysis of prioritized broad enrichment signals of H3K4me3, H3K27me3, Nanog and Oct4 with the support of a CRISPR/Cas9 negative selection genetic screen. CONCLUSIONS CLUES holds promise for prioritizing broad enrichment signals from ChIP-Seq data. The download site for CLUES is https://github.com/Wuchao1984/CLUESv1.
Collapse
Affiliation(s)
- Chao Wu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, PRC
- * E-mail: (MZ); (CW); (JJ)
| | - Yang Jiao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, PRC
| | - Manli Shen
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, PRC
| | - Chen Pan
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, PRC
| | - Guo Cheng
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, PRC
| | - Danmei Jia
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, PRC
| | - Jing Zhu
- Beijing Ming-tian Genetics Ltd., Beijing, PRC
| | - Long Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, PRC
| | - Min Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, PRC
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, PRC
- * E-mail: (MZ); (CW); (JJ)
| | - Junling Jia
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, PRC
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, PRC
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, PRC
- * E-mail: (MZ); (CW); (JJ)
| |
Collapse
|
85
|
Festuccia N, Halbritter F, Corsinotti A, Gagliardi A, Colby D, Tomlinson SR, Chambers I. Esrrb extinction triggers dismantling of naïve pluripotency and marks commitment to differentiation. EMBO J 2018; 37:e95476. [PMID: 30275266 PMCID: PMC6213284 DOI: 10.15252/embj.201695476] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 11/25/2022] Open
Abstract
Self-renewal of embryonic stem cells (ESCs) cultured in LIF/fetal calf serum (FCS) is incomplete with some cells initiating differentiation. While this is reflected in heterogeneous expression of naive pluripotency transcription factors (TFs), the link between TF heterogeneity and differentiation is not fully understood. Here, we purify ESCs with distinct TF expression levels from LIF/FCS cultures to uncover early events during commitment from naïve pluripotency. ESCs carrying fluorescent Nanog and Esrrb reporters show Esrrb downregulation only in Nanoglow cells. Independent Esrrb reporter lines demonstrate that Esrrbnegative ESCs cannot effectively self-renew. Upon Esrrb loss, pre-implantation pluripotency gene expression collapses. ChIP-Seq identifies different regulatory element classes that bind both OCT4 and NANOG in Esrrbpositive cells. Class I elements lose NANOG and OCT4 binding in Esrrbnegative ESCs and associate with genes expressed preferentially in naïve ESCs. In contrast, Class II elements retain OCT4 but not NANOG binding in ESRRB-negative cells and associate with more broadly expressed genes. Therefore, mechanistic differences in TF function act cumulatively to restrict potency during exit from naïve pluripotency.
Collapse
Affiliation(s)
- Nicola Festuccia
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Florian Halbritter
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Andrea Corsinotti
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Alessia Gagliardi
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Douglas Colby
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Simon R Tomlinson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Ian Chambers
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
86
|
Elkhenany H, AlOkda A, El-Badawy A, El-Badri N. Tissue regeneration: Impact of sleep on stem cell regenerative capacity. Life Sci 2018; 214:51-61. [PMID: 30393021 DOI: 10.1016/j.lfs.2018.10.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 12/31/2022]
Abstract
The circadian rhythm orchestrates many cellular functions, such as cell division, cell migration, metabolism and numerous intracellular biological processes. The physiological changes during sleep are believed to promote a suitable microenvironment for stem cells to proliferate, migrate and differentiate. These effects are mediated either directly by circadian clock genes or indirectly via hormones and cytokines. Hormones, such as melatonin and cortisol, are secreted in response to neural optic signals and act in harmony to regulate many biological functions during sleep. Herein, we correlate the effects of the main circadian genes on the expression of certain stem cell genes responsible for the regeneration of different tissues, including bone, cartilage, skin, and intestine. We also review the effects of different hormones and cytokines on stem cell activation or suppression and their relationship to the day/night cycle. The correlation of circadian rhythm with tissue regeneration could have implications in understanding the biology of sleep and tissue regeneration and in enhancing the efficacy and timing of surgical procedures.
Collapse
Affiliation(s)
- Hoda Elkhenany
- Centre of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 12588, Egypt; Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, 22785, Egypt
| | - Abdelrahman AlOkda
- Centre of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 12588, Egypt
| | - Ahmed El-Badawy
- Centre of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 12588, Egypt
| | - Nagwa El-Badri
- Centre of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 12588, Egypt.
| |
Collapse
|
87
|
Wollenzien H, Voigt E, Kareta MS. Somatic Pluripotent Genes in Tissue Repair, Developmental Disease, and Cancer. SPG BIOMED 2018; 1. [PMID: 31172135 DOI: 10.32392/biomed.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Embryonic stem cells possess the ability to differentiate into all cell types of the body. This pliable developmental state is achieved by the function of a series of pluripotency factors, classically identified as OCT4, SOX2, and NANOG. These pluripotency factors are responsible for activating the larger pluripotency networks and the self-renewal programs which give ES cells their unique characteristics. However, during differentiation pluripotency networks become downregulated as cells achieve greater lineage specification and exit the cell cycle. Typically the repression of pluripotency is viewed as a positive factor to ensure the fidelity of cellular identity by restricting cellular pliancy. Consistent with this view, the expression of pluripotency factors is greatly restricted in somatic cells. However, there are examples whereby cells either maintain or reactivate pluripotency factors to preserve the increased potential for the healing of wounds or tissue homeostasis. Additionally there are many examples where these pluripotency factors become reactivated in a variety of human pathologies, particularly cancer. In this review, we will summarize the somatic repression of pluripotency factors, their role in tissue homeostasis and wound repair, and the human diseases that are associated with pluripotency factor misregulation with an emphasis on their role in the etiology of multiple cancers.
Collapse
Affiliation(s)
- Hannah Wollenzien
- Genetics and Genomics Group, Cellular Therapies and Stem Cell Biology Group, and the Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.,Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St. Vermillion, SD 57069, USA
| | - Ellen Voigt
- Genetics and Genomics Group, Cellular Therapies and Stem Cell Biology Group, and the Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA
| | - Michael S Kareta
- Genetics and Genomics Group, Cellular Therapies and Stem Cell Biology Group, and the Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.,Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St. Vermillion, SD 57069, USA.,Department of Pediatrics, Sanford School of Medicine, 1400 W. 22nd St., Sioux Falls, SD 57105, USA.,Department of Chemistry and Biochemistry, South Dakota State University, 1175 Medary Ave, Brookings, SD 57006, USA
| |
Collapse
|
88
|
Sahu M, Mallick B. Modulation of specific cell cycle phases in human embryonic stem cells by lncRNA RNA decoys. J Mol Recognit 2018; 32:e2763. [DOI: 10.1002/jmr.2763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/19/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Mousumi Sahu
- RNAi and Functional Genomics Laboratory, Department of Life Science; National Institute of Technology; Rourkela Odisha India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Laboratory, Department of Life Science; National Institute of Technology; Rourkela Odisha India
| |
Collapse
|
89
|
Roth Z. Stress-induced alterations in oocyte transcripts are further expressed in the developing blastocyst. Mol Reprod Dev 2018; 85:821-835. [DOI: 10.1002/mrd.23045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 07/18/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Zvi Roth
- Department of Animal Sciences; Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem; Rehovot Israel
| |
Collapse
|
90
|
Pelekanou V, Notas G, Athanasouli P, Alexakis K, Kiagiadaki F, Peroulis N, Kalyvianaki K, Kampouri E, Polioudaki H, Theodoropoulos P, Tsapis A, Castanas E, Kampa M. BCMA (TNFRSF17) Induces APRIL and BAFF Mediated Breast Cancer Cell Stemness. Front Oncol 2018; 8:301. [PMID: 30131941 PMCID: PMC6091000 DOI: 10.3389/fonc.2018.00301] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/18/2018] [Indexed: 01/16/2023] Open
Abstract
Recent advances in cancer immunology revealed immune-related properties of cancer cells as novel promising therapeutic targets. The two TNF superfamily members, APRIL (TNFSF13), and BAFF (TNFSF13B), which are type II membrane proteins, released in active forms by proteolytic cleavage and are primarily involved in B-lymphocyte maturation, have also been associated with tumor growth and aggressiveness in several solid tumors, including breast cancer. In the present work we studied the effect of APRIL and BAFF on epithelial to mesenchymal transition, migration, and stemness of breast cancer cells. Our findings show that both molecules increase epithelial to mesenchymal transition and migratory capacity of breast cancer cells, as well as cancer stem cell numbers, by increasing the expression of pluripotency genes such as ALDH1A1, KLF4, and NANOG. These effects are mediated by their common receptor BCMA (TNFRSF17) and the JNK signaling pathway. Interestingly, transcriptional data analysis from breast cancer cells and patients revealed that androgens can increase APRIL transcription and subsequently, in an autocrine/paracrine manner, enhance its pluripotency effect. In conclusion, our data suggest a possible role of APRIL and BAFF in breast cancer disease progression and provide evidence for a new possible mechanism of therapy resistance, that could be particularly relevant in aromatase inhibitors-treated patients, were local androgen is increased.
Collapse
Affiliation(s)
- Vasiliki Pelekanou
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - George Notas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Paraskevi Athanasouli
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Konstantinos Alexakis
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Fotini Kiagiadaki
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Nikolaos Peroulis
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Konstantina Kalyvianaki
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Errika Kampouri
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Hara Polioudaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | | | - Andreas Tsapis
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Elias Castanas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
91
|
Moura MT, Silva RL, Cantanhêde LF, Silva JB, Ferreira-Silva JC, Silva PG, Ramos-Deus P, Pandolfi V, Kido EA, Benko-Iseppon AM, Oliveira MA. Activity of non-canonical pluripotency-associated transcription factors in goat cumulus-oocyte complexes. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
92
|
Narayan S, Bryant G, Shah S, Berrozpe G, Ptashne M. OCT4 and SOX2 Work as Transcriptional Activators in Reprogramming Human Fibroblasts. Cell Rep 2018; 20:1585-1596. [PMID: 28813671 DOI: 10.1016/j.celrep.2017.07.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/05/2017] [Accepted: 07/27/2017] [Indexed: 01/06/2023] Open
Abstract
SOX2 and OCT4, in conjunction with KLF4 and cMYC, are sufficient to reprogram human fibroblasts to induced pluripotent stem cells (iPSCs), but it is unclear if they function as transcriptional activators or as repressors. We now show that, like OCT4, SOX2 functions as a transcriptional activator. We substituted SOX2-VP16 (a strong activator) for wild-type (WT) SOX2, and we saw an increase in the efficiency and rate of reprogramming, whereas the SOX2-HP1 fusion (a strong repressor) eliminated reprogramming. We report that, at an early stage of reprogramming, virtually all DNA-bound OCT4, SOX2, and SOX2-VP16 were embedded in putative enhancers, about half of which were created de novo. Those associated with SOX2-VP16 were, on average, stronger than those bearing WT SOX2. Many newly created putative enhancers were transient, and many transcription factor locations on DNA changed as reprogramming progressed. These results are consistent with the idea that, during reprogramming, there is an intermediate state that is distinct from both parental cells and iPSCs.
Collapse
Affiliation(s)
- Santosh Narayan
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gene Bryant
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shivangi Shah
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Georgina Berrozpe
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mark Ptashne
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
93
|
Characterization of 3D embryonic C57BL/6 and A/J mouse midbrain micromass in vitro culture systems for developmental neurotoxicity testing. Toxicol In Vitro 2018; 48:33-44. [DOI: 10.1016/j.tiv.2017.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/13/2017] [Indexed: 01/19/2023]
|
94
|
Lund RJ, Rahkonen N, Malonzo M, Kauko L, Emani MR, Kivinen V, Närvä E, Kemppainen E, Laiho A, Skottman H, Hovatta O, Rasool O, Nykter M, Lähdesmäki H, Lahesmaa R. RNA Polymerase III Subunit POLR3G Regulates Specific Subsets of PolyA + and SmallRNA Transcriptomes and Splicing in Human Pluripotent Stem Cells. Stem Cell Reports 2018; 8:1442-1454. [PMID: 28494942 PMCID: PMC5425787 DOI: 10.1016/j.stemcr.2017.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 04/13/2017] [Accepted: 04/13/2017] [Indexed: 11/17/2022] Open
Abstract
POLR3G is expressed at high levels in human pluripotent stem cells (hPSCs) and is required for maintenance of stem cell state through mechanisms not known in detail. To explore how POLR3G regulates stem cell state, we carried out deep-sequencing analysis of polyA+ and smallRNA transcriptomes present in hPSCs and regulated in POLR3G-dependent manner. Our data reveal that POLR3G regulates a specific subset of the hPSC transcriptome, including multiple transcript types, such as protein-coding genes, long intervening non-coding RNAs, microRNAs and small nucleolar RNAs, and affects RNA splicing. The primary function of POLR3G is in the maintenance rather than repression of transcription. The majority of POLR3G polyA+ transcriptome is regulated during differentiation, and the key pluripotency factors bind to the promoters of at least 30% of the POLR3G-regulated transcripts. Among the direct targets of POLR3G, POLG is potentially important in sustaining stem cell status in a POLR3G-dependent manner.
Collapse
Affiliation(s)
- Riikka J Lund
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland.
| | - Nelly Rahkonen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Maia Malonzo
- Department of Computer Science, Aalto University, Espoo 02150, Finland
| | - Leni Kauko
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Maheswara Reddy Emani
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Virpi Kivinen
- Faculty of Medicine and Life Sciences, BioMediTech, University of Tampere, Tampere 33014, Finland
| | - Elisa Närvä
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Esko Kemppainen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Asta Laiho
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Heli Skottman
- Faculty of Medicine and Life Sciences, BioMediTech, University of Tampere, Tampere 33014, Finland
| | - Outi Hovatta
- Department CLINTEC, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm 171 77, Sweden
| | - Omid Rasool
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Matti Nykter
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland; Faculty of Medicine and Life Sciences, BioMediTech, University of Tampere, Tampere 33014, Finland
| | - Harri Lähdesmäki
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland; Department of Computer Science, Aalto University, Espoo 02150, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| |
Collapse
|
95
|
Abdelatty AM, Iwaniuk ME, Potts SB, Gad A. Influence of maternal nutrition and heat stress on bovine oocyte and embryo development. Int J Vet Sci Med 2018; 6:S1-S5. [PMID: 30761314 PMCID: PMC6161856 DOI: 10.1016/j.ijvsm.2018.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 12/17/2022] Open
Abstract
The global population is expected to increase from 7.6 to 9.6 billion people from 2017 to 2050. Increased demand for livestock production and rising global temperatures have made heat stress (HS) a major challenge for the dairy industry. HS been shown to have negative effects on production parameters such as dry matter intake, milk yield, and feed efficiency. In addition to affecting production parameters, HS has also been shown to have negative effects on the reproductive functions of dairy cows. Mitigation of HS effects on dairy cow productivity and fertility necessitate the strategic planning of nutrition, and environmental conditions. The current review will discuss the potential nutriepigenomic strategies to mitigate the effect of HS on bovine embryo.
Collapse
Affiliation(s)
- Alzahraa M. Abdelatty
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University, 11221 Giza, Egypt
| | - Marie E. Iwaniuk
- Animal and Avian Sciences Department, University of Maryland, College Park 20742, MD, USA
| | - Sarah B. Potts
- Animal and Avian Sciences Department, University of Maryland, College Park 20742, MD, USA
| | - Ahmed Gad
- Department of Animal Production, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| |
Collapse
|
96
|
Vibert L, Daulny A, Jarriault S. Wound healing, cellular regeneration and plasticity: the elegans way. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2018; 62:491-505. [PMID: 29938761 PMCID: PMC6161810 DOI: 10.1387/ijdb.180123sj] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regeneration and wound healing are complex processes that allow organs and tissues to regain their integrity and functionality after injury. Wound healing, a key property of epithelia, involves tissue closure that in some cases leads to scar formation. Regeneration, a process rather limited in mammals, is the capacity to regrow (parts of) an organ or a tissue, after damage or amputation. What are the properties of organs and the features of tissue permitting functional regrowth and repair? What are the cellular and molecular mechanisms underlying these processes? These questions are crucial both in fundamental and applied contexts, with important medical implications. The mechanisms and cells underlying tissue repair have thus been the focus of intense investigation. The last decades have seen rapid progress in the domain and new models emerging. Here, we review the fundamental advances and the perspectives that the use of C. elegans as a model have brought to the mechanisms of wound healing and cellular plasticity, axon regeneration and transdifferentiation in vivo.
Collapse
Affiliation(s)
- Laura Vibert
- Department of Development and Stem Cells, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), CNRS UMR 7104/INSERM U1258, Université de Strasbourg, Strasbourg, France
| | - Anne Daulny
- Department of Development and Stem Cells, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), CNRS UMR 7104/INSERM U1258, Université de Strasbourg, Strasbourg, France
| | - Sophie Jarriault
- Department of Development and Stem Cells, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), CNRS UMR 7104/INSERM U1258, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
97
|
Corsinotti A, Wong FC, Tatar T, Szczerbinska I, Halbritter F, Colby D, Gogolok S, Pantier R, Liggat K, Mirfazeli ES, Hall-Ponsele E, Mullin NP, Wilson V, Chambers I. Distinct SoxB1 networks are required for naïve and primed pluripotency. eLife 2017; 6:27746. [PMID: 29256862 PMCID: PMC5758114 DOI: 10.7554/elife.27746] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022] Open
Abstract
Deletion of Sox2 from mouse embryonic stem cells (ESCs) causes trophectodermal differentiation. While this can be prevented by enforced expression of the related SOXB1 proteins, SOX1 or SOX3, the roles of SOXB1 proteins in epiblast stem cell (EpiSC) pluripotency are unknown. Here, we show that Sox2 can be deleted from EpiSCs with impunity. This is due to a shift in the balance of SoxB1 expression in EpiSCs, which have decreased Sox2 and increased Sox3 compared to ESCs. Consistent with functional redundancy, Sox3 can also be deleted from EpiSCs without eliminating self-renewal. However, deletion of both Sox2 and Sox3 prevents self-renewal. The overall SOXB1 levels in ESCs affect differentiation choices: neural differentiation of Sox2 heterozygous ESCs is compromised, while increased SOXB1 levels divert the ESC to EpiSC transition towards neural differentiation. Therefore, optimal SOXB1 levels are critical for each pluripotent state and for cell fate decisions during exit from naïve pluripotency.
Collapse
Affiliation(s)
- Andrea Corsinotti
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland.,Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Frederick Ck Wong
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Tülin Tatar
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Iwona Szczerbinska
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Florian Halbritter
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Douglas Colby
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Sabine Gogolok
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Raphaël Pantier
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Kirsten Liggat
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Elham S Mirfazeli
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Elisa Hall-Ponsele
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Nicholas P Mullin
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Valerie Wilson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Ian Chambers
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
98
|
Fisher CL, Marks H, Cho LTY, Andrews R, Wormald S, Carroll T, Iyer V, Tate P, Rosen B, Stunnenberg HG, Fisher AG, Skarnes WC. An efficient method for generation of bi-allelic null mutant mouse embryonic stem cells and its application for investigating epigenetic modifiers. Nucleic Acids Res 2017; 45:e174. [PMID: 28981838 PMCID: PMC5716182 DOI: 10.1093/nar/gkx811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 08/25/2017] [Accepted: 09/04/2017] [Indexed: 11/18/2022] Open
Abstract
Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC 'knockout-first' ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the 'knockout-first' allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency '2i' media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors.
Collapse
Affiliation(s)
- Cynthia L. Fisher
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- MRC London Institute of Medical Sciences and Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Hendrik Marks
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525 GA, Nijmegen, The Netherlands
| | - Lily Ting-yin Cho
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Robert Andrews
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Sam Wormald
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Thomas Carroll
- MRC London Institute of Medical Sciences and Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Vivek Iyer
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Peri Tate
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Barry Rosen
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Hendrik G. Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525 GA, Nijmegen, The Netherlands
| | - Amanda G. Fisher
- MRC London Institute of Medical Sciences and Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - William C. Skarnes
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
99
|
Zhou W, Sherwood B, Ji Z, Xue Y, Du F, Bai J, Ying M, Ji H. Genome-wide prediction of DNase I hypersensitivity using gene expression. Nat Commun 2017; 8:1038. [PMID: 29051481 PMCID: PMC5715040 DOI: 10.1038/s41467-017-01188-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 08/24/2017] [Indexed: 12/31/2022] Open
Abstract
We evaluate the feasibility of using a biological sample's transcriptome to predict its genome-wide regulatory element activities measured by DNase I hypersensitivity (DH). We develop BIRD, Big Data Regression for predicting DH, to handle this high-dimensional problem. Applying BIRD to the Encyclopedia of DNA Elements (ENCODE) data, we found that to a large extent gene expression predicts DH, and information useful for prediction is contained in the whole transcriptome rather than limited to a regulatory element's neighboring genes. We show applications of BIRD-predicted DH in predicting transcription factor-binding sites (TFBSs), turning publicly available gene expression samples in Gene Expression Omnibus (GEO) into a regulome database, predicting differential regulatory element activities, and facilitating regulome data analyses by serving as pseudo-replicates. Besides improving our understanding of the regulome-transcriptome relationship, this study suggests that transcriptome-based prediction can provide a useful new approach for regulome mapping.
Collapse
Affiliation(s)
- Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Ben Sherwood
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
- School of Business, University of Kansas, 1654 Naismith Drive, Lawrence, KS, 66045, USA
| | - Zhicheng Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Yingchao Xue
- Department of Neurology, Hugo W. Moser Research Institute at Kennedy Krieger and Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Fang Du
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Jiawei Bai
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Mingyao Ying
- Department of Neurology, Hugo W. Moser Research Institute at Kennedy Krieger and Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
100
|
Alternative SET/TAFI Promoters Regulate Embryonic Stem Cell Differentiation. Stem Cell Reports 2017; 9:1291-1303. [PMID: 28966118 PMCID: PMC5639460 DOI: 10.1016/j.stemcr.2017.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/27/2017] [Accepted: 08/28/2017] [Indexed: 01/21/2023] Open
Abstract
Embryonic stem cells (ESCs) are regulated by pluripotency-related transcription factors in concert with chromatin regulators. To identify additional stem cell regulators, we screened a library of endogenously labeled fluorescent fusion proteins in mouse ESCs for fluorescence loss during differentiation. We identified SET, which displayed a rapid isoform shift during early differentiation from the predominant isoform in ESCs, SETα, to the primary isoform in differentiated cells, SETβ, through alternative promoters. SETα is selectively bound and regulated by pluripotency factors. SET depletion causes proliferation slowdown and perturbed neuronal differentiation in vitro and developmental arrest in vivo, and photobleaching methods demonstrate SET's role in maintaining a dynamic chromatin state in ESCs. This work identifies an important regulator of pluripotency and early differentiation, which is controlled by alternative promoter usage. We identify SETα to be rapidly downregulated during ESC differentiation SETα is regulated by pluripotency factors and replaced by SETβ during differentiation SETα/SETβ switch is crucial for ESC differentiation SETα regulates chromatin plasticity in ESCs
Collapse
|