51
|
Fu A, Koth ML, Brown RM, Shaw SA, Wang L, Krentz KJ, Zhang X, Hui CC, Jorgensen JS. IRX3 and IRX5 collaborate during ovary development and follicle formation to establish responsive granulosa cells in the adult mouse†. Biol Reprod 2020; 103:620-629. [PMID: 32507881 PMCID: PMC7822710 DOI: 10.1093/biolre/ioaa100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
Healthy development of ovarian follicles depends on appropriate interactions and function between oocytes and their surrounding granulosa cells. Previously, we showed that double knockout of Irx3 and Irx5 (Irx3/5 DKO) in mice resulted in abnormal follicle morphology and follicle death. Further, female mouse models of individual Irx3 or Irx5 knockouts were both subfertile but with distinct defects. Notably, the expression profile of each gene suggests independent roles for each; first, they are colocalized in pre-granulosa cells during development that then progresses to include oocyte expression during germline nest breakdown and primordial follicle formation. Thereafter, their expression patterns diverge between oocytes and granulosa cells coinciding with the formulation and maturation of intimate oocyte-granulosa cell interactions. The objective of this study was to investigate the contributions of Irx5 and somatic cell-specific expression of Irx3 during ovarian development. Our results show that Irx3 and Irx5 contribute to female fertility through different mechanisms and that Irx3 expression in somatic cells is important for oocyte quality and survival. Based on evaluation of a series of genetically modified mouse models, we conclude that IRX3 and IRX5 collaborate in the same cells and then in neighboring cells to foster a healthy and responsive follicle. Long after these two factors have extinguished, their legacy enables these intercellular connections to mature and respond to extracellular signals to promote follicle maturation and ovulation.
Collapse
Affiliation(s)
- Anqi Fu
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI, USA
| | - Megan L Koth
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI, USA
| | - Ryan M Brown
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI, USA
| | - Sarah A Shaw
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI, USA
| | - Linda Wang
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI, USA
| | - Kathleen J Krentz
- Genome Editing and Animal Models Core, Biotechnology Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Xiaoyun Zhang
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Chi-chung Hui
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Joan S Jorgensen
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
52
|
Baena V, Owen CM, Uliasz TF, Lowther KM, Yee SP, Terasaki M, Egbert JR, Jaffe LA. Cellular Heterogeneity of the Luteinizing Hormone Receptor and Its Significance for Cyclic GMP Signaling in Mouse Preovulatory Follicles. Endocrinology 2020; 161:5834711. [PMID: 32384146 PMCID: PMC7574965 DOI: 10.1210/endocr/bqaa074] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/02/2020] [Indexed: 12/14/2022]
Abstract
Meiotic arrest and resumption in mammalian oocytes are regulated by 2 opposing signaling proteins in the cells of the surrounding follicle: the guanylyl cyclase natriuretic peptide receptor 2 (NPR2), and the luteinizing hormone receptor (LHR). NPR2 maintains a meiosis-inhibitory level of cyclic guanosine 5'-monophosphate (cGMP) until LHR signaling causes dephosphorylation of NPR2, reducing NPR2 activity, lowering cGMP to a level that releases meiotic arrest. However, the signaling pathway between LHR activation and NPR2 dephosphorylation remains incompletely understood, due in part to imprecise information about the cellular localization of these 2 proteins. To investigate their localization, we generated mouse lines in which hemagglutinin epitope tags were added to the endogenous LHR and NPR2 proteins, and used immunofluorescence and immunogold microscopy to localize these proteins with high resolution. The results showed that the LHR protein is absent from the cumulus cells and inner mural granulosa cells, and is present in only 13% to 48% of the outer mural granulosa cells. In contrast, NPR2 is present throughout the follicle, and is more concentrated in the cumulus cells. Less than 20% of the NPR2 is in the same cells that express the LHR. These results suggest that to account for the LH-induced inactivation of NPR2, LHR-expressing cells send a signal that inactivates NPR2 in neighboring cells that do not express the LHR. An inhibitor of gap junction permeability attenuates the LH-induced cGMP decrease in the outer mural granulosa cells, consistent with this mechanism contributing to how NPR2 is inactivated in cells that do not express the LHR.
Collapse
Affiliation(s)
- Valentina Baena
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Corie M Owen
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Tracy F Uliasz
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Katie M Lowther
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Siu-Pok Yee
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Mark Terasaki
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jeremy R Egbert
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Laurinda A Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
- Correspondence: Laurinda A. Jaffe, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030 USA. E-mail:
| |
Collapse
|
53
|
Luo Y, Zhang R, Gao J, Wang Y, Zhang W, Qing S. The localization and expression of epidermal growth factor and epidermal growth factor receptor in bovine ovary during oestrous cycle. Reprod Domest Anim 2020; 55:822-832. [PMID: 32330337 DOI: 10.1111/rda.13690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Epidermal growth factor (EGF) is one of the important regulatory factors of EGF family. EGF has been indicated to effectively inhibit the apoptosis of follicular cells, to promote the proliferation of granulosa cells and the maturation of oocytes, and to induce ovulation process via binding to epidermal growth factor receptor (EGFR). However, little is known about the distribution and expression of EGF and EGFR in cattle ovary especially during oestrous cycle. In this study, the localization and expression rule of EGF and EGFR in cattle ovaries of follicular phase and luteal phase at different time points in oestrous cycle were investigated by using IHC and real-time qPCR. The results showed that EGF and EGFR in cattle ovary were mainly expressed in granulosa cells, cumulus cells, oocytes, zona pellucida, follicular fluid and theca folliculi externa of follicles. The protein and mRNA expression of EGF/EGFR in follicles changed regularly with the follicular growth wave both in follicular and in luteal phase ovaries. In follicular phase ovaries, the protein expression of EGF and EGFR was higher in antral follicles than that of those in other follicles during follicular growth stage, and the mRNA expression of EGFR was also increased in stage of dominant follicle selection. However, in luteal phase ovaries, the growth of follicles was impeded during corpus luteum development under the action of progesterone secreted by granular lutein cell. The mRNA and protein expressions of EGF and EGFR in ovarian follicles during oestrous cycle indicate that they play a role in promoting follicular development in follicular growth waves and mediating the selection process of dominant follicles.
Collapse
Affiliation(s)
- Yuru Luo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Beijing Shunxin Xinyuan Research Institute of Cattle Breeding, Beijing, China
| | - Ruiqi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jing Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yali Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Suzhu Qing
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
54
|
Xu D, He H, Liu D, Geng G, Li Q. A novel role of SIRT2 in regulating gap junction communications via connexin-43 in bovine cumulus-oocyte complexes. J Cell Physiol 2020; 235:7332-7343. [PMID: 32039484 DOI: 10.1002/jcp.29634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/30/2020] [Indexed: 01/04/2023]
Abstract
SIRT2, the predominantly cytosolic sirtuin, plays important role in multiple biological processes, including metabolism, stress response, and aging. However, the function of SIRT2 in gap junction intercellular communications (GJICs) of cumulus-oocyte complexes (COCs) is not yet known. The purpose of the present study was to evaluate the effect and underlining mechanism of SIRT2 on GJICs in COCs. Here, we found that treatment with SIRT2 inhibitors (SirReal2 or TM) inhibited bovine oocyte nuclear maturation. Further analysis revealed that SIRT2 inactivation disturbed the GJICs of COCs during in vitro maturation. Correspondingly, both the Cx43 phosphorylation levels and MEK/MER signaling pathways were induced by SIRT2 inhibition. Importantly, SIRT2-mediated Cx43 phosphorylation was completely abolished by treatment with MEK1/2 inhibitor (Trametinib). Furthermore, treatment with SIRT2 inhibitors resulted in the high levels of MEK1/2 acetylation. Functionally, downregulating the MER/ERK pathways with inhibitors (Trametinib or SCH772984) could attenuate the closure of GJICs caused by SIRT2 inactivation in partly. In addition, inhibition of SIRT2 activity significantly decreased the membrane and zona pellucida localization of Cx43 by upregulating the levels of Cx43 acetylation. Taken together, these results demonstrated a novel role that SIRT2 regulates GJICs via modulating the phosphorylation and deacetylation of Cx43 in COCs.
Collapse
Affiliation(s)
- Dejun Xu
- Department of Zoology and Animal Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Huanshan He
- Department of Zoology and Animal Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Dingbang Liu
- Department of Zoology and Animal Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Guoxia Geng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qingwang Li
- Department of Zoology and Animal Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
55
|
Luteinizing Hormone Action in Human Oocyte Maturation and Quality: Signaling Pathways, Regulation, and Clinical Impact. Reprod Sci 2020; 27:1223-1252. [PMID: 32046451 PMCID: PMC7190682 DOI: 10.1007/s43032-019-00137-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022]
Abstract
The ovarian follicle luteinizing hormone (LH) signaling molecules that regulate oocyte meiotic maturation have recently been identified. The LH signal reduces preovulatory follicle cyclic nucleotide levels which releases oocytes from the first meiotic arrest. In the ovarian follicle, the LH signal reduces cyclic nucleotide levels via the CNP/NPR2 system, the EGF/EGF receptor network, and follicle/oocyte gap junctions. In the oocyte, reduced cyclic nucleotide levels activate the maturation promoting factor (MPF). The activated MPF induces chromosome segregation and completion of the first and second meiotic divisions. The purpose of this paper is to present an overview of the current understanding of human LH signaling regulation of oocyte meiotic maturation by identifying and integrating the human studies on this topic. We found 89 human studies in the literature that identified 24 LH follicle/oocyte signaling proteins. These studies show that human oocyte meiotic maturation is regulated by the same proteins that regulate animal oocyte meiotic maturation. We also found that these LH signaling pathway molecules regulate human oocyte quality and subsequent embryo quality. Remarkably, in vitro maturation (IVM) prematuration culture (PMC) protocols that manipulate the LH signaling pathway improve human oocyte quality of cultured human oocytes. This knowledge has improved clinical human IVM efficiency which may become a routine alternative ART for some infertile patients.
Collapse
|
56
|
Wen L, Liu Q, Xu J, Liu X, Shi C, Yang Z, Zhang Y, Xu H, Liu J, Yang H, Huang H, Qiao J, Tang F, Chen ZJ. Recent advances in mammalian reproductive biology. SCIENCE CHINA. LIFE SCIENCES 2020; 63:18-58. [PMID: 31813094 DOI: 10.1007/s11427-019-1572-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/22/2019] [Indexed: 01/05/2023]
Abstract
Reproductive biology is a uniquely important topic since it is about germ cells, which are central for transmitting genetic information from generation to generation. In this review, we discuss recent advances in mammalian germ cell development, including preimplantation development, fetal germ cell development and postnatal development of oocytes and sperm. We also discuss the etiologies of female and male infertility and describe the emerging technologies for studying reproductive biology such as gene editing and single-cell technologies.
Collapse
Affiliation(s)
- Lu Wen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qiang Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Jingjing Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Xixi Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Chaoyi Shi
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Zuwei Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Yili Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Hong Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Zi-Jiang Chen
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250021, China.
| |
Collapse
|
57
|
Wang J, Liu Z, Sun Q, Xia S, Cui J, Yang L, An L, Zhang J, Su L, Su Y, Du F. Combined treatment with cysteamine and leukemia inhibitory factor promotes guinea pig oocyte meiosis in vitro. Am J Transl Res 2019; 11:7479-7491. [PMID: 31934295 PMCID: PMC6943477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
The guinea pig is an excellent but underused animal model due to its reproductive biology, which poses difficulties in inducing superovulation, embryo manipulation in vitro, and embryo transfer. We examined the effects of cysteamine (Cys), leukemia inhibitory factor (LIF), and Y27632 on guinea pig oocyte in vitro maturation (IVM). Cumulus-oocyte complexes were collected from antral follicles and classified into three different types before IVM. Among type I oocytes, maturation rates to metaphase II (MII) were similar in basal maturation medium and medium supplemented with Cys or LIF (39.5-40.9%), but combined Cys and LIF treatment increased the MII rate to 61.8%. Supplementation with Y27632 alone or in combination with Cys and LIF dramatically reduced the MII rate (27.7-29.7%). Similar trends were observed for type II oocytes, although their overall MII rate was lower than that of type I oocytes. The MII rate was higher among oocytes collected from 2-month-old guinea pigs compared with those from 4-month-old guinea pigs (56.5 vs. 44.8%). The optimal IVM duration was 24 h (52.5%), as 36 or 48 h of IVM reduced the MII rate (32.8-42.5%). Furthermore, Y27632 reduced the presence of microfilaments in oocytes. These findings indicate that combined supplementation of maturation medium with Cys and LIF, but not Y27632, improves the maturation efficiency of guinea pig oocytes. This study provides an important scientific basis for further efforts toward guinea pig in vitro fertilization, cloning, and gene editing by establishing an animal model for human reproduction and related diseases.
Collapse
Affiliation(s)
- Jiqiang Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, P. R. China
| | - Zhihui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, P. R. China
| | - Qianru Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, P. R. China
| | - Shuang Xia
- Chengdu Institute of Biological Products Co. LtdChengdu 610023, P. R. China
| | - Jing Cui
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, P. R. China
| | - Lan Yang
- Lannuo Biotechnologies Wuxi Inc.Wuxi 214000, P. R. China
| | - Liyou An
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, P. R. China
| | - Jiaxin Zhang
- College of Animal Science, Inner Mongolia Agricultural UniversityHohhot 010018, Inner Mongolia, P. R. China
| | - Lei Su
- Yunnan Zhongke Embryo Biotechnology Co., LTDKunming 650505, Yunnan, P. R. China
| | - Youqiang Su
- State Key Laboratory of Reproductive Medicine, Nanjing Medical UniversityNanjing 211166, P. R. China
| | - Fuliang Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal UniversityNanjing 210046, P. R. China
| |
Collapse
|
58
|
Qin Y, Tang T, Li W, Liu Z, Yang X, Shi X, Sun G, Liu X, Wang M, Liang X, Cong P, Mo D, Liu X, Chen Y, He Z. Bone Morphogenetic Protein 15 Knockdown Inhibits Porcine Ovarian Follicular Development and Ovulation. Front Cell Dev Biol 2019; 7:286. [PMID: 31803742 PMCID: PMC6877722 DOI: 10.3389/fcell.2019.00286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
Bone morphogenetic protein 15 (BMP15) is strongly associated with animal reproduction and woman reproductive disease. As a multifunctional oocyte-specific secret factor, BMP15 controls female fertility and follicular development in both species-specific and dosage-sensitive manners. Previous studies found that BMP15 played a critical role in follicular development and ovulation rate in mono-ovulatory mammalian species, especially in sheep and human, but study on knockout mouse model implied that BMP15 possibly has minimal impact on female fertility of poly-ovulatory species. However, this needs to be validated in other poly-ovulatory species. To investigate the regulatory role of BMP15 on porcine female fertility, we generated a BMP15-knockdown pig model through somatic nuclear transfer technology. The BMP15-knockdown gilts showed markedly reduced fertility accompanied by phenotype of dysplastic ovaries containing significantly declined number of follicles, increased number of abnormal follicles, and abnormally enlarged antral follicles resulting in disordered ovulation, which is remarkably different from the unchanged fertility observed in BMP15 knockout mice. Molecular and transcriptome analysis revealed that the knockdown of BMP15 significantly affected both granulosa cells (GCs) and oocytes development, including suppression of cell proliferation, differentiation, and follicle stimulating hormone receptor (Fshr) expression, leading to premature luteinization and reduced estradiol (E2) production in GCs, and simultaneously decreased quality and meiotic maturation of oocyte. Our results provide in vivo evidence of the essential role of BMP15 in porcine ovarian and follicular development, and new insight into the complicated regulatory function of BMP15 in female fertility of poly-ovulatory species.
Collapse
Affiliation(s)
- Yufeng Qin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tao Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhiguo Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoliang Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuan Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Guanjie Sun
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Min Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xinyu Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
59
|
Bahrami M, Morris MB, Day ML. Amino acid supplementation of a simple inorganic salt solution supports efficient in vitro maturation (IVM) of bovine oocytes. Sci Rep 2019; 9:11739. [PMID: 31409817 PMCID: PMC6692353 DOI: 10.1038/s41598-019-48038-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/18/2019] [Indexed: 01/08/2023] Open
Abstract
Defining oocyte in vitro maturation (IVM) conditions allows for improved reproducibility and efficiency of bovine embryo production. IVM conditions for bovine oocytes have been extensively studied, but beneficial effects of individual supplements remain controversial. This study compared methods of cumulus oocyte complex (COC) isolation, and culture medium requirements, for IVM in order to define optimal conditions. Antral follicles in ovaries were sliced or aspirated to isolate COCs. Brilliant cresyl blue staining of COCs was used to determine the most effective collection technique and the effect of hormones and groups of amino acids in the culture medium was investigated. Our results showed COCs isolated through aspiration had greater meiotic competency to reach MII. Oocyte maturation was achieved with the addition of 1 µg/mL FSH, while estrogen and human chorionic gonadotrophin did not increase the number of MII oocytes. We also provide novel data, that supplementation of a simple inorganic salt solution with L-proline, L-glutamine and essential amino acids in combination, but not individually, resulted in nuclear maturation comparable to TCM199, a more complex medium containing all 20 common amino acids, vitamins, inorganic salts and FBS. Replacement of FBS with BSA in this simplified medium creates a defined medium which provides conditions for IVM that enable reproducible maturation rates.
Collapse
Affiliation(s)
- Mohammad Bahrami
- Discipline of Physiology and Bosch Institute, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Michael B Morris
- Discipline of Physiology and Bosch Institute, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Margot L Day
- Discipline of Physiology and Bosch Institute, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia.
| |
Collapse
|
60
|
Gershon E, Maimon I, Galiani D, Elbaz M, Karasenti S, Dekel N. High cGMP and low PDE3A activity are associated with oocyte meiotic incompetence. Cell Cycle 2019; 18:2629-2640. [PMID: 31401933 DOI: 10.1080/15384101.2019.1652472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Resumption of meiosis in mammalian oocytes, defined as oocyte maturation, is stimulated by luteinizing hormone (LH). Fully grown oocytes can also mature spontaneously, upon their release from the ovarian follicle. However, growing oocytes fail to resume meiosis in vitro and the mechanism underlying their meiotic incompetence is unknown. It is commonly accepted that a drop in intraoocyte cyclic guanosine monophosphate (cGMP) resulting in the elevated activity of the oocyte-specific PDE3A leads to a decrease in cAMP content, essential for reinitiation of meiosis. We explored the regulation of these cyclic nucleotides and their degrading PDE3A in growing oocytes. Our research addressed the LH-induced rather than spontaneous oocyte maturation. We examined 16-21 as compared to 25-day-old, PMSG-primed rats, treated with the LH analog, hCG. The effect of LH was also examined ex vivo, in isolated ovarian follicles. We found that hCG failed to induce oocyte maturation and ovulation in the younger animals and that ovulation-associated genes were not upregulated in response to this gonadotropin. Furthemore, the drop of intraoocyte cGMP and cAMP observed in fully grown oocytes upon exposure of the ovary to LH, was not detected in growing oocytes. Interestingly, whereas the global expression of PDE3A in growing and fully grown oocytes is similar, a significantly lower activity of this enzyme was determined in growing oocytes. Our findings show that meiotic incompetence is associated with a relatively high oocyte cGMP concentration and a low activity of PDE3A, which in follicle-enclosed oocytes may represent the failure of the somatic follicle cells to respond to LH.
Collapse
Affiliation(s)
- Eran Gershon
- Department of Ruminant Science, Agricultural Research Organization , Bet Dagan , Israel
| | - Iris Maimon
- Department of Biological Regulation, Weizmann Institute of Science , Rehovot , Israel
| | - Dalia Galiani
- Department of Biological Regulation, Weizmann Institute of Science , Rehovot , Israel
| | - Michal Elbaz
- Department of Ruminant Science, Agricultural Research Organization , Bet Dagan , Israel
| | - Sharon Karasenti
- Department of Ruminant Science, Agricultural Research Organization , Bet Dagan , Israel
| | - Nava Dekel
- Department of Biological Regulation, Weizmann Institute of Science , Rehovot , Israel
| |
Collapse
|
61
|
Nath P, Maitra S. Physiological relevance of nitric oxide in ovarian functions: An overview. Gen Comp Endocrinol 2019; 279:35-44. [PMID: 30244056 DOI: 10.1016/j.ygcen.2018.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/30/2018] [Accepted: 09/18/2018] [Indexed: 11/25/2022]
Abstract
Nitric oxide (NO, nitrogen monoxide), a short-lived, free radical carrying an unpaired electron, is one of the smallest molecules synthesized in the biological system. In addition to its role in angiogenesis, neuronal function and inflammatory response, NO has wide-spread significance in regulation of ovarian function in vertebrates. Based on tissue-specific expression, three different nitric oxide synthase (NOS) isoforms, neuronal (nNOS) or NOS1, inducible (iNOS) or NOS2 and endothelial (eNOS) or NOS3 have been identified. While expression of both inducible (iNOS) and constitutive NOS (eNOS) isoforms varies considerably in the ovary at various stages of follicular growth and development, selective binding of NO with proteins containing heme moieties have significant influence on ovarian steroidogenesis. Besides, NO modulation of ovulatory response suggests physiological significance of NO/NOS system in mammalian ovary. Compared to the duality of NO action on follicular development, steroidogenesis and meiotic maturation in mammalian models, participation of NO/NOS system in teleost ovary is less investigated. Genes encoding nos1 and nos2 have been identified in fish; however, presence of nos3 is still ambiguous. Interestingly, two distinct nos2 genes, nos2a and nos2b in zebrafish, possibly arose through whole genome duplication. Differential expression of major NOS isoforms in catfish ovary, NO inhibition of meiosis resumption in Anabas testudineus follicle-enclosed oocytes and NO/sGC/cGMP modulation of oocyte maturation in zebrafish are some of the recent advancements. The present overview is an update on the advancements made and shortfalls still remaining in NO/NOS modulation of intercellular communication in teleost vis-à-vis mammalian ovary.
Collapse
Affiliation(s)
- Poulomi Nath
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Sudipta Maitra
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
62
|
Monte APO, Santos JM, Menezes VG, Gouveia BB, Lins TLBG, Barberino RS, Oliveira JL, Donfack NJ, Matos MHT. Growth differentiation factor-9 improves development, mitochondrial activity and meiotic resumption of sheep oocytes after in vitro culture of secondary follicles. Reprod Domest Anim 2019; 54:1169-1176. [PMID: 31173652 DOI: 10.1111/rda.13485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 06/04/2019] [Indexed: 01/03/2023]
Abstract
This study analysed the effect of growth differentiation factor-9 (GDF-9) on the in vitro culture of isolated ovine secondary follicles. The follicles were cultured in α-MEM supplemented with BSA, insulin, glutamine, hypoxanthine, transferrin, selenium, ascorbic acid and FSH (α-MEM+ -control medium) or α-MEM+ supplemented with 1, 10, 50 or 100 ng/ml GDF-9. Next, the oocytes were destined to in vitro maturation (IVM). After 12 days of culture, there were no differences regarding the percentage of normal follicles, antrum formation and follicle diameter between the treatments (p > 0.05). The rates of fully grown oocytes (≥110 µm) were higher (p < 0.05) in 100 ng/ml GDF-9 than other treatments, except for 10 ng/ml of GDF-9 (p > 0.05). Treatment containing 100 ng/ml GDF-9 showed higher (p < 0.05) mitochondrial activity than the control group. Moreover, 100 ng/ml GDF-9 showed more oocytes in MI than α-MEM+ , 1 or 50 ng/ml GDF-9 (p < 0.05). In conclusion, 100 ng/ml GDF-9 increased the growth, mitochondrial function and meiotic resumption of oocytes from in vitro grown sheep secondary follicles.
Collapse
Affiliation(s)
- Alane P O Monte
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, Brazil
| | - Jamile M Santos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, Brazil
| | - Vanúzia G Menezes
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, Brazil
| | - Bruna B Gouveia
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, Brazil
| | - Thae L B G Lins
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, Brazil
| | - Ricássio S Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, Brazil
| | - Joãozito L Oliveira
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, Brazil
| | - Nathalie J Donfack
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, Brazil
| | - Maria Helena T Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, Brazil
| |
Collapse
|
63
|
Zhang H, Wei Q, Gao Z, Ma C, Yang Z, Zhao H, Liu C, Liu J, Zhao X, Ma B. G protein-coupled receptor 30 mediates meiosis resumption and gap junction communications downregulation in goat cumulus-oocyte complexes by 17β-estradiol. J Steroid Biochem Mol Biol 2019; 187:58-67. [PMID: 30414946 DOI: 10.1016/j.jsbmb.2018.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/18/2018] [Accepted: 11/03/2018] [Indexed: 11/17/2022]
Abstract
Estrogen plays a critical role in the regulation of gap junctions between oocytes and granulosa cells in mammalian ovaries. G protein-coupled receptor 30 (GPR30) was identified as a membrane estrogen receptor, mediating rapid, nongenomic signaling events that might be responsible for the regulation of oocyte meiosis resumption and gap junction intercellular communications (GJICs). The present study aimed to determine the expression and localization of GPR30 and its role in oocyte meiotic progression and GJICs in goat cumulus-oocyte complexes (COCs). Immunofluorescence experiments revealed that GPR30 was primarily located in the plasma membrane of cumulus cells and oocytes in goats. 17β-estradiol could promote oocyte meiotic progression, which was blocked by G15 (a selective GPR30 antagonist) but not ICI182780 (a nuclear estrogen receptor inhibitor) in the early stage of in vitro culture. The effect of 17β-estradiol on the GJICs was quantified by lucifer yellow (LY) microinjection and calcein-AM fluorescent dye diffusion. 17β-estradiol treatment of goat COCs resulted in rapid downregulation of GJICs. The transfer of calcein from cumulus cells to oocytes could be significantly inhibited by carbenoxolone (a known gap junction blocker), 17β-estradiol or G1 (a GPR30 agonist), and this inhibition could be reversed by G15 but not ICI182780, indicating that GPR30 mediates the effect of 17β-estradiol on the rapid downregulation of GJICs. 17β-estradiol also stimulated the serine 368 phosphorylation of connexin 43 (Cx43) when COCs were in vitro cultured for 4 h, 6 h, and 8 h. More importantly, 17β-estradiol or G1 could separately promote the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2) and Cx43 significantly when COCs were cultured for 4 h. Furthermore, both ERK1/2 and Cx43 phosphorylation could be inhibited by G15 and the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor AG1478 or by the ERK1/2 inhibitor PD98059, indicating that EGFR-ERK1/2 signaling was involved in these events. These results supported the hypothesis that GPR30 mediated 17β-estradiol-stimulated meiotic resumption and GJIC reduction in goat COCs. Thus, the present study provides novel insights into elucidating the mechanisms for steroid hormone action in the regulation of oocyte maturation.
Collapse
Affiliation(s)
- Hui Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Qiang Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Zhen Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Chiyuan Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Zhenshan Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Hui Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Chen Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Jie Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
64
|
Larose H, Shami AN, Abbott H, Manske G, Lei L, Hammoud SS. Gametogenesis: A journey from inception to conception. Curr Top Dev Biol 2019; 132:257-310. [PMID: 30797511 PMCID: PMC7133493 DOI: 10.1016/bs.ctdb.2018.12.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gametogenesis, the process of forming mature germ cells, is an integral part of both an individual's and a species' health and well-being. This chapter focuses on critical male and female genetic and epigenetic processes underlying normal gamete formation through their differentiation to fertilization. Finally, we explore how knowledge gained from this field has contributed to progress in areas with great clinical promise, such as in vitro gametogenesis.
Collapse
Affiliation(s)
- Hailey Larose
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Haley Abbott
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Gabriel Manske
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Lei Lei
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States.
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
65
|
Abstract
A central dogma of mammalian reproductive biology is that the size of the primordial follicle pool represents reproductive capacity in females. The assembly of the primordial follicle starts after the primordial germ cells (PGCs)-derived oocyte releases from the synchronously dividing germline cysts. PGCs initiate meiosis during fetal development. However, after synapsis and recombination of homologous chromosomes, they arrest at the diplotene stage of the first meiotic prophase (MI). The diplotene-arrested oocyte, together with the surrounding of a single layer of flattened granulosa cells, forms a basic unit of the ovary, the primordial follicle. At the start of each estrous (animal) or menstrual cycle (human), in response to a surge of luteinizing hormone (LH) from the pituitary gland, a limited number of primordial follicles are triggered to develop into primary follicles, preantral follicles, antral follicles and reach to preovulatory follicle stage. During the transition from the preantral to antral stages, the enclosed oocyte gradually acquires the capacity to resume meiosis. Meiotic resumption from the prophase of MI is morphologically characterized by the dissolution of the oocyte nuclear envelope, which is generally termed the "germinal vesicle breakdown" (GVBD). Following GVBD and completion of MI, the oocyte enters meiosis II without an obvious S-phase and arrests at metaphase phase II (MII) until fertilization. The underlying mechanism of meiotic arrest has been widely explored in numerous studies. Many studies indicated that two cellular second messengers, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) play an essential role in maintaining oocyte meiotic arrest. This review will discuss how these two cyclic nucleotides regulate oocyte maturation by blocking or initiating meiotic processes, and to provide an insight in future research.
Collapse
Affiliation(s)
- Bo Pan
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Building #70, Guelph, ON, N1G 2W1, Canada
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Building #70, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
66
|
Son WY, Henderson S, Cohen Y, Dahan M, Buckett W. Immature Oocyte for Fertility Preservation. Front Endocrinol (Lausanne) 2019; 10:464. [PMID: 31379739 PMCID: PMC6650526 DOI: 10.3389/fendo.2019.00464] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/26/2019] [Indexed: 12/19/2022] Open
Abstract
In vitro maturation (IVM) of human immature oocytes has been offered to women who are at risk of developing ovarian hyperstimulation syndrome (OHSS) caused by gonadotropin stimulation, such as PCO(S) patients or who have poor ovarian reserve. Cryopreservation of oocytes matured in vivo obtained in IVF cycles has improved after implementing the vitrification method and many successful results have been reported. Now, this procedure can be successfully offered to fertility preservation programs for patients who are in danger of losing their ovarian function due to medical or social reasons, and to oocyte donation programs. This vitrification technique has also been applied to cryopreserve oocytes obtained from IVM program. Some advantages of oocytes vitrification related with IVM are: (1) eliminating costly drugs and frequent monitoring; (2) completing treatment within 2 to 10 days (3) avoiding the use of hormones in cancer patients with hormone-sensitive tumors; and (4) retrieving oocytes at any point in menstrual cycle, even in the luteal phase. In addition, immature oocytes can also be collected from extracorporeal ovarian biopsy specimens or ovaries during caesarian section. Theoretically, there are two possible approaches for preserving immature oocytes: oocyte cryopreservation at the mature stage (after IVM) and oocyte cryopreservation at the Germinal Vesicle (GV)-stage (before IVM). Both vitrification of immature oocyte before/after IVM is not currently satisfactory. Nevertheless, many IVF centers worldwide are doing IVM oocyte cryopreservation as one of the options to preserve fertility for female cancer. Therefore, more studies are urgently required to improve IVM- and vitrification method to successfully preserve oocytes collected from cancer patients. In this review, present oocyte maturation mechanisms and recent progress of human IVM cycles will be discussed first, followed by some studies of the vitrification of human IVM oocyte.
Collapse
|
67
|
Moussa M, Li MQ, Zheng HY, Yang CY, Yan SF, Yu NQ, Huang JX, Shang JH. Developmental competence of buffalo (Bubalus bubalis) denuded oocytes cocultured with cumulus cells: Protective role of cumulus cells. Theriogenology 2018; 120:40-46. [DOI: 10.1016/j.theriogenology.2018.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/11/2018] [Accepted: 07/21/2018] [Indexed: 11/26/2022]
|
68
|
Cai H, Liu B, Yang T, Yang Y, Xu J, Wei Z, Deng G, Ning G, Li J, Wen J, Liu W, Ni Z, Ma Y, Zhang M, Zhou B, Xia G, Ouyang H, Wang C. Involvement of PKCε in FSH-induced connexin43 phosphorylation and oocyte maturation in mouse. Biol Open 2018; 7:bio.034678. [PMID: 30061305 PMCID: PMC6124567 DOI: 10.1242/bio.034678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gap junctions (GJs) are indispensable for communication between cumulus cells (CCs) and oocytes in coordinating the gonadotropin-induced meiotic maturation of oocytes. Of all proteins that constitute GJs, phosphorylated connexin43 (pCx43) is vital for mediating the actions of gonadotropins. In this study, the mechanism of Cx43 phosphorylation in response to follicle stimulating hormone (FSH) stimulation was examined using an in vitro model of mouse cumulus-oocyte complexes (COCs). The results confirmed that Cx43 phosphorylation occurred twice during FSH treatment. Importantly, the second Cx43 phosphorylation was closely related to cAMP level reduction within oocytes, which initiated oocyte maturation. Exploration of the underlying mechanism revealed that the CC-specific protein kinase C ε (PKCε) level was upregulated by FSH stimulation. PKCε was a kinase downstream from mitogen-activated protein kinase (MAPK) and was responsible for Cx43 phosphorylation. Interestingly, MAPK was involved in both Cx43 phosphorylation processes, while PKCε was only involved in the second. In conclusion, PKCε-mediated MAPK signals might contribute to Cx43 phosphorylation in CCs during FSH-induced oocyte meiotic resumption. Our findings contribute to a better understanding of the molecular regulation mechanism of oocyte maturation in response to FSH in vitro. Summary: This research clarifies the important role of PKCε in mediating MAPK action on CX43 phosphorylation during FSH-induced oocyte maturation in vitro, and further explores the regulation mechanism of oocyte maturation.
Collapse
Affiliation(s)
- Han Cai
- State Key Laboratory of Agrobiotechnology and Department of Animal Physiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bingying Liu
- State Key Laboratory of Agrobiotechnology and Department of Animal Physiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tingting Yang
- State Key Laboratory of Agrobiotechnology and Department of Animal Physiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yi Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jinrui Xu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Zhiqing Wei
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guangcun Deng
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Gang Ning
- State Key Laboratory of Agrobiotechnology and Department of Animal Physiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Junxia Li
- State Key Laboratory of Agrobiotechnology and Department of Animal Physiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jing Wen
- State Key Laboratory of Agrobiotechnology and Department of Animal Physiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wei Liu
- State Key Laboratory of Agrobiotechnology and Department of Animal Physiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhangli Ni
- State Key Laboratory of Agrobiotechnology and Department of Animal Physiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuzhen Ma
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010017, China
| | - Meijia Zhang
- State Key Laboratory of Agrobiotechnology and Department of Animal Physiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Bo Zhou
- State Key Laboratory of Agrobiotechnology and Department of Animal Physiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology and Department of Animal Physiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.,Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology and Department of Animal Physiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
69
|
Kam CY, Dubash AD, Magistrati E, Polo S, Satchell KJF, Sheikh F, Lampe PD, Green KJ. Desmoplakin maintains gap junctions by inhibiting Ras/MAPK and lysosomal degradation of connexin-43. J Cell Biol 2018; 217:3219-3235. [PMID: 29959233 PMCID: PMC6123000 DOI: 10.1083/jcb.201710161] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/26/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
Desmosomal mutations result in potentially deadly cardiocutaneous disease caused by electrical conduction defects and disruption of gap junctions. Kam et al. demonstrate a mechanism whereby loss of the intermediate filament anchoring protein desmoplakin stimulates Cx43 turnover by increasing K-Ras expression, marking Cx43 for lysosomal degradation through ERK1/2 phosphorylation. Desmoplakin (DP) is an obligate component of desmosomes, intercellular adhesive junctions that maintain the integrity of the epidermis and myocardium. Mutations in DP can cause cardiac and cutaneous disease, including arrhythmogenic cardiomyopathy (ACM), an inherited disorder that frequently results in deadly arrhythmias. Conduction defects in ACM are linked to the remodeling and functional interference with Cx43-based gap junctions that electrically and chemically couple cells. How DP loss impairs gap junctions is poorly understood. We show that DP prevents lysosomal-mediated degradation of Cx43. DP loss triggered robust activation of ERK1/2–MAPK and increased phosphorylation of S279/282 of Cx43, which signals clathrin-mediated internalization and subsequent lysosomal degradation of Cx43. RNA sequencing revealed Ras-GTPases as candidates for the aberrant activation of ERK1/2 upon loss of DP. Using a novel Ras inhibitor, Ras/Rap1-specific peptidase (RRSP), or K-Ras knockdown, we demonstrate restoration of Cx43 in DP-deficient cardiomyocytes. Collectively, our results reveal a novel mechanism for the regulation of the Cx43 life cycle by DP in cardiocutaneous models.
Collapse
Affiliation(s)
- Chen Yuan Kam
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Adi D Dubash
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Simona Polo
- Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy.,Dipartimento di Oncologia ed Emato-oncologia, Universita' degli Studi di Milano, Milan, Italy
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Farah Sheikh
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Paul D Lampe
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Research Center, Seattle, WA
| | - Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL .,Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| |
Collapse
|
70
|
Lew R. Natural history of ovarian function including assessment of ovarian reserve and premature ovarian failure. Best Pract Res Clin Obstet Gynaecol 2018; 55:2-13. [PMID: 30420162 DOI: 10.1016/j.bpobgyn.2018.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/04/2018] [Indexed: 12/12/2022]
Abstract
This chapter describes ovarian anatomy and embryology in humans. The formation of the ovarian reserve is discussed, and events of folliculogenesis are described, including description of developmental events in primordial, primary, secondary, antral and periovulatory follicles. Paracrine and autocrine factors play critical roles in oocyte maturation and follicular development, and research related to the hypothesised roles of individual factors is discussed. Gonadotrophin-dependent events relating to dominant follicle selection are discussed. The two-cell, two-gonadotrophin hypothesis of ovarian steroidogenesis is explained. The clinical role of AMH is outlined. Premature ovarian failure and known associated aetiological factors are described. In the conclusion, with an understanding of the principle events of ovarian folliculogenesis, the follicular wave theory is described, and it is explained how adaptation of ovarian stimulation regimens may achieve time-efficient fertility preservation treatment options for patients with cancer.
Collapse
Affiliation(s)
- Raelia Lew
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Melbourne, Level 7 Royal Women's Hospital, 50 Flemmington Parade, Parkville, 3052, Australia; Melbourne IVF, 340 Victoria Parade, East Melbourne, 3002, Australia.
| |
Collapse
|
71
|
Campen KA, Abbott CR, Rispoli LA, Payton RR, Saxton AM, Edwards JL. Heat stress impairs gap junction communication and cumulus function of bovine oocytes. J Reprod Dev 2018; 64:385-392. [PMID: 29937465 PMCID: PMC6189573 DOI: 10.1262/jrd.2018-029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The intimate association of cumulus cells with one another and with the oocyte is important for regulating oocyte meiotic arrest and resumption. The objective of this study was to determine
the effects of heat stress on cumulus cell communication and functions that may be related to accelerated oocyte meiosis during early maturation. Bovine cumulus-oocyte complexes underwent
in vitro maturation for up to 6 h at thermoneutral control (38.5°C) or elevated (40.0, 41.0 or 42.0°C) temperatures. Gap junction communication between the cumulus cells
and the oocyte was assessed using the fluorescent dye calcein after 4 h of in vitro maturation. Dye transfer was reduced in cumulus-oocyte complexes matured at 41.0°C or
42.0°C; transfer at 40.0°C was similar to control (P < 0.0001). Subsequent staining of oocytes with Hoechst revealed that oocytes matured at 41.0 or 42.0°C contained chromatin at more
advanced stages of condensation. Maturation of cumulus-oocyte complexes at elevated temperatures reduced levels of active 5’ adenosine monophosphate activated kinase (P = 0.03). Heat stress
exposure had no effect on active extracellular-regulated kinase 1/2 in oocytes (P = 0.67), associated cumulus cells (P = 0.60) or intact cumulus-oocyte complexes (P = 0.44). Heat-induced
increases in progesterone production by cumulus-oocyte complexes were detected during the first 6 h of maturation (P = 0.001). Heat-induced alterations in gap junction communication and
other cumulus-cell functions likely cooperate to accelerate bovine oocyte meiotic progression.
Collapse
Affiliation(s)
- Kelly A Campen
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - Chelsea R Abbott
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - Louisa A Rispoli
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - Rebecca R Payton
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - Arnold M Saxton
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| | - J Lannett Edwards
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN 37996-4574, USA
| |
Collapse
|
72
|
Vigone G, Shuhaibar LC, Egbert JR, Uliasz TF, Movsesian MA, Jaffe LA. Multiple cAMP Phosphodiesterases Act Together to Prevent Premature Oocyte Meiosis and Ovulation. Endocrinology 2018; 159:2142-2152. [PMID: 29608743 PMCID: PMC5913618 DOI: 10.1210/en.2018-00017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/22/2018] [Indexed: 12/27/2022]
Abstract
Luteinizing hormone (LH) acts on the granulosa cells that surround the oocyte in mammalian preovulatory follicles to cause meiotic resumption and ovulation. Both of these responses are mediated primarily by an increase in cyclic adenosine monophosphate (cAMP) in the granulosa cells, and the activity of cAMP phosphodiesterases (PDEs), including PDE4, contributes to preventing premature responses. However, two other cAMP-specific PDEs, PDE7 and PDE8, are also expressed at high levels in the granulosa cells, raising the question of whether these PDEs also contribute to preventing uncontrolled activation of meiotic resumption and ovulation. With the use of selective inhibitors, we show that inhibition of PDE7 or PDE8 alone has no effect on the cAMP content of follicles, and inhibition of PDE4 alone has only a small and variable effect. In contrast, a mixture of the three inhibitors elevates cAMP to a level comparable with that seen with LH. Correspondingly, inhibition of PDE7 or PDE8 alone has no effect on meiotic resumption or ovulation, and inhibition of PDE4 alone has only a partial and slow effect. However, the fraction of oocytes resuming meiosis and undergoing ovulation is increased when PDE4, PDE7, and PDE8 are simultaneously inhibited. PDE4, PDE7, and PDE8 also function together to suppress the premature synthesis of progesterone and progesterone receptors, which are required for ovulation. Our results indicate that three cAMP PDEs act in concert to suppress premature responses in preovulatory follicles.
Collapse
Affiliation(s)
- Giulia Vigone
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
- Correspondence: Giulia Vigone, PhD, or Laurinda A. Jaffe, PhD, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030. E-mail: or
| | - Leia C Shuhaibar
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Jeremy R Egbert
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Tracy F Uliasz
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Matthew A Movsesian
- Cardiology Section, VA Salt Lake City Health Care System, and Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Laurinda A Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
- Correspondence: Giulia Vigone, PhD, or Laurinda A. Jaffe, PhD, Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030. E-mail: or
| |
Collapse
|
73
|
Richards JS, Ascoli M. Endocrine, Paracrine, and Autocrine Signaling Pathways That Regulate Ovulation. Trends Endocrinol Metab 2018; 29:313-325. [PMID: 29602523 DOI: 10.1016/j.tem.2018.02.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/09/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022]
Abstract
The central role of luteinizing hormone (LH) and its receptor (LHCGR) in triggering ovulation has been recognized for decades. Because the LHCGR is present in the mural (outermost) granulosa cell layer of preovulatory follicles (POFs), the LH-initiated signal has to be transmitted to another somatic cell type (cumulus granulosa cells) and the oocyte to release a fertilizable oocyte. Recent studies have shown that activation of the LHCGR initiates vectorial transfer of information among the two somatic cell types and the oocyte and the molecules and signaling pathways involved are now better understood. This review summarizes the newer developments on the complex signaling pathways that regulate ovulation.
Collapse
Affiliation(s)
- JoAnne S Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mario Ascoli
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
74
|
Conti M, Franciosi F. Acquisition of oocyte competence to develop as an embryo: integrated nuclear and cytoplasmic events. Hum Reprod Update 2018; 24:245-266. [PMID: 29432538 PMCID: PMC5907346 DOI: 10.1093/humupd/dmx040] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/01/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Infertility affects ~7% of couples of reproductive age with little change in incidence in the last two decades. ART, as well as other interventions, have made major strides in correcting this condition. However, and in spite of advancements in the field, the age of the female partner remains a main factor for a successful outcome. A better understanding of the final stages of gamete maturation yielding an egg that can sustain embryo development and a pregnancy to term remains a major area for improvement in the field. This review will summarize the major cellular and molecular events unfolding at the oocyte-to-embryo transition. We will provide an update on the most important processes/pathways currently understood as the basis of developmental competence, including the molecular processes involved in mRNA storage, its recruitment to the translational machinery, and its degradation. We will discuss the hypothesis that the translational programme of maternal mRNAs plays a key role in establishing developmental competence. These regulations are essential to assemble the machinery that is used to establish a totipotent zygote. This hypothesis further supports the view that embryogenesis begins during oogenesis. A better understanding of the events required for developmental competence will guide the development of novel strategies to monitor and improve the success rate of IVF. Using this information, it will be possible to develop new biomarkers that may be used to better predict oocyte quality and in selection of the best egg for IVF.
Collapse
Affiliation(s)
- Marco Conti
- Department of OBGYN-RS, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0556, USA
| | - Federica Franciosi
- Department of OBGYN-RS, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0556, USA
| |
Collapse
|
75
|
Richani D, Gilchrist RB. The epidermal growth factor network: role in oocyte growth, maturation and developmental competence. Hum Reprod Update 2018; 24:1-14. [PMID: 29029246 DOI: 10.1093/humupd/dmx029] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The LH surge induces great physiological changes within the preovulatory follicle, which culminate in the ovulation of a mature oocyte that is capable of supporting embryo and foetal development. However, unlike mural granulosa cells, the oocyte and its surrounding cumulus cells are not directly responsive to LH, indicating that the LH signal is mediated by secondary factors produced by the granulosa cells. The mechanisms by which the oocyte senses the ovulatory LH signal and hence prepares for ovulation has been a subject of considerable controversy for the past four decades. Within the last 15 years several significant insights have been made into the molecular mechanisms orchestrating oocyte development, maturation and ovulation. These findings centre on the epidermal growth factor (EGF) pathway and the role it plays in the complex signalling network that finely regulates oocyte maturation and ovulation. OBJECTIVE AND RATIONALE This review outlines the role of the EGF network during oocyte development and regulation of the ovulatory cascade, and in particular focuses on the effect of the EGF network on oocyte developmental competence. Application of this new knowledge to advances in ART is examined. SEARCH METHODS The PubMed database was used to search for peer-reviewed original and review articles concerning the EGF network. Publications offering a comprehensive description of the role of the EGF network in follicle and oocyte development were used. OUTCOMES It is now clear that acute upregulation of the EGF network is an essential component of the ovulatory cascade as it transmits the LH signal from the periphery of the follicle to the cumulus-oocyte complex (COC). More recent findings have elucidated new roles for the EGF network in the regulation of oocyte development. EGF signalling downregulates the somatic signal 3'5'-cyclic guanine monophosphate that suppresses oocyte meiotic maturation and simultaneously provides meiotic inducing signals. The EGF network also controls translation of maternal transcripts in the quiescent oocyte, a process that is integral to oocyte competence. As a means of restricting the ovulatory signal to the Graffian follicle, most COCs in the ovary are unresponsive to EGF-ligands. Recent studies have revealed that development of a functional EGF signalling network in cumulus cells requires dual endocrine (FSH) and oocyte paracrine cues (growth differentiation factor 9 and bone morphogenetic protein 15), and this occurs progressively in COCs during the last stages of folliculogenesis. Hence, a new concept to emerge is that cumulus cell acquisition of EGF receptor responsiveness represents a developmental hallmark in folliculogenesis, analogous to FSH-induction of LH receptor signalling in mural granulosa cells. Likewise, this event represents a major milestone in the oocyte's developmental progression and acquisition of developmental competence. It is now clear that EGF signalling is perturbed in COCs matured in vitro. This has inspired novel concepts in IVM systems to ameliorate this perturbation, resulting in improved oocyte developmental competence. WIDER IMPLICATIONS An oocyte of high quality is imperative for fertility. Elucidating the fundamental molecular and cellular mechanims by which the EGF network regulates oocyte maturation and ovulation can be expected to open new opportunities in ART. This knowledge has already led to advances in oocyte IVM in animal models. Translation of such advances into a clinical setting should increase the efficacy of IVM, making it a viable treatment option for a wide range of patients, thereby simplifying fertility treatment and bringing substantial cost and health benefits.
Collapse
Affiliation(s)
- Dulama Richani
- School of Women's and Children's Health, Discipline of Obstetrics and Gynaecology, University of New South Wales Sydney, NSW 2052, Australia
| | - Robert B Gilchrist
- School of Women's and Children's Health, Discipline of Obstetrics and Gynaecology, University of New South Wales Sydney, NSW 2052, Australia
| |
Collapse
|
76
|
Acuña-Hernández DG, Arreola-Mendoza L, Santacruz-Márquez R, García-Zepeda SP, Parra-Forero LY, Olivares-Reyes JA, Hernández-Ochoa I. Bisphenol A alters oocyte maturation by prematurely closing gap junctions in the cumulus cell-oocyte complex. Toxicol Appl Pharmacol 2018; 344:13-22. [DOI: 10.1016/j.taap.2018.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 10/18/2022]
|
77
|
Sahu K, Gupta A, Sharma A, Tiwari M, Pandey AN, Prasad S, Yadav PK, Pandey AK, Shrivastav TG, Chaube SK. Role of granulosa cell mitogen-activated protein kinase 3/1 in gonadotropin-mediated meiotic resumption from diplotene arrest of mammalian oocytes. Growth Factors 2018; 36:41-47. [PMID: 29842809 DOI: 10.1080/08977194.2018.1475372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In mammals, preovulatory oocytes are encircled by several layers of granulosa cells (GCs) in follicular microenvironment. These follicular oocytes are arrested at diplotene arrest due to high level of cyclic nucleotides from encircling GCs. Pituitary gonadotropin acts at the level of encircling GCs and increases adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP) and activates mitogen-activated protein kinase 3/1 (MAPK3/1) signaling pathway. The MAPK3/1 disrupts the gap junctions between encircling GCs and oocyte. The disruption of gap junctions interrupts the transfer of cyclic nucleotides to the oocyte that results a drop in intraoocyte cAMP level. A transient decrease in oocyte cAMP level triggers maturation promoting factor (MPF) destabilization. The destabilized MPF finally triggers meiotic resumption from diplotene arrest in follicular oocyte. Thus, MAPK3/1 from GCs origin plays important role in gonadotropin-mediated meiotic resumption from diplotene arrest in follicular oocyte of mammals.
Collapse
Affiliation(s)
- Kankshi Sahu
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| | - Anumegha Gupta
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| | - Alka Sharma
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| | - Meenakshi Tiwari
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| | - Ashutosh N Pandey
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| | - Shilpa Prasad
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| | - Pramod K Yadav
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| | - Ajai K Pandey
- b Department of Kayachikitsa, Faculty of Ayurveda , Banaras Hindu University , Varanasi , India
| | - Tulsidas G Shrivastav
- c Department of Reproductive Biomedicine , National Institute of Health and Family Welfare , New Delhi , India
| | - Shail K Chaube
- a Cell Physiology Laboratory, Department of Zoology , Institute of Science, Banaras Hindu University , Varanasi , India
| |
Collapse
|
78
|
Molecular Mechanisms of Prophase I Meiotic Arrest Maintenance and Meiotic Resumption in Mammalian Oocytes. Reprod Sci 2018; 26:1519-1537. [DOI: 10.1177/1933719118765974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mechanisms of meiotic prophase I arrest maintenance (germinal vesicle [GV] stage) and meiotic resumption (germinal vesicle breakdown [GVBD] stage) in mammalian oocytes seem to be very complicated. These processes are regulated via multiple molecular cascades at transcriptional, translational, and posttranslational levels, and many of them are interrelated. There are many molecular cascades of meiosis maintaining and meiotic resumption in oocyte which are orchestrated by multiple molecules produced by pituitary gland and follicular cells. Furthermore, many of these molecular cascades are duplicated, thus ensuring the stability of the entire system. Understanding mechanisms of oocyte maturation is essential to assess the oocyte status, develop effective protocols of oocyte in vitro maturation, and design novel contraceptive drugs. Mechanisms of meiotic arrest maintenance at prophase I and meiotic resumption in mammalian oocytes are covered in the present article.
Collapse
|
79
|
Bachelot A, Gilleron J, Meduri G, Guberto M, Dulon J, Boucherie S, Touraine P, Misrahi M. A common African variant of human connexin 37 is associated with Caucasian primary ovarian insufficiency and has a deleterious effect in vitro. Int J Mol Med 2018; 41:640-648. [PMID: 29207017 PMCID: PMC5752242 DOI: 10.3892/ijmm.2017.3257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/20/2017] [Indexed: 11/06/2022] Open
Abstract
Folliculogenesis requires communication between granulosa cells and oocytes, mediated by connexin-based gap junctions. Connexin 37 (Cx37)-deficient female mice are infertile. The present study assessed Cx37 deficiency in patients with primary ovarian insufficiency (POI). A candidate gene study was performed in patients and controls from the National Genotyping Center (Evry, France) including 58 Caucasian patients with idiopathic isolated POI and 142 Caucasian controls. Direct genomic sequencing of the coding regions of the GJA4 gene (encoding Cx37) was performed with the aim to identify a deleterious variant associated with POI and absent in ethnically matched controls. A single Cx37 variant absent in the control population was identified, namely a c.946G>A heterozygous substitution leading to a p.Gly316Ser variant that was present in two POI patients. This variant was absent in all Caucasian controls from various databases, and has been observed exclusively in African populations. This variant was identified to have a dominant negative effect in HeLa cells in vitro to alter connexon function (by 67.2±7.17%), as determined by Gap-fluorescence recovery after photobleaching. The alteration principally resulted from a decrease of cell surface connexons due to altered trafficking (by 47.73±8.59%). In marked contrast to this observation, a p.Pro258Ser variant frequent in all ethnic populations in databases had no functional effect in vitro. In conclusion, the present study reported on a Cx37 variant in two Caucasian POI patients, which was absent in control Caucasian populations, and which had a deleterious effect in vitro. It is therefore suggested that in the genetic context of the Caucasian population, this variant may contribute to POI.
Collapse
Affiliation(s)
- Anne Bachelot
- AP-HP, Department of Endocrinology and Reproductive Medicine, Pitié-Salpêtrière Hospital, Reference Center for Rare Endocrine Diseases of Growth, Reference Center for Rare Gynecological Pathologies
- University Pierre and Marie Curie, University Paris 6, F-75013 Paris
| | - Jerome Gilleron
- National Institute of Health and Medical Research INSERM U1065 - University of Nice-Sophia Antipolis, Mediterranean Center for Molecular Medicine C3M, F-06000 Nice
| | - Geri Meduri
- National Institute of Health and Medical Research INSERM U1195
| | - Mihelai Guberto
- University Paris-Sud, University Paris Saclay, Medical Faculty Paris-Sud, Bicêtre Hospital, F-94275 Le Kremlin Bicêtre
| | - Jerome Dulon
- AP-HP, Department of Endocrinology and Reproductive Medicine, Pitié-Salpêtrière Hospital, Reference Center for Rare Endocrine Diseases of Growth, Reference Center for Rare Gynecological Pathologies
| | - Sylviane Boucherie
- National Institute of Health and Medical Research UMR-S 757 INSERM, University Paris-Sud, F-91400 Orsay, France
| | - Philippe Touraine
- AP-HP, Department of Endocrinology and Reproductive Medicine, Pitié-Salpêtrière Hospital, Reference Center for Rare Endocrine Diseases of Growth, Reference Center for Rare Gynecological Pathologies
- University Pierre and Marie Curie, University Paris 6, F-75013 Paris
| | - Micheline Misrahi
- University Paris-Sud, University Paris Saclay, Medical Faculty Paris-Sud, Bicêtre Hospital, F-94275 Le Kremlin Bicêtre
| |
Collapse
|
80
|
Egbert JR, Yee SP, Jaffe LA. Luteinizing hormone signaling phosphorylates and activates the cyclic GMP phosphodiesterase PDE5 in mouse ovarian follicles, contributing an additional component to the hormonally induced decrease in cyclic GMP that reinitiates meiosis. Dev Biol 2018; 435:6-14. [PMID: 29341896 DOI: 10.1016/j.ydbio.2018.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
Abstract
Prior to birth, oocytes within mammalian ovarian follicles initiate meiosis, but then arrest in prophase until puberty, when with each reproductive cycle, one or more follicles are stimulated by luteinizing hormone (LH) to resume meiosis in preparation for fertilization. Within preovulatory follicles, granulosa cells produce high levels of cGMP, which diffuses into the oocyte to maintain meiotic arrest. LH signaling restarts meiosis by rapidly lowering the levels of cGMP in the follicle and oocyte. Part of this decrease is mediated by the dephosphorylation and inactivation the NPR2 guanylyl cyclase in response to LH, but the mechanism for the remainder of the cGMP decrease is unknown. At least one cGMP phosphodiesterase, PDE5, is activated by LH signaling, which would contribute to lowering cGMP. PDE5 exhibits increased cGMP-hydrolytic activity when phosphorylated on serine 92, and we recently demonstrated that LH signaling phosphorylates PDE5 on this serine and increases its activity in rat follicles. To test the extent to which this mechanism contributes to the cGMP decrease that restarts meiosis, we generated a mouse line in which serine 92 was mutated to alanine (Pde5-S92A), such that it cannot be phosphorylated. Here we show that PDE5 phosphorylation is required for the LH-induced increase in cGMP-hydrolytic activity, but that this increase has only a modest effect on the LH-induced cGMP decrease in mouse follicles, and does not affect the timing of meiotic resumption. Though we show that the activation of PDE5 is among the mechanisms contributing to the cGMP decrease, these results suggest that another cGMP phosphodiesterase is also activated by LH signaling.
Collapse
Affiliation(s)
- Jeremy R Egbert
- Department of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA.
| | - Siu-Pok Yee
- Department of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA; Center for Mouse Genome Modification, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA.
| | - Laurinda A Jaffe
- Department of Cell Biology, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA.
| |
Collapse
|
81
|
Clarke HJ. Regulation of germ cell development by intercellular signaling in the mammalian ovarian follicle. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:10.1002/wdev.294. [PMID: 28892263 PMCID: PMC5746469 DOI: 10.1002/wdev.294] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/21/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022]
Abstract
Prior to ovulation, the mammalian oocyte undergoes a process of differentiation within the ovarian follicle that confers on it the ability to give rise to an embryo. Differentiation comprises two phases-growth, during which the oocyte increases more than 100-fold in volume as it accumulates macromolecules and organelles that will sustain early embryogenesis; and meiotic maturation, during which the oocyte executes the first meiotic division and prepares for the second division. Entry of an oocyte into the growth phase appears to be triggered when the adjacent granulosa cells produce specific growth factors. As the oocyte grows, it elaborates a thick extracellular coat termed the zona pellucida. Nonetheless, cytoplasmic extensions of the adjacent granulosa cells, termed transzonal projections (TZPs), enable them to maintain contact-dependent communication with the oocyte. Through gap junctions located where the TZP tips meet the oocyte membrane, they provide the oocyte with products that sustain its metabolic activity and signals that regulate its differentiation. Conversely, the oocyte secretes diffusible growth factors that regulate proliferation and differentiation of the granulosa cells. Gap junction-permeable products of the granulosa cells prevent precocious initiation of meiotic maturation, and the gap junctions also enable oocyte maturation to begin in response to hormonal signals received by the granulosa cells. Development of the oocyte or the somatic compartment may also be regulated by extracellular vesicles newly identified in follicular fluid and at TZP tips, which could mediate intercellular transfer of macromolecules. Oocyte differentiation thus depends on continuous signaling interactions with the somatic cells of the follicle. WIREs Dev Biol 2018, 7:e294. doi: 10.1002/wdev.294 This article is categorized under: Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Signaling Pathways > Cell Fate Signaling Early Embryonic Development > Gametogenesis.
Collapse
Affiliation(s)
- Hugh J Clarke
- Department of Obstetrics and Gynecology, Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada
| |
Collapse
|
82
|
Prochazka R, Blaha M, Němcová L. Significance of epidermal growth factor receptor signaling for acquisition of meiotic and developmental competence in mammalian oocytes†. Biol Reprod 2017; 97:537-549. [DOI: 10.1093/biolre/iox112] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/30/2017] [Indexed: 12/28/2022] Open
|
83
|
Abstract
Recently, the existence of a mechanism for neo-oogenesis in the ovaries of adult mammals has generated much controversy within reproductive biology. This mechanism, which proposes that the ovary has cells capable of renewing the follicular reserve, has been described for various species of mammals. The first evidence was found in prosimians and humans. However, these findings were not considered relevant because the predominant dogma for reproductive biology at the time was that of Zuckerman. This dogma states that female mammals are born with finite numbers of oocytes that decline throughout postnatal life. Currently, the concept of neo-oogenesis has gained momentum due to the discovery of cells with mitotic activity in adult ovaries of various mammalian species (mice, humans, rhesus monkeys, domestic animals such as pigs, and wild animals such as bats). Despite these reports, the concept of neo-oogenesis has not been widely accepted by the scientific community, generating much criticism and speculation about its accuracy because it has been impossible to reproduce some evidence. This controversy has led to the creation of two positions: one in favour of neo-oogenesis and the other against it. Various animal models have been used in support of both camps, including both classic laboratory animals and domestic and wild animals. The aim of this review is to critically present the current literature on the subject and to evaluate the arguments pro and contra neo-oogenesis in mammals.
Collapse
|
84
|
Arur S. Signaling-Mediated Regulation of Meiotic Prophase I and Transition During Oogenesis. Results Probl Cell Differ 2017; 59:101-123. [PMID: 28247047 DOI: 10.1007/978-3-319-44820-6_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Generation of healthy oocytes requires coordinated regulation of multiple cellular events and signaling pathways. Oocytes undergo a unique developmental growth and differentiation pattern interspersed with long periods of arrest. Oocytes from almost all species arrest in prophase I of oogenesis that allows for long period of growth and differentiation essential for normal oocyte development. Depending on species, oocytes that transit from prophase I to meiosis I also arrest at meiosis I for fairly long periods of time and then undergo a second arrest at meiosis II that is completed upon fertilization. While there are species-specific differences in C. elegans, D. melanogaster, and mammalian oocytes in stages of prophase I, meiosis I, or meiosis II arrest, in all cases cell signaling pathways coordinate the developmental events controlling oocyte growth and differentiation to regulate these crucial phases of transition. In particular, the ERK MAP kinase signaling pathway, cyclic AMP second messengers, and the cell cycle regulators CDK1/cyclin B are key signaling pathways that seem evolutionarily conserved in their control of oocyte growth and meiotic maturation across species. Here, I identify the common themes and differences in the regulation of key meiotic events during oocyte growth and maturation.
Collapse
Affiliation(s)
- Swathi Arur
- Department of Genetics, UT M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
85
|
Okudaira Y, Wakai T, Funahashi H. Levels of cyclic-AMP and cyclic-GMP in porcine oocyte-cumulus complexes and cumulus-free oocytes derived from small and middle follicles during the first 24-hour period of in vitro maturation. J Reprod Dev 2017; 63:191-197. [PMID: 28228615 PMCID: PMC5401813 DOI: 10.1262/jrd.2016-156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/27/2017] [Indexed: 01/15/2023] Open
Abstract
The objective of this study was to compare the cAMP and cGMP levels in cumulus-oocyte complexes (COCs) derived from the middle follicles (MFs, 3-6 mm in diameter) and small follicles (SFs, 1-3 mm in diameter) of pre-pubertal gilts during the first 24-h period of maturation in vitro (IVM). Both cAMP and cGMP levels in MF- and SF-derived oocytes did not change during this period. Although the cAMP levels increased in the COCs at 10 and 20 h after the start of IVM, the levels of cAMP were significantly higher in MF-derived COCs than in SF-derived COCs at 20 h after the start of IVM. On the other hand, the cGMP levels in COCs decreased to basal levels between 10 and 20 h after the start of the IVM, whereas cGMP levels were lower in SF-derived COCs than in MF-derived COCs during the first 10 h. The number of cumulus cells was larger in the MF-derived COCs than in the SF-derived COCs during the first 20-h period of IVM. The estimated cAMP level per cumulus cell at 10 h after the start of the IVM was higher in SF-derived COCs than in MF-derived COCs, whereas the estimated cGMP level per cumulus cell was no different between MF- and SF-derived COCs. From these results, we conclude that cAMP and cGMP levels in COCs, but not in oocytes, drastically change during the first 20-h period of IVM, and that both cAMP and cGMP levels significantly differ between MF- and SF-derived COCs.
Collapse
Affiliation(s)
- Yuichi Okudaira
- Department of Animal Science, Graduate School of Environment and Life Science, Okayama University, Okayama 700-8530 Japan
| | - Takuya Wakai
- Department of Animal Science, Graduate School of Environment and Life Science, Okayama University, Okayama 700-8530 Japan
| | - Hiroaki Funahashi
- Department of Animal Science, Graduate School of Environment and Life Science, Okayama University, Okayama 700-8530 Japan
| |
Collapse
|
86
|
Richard S, Baltz JM. Preovulatory suppression of mouse oocyte cell volume-regulatory mechanisms is via signalling that is distinct from meiotic arrest. Sci Rep 2017; 7:702. [PMID: 28386066 PMCID: PMC5429605 DOI: 10.1038/s41598-017-00771-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/09/2017] [Indexed: 12/02/2022] Open
Abstract
GLYT1-mediated glycine transport is the main cell volume-homeostatic mechanism in mouse eggs and early preimplantation embryos. It is unique to these developmental stages and key to their healthy development. GLYT1 first becomes activated in oocytes only after ovulation is triggered, when meiotic arrest of the oocyte is released, but how this occurs was unknown. Here we show that GLYT1 activity is suppressed in oocytes in the preovulatory antral follicle and that its suppression is mediated by a mechanism distinct from the gap junction-dependent Natriuretic Peptide Precursor C (NPPC) pathway that controls meiotic arrest. GLYT1 remained suppressed in isolated antral follicles but not isolated cumulus-oocyte complexes (COCs) or isolated oocytes. Moreover, activating the NPPC signalling pathway could not prevent GLYT1 activation in oocytes within COCs despite maintaining meiotic arrest. Furthermore, blocking gap junctions in isolated follicles failed to induce GLYT1 activity in enclosed oocytes for an extended period after meiosis had resumed. Finally, isolated mural granulosa cells from preovulatory antral follicles were sufficient to suppress GLYT1 in oocytes within co-cultured COCs. Together, these results suggest that suppression of GLYT1 activity before ovulation is mediated by a novel signalling pathway likely originating from preovulatory mural granulosa cells.
Collapse
Affiliation(s)
- Samantha Richard
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Obstetrics and Gynecology and Department of Cellular and Molecular Medicine, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| | - Jay M Baltz
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
- Department of Obstetrics and Gynecology and Department of Cellular and Molecular Medicine, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada.
| |
Collapse
|
87
|
Analysis of LH receptor in canine ovarian follicles throughout the estrous cycle. Theriogenology 2017; 93:71-77. [DOI: 10.1016/j.theriogenology.2017.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 01/15/2017] [Accepted: 01/15/2017] [Indexed: 12/25/2022]
|
88
|
Tian X, Anthony K, Diaz FJ. Transition Metal Chelator Induces Progesterone Production in Mouse Cumulus-Oocyte Complexes and Corpora Lutea. Biol Trace Elem Res 2017; 176:374-383. [PMID: 27604975 DOI: 10.1007/s12011-016-0841-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
Abstract
Progesterone production is upregulated in granulosa cells (cumulus and mural) after the LH surge, but the intra-follicular mechanisms regulating this transition are not completely known. Recent findings show that the transition metal chelator, N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN), impairs ovarian function. In this study, we provide evidence that chelating transition metals, including zinc, enhances progesterone production. The findings show that TPEN (transition metal chelator) increases abundance of Cyp11a1 and Star messenger RNA (mRNA) between 8- and 20-fold and progesterone production more than 3-fold in cultured cumulus-oocyte complexes (COC). Feeding a zinc-deficient diet for 10 days, but not 3 days, increased Star, Hsd3b, and prostaglandin F2 alpha receptor (Ptgfr) mRNA ~2.5-fold, suggesting that the effect of TPEN is through modulation of zinc availability. Progesterone from cumulus cells promotes oocyte developmental potential. Blocking progesterone production with epostane during maturation reduced subsequent blastocyst formation from 89 % in control to 18 % in epostane-treated complexes, but supplementation with progesterone restored blastocyst developmental potential to 94 %. Feeding a zinc-deficient diet for 5 days before ovulation did not affect the number of CL, STAR protein, or serum progesterone. However, incubating luteal tissue with TPEN increased abundance of Star, Hsd3b, and Ptgfr mRNA 2-3-fold and increased progesterone production 3-fold. TPEN is known to abolish SMAD2/3 signaling in cumulus cells. However, treatment of COC with the SMAD2/3 phosphorylation inhibitor, SB421542, did not by itself induce steroidogenic transcripts but did potentiate EGF-induced Star mRNA expression. Collectively, the results show that depletion of transition metals with TPEN acutely enhances progesterone biosynthesis in COC and luteal tissue.
Collapse
Affiliation(s)
- X Tian
- Center for Reproductive Biology and Health and Department of Animal Science, Pennsylvania State University, 206 Henning Building, University Park, PA, 16802, USA
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, 2236 Marsico Hall, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - K Anthony
- Center for Reproductive Biology and Health and Department of Animal Science, Pennsylvania State University, 206 Henning Building, University Park, PA, 16802, USA
| | - Francisco J Diaz
- Center for Reproductive Biology and Health and Department of Animal Science, Pennsylvania State University, 206 Henning Building, University Park, PA, 16802, USA.
| |
Collapse
|
89
|
Jaffe LA, Egbert JR. Regulation of Mammalian Oocyte Meiosis by Intercellular Communication Within the Ovarian Follicle. Annu Rev Physiol 2017; 79:237-260. [PMID: 27860834 PMCID: PMC5305431 DOI: 10.1146/annurev-physiol-022516-034102] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Meiotic progression in mammalian preovulatory follicles is controlled by the granulosa cells around the oocyte. Cyclic GMP (cGMP) generated in the granulosa cells diffuses through gap junctions into the oocyte, maintaining meiotic prophase arrest. Luteinizing hormone then acts on receptors in outer granulosa cells to rapidly decrease cGMP. This occurs by two complementary pathways: cGMP production is decreased by dephosphorylation and inactivation of the NPR2 guanylyl cyclase, and cGMP hydrolysis is increased by activation of the PDE5 phosphodiesterase. The cGMP decrease in the granulosa cells results in rapid cGMP diffusion out of the oocyte, initiating meiotic resumption. Additional, more slowly developing mechanisms involving paracrine signaling by extracellular peptides (C-type natriuretic peptide and EGF receptor ligands) maintain the low level of cGMP in the oocyte. These coordinated signaling pathways ensure a fail-safe system to prepare the oocyte for fertilization and reproductive success.
Collapse
Affiliation(s)
- Laurinda A Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030; ,
| | - Jeremy R Egbert
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030; ,
| |
Collapse
|
90
|
Lowther KM, Favero F, Yang CR, Taylor HS, Seli E. Embryonic poly(A)-binding protein is required at the preantral stage of mouse folliculogenesis for oocyte-somatic communication. Biol Reprod 2017; 96:341-351. [PMID: 28203794 DOI: 10.1095/biolreprod.116.141234] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 11/18/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2023] Open
Abstract
Embryonic poly(A)-binding protein (EPAB)-deficient mice are infertile due to defects in both the oocyte and the somatic cells of the ovary. Since EPAB is oocyte specific, the abnormalities in the somatic compartment of Epab−/− mice are likely due to factors inherent to the oocyte. Herein, we investigated whether oocyte–somatic communication is disrupted as a result of EPAB deficiency. We found that gap junctions are disrupted at the late preantral stage of folliculogenesis in Epab−/– mice and remain disrupted in cumulus-enclosed oocytes (COCs) from antral follicles. Consistent with the timing of gap junction dysfunction, F-actin staining of transzonal processes (TZPs) is lower in Epab−/− follicles at the late preantral stage and completely absent in Epab−/− COCs. Epab−/− oocytes express significantly lower levels of the junction protein E-cadherin, which is likely to be a contributing factor leading to premature TZP retraction. Overall, these results demonstrate that EPAB is important for oocyte–somatic communication by maintaining TZPs and gap junctions at the preantral stage of folliculogenesis.
Collapse
Affiliation(s)
- Katie M Lowther
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Federico Favero
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Cai-Rong Yang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
91
|
Das D, Khan PP, Maitra S. Endocrine and paracrine regulation of meiotic cell cycle progression in teleost oocytes: cAMP at the centre of complex intra-oocyte signalling events. Gen Comp Endocrinol 2017; 241:33-40. [PMID: 26773339 DOI: 10.1016/j.ygcen.2016.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/03/2016] [Accepted: 01/06/2016] [Indexed: 12/22/2022]
Abstract
Participation of major endocrine and/or local autocrine/paracrine factors and potential interplay between apparently disparate intra-oocyte signalling events during maintenance and withdrawal of meiotic prophase arrest has been an area of active research in recent years. Studies on oocyte maturation have contributed substantially in the discovery of some of the most important biochemical and cellular events like functional significance of novel membrane-associated steroid receptors, elucidation of maturation promoting factor (MPF), cytostatic factor (CSF) and other signalling cascades that entrain the cell cycle clock to hormonal stimuli. While follicular estrogen has largely been implicated in maintenance of prophase arrest, involvement of maturational steroid and membrane progestin receptor in resumption of meiotic G2-M1 transition in piscine oocytes has been shown earlier. Moreover, detection of ovarian IGF system, maturational gonadotropin stimulation of IGF ligands and potential synergism between maturational steroid and IGF1 in zebrafish oocytes are most recent advancements. Though endocrine/paracrine regulation of cyclic nucleotide-mediated signalling events in meiotic cell cycle progression is well established, involvement of PI3K/Akt signalling cascade has also been reported in fish, amphibian and mammalian oocytes. The major objective of this overview is to describe how fish oocytes maintain high cAMP/PKA activity and how steroid- and/or growth factor-mediated signalling cascade regulate this pathway for the withdrawal of meiotic arrest. Moreover, special emphasis is placed on some recent findings on interaction of PKA with some of the MPF-regulating components (e.g., synthesis of cyclin B or MEK/MAPK signalling cascade) for the maintenance of prophase arrest.
Collapse
Affiliation(s)
- Debabrata Das
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | | | - Sudipta Maitra
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
92
|
Norris RP, Baena V, Terasaki M. Localization of phosphorylated connexin 43 by serial section immunogold electron microscopy. J Cell Sci 2017; 130:1333-1340. [DOI: 10.1242/jcs.198408] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/09/2017] [Indexed: 02/05/2023] Open
Abstract
Gap junction turnover occurs by the internalization of both plasma membranes of a gap junction plaque to form a double membrane-enclosed vesicle, or connexosome. Phosphorylation has a key role in regulation, but further progress requires clearly distinguishing gap junctions and connexosomes and precisely localizing proteins to them. We examined by electron microscopy serial sections of mouse preovulatory ovarian follicles collected with an automated tape collecting ultramicrotome (ATUM). We found connexosomes may form from adjacent cell bodies, from thin cell processes, or from the same cell. By immunolabeling serial sections, we found S368 of connexin 43 is phosphorylated on gap junctions and connexosomes, whereas S262 is phosphorylated only on some connexosomes. These data suggest that S262 phosphorylation contributes to connexosome formation or processing, and provide more precise evidence that phosphorylation has a key role in gap junction internalization. Serial section electron microscopy of immunogold-labeled tissues offers a new way for investigating the three-dimensional organization of cells in their native environment.
Collapse
Affiliation(s)
- Rachael P. Norris
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Valentina Baena
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Mark Terasaki
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
93
|
Chaigne A, Terret ME, Verlhac MH. Asymmetries and Symmetries in the Mouse Oocyte and Zygote. Results Probl Cell Differ 2017; 61:285-299. [PMID: 28409310 DOI: 10.1007/978-3-319-53150-2_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mammalian oocytes grow periodically after puberty thanks to the dialogue with their niche in the follicle. This communication between somatic and germ cells promotes the accumulation, inside the oocyte, of maternal RNAs, proteins and other molecules that will sustain the two gamete divisions and early embryo development up to its implantation. In order to preserve their stock of maternal products, oocytes from all species divide twice minimizing the volume of their daughter cells to their own benefit. For this, they undergo asymmetric divisions in size where one main objective is to locate the division spindle with its chromosomes off-centred. In this chapter, we will review how this main objective is reached with an emphasis on the role of actin microfilaments in this process in mouse oocytes, the most studied example in mammals. This chapter is subdivided into three parts: I-General features of asymmetric divisions in mouse oocytes, II-Mechanism of chromosome positioning by actin in mouse oocytes and III-Switch from asymmetric to symmetric division at the oocyte-to-embryo transition.
Collapse
Affiliation(s)
- Agathe Chaigne
- MRC Laboratory for Molecular Cell Biology, UCL, London, WC1E 6BT, UK.,Institute for the Physics of Living Systems, UCL, London, WC1E 6BT, UK
| | | | | |
Collapse
|
94
|
Prochazka R, Blaha M. Regulation of mitogen-activated protein kinase 3/1 activity during meiosis resumption in mammals. J Reprod Dev 2016; 61:495-502. [PMID: 26688146 PMCID: PMC4685214 DOI: 10.1262/jrd.2015-069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In vivo, resumption of oocyte meiosis occurs in large ovarian follicles after the
preovulatory surge of luteinizing hormone (LH). The LH surge leads to the activation of a broad signaling
network in mural granulosa cells equipped with LH receptors. The signals generated in the mural granulosa
cells are further augmented by locally produced peptides or steroids and transferred to the cumulus cell
compartment and the oocyte itself. Over the last decade, essential progress has been made in the
identification of molecular events associated with the final maturation and ovulation of mammalian oocytes.
All new evidence argues for a multiple roles of mitogen-activated protein kinase 3/1 (MAPK3/1) in the
gonadotropin-induced ovulation processes. However, the knowledge of gonadotropin-induced signaling pathways
leading to MAPK3/1 activation in follicular cells seems limited. To date, only the LH-induced transactivation
of the epidermal growth factor receptor/MAPK3/1 pathway has been described in granulosa/cumulus cells even
though other mechanisms of MAPK3/1 activation have been detected in other types of cells. In this review, we
aimed to summarize recent advances in the elucidation of gonadotropin-induced mechanisms leading to the
activation of MAPK3/1 in preovulatory follicles and cultured cumulus-oocyte complexes and to point out a
specific role of this kinase in the processes accompanying final maturation of the mammalian oocyte.
Collapse
Affiliation(s)
- Radek Prochazka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | | |
Collapse
|
95
|
Krzyzanowski MC, Woldemariam S, Wood JF, Chaubey AH, Brueggemann C, Bowitch A, Bethke M, L’Etoile ND, Ferkey DM. Aversive Behavior in the Nematode C. elegans Is Modulated by cGMP and a Neuronal Gap Junction Network. PLoS Genet 2016; 12:e1006153. [PMID: 27459302 PMCID: PMC4961389 DOI: 10.1371/journal.pgen.1006153] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 06/08/2016] [Indexed: 01/03/2023] Open
Abstract
All animals rely on their ability to sense and respond to their environment to survive. However, the suitability of a behavioral response is context-dependent, and must reflect both an animal's life history and its present internal state. Based on the integration of these variables, an animal's needs can be prioritized to optimize survival strategies. Nociceptive sensory systems detect harmful stimuli and allow for the initiation of protective behavioral responses. The polymodal ASH sensory neurons are the primary nociceptors in C. elegans. We show here that the guanylyl cyclase ODR-1 functions non-cell-autonomously to downregulate ASH-mediated aversive behaviors and that ectopic cGMP generation in ASH is sufficient to dampen ASH sensitivity. We define a gap junction neural network that regulates nociception and propose that decentralized regulation of ASH signaling can allow for rapid correlation between an animal's internal state and its behavioral output, lending modulatory flexibility to this hard-wired nociceptive neural circuit.
Collapse
Affiliation(s)
- Michelle C. Krzyzanowski
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Sarah Woldemariam
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Jordan F. Wood
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Aditi H. Chaubey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Chantal Brueggemann
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Alexander Bowitch
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Mary Bethke
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Noelle D. L’Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Denise M. Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| |
Collapse
|
96
|
Lyga S, Volpe S, Werthmann RC, Götz K, Sungkaworn T, Lohse MJ, Calebiro D. Persistent cAMP Signaling by Internalized LH Receptors in Ovarian Follicles. Endocrinology 2016; 157:1613-21. [PMID: 26828746 DOI: 10.1210/en.2015-1945] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A crucial event in female reproduction occurs at midcycle, when a LH peak induces the final maturation of ovarian follicles. LH signals via a G protein-coupled receptor selectively expressed in the outermost follicular cell layers. However, how LH signals are relayed inside these cells and finally to the oocyte is incompletely understood. Here, we monitored LH signaling in intact ovarian follicles of transgenic mice expressing a fluorescent cAMP sensor. We found that LH stimulation induces 2 phases of cAMP signaling in all cell layers surrounding the oocyte. Interfering with LH receptor internalization abolished the second, persistent cAMP phase and partially inhibited oocyte meiosis resumption. These data suggest that persistent cAMP signals from internalized LH receptors contribute to transmitting LH effects inside follicle cells and ultimately to the oocyte. Thus, this study indicates that the recently proposed paradigm of cAMP signaling by internalized G protein-coupled receptors is implicated in receptor function and is physiologically relevant.
Collapse
Affiliation(s)
- Sandra Lyga
- Institute of Pharmacology and Toxicology, University of Würzburg, and Rudolf Virchow Center, Bio-Imaging Center, 97078 Würzburg, Germany
| | - Silvia Volpe
- Institute of Pharmacology and Toxicology, University of Würzburg, and Rudolf Virchow Center, Bio-Imaging Center, 97078 Würzburg, Germany
| | - Ruth C Werthmann
- Institute of Pharmacology and Toxicology, University of Würzburg, and Rudolf Virchow Center, Bio-Imaging Center, 97078 Würzburg, Germany
| | - Konrad Götz
- Institute of Pharmacology and Toxicology, University of Würzburg, and Rudolf Virchow Center, Bio-Imaging Center, 97078 Würzburg, Germany
| | - Titiwat Sungkaworn
- Institute of Pharmacology and Toxicology, University of Würzburg, and Rudolf Virchow Center, Bio-Imaging Center, 97078 Würzburg, Germany
| | - Martin J Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, and Rudolf Virchow Center, Bio-Imaging Center, 97078 Würzburg, Germany
| | - Davide Calebiro
- Institute of Pharmacology and Toxicology, University of Würzburg, and Rudolf Virchow Center, Bio-Imaging Center, 97078 Würzburg, Germany
| |
Collapse
|
97
|
Differential expression of GDF-9 and BMP- 15 during follicular development in canine ovaries evaluated by flow cytometry. Anim Reprod Sci 2016; 167:59-67. [DOI: 10.1016/j.anireprosci.2016.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/18/2016] [Accepted: 02/01/2016] [Indexed: 11/22/2022]
|
98
|
An essential role for the intra-oocyte MAPK activity in the NSN-to-SN transition of germinal vesicle chromatin configuration in porcine oocytes. Sci Rep 2016; 6:23555. [PMID: 27009903 PMCID: PMC4806380 DOI: 10.1038/srep23555] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/08/2016] [Indexed: 02/07/2023] Open
Abstract
The mechanisms for the transition from non-surrounded nucleolus (NSN) to surrounded nucleolus (SN) chromatin configuration during oocyte growth/maturation are unclear. By manipulating enzyme activities and measuring important molecules using small-follicle pig oocytes with a high proportion of NSN configuration and an extended germinal vesicle stage in vitro, this study has the first time up-to-date established the essential role for intra-oocyte mitogen-activated protein kinase (MAPK) in the NSN-to-SN transition. Within the oocyte in 1–2 mm follicles, a cAMP decline activates MAPK, which prevents the NSN-to-SN transition by activating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) while inhibiting histone deacetylase (HDAC). In cumulus cells of 1–2 mm follicles, a lower level of estradiol and oocyte-derived paracrine factor (ODPF) reduces natriuretic peptide receptor 2 (NPR2) while enhancing FSH and cAMP actions. FSH elevates cAMP levels, which decreases NPR2 while activating MAPK. MAPK closes the gap junctions, which, together with the NPR2 decrease, reduces cyclic guanosine monophosphate (cGMP) delivery leading to the cAMP decline within oocytes. In 3–6 mm follicles, a higher level of estradiol and ODPF and a FSH shortage initiate a reversion of the above events leading to MAPK inactivation and NSN-to-SN transition within oocytes.
Collapse
|
99
|
Egbert JR, Uliasz TF, Shuhaibar LC, Geerts A, Wunder F, Kleiman RJ, Humphrey JM, Lampe PD, Artemyev NO, Rybalkin SD, Beavo JA, Movsesian MA, Jaffe LA. Luteinizing Hormone Causes Phosphorylation and Activation of the cGMP Phosphodiesterase PDE5 in Rat Ovarian Follicles, Contributing, Together with PDE1 Activity, to the Resumption of Meiosis. Biol Reprod 2016; 94:110. [PMID: 27009040 PMCID: PMC4939740 DOI: 10.1095/biolreprod.115.135897] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/14/2016] [Indexed: 12/16/2022] Open
Abstract
The meiotic cell cycle of mammalian oocytes in preovulatory follicles is held in prophase arrest by diffusion of cGMP from the surrounding granulosa cells into the oocyte. Luteinizing hormone (LH) then releases meiotic arrest by lowering cGMP in the granulosa cells. The LH-induced reduction of cGMP is caused in part by a decrease in guanylyl cyclase activity, but the observation that the cGMP phosphodiesterase PDE5 is phosphorylated during LH signaling suggests that an increase in PDE5 activity could also contribute. To investigate this idea, we measured cGMP-hydrolytic activity in rat ovarian follicles. Basal activity was due primarily to PDE1A and PDE5, and LH increased PDE5 activity. The increase in PDE5 activity was accompanied by phosphorylation of PDE5 at serine 92, a protein kinase A/G consensus site. Both the phosphorylation and the increase in activity were promoted by elevating cAMP and opposed by inhibiting protein kinase A, supporting the hypothesis that LH activates PDE5 by stimulating its phosphorylation by protein kinase A. Inhibition of PDE5 activity partially suppressed LH-induced meiotic resumption as indicated by nuclear envelope breakdown, but inhibition of both PDE5 and PDE1 activities was needed to completely inhibit this response. These results show that activities of both PDE5 and PDE1 contribute to the LH-induced resumption of meiosis in rat oocytes, and that phosphorylation and activation of PDE5 is a regulatory mechanism.
Collapse
Affiliation(s)
- Jeremy R Egbert
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Tracy F Uliasz
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Leia C Shuhaibar
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Andreas Geerts
- Bayer Pharma AG, Pharma Research Center, Wuppertal, Germany
| | - Frank Wunder
- Bayer Pharma AG, Pharma Research Center, Wuppertal, Germany
| | - Robin J Kleiman
- Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
| | - John M Humphrey
- Pfizer Worldwide Research & Development, Groton, Connecticut
| | - Paul D Lampe
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Sergei D Rybalkin
- Department of Pharmacology, University of Washington, Seattle, Washington
| | - Joseph A Beavo
- Department of Pharmacology, University of Washington, Seattle, Washington
| | - Matthew A Movsesian
- Cardiology Section, VA Salt Lake City Health Care System and Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Laurinda A Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
100
|
Shimada M, Umehara T, Hoshino Y. Roles of epidermal growth factor (EGF)-like factor in the ovulation process. Reprod Med Biol 2016; 15:201-216. [PMID: 29259438 DOI: 10.1007/s12522-016-0236-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/01/2016] [Indexed: 12/22/2022] Open
Abstract
Luteinizing hormone (LH) surge stimulates preovulatory follicles to induce the ovulation process, including oocyte maturation, cumulus expansion, and granulosa cell luteinization. The matured oocytes surrounded by an expanded cumulus cell layer are released from follicles to the oviduct. However, LH receptors are dominantly expressed in granulosa cells, but less in cumulus cells and are not expressed in oocytes, indicating that the secondary factors expressed and secreted from LH-stimulated granulosa cells are required for the induction of the ovulation process. Prostaglandin and progesterone are well-known factors that are produced in granulosa cells and then stimulate in both granulosa and cumulus cells. The mutant mice of prostaglandin synthase (Ptgs2KO mice) or progesterone receptor (PRKO mice) revealed that the functions were essential to accomplish the ovulation process, but not to induce the ovulation process. To identify the factors initiating the transfer of the stimuli of LH surge from granulosa cells to cumulus cells, M. Conti's lab and our group performed microarray analysis of granulosa cells and identified the epidermal growth factor (EGF)-like factor, amphiregulin (AREG), epiregulin (EREG), and β-cellulin (BTC) that act on EGF receptor (EGFR) and then induce the ERK1/2 and Ca2+-PLC pathways in cumulus cells. When each of the pathways was down-regulated using a pharmacological approach or gene targeting study, the induction of cumulus expansion and oocyte maturation were dramatically suppressed, indicating that both pathways are inducers of the ovulation process. However, an in vitro culture study also revealed that the EGFR-induced unphysiological activation of PKC in cumulus cells accelerated oocyte maturation with low cytostatic activity. Thus, the matured oocytes are not arrested at the metaphase II (MII) stage and then spontaneously form pronuclei. The expression of another type of EGF-like factor, neuregulin 1 (NRG1), that does not act on EGFR, but selectively binds to ErbB3 is observed in granulosa cells after the LH surge. NRG1 supports EGFR-induced ERK1/2 phosphorylation, but reduces PKC activity to physiological level in the cumulus cells, which delays the timing of meiotic maturation of oocytes to adjust the timing of ovulation. Thus, both types of EGF-like factor are rapidly induced by LH surge and then stimulate cumulus cells to control ERK1/2 and PKC pathways, which results in the release of matured oocytes with a fertilization competence.
Collapse
Affiliation(s)
- Masayuki Shimada
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science Hiroshima University Higashi-Hiroshima 739-8528 Hiroshima Japan
| | - Takashi Umehara
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science Hiroshima University Higashi-Hiroshima 739-8528 Hiroshima Japan
| | - Yumi Hoshino
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science Hiroshima University Higashi-Hiroshima 739-8528 Hiroshima Japan
| |
Collapse
|