51
|
Yoshida K, Saiga H. Repression of Rx gene on the left side of the sensory vesicle by Nodal signaling is crucial for right-sided formation of the ocellus photoreceptor in the development of Ciona intestinalis. Dev Biol 2011; 354:144-50. [PMID: 21402066 DOI: 10.1016/j.ydbio.2011.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 02/18/2011] [Accepted: 03/04/2011] [Indexed: 02/02/2023]
Abstract
Nodal signaling plays an essential role in the establishment of left-right asymmetry in various animals. However, it is largely unknown how Nodal signaling is involved in the establishment of the left-right asymmetric morphology. In this study, the role of Nodal signaling in the left-right asymmetric ocellus formation in the ascidian, Ciona intestinalis was dealt with. During the development of C. intestinalis, the ocellus pigment cell forms on the midline and moves to the right side of the midline. Then, the photoreceptor cells form on the right side of the sensory vesicle (SV). Ci-Nodal is expressed on the left side of the SV in the developing tail bud embryo. When Nodal signaling is inhibited, the ocellus pigment cell form but remain on the midline, and expression of marker genes of the ocellus photoreceptor cells is ectopically detected on the left side as well as on the right side of the SV in the larva. Furthermore, Ci-Rx, which is essential for the ocellus differentiation, turns out to be negatively regulated by the Nodal signaling on the left side of the SV, even though it is required for the right-sided photoreceptor formation. These results indicate that Nodal signaling controls the left-right asymmetric ocellus formation in the development of C. intestinalis.
Collapse
Affiliation(s)
- Keita Yoshida
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo, Japan
| | | |
Collapse
|
52
|
Stolfi A, Levine M. Neuronal subtype specification in the spinal cord of a protovertebrate. Development 2011; 138:995-1004. [DOI: 10.1242/dev.061507] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The visceral ganglion (VG) comprises the basic motor pool of the swimming ascidian tadpole and has been proposed to be homologous to the spinal cord of vertebrates. Here, we use cis-regulatory modules, or enhancers, from transcription factor genes expressed in single VG neuronal precursors to label and identify morphologically distinct moto- and interneuron subtypes in the Ciona intestinalis tadpole larva. We also show that the transcription factor complement present in each differentiating neuron correlates with its unique morphology. Forced expression of putative interneuron markers Dmbx and Vsx results in ectopic interneuron-like cells at the expense of motoneurons. Furthermore, by perturbing upstream signaling events, we can change the transcription factor expression profile and subsequent identity of the different precursors. Perturbation of FGF signaling transforms the entire VG into Vsx+/Pitx+ putative cholinergic interneurons, while perturbation of Notch signaling results in duplication of Dmbx+ decussating interneurons. These experiments demonstrate the connection between transcriptional regulation and the neuronal subtype diversity underlying swimming behavior in a simple chordate.
Collapse
Affiliation(s)
- Alberto Stolfi
- Center for Integrative Genomics, Division of Genetics, Genomics and Development, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Michael Levine
- Center for Integrative Genomics, Division of Genetics, Genomics and Development, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
53
|
Kugler JE, Kerner P, Bouquet JM, Jiang D, Di Gregorio A. Evolutionary changes in the notochord genetic toolkit: a comparative analysis of notochord genes in the ascidian Ciona and the larvacean Oikopleura. BMC Evol Biol 2011; 11:21. [PMID: 21251251 PMCID: PMC3034685 DOI: 10.1186/1471-2148-11-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 01/20/2011] [Indexed: 11/12/2022] Open
Abstract
Background The notochord is a defining feature of the chordate clade, and invertebrate chordates, such as tunicates, are uniquely suited for studies of this structure. Here we used a well-characterized set of 50 notochord genes known to be targets of the notochord-specific Brachyury transcription factor in one tunicate, Ciona intestinalis (Class Ascidiacea), to begin determining whether the same genetic toolkit is employed to build the notochord in another tunicate, Oikopleura dioica (Class Larvacea). We identified Oikopleura orthologs of the Ciona notochord genes, as well as lineage-specific duplicates for which we determined the phylogenetic relationships with related genes from other chordates, and we analyzed their expression patterns in Oikopleura embryos. Results Of the 50 Ciona notochord genes that were used as a reference, only 26 had clearly identifiable orthologs in Oikopleura. Two of these conserved genes appeared to have undergone Oikopleura- and/or tunicate-specific duplications, and one was present in three copies in Oikopleura, thus bringing the number of genes to test to 30. We were able to clone and test 28 of these genes. Thirteen of the 28 Oikopleura orthologs of Ciona notochord genes showed clear expression in all or in part of the Oikopleura notochord, seven were diffusely expressed throughout the tail, six were expressed in tissues other than the notochord, while two probes did not provide a detectable signal at any of the stages analyzed. One of the notochord genes identified, Oikopleura netrin, was found to be unevenly expressed in notochord cells, in a pattern reminiscent of that previously observed for one of the Oikopleura Hox genes. Conclusions A surprisingly high number of Ciona notochord genes do not have apparent counterparts in Oikopleura, and only a fraction of the evolutionarily conserved genes show clear notochord expression. This suggests that Ciona and Oikopleura, despite the morphological similarities of their notochords, have developed rather divergent sets of notochord genes after their split from a common tunicate ancestor. This study demonstrates that comparisons between divergent tunicates can lead to insights into the basic complement of genes sufficient for notochord development, and elucidate the constraints that control its composition.
Collapse
Affiliation(s)
- Jamie E Kugler
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
54
|
Saudemont A, Haillot E, Mekpoh F, Bessodes N, Quirin M, Lapraz F, Duboc V, Röttinger E, Range R, Oisel A, Besnardeau L, Wincker P, Lepage T. Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm. PLoS Genet 2010; 6:e1001259. [PMID: 21203442 PMCID: PMC3009687 DOI: 10.1371/journal.pgen.1001259] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Accepted: 11/22/2010] [Indexed: 12/13/2022] Open
Abstract
Echinoderms, which are phylogenetically related to vertebrates and produce large numbers of transparent embryos that can be experimentally manipulated, offer many advantages for the analysis of the gene regulatory networks (GRN) regulating germ layer formation. During development of the sea urchin embryo, the ectoderm is the source of signals that pattern all three germ layers along the dorsal-ventral axis. How this signaling center controls patterning and morphogenesis of the embryo is not understood. Here, we report a large-scale analysis of the GRN deployed in response to the activity of this signaling center in the embryos of the Mediterranean sea urchin Paracentrotus lividus, in which studies with high spatial resolution are possible. By using a combination of in situ hybridization screening, overexpression of mRNA, recombinant ligand treatments, and morpholino-based loss-of-function studies, we identified a cohort of transcription factors and signaling molecules expressed in the ventral ectoderm, dorsal ectoderm, and interposed neurogenic ("ciliary band") region in response to the known key signaling molecules Nodal and BMP2/4 and defined the epistatic relationships between the most important genes. The resultant GRN showed a number of striking features. First, Nodal was found to be essential for the expression of all ventral and dorsal marker genes, and BMP2/4 for all dorsal genes. Second, goosecoid was identified as a central player in a regulatory sub-circuit controlling mouth formation, while tbx2/3 emerged as a critical factor for differentiation of the dorsal ectoderm. Finally, and unexpectedly, a neurogenic ectoderm regulatory circuit characterized by expression of "ciliary band" genes was triggered in the absence of TGF beta signaling. We propose a novel model for ectoderm regionalization, in which neural ectoderm is the default fate in the absence of TGF beta signaling, and suggest that the stomodeal and neural subcircuits that we uncovered may represent ancient regulatory pathways controlling embryonic patterning.
Collapse
Affiliation(s)
- Alexandra Saudemont
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Emmanuel Haillot
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Flavien Mekpoh
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Nathalie Bessodes
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Magali Quirin
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - François Lapraz
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Véronique Duboc
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Eric Röttinger
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Ryan Range
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Arnaud Oisel
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Lydia Besnardeau
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
| | - Patrick Wincker
- Génoscope (CEA), UMR8030, CNRS and Université d'Evry, Evry, France
| | - Thierry Lepage
- UMR 7009 CNRS, Université de Pierre et Marie Curie (Paris 6), Observatoire Oceanologique, Villefranche-sur-Mer, France
- * E-mail:
| |
Collapse
|
55
|
Mita K, Koyanagi R, Azumi K, Sabau SV, Fujiwara S. Identification of genes downstream of nodal in the Ciona intestinalis embryo. Zoolog Sci 2010; 27:69-75. [PMID: 20141410 DOI: 10.2108/zsj.27.69] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nodal, a growth factor belonging to the TGF-beta superfamily, is required for the formation of the neural tube in Ciona intestinalis. Previous studies have revealed many genes whose expression is controlled by Nodal in the Ciona embryo; however, all of them encode transcription factors and signaling molecules. In the present study, we identified five genes upregulated or downregulated by the overexpression of Nodal in embryos of C. intestinalis. The upregulated genes included those encoding type IV collagen 1/3/5, laminin-alpha5, and Prickle. The downregulated genes included those encoding glypican and delta1-protocadherln-like. Many of these genes were expressed in the neural plate at the late gastrula stage. The present study revealed candidate effector genes that directly regulate, in response to Nodal, the morphogenesis of the neural tube in Ciona intestinalis.
Collapse
Affiliation(s)
- Kaoru Mita
- Department of Applied Science, Kochi University, 2-5-1 Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| | | | | | | | | |
Collapse
|
56
|
Unfolding a chordate developmental program, one cell at a time: Invariant cell lineages, short-range inductions and evolutionary plasticity in ascidians. Dev Biol 2009; 332:48-60. [DOI: 10.1016/j.ydbio.2009.05.540] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 04/27/2009] [Accepted: 05/03/2009] [Indexed: 12/25/2022]
|
57
|
Satou Y, Satoh N, Imai KS. Gene regulatory networks in the early ascidian embryo. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:268-73. [DOI: 10.1016/j.bbagrm.2008.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/06/2008] [Accepted: 03/18/2008] [Indexed: 12/19/2022]
|
58
|
Abstract
Transforming growth factor-beta (TGF-beta)/bone morphogenic protein (BMP) signaling is involved in the vast majority of cellular processes and is fundamentally important during the entire life of all metazoans. Deregulation of TGF-beta/BMP activity almost invariably leads to developmental defects and/or diseases, including cancer. The proper functioning of the TGF-beta/BMP pathway depends on its constitutive and extensive communication with other signaling pathways, leading to synergistic or antagonistic effects and eventually desirable biological outcomes. The nature of such signaling cross-talk is overwhelmingly complex and highly context-dependent. Here we review the different modes of cross-talk between TGF-beta/BMP and the signaling pathways of Mitogen-activated protein kinase, phosphatidylinositol-3 kinase/Akt, Wnt, Hedgehog, Notch, and the interleukin/interferon-gamma/tumor necrosis factor-alpha cytokines, with an emphasis on the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Xing Guo
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
59
|
The evolution of cell types in animals: emerging principles from molecular studies. Nat Rev Genet 2008; 9:868-82. [PMID: 18927580 DOI: 10.1038/nrg2416] [Citation(s) in RCA: 332] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell types are fundamental units of multicellular life but their evolution is obscure. How did the first cell types emerge and become distinct in animal evolution? What were the sets of cell types that existed at important evolutionary nodes that represent eumetazoan or bilaterian ancestors? How did these ancient cell types diversify further during the evolution of organ systems in the descending evolutionary lines? The recent advent of cell type molecular fingerprinting has yielded initial insights into the evolutionary interrelationships of cell types between remote animal phyla and has allowed us to define some first principles of cell type diversification in animal evolution.
Collapse
|
60
|
Abstract
Little is known about the ancient chordates that gave rise to the first vertebrates, but the descendants of other invertebrate chordates extant at the time still flourish in the ocean. These invertebrates include the cephalochordates and tunicates, whose larvae share with vertebrate embryos a common body plan with a central notochord and a dorsal nerve cord. Tunicates are now thought to be the sister group of vertebrates. However, research based on several species of ascidians, a diverse and wide-spread class of tunicates, revealed that the molecular strategies underlying their development appear to diverge greatly from those found in vertebrates. Furthermore, the adult body plan of most tunicates, which arises following an extensive post-larval metamorphosis, shows little resemblance to the body plan of any other chordate. In this review, we compare the developmental strategies of ascidians and vertebrates and argue that the very divergence of these strategies reveals the surprising level of plasticity of the chordate developmental program and is a rich resource to identify core regulatory mechanisms that are evolutionarily conserved in chordates. Further, we propose that the comparative analysis of the architecture of ascidian and vertebrate gene regulatory networks may provide critical insight into the origin of the chordate body plan.
Collapse
|
61
|
Yoshida K, Saiga H. Left–right asymmetric expression of Pitx is regulated by the asymmetric Nodal signaling through an intronic enhancer in Ciona intestinalis. Dev Genes Evol 2008; 218:353-60. [DOI: 10.1007/s00427-008-0230-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 05/21/2008] [Indexed: 12/15/2022]
|
62
|
Stach T, Winter J, Bouquet JM, Chourrout D, Schnabel R. Embryology of a planktonic tunicate reveals traces of sessility. Proc Natl Acad Sci U S A 2008; 105:7229-34. [PMID: 18490654 PMCID: PMC2438232 DOI: 10.1073/pnas.0710196105] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Indexed: 11/18/2022] Open
Abstract
A key problem in understanding deuterostome evolution has been the origin of the chordate body plan. A biphasic life cycle with a sessile adult and a free-swimming larva is traditionally considered ancestral in chordates with subsequent neotenic loss of the sessile adult stage. Molecular phylogenies challenged this view, suggesting that the primitive life cycle in chordates was entirely free-living as in modern day larvaceans. Here, we report the precise cell lineage and fate map in the normal embryo of the larvacean Oikopleura dioica, using 4D microscopy technique and transmission electron microscopy. We document the extraordinary rapidity of cleavage and morphogenetic events until hatching and demonstrate that--compared with ascidians--fate restriction occurs considerably earlier in O. dioica and that clonal organization of the cell lineage is more tightly coupled to tissue fate. We show that epidermal cells in the trunk migrate through 90 degrees, reminiscent of events in ascidian metamorphosis and that the axis of bilateral symmetry in the tail rotates in relation to the trunk. We argue that part of the tail muscle cells are ectomesodermal, because they are more closely associated with prospective epidermis than with other tissues in the cell lineage. Cladistic comparison with other deuterostomes suggests that these traits are derived within tunicates strengthening the hypothesis that the last common ancestor of tunicates had a sessile adult and thus support traditional morphology-derived scenarios. Our results allow hypothesizing that molecular developmental mechanisms known from ascidian models are restricted to fewer, yet identifiable, cells in O. dioica.
Collapse
Affiliation(s)
- Thomas Stach
- Institut für Biologie, Chemie, Pharmazie, Zoologie, Evolution, und Systematik der Tiere, Freie Universität Berlin, Königin-Luise-Strasse 1-3, 14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
63
|
|
64
|
Rothbächer U, Bertrand V, Lamy C, Lemaire P. A combinatorial code of maternal GATA, Ets and beta-catenin-TCF transcription factors specifies and patterns the early ascidian ectoderm. Development 2008; 134:4023-32. [PMID: 17965050 DOI: 10.1242/dev.010850] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Our understanding of the maternal factors that initiate early chordate development, and of their direct zygotic targets, is still fragmentary. A molecular cascade is emerging for the mesendoderm, but less is known about the ectoderm, giving rise to epidermis and nervous tissue. Our cis-regulatory analysis surprisingly places the maternal transcription factor Ci-GATAa (GATA4/5/6) at the top of the ectodermal regulatory network in ascidians. Initially distributed throughout the embryo, Ci-GATAa activity is progressively repressed in vegetal territories by accumulating maternal beta-catenin. Once restricted to the animal hemisphere, Ci-GATAa directly activates two types of zygotic ectodermal genes. First, Ci-fog is activated from the 8-cell stage throughout the ectoderm, then Ci-otx is turned on from the 32-cell stage in neural precursors only. Whereas the enhancers of both genes contain critical and interchangeable GATA sites, their distinct patterns of activation stem from the additional presence of two Ets sites in the Ci-otx enhancer. Initially characterized as activating elements in the neural lineages, these Ets sites additionally act as repressors in non-neural lineages, and restrict GATA-mediated activation of Ci-otx. We thus identify a precise combinatorial code of maternal factors responsible for zygotic onset of a chordate ectodermal genetic program.
Collapse
Affiliation(s)
- Ute Rothbächer
- Institut de Biologie du Développement de Marseille Luminy (IBDML), CNRS-UMR6216/Université de la Méditerranée Aix-Marseille, F-13288 Marseille Cedex 9, France.
| | | | | | | |
Collapse
|
65
|
Shi W, Levine M. Ephrin signaling establishes asymmetric cell fates in an endomesoderm lineage of the Ciona embryo. Development 2008; 135:931-40. [PMID: 18234724 DOI: 10.1242/dev.011940] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mesodermal tissues arise from diverse cell lineages and molecular strategies in the Ciona embryo. For example, the notochord and mesenchyme are induced by FGF/MAPK signaling, whereas the tail muscles are specified autonomously by the localized determinant, Macho-1. A unique mesoderm lineage, the trunk lateral cells, develop from a single pair of endomesoderm cells, the A6.3 blastomeres, which form part of the anterior endoderm, hematopoietic mesoderm and muscle derivatives. MAPK signaling is active in the endoderm descendants of A6.3, but is absent from the mesoderm lineage. Inhibition of MAPK signaling results in expanded expression of mesoderm marker genes and loss of endoderm markers, whereas ectopic MAPK activation produces the opposite phenotype: the transformation of mesoderm into endoderm. Evidence is presented that a specific Ephrin signaling molecule, Ci-ephrin-Ad, is required to establish asymmetric MAPK signaling in the endomesoderm. Reducing Ci-ephrin-Ad activity via morpholino injection results in ectopic MAPK signaling and conversion of the mesoderm lineage into endoderm. Conversely, misexpression of Ci-ephrin-Ad in the endoderm induces ectopic activation of mesodermal marker genes. These results extend recent observations regarding the role of Ephrin signaling in the establishment of asymmetric cell fates in the Ciona notochord and neural tube.
Collapse
Affiliation(s)
- Weiyang Shi
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development, Center for Integrative Genomics, University of California-Berkeley, CA 94720, USA.
| | | |
Collapse
|
66
|
Abstract
The development of the notochord involves a complex set of cellular behaviors. While these morphogenic behaviors are common to all chordates, the ascidian provides a particularly attractive experimental model because of its relative simplicity. In particular, all notochord morphogenesis in ascidians takes place with only 40 cells, as opposed to the hundreds of cells in vertebrate model systems. Initial steps in ascidian notochord development convert a monolayer of epithelial-like cells in the pregastrula embryo to a cylindrical rod of single-cell diameter. Convergent extension is responsible for the intercalation of notochord cells and some degree of notochord elongation, while a second phase of elongation is observed as the notochord narrows medially and increases in volume. The mechanism by which the volume of the notochord increases differs between ascidian species. Some ascidians produce extracellular pockets that will eventually coalesce to form a lumen running the length of the notochord; whereas others do not. By either mechanism, the resulting notochord serves as a hydrostatic skeleton allowing for the locomotion of the swimming larva. Several basic cell behaviors, such as cell shape changes, cell rearrangement, establishment of cell polarity, and alteration of extracellular environment, are displayed in the process of notochord morphogenesis. Modern analysis of ascidian notochord morphogenesis promises to contribute to our understanding of these fundamental biological processes.
Collapse
Affiliation(s)
- Di Jiang
- Sars International Centre for Marine Molecular Biology, Thormøhlensgt. 55 N-5008 Bergen, Norway
| | - William C. Smith
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
- author for correspondence:
| |
Collapse
|
67
|
Hudson C, Lotito S, Yasuo H. Sequential and combinatorial inputs from Nodal, Delta2/Notch and FGF/MEK/ERK signalling pathways establish a grid-like organisation of distinct cell identities in the ascidian neural plate. Development 2007; 134:3527-37. [PMID: 17728350 DOI: 10.1242/dev.002352] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ascidian neural plate has a grid-like organisation, with six rows and eight columns of aligned cells, generated by a series of stereotypical cell divisions. We have defined unique molecular signatures for each of the eight cells in the posterior-most two rows of the neural plate - rows I and II. Using a combination of morpholino gene knockdown, dominant-negative forms and pharmacological inhibitors, we tested the role of three signalling pathways in defining these distinct cell identities. Nodal signalling at the 64-cell stage was found to be required to define two different neural plate domains - medial and lateral - with Nodal inducing lateral and repressing medial identities. Delta2, an early Nodal target, was found to then subdivide each of the lateral and medial domains to generate four columns. Finally, a separate signalling system along the anteroposterior axis, involving restricted ERK1/2 activation, was found to promote row I fates and repress row II fates. Our results reveal how the sequential integration of three signalling pathways - Nodal, Delta2/Notch and FGF/MEK/ERK - defines eight different sub-domains that characterise the ascidian caudal neural plate. Most remarkably, the distinct fates of the eight neural precursors are each determined by a unique combination of inputs from these three signalling pathways.
Collapse
Affiliation(s)
- Clare Hudson
- Developmental Biology Unit, Université Pierre et Marie Curie (Paris 6 Villefranche-sur-Mer, France.
| | | | | |
Collapse
|
68
|
Mita K, Fujiwara S. Nodal regulates neural tube formation in the Ciona intestinalis embryo. Dev Genes Evol 2007; 217:593-601. [PMID: 17624550 DOI: 10.1007/s00427-007-0168-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 06/07/2007] [Indexed: 10/23/2022]
Abstract
Overexpression of a lefty orthologue, Ci-lefty, caused a failure of neural tube closure in the protochordate ascidian Ciona intestinalis. The body bent dorsally, and anterior-posterior elongation was inhibited. A similar phenotype was observed in embryos treated with SB431542, an inhibitor of Nodal receptors, suggesting that Ci-Lefty antagonized Nodal signaling as reported in other deuterostome species. Overexpression of Ci-nodal also resulted in a similar phenotype, suggesting that a correct quantity and/or a spatial restriction of Nodal signaling are important for the neural tube to form. In addition to known Ci-Nodal target genes, orthologues of Zic (Ci-ZicL) and cdx (Ci-cdx) were activated by Ci-Nodal. Expression of a dominant negative Ci-cdx caused defects in neural tube formation similar to those obtained on treatment with SB431542 or overexpression of Ci-lefty. A regulatory cascade composed of Ci-Nodal, Ci-ZicL, and Ci-Cdx may play an important role in neural tube formation in the Ciona embryo.
Collapse
Affiliation(s)
- Kaoru Mita
- Department of Materials Science, Kochi University, 2-5-1 Akebono-cho, Kochi-shi, Kochi 780-8520, Japan.
| | | |
Collapse
|
69
|
Oda-Ishii I, Di Gregorio A. Lineage-independent mosaic expression and regulation of theCiona multidomgene in the ancestral notochord. Dev Dyn 2007; 236:1806-19. [PMID: 17576134 DOI: 10.1002/dvdy.21213] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The transcription factor Ciona Brachyury (Ci-Bra) plays an essential role in notochord development in the ascidian Ciona intestinalis. We characterized a putative Ci-Bra target gene, which we named Ci-multidom, and analyzed in detail its expression pattern in normal embryos and in embryos where Ci-Bra was misexpressed. Ci-multidom encodes a novel protein, which contains eight CCP domains and a partial VWFA domain. We show that an EGFP-multidom fusion protein localizes preferentially to the endoplasmic reticulum (ER), and is excluded from the nucleus. In situ hybridization experiments demonstrate that Ci-multidom is expressed in the notochord and in the anterior neural boundary (ANB). We found that the expression in the ANB is fully recapitulated by an enhancer element located upstream of Ci-multidom. By means of misexpression experiments, we provide evidence that Ci-Bra controls transcription of Ci-multidom in the notochord; however, while Ci-Bra is homogeneously expressed throughout this structure, Ci-multidom is transcribed at detectable levels only in a random subset of notochord cells. The number of notochord cells expressing Ci-multidom varies among different embryos and is independent of developmental stage, lineage, and position along the anterior-posterior axis. These results suggest that despite its morphological simplicity and invariant cell-lineage, the ancestral notochord is a mosaic of cells in which the gene cascade downstream of Brachyury is differentially modulated.
Collapse
Affiliation(s)
- Izumi Oda-Ishii
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
70
|
Tokuoka M, Kumano G, Nishida H. FGF9/16/20 and Wnt-5alpha signals are involved in specification of secondary muscle fate in embryos of the ascidian, Halocynthia roretzi. Dev Genes Evol 2007; 217:515-27. [PMID: 17534657 DOI: 10.1007/s00427-007-0160-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 04/25/2007] [Indexed: 10/23/2022]
Abstract
The tail muscle cells of the ascidian tadpole larva originate from two different lineages, the B- (primary) and A- and b- (secondary) line blastomeres of the eight-cell stage embryo. The primary muscle cells assume muscle fate cell-autonomously with the involvement of a localized muscle determinant, macho-1. On the other hand, fate determination of secondary muscle cells is a non-cell-autonomous process that depends on cellular interactions. In this paper, we investigated the mechanisms underlying fate specification of secondary muscle cells in Halocynthia roretzi. We found that FGF and Wnt5 signals were required. In contrast, the Nodal signal, which is required for specification of A-line muscle cells in another ascidian, Ciona intestinalis, was not necessary for the formation of any secondary muscle cells in Halocynthia embryo. Therefore, Halocynthia and Ciona show distinctly different mechanisms for generation of the secondary lineages, despite the fact that embryogenesis appears very similar between these species. We also found that the mechanisms involved in specification of A- and b-line muscle cells were distinct in that the required timing of the FGF signal for the A-line muscle cells preceded that for the b-line. Moreover, the inducer blastomeres for specification of these two lineages were different.
Collapse
Affiliation(s)
- Miki Tokuoka
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | | | | |
Collapse
|
71
|
Matsumoto J, Kumano G, Nishida H. Direct activation by Ets and Zic is required for initial expression of the Brachyury gene in the ascidian notochord. Dev Biol 2007; 306:870-82. [PMID: 17459364 DOI: 10.1016/j.ydbio.2007.03.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 03/20/2007] [Accepted: 03/23/2007] [Indexed: 11/22/2022]
Abstract
Extrinsic fibroblast growth factor (FGF) signal and intrinsic factors that determine the response of the signal-receiving blastomeres to FGF regulate mesoderm patterning in embryos of the ascidian Halocynthia roretzi. To investigate how cells integrate information from extrinsic and intrinsic inputs, we examined Brachyury (Hr-Bra) promoter activity in the early embryo. Hr-Bra, which encodes a key transcription factor for notochord development, is expressed exclusively in notochord precursors in a manner dependent on the FGF-MEK-MAPK-Ets signaling pathway and on the intrinsic factors Zic and FoxA. Reporter gene expression driven by the 900-bp upstream region of the Hr-Bra promoter was detected as early as the 110-cell stage in notochord precursors by in situ hybridization with a LacZ probe. Deletion analysis combined with MEK inhibitor treatment demonstrated that the -598/-499 region carries FGF-responsiveness. Electrophoretic mobility shift assay identified three Ets-binding sites in this region that were required for promoter activity. Further deletion analysis conducted by injecting eggs with reporter constructs at higher concentration suggested that the -398/-289 region also has enhancer activity, although ectopic reporter expression was detected in nerve cord and endoderm precursors. The -398/-289 region has a Zic-binding site that was also essential for the enhancer activity. These results indicate that Ets- and Zic-binding sites are critical for the initiation of Hr-Bra expression. In conclusion, information from both extrinsic and intrinsic factors is integrated at the level of enhancer of the target gene by direct binding of the transcription factors to the enhancer region.
Collapse
Affiliation(s)
- Jun Matsumoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | | | | |
Collapse
|
72
|
Picco V, Hudson C, Yasuo H. Ephrin-Eph signalling drives the asymmetric division of notochord/neural precursors in Ciona embryos. Development 2007; 134:1491-7. [PMID: 17344225 DOI: 10.1242/dev.003939] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Asymmetric cell divisions produce two sibling cells with distinct fates, providing an important means of generating cell diversity in developing embryos. Many examples of such cell divisions have been described, but so far only a limited number of the underlying mechanisms have been elucidated. Here, we have uncovered a novel mechanism controlling an asymmetric cell division in the ascidian embryo. This division produces one notochord and one neural precursor. Differential activation of extracellular-signal-regulated kinase (ERK) between the sibling cells determines their distinct fates, with ERK activation promoting notochord fate. We first demonstrate that the segregation of notochord and neural fates is an autonomous property of the mother cell and that the mother cell acquires this functional polarity via interactions with neighbouring ectoderm precursors. We show that these cellular interactions are mediated by the ephrin-Eph signalling system, previously implicated in controlling cell movement and adhesion. Disruption of contacts with the signalling cells or inhibition of the ephrin-Eph signal results in the symmetric division of the mother cell, generating two notochord precursors. Finally, we demonstrate that the ephrin-Eph signal acts via attenuation of ERK activation in the neural-fated daughter cell. We propose a model whereby directional ephrin-Eph signals functionally polarise the notochord/neural mother cell, leading to asymmetric modulation of the FGF-Ras-ERK pathway between the daughter cells and, thus, to their differential fate specification.
Collapse
Affiliation(s)
- Vincent Picco
- Developmental Biology Unit, Université Pierre et Marie Curie (Paris VI), CNRS, Villefranche sur mer, France
| | | | | |
Collapse
|
73
|
Evolution of the mechanisms and molecular control of endoderm formation. Mech Dev 2007; 124:253-78. [PMID: 17307341 DOI: 10.1016/j.mod.2007.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 12/24/2006] [Accepted: 01/03/2007] [Indexed: 01/13/2023]
Abstract
Endoderm differentiation and movements are of fundamental importance not only for subsequent morphogenesis of the digestive tract but also to enable normal patterning and differentiation of mesoderm- and ectoderm-derived organs. This review defines the tissues that have been called endoderm in different species, their cellular origin and their movements. We take a comparative approach to ask how signaling pathways leading to embryonic and extraembryonic endoderm differentiation have emerged in different organisms, how they became integrated and point to specific gaps in our knowledge that would be worth filling. Lastly, we address whether the gastrulation movements that lead to endoderm internalization are coupled with its differentiation.
Collapse
|
74
|
Kumano G, Nishida H. Ascidian embryonic development: An emerging model system for the study of cell fate specification in chordates. Dev Dyn 2007; 236:1732-47. [PMID: 17366575 DOI: 10.1002/dvdy.21108] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ascidian tadpole larva represents the basic body plan of all chordates in a relatively small number of cells and tissue types. Although it had been considered that ascidians develop largely in a determinative way, whereas vertebrates develop in an inductive way, recent studies at the molecular and cellular levels have uncovered several similarities in the way developmental fates are specified. In this review, we describe ascidian embryogenesis and its cell lineages, introduce several characteristics of ascidian embryos, describe recent advances in understanding of the mechanisms of cell fate specification, and discuss them in the context of what is known in vertebrates and other organisms.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| | | |
Collapse
|
75
|
Yasuo H, Hudson C. FGF8/17/18 functions together with FGF9/16/20 during formation of the notochord in Ciona embryos. Dev Biol 2006; 302:92-103. [PMID: 17022960 DOI: 10.1016/j.ydbio.2006.08.075] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 08/31/2006] [Accepted: 08/31/2006] [Indexed: 11/15/2022]
Abstract
Fibroblast growth factor (FGF) signalling has been implicated in the generation of mesoderm and neural fates in chordate embryos including ascidians and vertebrates. In Ciona, FGF9/16/20 has been implicated in both of these processes. However, in FGF9/16/20 knockdown embryos, notochord fate recovers during later development. It is thus not clear if FGF signalling is an essential requirement for notochord specification in Ciona embryos. We show that FGF-MEK-ERK signals act during two distinct phases to establish notochord fate. During the first phase, FGF signalling is required during an asymmetric cell division to promote notochord at the expense of neural identity. Consistently, ERK1/2 is specifically activated in the notochord precursors following this cell division. Sustained activation of ERK1/2 is then required to maintain notochord fate. We demonstrate that FGF9/16/20 acts solely during the initial induction step and that, subsequently, FGF8/17/18 together with FGF9/16/20 is involved in the following maintenance step. These results together with others' show that the formation of a large part of the mesoderm cell types in ascidian larvae is dependent on signalling events involving FGF ligands.
Collapse
Affiliation(s)
- Hitoyoshi Yasuo
- Biologie du Développement, UMR7009 CNRS/Université Pierre et Marie Curie Observatoire Océanologique, F-06230 Villefranche-sur-mer, France.
| | | |
Collapse
|