51
|
Fantetti KN, Zou Y, Fekete DM. Wnts and Wnt inhibitors do not influence axon outgrowth from chicken statoacoustic ganglion neurons. Hear Res 2011; 278:86-95. [PMID: 21530628 DOI: 10.1016/j.heares.2011.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/04/2011] [Accepted: 04/07/2011] [Indexed: 10/18/2022]
Abstract
The peripheral growth cones of statoacoustic ganglion (SAG) neurons are presumed to sense molecular cues to navigate to their sensory targets during development. Based on previously reported expression data for Frizzled receptors, Wnt ligands, and Wnt inhibitors, we hypothesized that some members of the Wnt morphogen family may function as repulsive cues for SAG neurites. The responses of SAG neurons to mammalian Wnts -1, -4, -5a, -6, and -7b, and the Wnt inhibitors sFRP -1, -2, and -3, were tested in vitro by growing SAG explants from embryonic day 4 (E4) chicken embryos for two days in 3D collagen gels. Average neurite length and density were quantified to determine effects on neurite outgrowth. SAG neurites were strongly repelled by human Sema3E, demonstrating SAG neurons are responsive under these assay conditions. In contrast, SAG neurons showed no changes in neurite outgrowth when cultured in the presence of Wnts and Wnt inhibitors. As an alternative approach, Wnt4 and Wnt5a were also tested in vivo by injecting retroviruses encoding these genes into the chicken otocyst on E3. On E6, no differences were evident in the peripheral projections of SAG axons terminating in infected sensory organs as compared to uninfected organs on the contralateral side of the same embryo. For all Wnt sources, bioactivity was confirmed on E6 chick spinal cord explants by observing enhanced axon outgrowth, as reported previously in the mouse. These results suggest that the tested Wnts do not play a role in guiding peripheral axons in the chicken inner ear.
Collapse
Affiliation(s)
- Kristen N Fantetti
- Department of Biological Sciences, Purdue University, 915 W State St, West Lafayette, IN 47907-1392, USA.
| | | | | |
Collapse
|
52
|
Wang R, Ahmed J, Wang G, Hassan I, Strulovici-Barel Y, Hackett NR, Crystal RG. Down-regulation of the canonical Wnt β-catenin pathway in the airway epithelium of healthy smokers and smokers with COPD. PLoS One 2011; 6:e14793. [PMID: 21490961 PMCID: PMC3072378 DOI: 10.1371/journal.pone.0014793] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 02/14/2011] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The Wnt pathway mediates differentiation of epithelial tissues; depending on the tissue types, Wnt can either drive or inhibit the differentiation process. We hypothesized that key genes in the Wnt pathway are suppressed in the human airway epithelium under the stress of cigarette smoking, a stress associated with dysregulation of the epithelial differentiated state. METHODOLOGY/PRINCIPAL FINDINGS Microarrays were used to assess the expression of Wnt-related genes in the small airway epithelium (SAE) obtained via bronchoscopy and brushing of healthy nonsmokers, healthy smokers, and smokers with COPD. Thirty-three of 56 known Wnt-related genes were expressed in the SAE. Wnt pathway downstream mediators β-catenin and the transcription factor 7-like 1 were down-regulated in healthy smokers and smokers with COPD, as were many Wnt target genes. Among the extracellular regulators that suppress the Wnt pathway, secreted frizzled-related protein 2 (SFRP2), was up-regulated 4.3-fold in healthy smokers and 4.9-fold in COPD smokers, an observation confirmed by TaqMan Real-time PCR, Western analysis and immunohistochemistry. Finally, cigarette smoke extract mediated up-regulation of SFRP2 and down-regulation of Wnt target genes in airway epithelial cells in vitro. CONCLUSIONS/SIGNIFICANCE Smoking down-regulates the Wnt pathway in the human airway epithelium. In the context that Wnt pathway plays an important role in differentiation of epithelial tissues, the down-regulation of Wnt pathway may contribute to the dysregulation of airway epithelium differentiation observed in smoking-related airway disorders.
Collapse
Affiliation(s)
- Rui Wang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Joumana Ahmed
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Guoqing Wang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Ibrahim Hassan
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Yael Strulovici-Barel
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Neil R. Hackett
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, United States of America
| |
Collapse
|
53
|
Wnt5a is a transcriptional target of Dlx homeogenes and promotes differentiation of interneuron progenitors in vitro and in vivo. J Neurosci 2011; 31:2675-87. [PMID: 21325536 DOI: 10.1523/jneurosci.3110-10.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During brain development, neurogenesis, migration, and differentiation of neural progenitor cells are regulated by an interplay between intrinsic genetic programs and extrinsic cues. The Dlx homeogene transcription factors have been proposed to directly control the genesis and maturation of GABAergic interneurons of the olfactory bulb (OB), subpallium, and cortex. Here we provide evidence that Dlx genes promote differentiation of olfactory interneurons via the signaling molecule Wnt5a. Dlx2 and Dlx5 interact with homeodomain binding sequences within the Wnt5a locus and activate its transcription. Exogenously provided Wnt5a promotes GABAergic differentiation in dissociated OB neurons and in organ-type brain cultures. Finally, we show that the Dlx-mutant environment is unfavorable for GABA differentiation, in vivo and in vitro. We conclude that Dlx genes favor interneuron differentiation also in a non-cell-autonomous fashion, via expression of Wnt5a.
Collapse
|
54
|
Frizzled3 is required for neurogenesis and target innervation during sympathetic nervous system development. J Neurosci 2011; 31:2371-81. [PMID: 21325504 DOI: 10.1523/jneurosci.4243-10.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The sympathetic nervous system has served as an amenable model system to investigate molecular mechanisms underlying developmental processes in the nervous system. While much attention has been focused on neurotrophic factors controlling survival and connectivity of postmitotic sympathetic neurons, relatively little is known about signaling mechanisms regulating development of sympathetic neuroblasts. Here, we report that Frizzled3 (Fz3), a member of the Wnt receptor family, is essential for maintenance of dividing sympathetic neuroblasts. In Fz3(-/-) mice, sympathetic neuroblasts exhibit decreased proliferation and premature cell cycle exit. Fz3(-/-) sympathetic neuroblasts also undergo enhanced apoptosis, which could not be rescued by eliminating the proapoptotic factor, Bax. These deficits result in reduced generation of sympathetic neurons and pronounced decreases in the size of sympathetic chain ganglia. Furthermore, the axons of sympathetic neurons that persist in Fz3(-/-) ganglia are able to extend out of sympathetic ganglia toward distal targets, but fail to fully innervate final peripheral targets. The cell cycle exit, but not target innervation, defects in Fz3(-/-) mice are phenocopied in mice with conditional ablation of β-catenin, a component of canonical Wnt signaling, in sympathetic precursors. Sympathetic ganglia and innervation of target tissues appeared normal in mice lacking a core planar cell polarity (PCP) component, Vangl2. Together, our results suggest distinct roles for Fz3 during sympathetic neuron development; Fz3 acts at early developmental stages to maintain a pool of dividing sympathetic precursors, likely via activation of β-catenin, and Fz3 functions at later stages to promote innervation of final peripheral targets by postmitotic sympathetic neurons.
Collapse
|
55
|
Blakely BD, Bye CR, Fernando CV, Horne MK, Macheda ML, Stacker SA, Arenas E, Parish CL. Wnt5a regulates midbrain dopaminergic axon growth and guidance. PLoS One 2011; 6:e18373. [PMID: 21483795 PMCID: PMC3069098 DOI: 10.1371/journal.pone.0018373] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 03/04/2011] [Indexed: 11/19/2022] Open
Abstract
During development, precise temporal and spatial gradients are responsible for
guiding axons to their appropriate targets. Within the developing ventral
midbrain (VM) the cues that guide dopaminergic (DA) axons to their forebrain
targets remain to be fully elucidated. Wnts are morphogens that have been
identified as axon guidance molecules. Several Wnts are expressed in the VM
where they regulate the birth of DA neurons. Here, we describe that a precise
temporo-spatial expression of Wnt5a accompanies the development of nigrostriatal
projections by VM DA neurons. In mice at E11.5, Wnt5a is
expressed in the VM where it was found to promote DA neurite and axonal growth
in VM primary cultures. By E14.5, when DA axons are approaching their striatal
target, Wnt5a causes DA neurite retraction in primary cultures. Co-culture of VM
explants with Wnt5a-overexpressing cell aggregates revealed that Wnt5a is
capable of repelling DA neurites. Antagonism experiments revealed that the
effects of Wnt5a are mediated by the Frizzled receptors and by the small GTPase,
Rac1 (a component of the non-canonical Wnt planar cell polarity pathway).
Moreover, the effects were specific as they could be blocked by Wnt5a antibody,
sFRPs and RYK-Fc. The importance of Wnt5a in DA axon morphogenesis was further
verified in Wnt5a−/− mice, where
fasciculation of the medial forebrain bundle (MFB) as well as the density of DA
neurites in the MFB and striatal terminals were disrupted. Thus, our results
identify a novel role of Wnt5a in DA axon growth and guidance.
Collapse
Affiliation(s)
- Brette D. Blakely
- Florey Neuroscience Institutes, The University of Melbourne, Victoria,
Australia
- Centre for Neurosciences, The University of Melbourne, Victoria,
Australia
| | - Christopher R. Bye
- Florey Neuroscience Institutes, The University of Melbourne, Victoria,
Australia
| | | | - Malcolm K. Horne
- Florey Neuroscience Institutes, The University of Melbourne, Victoria,
Australia
- Centre for Neurosciences, The University of Melbourne, Victoria,
Australia
- St Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Maria L. Macheda
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital,
Parkville, Victoria, Australia
| | - Steven A. Stacker
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital,
Parkville, Victoria, Australia
| | - Ernest Arenas
- Laboratory of Molecular Neurobiology, Department of Biochemistry and
Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Clare L. Parish
- Florey Neuroscience Institutes, The University of Melbourne, Victoria,
Australia
- Centre for Neurosciences, The University of Melbourne, Victoria,
Australia
- * E-mail:
| |
Collapse
|
56
|
Dishevelled is essential for neural connectivity and planar cell polarity in planarians. Proc Natl Acad Sci U S A 2011; 108:2813-8. [PMID: 21282632 DOI: 10.1073/pnas.1012090108] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Wingless/Integrated (Wnt) signaling pathway controls multiple events during development and homeostasis. It comprises multiple branches, mainly classified according to their dependence on β-catenin activation. The Wnt/β-catenin branch is essential for the establishment of the embryonic anteroposterior (AP) body axis throughout the phylogenetic tree. It is also required for AP axis establishment during planarian regeneration. Wnt/β-catenin-independent signaling encompasses several different pathways, of which the most extensively studied is the planar cell polarity (PCP) pathway, which is responsible for planar polarization of cell structures within an epithelial sheet. Dishevelled (Dvl) is the hub of Wnt signaling because it regulates and channels the Wnt signal into every branch. Here, we analyze the role of Schmidtea mediterranea Dvl homologs (Smed-dvl-1 and Smed-dvl-2) using gene silencing. We demonstrate that in addition to a role in AP axis specification, planarian Dvls are involved in at least two different β-catenin-independent processes. First, they are essential for neural connectivity through Smed-wnt5 signaling. Second, Smed-dvl-2, together with the S. mediterranea homologs of Van-Gogh (Vang) and Diversin (Div), is required for apical positioning of the basal bodies of epithelial cells. These data represent evidence not only of the function of the PCP network in lophotrocozoans but of the involvement of the PCP core elements Vang and Div in apical positioning of the cilia.
Collapse
|
57
|
Wei C, Wang X, Chen M, Ouyang K, Zheng M, Cheng H. Flickering calcium microdomains signal turning of migrating cells. Can J Physiol Pharmacol 2010; 88:105-10. [PMID: 20237584 DOI: 10.1139/y09-118] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
It has been well-established that polarized migrating cells exhibit a stable and transient gradient of intracellular calcium concentration ([Ca2+]i), increasing from front-to-rear, that is thought to be responsible for rear retraction. The paradox that arises is how calcium at the front of a cell catalyzes critical high-threshold calcium-dependent processes during cell migration and particularly in decision-making for a cell to turn. In this brief review, we discuss the recent discovery of flickering high-[Ca2+]i microdomains ("calcium flickers") at the front of migrating fibroblasts and their common role in transducing local membrane mechanical stress (via TRPM7, a stretch-activated calcium-permeating transient receptor potential channel) and chemoattractant-elicited signals (via type 2 inositol 1,4,5-trisphosphate receptor in the endoplasmic reticulum). Furthermore, we present a new model for patterned calcium flicker activity as the mechanism for steering the turning of a migrating cell.
Collapse
Affiliation(s)
- Chaoliang Wei
- Institute of Molecular Medicine, State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing 100871, China.
| | | | | | | | | | | |
Collapse
|
58
|
Hödar C, Assar R, Colombres M, Aravena A, Pavez L, González M, Martínez S, Inestrosa NC, Maass A. Genome-wide identification of new Wnt/beta-catenin target genes in the human genome using CART method. BMC Genomics 2010; 11:348. [PMID: 20515496 PMCID: PMC2996972 DOI: 10.1186/1471-2164-11-348] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 06/01/2010] [Indexed: 11/21/2022] Open
Abstract
Background The importance of in silico predictions for understanding cellular processes is now widely accepted, and a variety of algorithms useful for studying different biological features have been designed. In particular, the prediction of cis regulatory modules in non-coding human genome regions represents a major challenge for understanding gene regulation in several diseases. Recently, studies of the Wnt signaling pathway revealed a connection with neurodegenerative diseases such as Alzheimer's. In this article, we construct a classification tool that uses the transcription factor binding site motifs composition of some gene promoters to identify new Wnt/β-catenin pathway target genes potentially involved in brain diseases. Results In this study, we propose 89 new Wnt/β-catenin pathway target genes predicted in silico by using a method based on multiple Classification and Regression Tree (CART) analysis. We used as decision variables the presence of transcription factor binding site motifs in the upstream region of each gene. This prediction was validated by RT-qPCR in a sample of 9 genes. As expected, LEF1, a member of the T-cell factor/lymphoid enhancer-binding factor family (TCF/LEF1), was relevant for the classification algorithm and, remarkably, other factors related directly or indirectly to the inflammatory response and amyloidogenic processes also appeared to be relevant for the classification. Among the 89 new Wnt/β-catenin pathway targets, we found a group expressed in brain tissue that could be involved in diverse responses to neurodegenerative diseases, like Alzheimer's disease (AD). These genes represent new candidates to protect cells against amyloid β toxicity, in agreement with the proposed neuroprotective role of the Wnt signaling pathway. Conclusions Our multiple CART strategy proved to be an effective tool to identify new Wnt/β-catenin pathway targets based on the study of their regulatory regions in the human genome. In particular, several of these genes represent a new group of transcriptional dependent targets of the canonical Wnt pathway. The functions of these genes indicate that they are involved in pathophysiology related to Alzheimer's disease or other brain disorders.
Collapse
Affiliation(s)
- Christian Hödar
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile.
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Ho CM, Lai HC, Huang SH, Chien TY, Lin MC, Chang SF. Promoter methylation of sFRP5 in patients with ovarian clear cell adenocarcinoma. Eur J Clin Invest 2010; 40:310-8. [PMID: 20486992 DOI: 10.1111/j.1365-2362.2010.02266.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Specific tumour suppressor genes with promoter methylation in ovarian clear cell adenocarcinoma (OCCA) can be one important epigenetic mark distinguishing OCCA from ovarian serous adenocarcinoma (OSA), benign endometriotic cysts and normal ovarian epitheliums. MATERIALS AND METHODS Five OCCA cell lines, 63 cancer tissues (48 OCCA and 15 OSA), 10 benign endometriotic cysts and five normal ovarian epitheliums were analysed by methylation-specific PCR using pooled DNAs to determine the methylation status of the promoter of the target genes, including genes for secreted frizzled-related proteins (sFRP1 to 5), adenomatous polyposis coli (APC), retinoblastoma protein 1 (Rb1), breast cancer 1 gene (BRCA1), p14(ARF), p15(INK4b), p16(INK4a) and survivin. Methylation frequencies of identified targets were further analysed with individual DNA samples. RESULTS The sFRP5 promoter was significantly methylated in all OCCA cell lines, with 64.6% in OCCA tissues compared with 13.3% in OSA, and 0% in benign endometriotic cysts and normal ovarian epitheliums (P < 0.0001). With a median follow-up of 44 months, the expected 5-year overall survival (OS) for patients with methylated sFRP5 promoter were significantly worse than for those with unmethylated sFRP5 (52% vs. 88%, P = 0.03). After adjusting for age, stage, and residual disease after primary surgery, patients with unmethylated sFRP5 promoter had an independent good prognostic factor in OS (P = 0.017). CONCLUSION The high percentage of promoter methylation in the sFRP5 gene in OCCA indicates its importance in the development of OCCA and is a potential useful marker for prognoses and target for treatment of OCCA.
Collapse
|
60
|
Pasco MY, Catoire H, Parker JA, Brais B, Rouleau GA, Néri C. Cross-talk between canonical Wnt signaling and the sirtuin-FoxO longevity pathway to protect against muscular pathology induced by mutant PABPN1 expression in C. elegans. Neurobiol Dis 2010; 38:425-33. [PMID: 20227501 DOI: 10.1016/j.nbd.2010.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 02/24/2010] [Accepted: 03/04/2010] [Indexed: 10/19/2022] Open
Abstract
Developmental pathways may be play a role in adult cell survival. However, whether they interact with longevity/cell survival pathways to confer protection against disease-associated proteotoxicity remains largely unknown. We previously reported that the inhibition of key longevity modulators such as the deacetylase sir-2.1/SIRT1 (Sir2) and its target daf-16/FoxO protects transgenics nematodes from muscle cell decline and abnormal motility produced by the expression of mutant (polyalanine-expanded) PABPN1, the oculopharyngeal muscular dystrophy (OPMD) protein. Here, we report that canonical Wnt signaling (i) modulates muscular pathology in mutant PABPN1 nematodes, and (ii) cooperates with the Sir2-FoxO longevity pathway to confer protection against mutant PABPN1 toxicity at the cellular and behavioral levels. Mutant PABPN1 toxicity was modified by genes along the canonical Wnt pathway, several of which depend on daf-16 for activity. ss-catenin and pop-1/TCF RNAi suppressed the protection from mutant PABPN1 confered by loss-of-function mutations in sir-2.1 and daf-16. Moreover, the aggravation of muscle cell pathology by increased sir-2.1 dosage was reversed by ss-catenin and pop-1 RNAi. The chemical inhibition of GSK-3ss, a repressor of ss-catenin activity, protected against mutant PABPN1 toxicity in a daf-16-dependent manner, which is consistent with a cross-talk between ss-catenin signaling and Sir2-FoxO signaling in protecting from mutant PABPN1 toxicity. Our data reveal that canonical Wnt signaling and Sir2-FoxO signaling interact to modulate diseased muscle survival, and indicate that GSK-3ss inhibitors and sirtuin inhibitors both have therapeutic potential for muscle protection in OPMD.
Collapse
Affiliation(s)
- Matthieu Y Pasco
- Inserm, Unit 894, Laboratory of Neuronal Cell Biology and Pathology, 75014 Paris, France
| | | | | | | | | | | |
Collapse
|
61
|
Sienknecht UJ, Fekete DM. Mapping of Wnt, frizzled, and Wnt inhibitor gene expression domains in the avian otic primordium. J Comp Neurol 2010; 517:751-64. [PMID: 19842206 DOI: 10.1002/cne.22169] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Wnt signaling activates at least three different pathways involved in development and disease. Interactions of secreted ligands and inhibitors with cell-surface receptors result in the activation or regulation of particular downstream intracellular cascades. During the developmental stages of otic vesicle closure and beginning morphogenesis, the forming inner ear transcribes a plethora of Wnt-related genes. We report expression of 23 genes out of 25 tested in situ hybridization probes on tissue serial sections. Sensory primordia and Frizzled gene expression share domains, with Fzd1 being a continuous marker. Prospective nonsensory domains express Wnts, whose transcripts mainly flank prosensory regions. Finally, Wnt inhibitor domains are superimposed over both prosensory and nonsensory otic regions. Three Wnt antagonists, Dkk1, SFRP2, and Frzb are prominent. Their gene expression patterns partly overlap and change over time, which adds to the diversity of molecular microenvironments. Strikingly, prosensory domains express Wnts transiently. This includes: 1) the prosensory otic region of high proliferation, neuroblast delamination, and programmed cell death at stage 20/21 (Wnt3, -5b, -7b, -8b, -9a, and -11); and 2) sensory primordia at stage 25 (Wnt7a and Wnt9a). In summary, robust Wnt-related gene expression shows both spatial and temporal tuning during inner ear development as the otic vesicle initiates morphogenesis and prosensory cell fate determination.
Collapse
Affiliation(s)
- Ulrike J Sienknecht
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
62
|
Ryks: new partners for Wnts in the developing and regenerating nervous system. Trends Neurosci 2009; 33:84-92. [PMID: 20004982 DOI: 10.1016/j.tins.2009.11.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/08/2009] [Accepted: 11/17/2009] [Indexed: 12/21/2022]
Abstract
Conserved Ryk transmembrane proteins, tyrosine kinase-related Wnt receptors, are important during neurogenesis, axon guidance and synaptogenesis. Here, we review the increasingly complex biology of the Wnt/Ryk pathway, emphasizing the mechanisms by which Ryks transduce or sometimes block the Wnt signal. Recent studies reveal that Wnts signal through Ryk via multiple mechanisms, including nuclear translocation of their intracellular domains and pathways employing Src Family Kinases and members of the canonical Wnt pathway. We also discuss reports indicating that Wnt/Ryk axon guidance roles are evolutionarily conserved and Wnt/Ryk interactions are required for motoneuron target selection and synaptogenesis at the neuromuscular junction. Recent findings that injury-induced Wnt/Ryk pathway activation inhibits axon regeneration underscore the importance of further understanding this novel pathway.
Collapse
|
63
|
Sánchez-Camacho C, Bovolenta P. Emerging mechanisms in morphogen-mediated axon guidance. Bioessays 2009; 31:1013-25. [PMID: 19705365 DOI: 10.1002/bies.200900063] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Early in animal development, gradients of secreted morphogenic molecules, such as Sonic hedgehog (Shh), Wnt and TGFbeta/Bmp family members, regulate cell proliferation and determine the fate and phenotype of the target cells by activating well-characterized signalling pathways, which ultimately control gene transcription. Shh, Wnt and TGFbeta/Bmp signalling also play an important and evolutionary conserved role in neural circuit assembly. They regulate neuronal polarization, axon and dendrite development and synaptogenesis, processes that require rapid and local changes in cytoskeletal organization and plasma membrane components. A key question then is whether morphogen signalling at the growth cone uses similar mechanisms and intracellular pathway components to those described for morphogen-mediated cell specification. This review discusses recent advances towards the understanding of this problem, showing how Shh, Wnt and TGFbeta/Bmp have adapted their 'classical' signalling pathways or adopted alternative and novel molecular mechanisms to influence different aspects of neuronal circuit formation.
Collapse
Affiliation(s)
- Cristina Sánchez-Camacho
- Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal, CSIC and CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | | |
Collapse
|
64
|
Varela-Nallar L, Grabowski CP, Alfaro IE, Alvarez AR, Inestrosa NC. Role of the Wnt receptor Frizzled-1 in presynaptic differentiation and function. Neural Dev 2009; 4:41. [PMID: 19883499 PMCID: PMC2779803 DOI: 10.1186/1749-8104-4-41] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 11/02/2009] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The Wnt signaling pathway regulates several fundamental developmental processes and recently has been shown to be involved in different aspects of synaptic differentiation and plasticity. Some Wnt signaling components are localized at central synapses, and it is thus possible that this pathway could be activated at the synapse. RESULTS We examined the distribution of the Wnt receptor Frizzled-1 in cultured hippocampal neurons and determined that this receptor is located at synaptic contacts co-localizing with presynaptic proteins. Frizzled-1 was found in functional synapses detected with FM1-43 staining and in synaptic terminals from adult rat brain. Interestingly, overexpression of Frizzled-1 increased the number of clusters of Bassoon, a component of the active zone, while treatment with the extracellular cysteine-rich domain (CRD) of Frizzled-1 decreased Bassoon clustering, suggesting a role for this receptor in presynaptic differentiation. Consistent with this, treatment with the Frizzled-1 ligand Wnt-3a induced presynaptic protein clustering and increased functional presynaptic recycling sites, and these effects were prevented by co-treatment with the CRD of Frizzled-1. Moreover, in synaptically mature neurons Wnt-3a was able to modulate the kinetics of neurotransmitter release. CONCLUSION Our results indicate that the activation of the Wnt pathway through Frizzled-1 occurs at the presynaptic level, and suggest that the synaptic effects of the Wnt signaling pathway could be modulated by local activation through synaptic Frizzled receptors.
Collapse
Affiliation(s)
- Lorena Varela-Nallar
- Centro de Envejecimiento y Regeneración (CARE), Centro de Regulación Celular y Patología "Joaquín V Luco" (CRCP) and MIFAB, Chile
- Laboratorio de Señalización Celular, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina P Grabowski
- Centro de Envejecimiento y Regeneración (CARE), Centro de Regulación Celular y Patología "Joaquín V Luco" (CRCP) and MIFAB, Chile
| | - Iván E Alfaro
- Centro de Envejecimiento y Regeneración (CARE), Centro de Regulación Celular y Patología "Joaquín V Luco" (CRCP) and MIFAB, Chile
| | - Alejandra R Alvarez
- Laboratorio de Señalización Celular, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Centro de Regulación Celular y Patología "Joaquín V Luco" (CRCP) and MIFAB, Chile
| |
Collapse
|
65
|
Loos M, van der Sluis S, Bochdanovits Z, van Zutphen IJ, Pattij T, Stiedl O, Smit AB, Spijker S. Activity and impulsive action are controlled by different genetic and environmental factors. GENES BRAIN AND BEHAVIOR 2009; 8:817-28. [DOI: 10.1111/j.1601-183x.2009.00528.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
66
|
Clements WK, Ong KG, Traver D. Zebrafish wnt3 is expressed in developing neural tissue. Dev Dyn 2009; 238:1788-95. [PMID: 19452545 DOI: 10.1002/dvdy.21977] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Wnt signaling regulates embryonic patterning and controls stem cell homeostasis, while aberrant Wnt activity is associated with disease. One Wnt family member, Wnt3, is required in mouse for specification of mesoderm, and later regulates neural patterning, apical ectodermal ridge formation, and hair growth. We have identified and performed preliminary characterization of the zebrafish wnt3 gene. wnt3 is expressed in the developing tailbud and neural tissue including the zona limitans intrathalamica (ZLI), optic tectum, midbrain-hindbrain boundary, and dorsal hindbrain and spinal cord. Expression in these regions suggests that Wnt3 participates in processes such as forebrain compartmentalization and regulation of tectal wiring topography by retinal ganglia axons. Surprisingly, wnt3 expression is not detectable during mesoderm specification, making it unlikely that Wnt3 regulates this process in zebrafish. This lack of early expression should make it possible to study later Wnt3-regulated patterning events, such as neural patterning, by knockdown studies in zebrafish.
Collapse
Affiliation(s)
- Wilson K Clements
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0380, USA
| | | | | |
Collapse
|
67
|
Freese JL, Pino D, Pleasure SJ. Wnt signaling in development and disease. Neurobiol Dis 2009; 38:148-53. [PMID: 19765659 DOI: 10.1016/j.nbd.2009.09.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 09/01/2009] [Accepted: 09/10/2009] [Indexed: 12/26/2022] Open
Abstract
The Wnt signaling pathway is one of the central morphogenic signaling pathways regulating early vertebrate development. In recent years, it has become clear that the Wnt pathway also regulates many aspects of nervous system development from the patterning stage through the regulation of neural plasticity. In this review, we first present an overview of the components of the Wnt signaling pathway and then go on to discuss the literature describing the multitude of roles of Wnts in nervous system. In the latter portion of the review, we turn to the ways that defects in Wnt signaling lead to neurologic disease.
Collapse
Affiliation(s)
- Jennifer L Freese
- Department of Neurology, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
68
|
Tabarés-Seisdedos R, Rubenstein JLR. Chromosome 8p as a potential hub for developmental neuropsychiatric disorders: implications for schizophrenia, autism and cancer. Mol Psychiatry 2009; 14:563-89. [PMID: 19204725 DOI: 10.1038/mp.2009.2] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Defects in genetic and developmental processes are thought to contribute susceptibility to autism and schizophrenia. Presumably, owing to etiological complexity identifying susceptibility genes and abnormalities in the development has been difficult. However, the importance of genes within chromosomal 8p region for neuropsychiatric disorders and cancer is well established. There are 484 annotated genes located on 8p; many are most likely oncogenes and tumor-suppressor genes. Molecular genetics and developmental studies have identified 21 genes in this region (ADRA1A, ARHGEF10, CHRNA2, CHRNA6, CHRNB3, DKK4, DPYSL2, EGR3, FGF17, FGF20, FGFR1, FZD3, LDL, NAT2, NEF3, NRG1, PCM1, PLAT, PPP3CC, SFRP1 and VMAT1/SLC18A1) that are most likely to contribute to neuropsychiatric disorders (schizophrenia, autism, bipolar disorder and depression), neurodegenerative disorders (Parkinson's and Alzheimer's disease) and cancer. Furthermore, at least seven nonprotein-coding RNAs (microRNAs) are located at 8p. Structural variants on 8p, such as copy number variants, microdeletions or microduplications, might also contribute to autism, schizophrenia and other human diseases including cancer. In this review, we consider the current state of evidence from cytogenetic, linkage, association, gene expression and endophenotyping studies for the role of these 8p genes in neuropsychiatric disease. We also describe how a mutation in an 8p gene (Fgf17) results in a mouse with deficits in specific components of social behavior and a reduction in its dorsomedial prefrontal cortex. We finish by discussing the biological connections of 8p with respect to neuropsychiatric disorders and cancer, despite the shortcomings of this evidence.
Collapse
Affiliation(s)
- R Tabarés-Seisdedos
- Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, CIBER-SAM, University of Valencia, Valencia, Spain.
| | | |
Collapse
|
69
|
Wnt5a induces simultaneous cortical axon outgrowth and repulsive axon guidance through distinct signaling mechanisms. J Neurosci 2009; 29:5873-83. [PMID: 19420254 DOI: 10.1523/jneurosci.0183-09.2009] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Wnts are morphogens that also function as axon guidance molecules. In vivo Wnt5a gradients via Ryk receptors were found to repel cortical axons into developing callosal and corticospinal pathways. Here, using dissociated cortical cultures, we found that bath-applied Wnt5a increased axon outgrowth. In turning assays, Wnt5a gradients simultaneously increased axon outgrowth and induced repulsive turning, a potential mechanism for propelling cortical axons in vivo. We found that axon outgrowth is mediated by Ryk, whereas axon repulsion requires both Ryk and Frizzled receptors. Both receptors mediate Wnt-evoked fluctuations in intracellular calcium, which is required for increased axon outgrowth and repulsion by Wnt5a. However, whereas increased axon outgrowth involves calcium release from stores through IP3 receptors as well as calcium influx through TRP channels, axon repulsion is mediated by TRP channels without involvement of IP3 receptors. These results reveal distinct signaling mechanisms underlying Wnt5a-induced axon outgrowth and repulsive guidance.
Collapse
|
70
|
Wnt activity guides facial branchiomotor neuron migration, and involves the PCP pathway and JNK and ROCK kinases. Neural Dev 2009; 4:7. [PMID: 19210786 PMCID: PMC2654884 DOI: 10.1186/1749-8104-4-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 02/11/2009] [Indexed: 12/31/2022] Open
Abstract
Background Wnt proteins play roles in many biological processes, including axon guidance and cell migration. In the mammalian hindbrain, facial branchiomotor (FBM) neurons undergo a striking rostral to caudal migration, yet little is known of the underlying molecular mechanisms. In this study, we investigated a possible role of Wnts and the planar cell polarity (PCP) pathway in this process. Results Here we demonstrate a novel role for Wnt proteins in guiding FBM neurons during their rostral to caudal migration in the hindbrain. We found that Wnt5a is expressed in a caudalhigh to rostrallow gradient in the hindbrain. Wnt-coated beads chemoattracted FBM neurons to ectopic positions in an explant migration assay. The rostrocaudal FBM migration was moderately perturbed in Wnt5a mutant embryos and severely disrupted in Frizzled3 mutant mouse embryos, and was aberrant following inhibition of Wnt function by secreted Frizzled-related proteins. We also show the involvement of the Wnt/PCP pathway in mammalian FBM neuron migration. Thus, mutations in two PCP genes, Vangl2 and Scribble, caused severe defects in FBM migration. Inhibition of JNK and ROCK kinases strongly and specifically reduced the FBM migration, as well as blocked the chemoattractant effects of ectopic Wnt proteins. Conclusion These results provide in vivo evidence that Wnts chemoattract mammalian FBM neurons and that Wnt5a is a candidate to mediate this process. Molecules of the PCP pathway and the JNK and ROCK kinases also play a role in the FBM migration and are likely mediators of Wnt signalling.
Collapse
|
71
|
Toledo EM, Colombres M, Inestrosa NC. Wnt signaling in neuroprotection and stem cell differentiation. Prog Neurobiol 2008; 86:281-96. [DOI: 10.1016/j.pneurobio.2008.08.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 03/06/2008] [Accepted: 08/13/2008] [Indexed: 11/24/2022]
|
72
|
Sánchez-Camacho C, Bovolenta P. Autonomous and non-autonomous Shh signalling mediate the in vivo growth and guidance of mouse retinal ganglion cell axons. Development 2008; 135:3531-41. [PMID: 18832395 DOI: 10.1242/dev.023663] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In non-mammalian vertebrates, the relatively homogeneous population of retinal ganglion cells (RGCs) differentiates and projects entirely to the contralateral side of the brain under the influence of sonic hedgehog (Shh). In mammals, by contrast, there are two different RGC types: the Zic2-positive ipsilateral projecting and the Isl2-positive contralateral projecting. We asked whether the axons of these two populations respond to Shh and if their response differs. We have also analysed whether midline- and RGC-derived Shh contributes to the growth of the axons in the proximal visual pathway. We show that these two RGC types are characterised by a differential expression of Shh signalling components and that they respond differently to Shh when challenged in vitro. In vivo blockade of Shh activity, however, alters the path and distribution mostly of the contralateral projecting RGC axons at the chiasm, indicating that midline-derived Shh participates in funnelling contralateral visual fibres in this region. Furthermore, interference with Shh signalling in the RGCs themselves causes abnormal growth and navigation of contralateral projecting axons in the proximal portion of the pathway, highlighting a novel cell-autonomous mechanism by which Shh can influence growth cone behaviour.
Collapse
Affiliation(s)
- Cristina Sánchez-Camacho
- Departamento de Neurobiología Molecular Celular y del Desarrollo, Instituto Cajal, CSIC and CIBER de Enfermedades Raras (CIBERER) 37, Madrid 28002, Spain
| | | |
Collapse
|
73
|
Wouda RR, Bansraj MRKS, de Jong AWM, Noordermeer JN, Fradkin LG. Src family kinases are required for WNT5 signaling through the Derailed/RYK receptor in the Drosophila embryonic central nervous system. Development 2008; 135:2277-87. [PMID: 18539923 DOI: 10.1242/dev.017319] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Members of the RYK/Derailed family have recently been shown to regulate axon guidance in both Drosophila and mammals by acting as Wnt receptors. Little is known about how the kinase activity-deficient RYKs transduce Wnt signals. Here, we show that the non-receptor Src family tyrosine kinases, SRC64B and SRC42A, are involved in WNT5-mediated signaling through Derailed in the Drosophila embryonic central nervous system. Analysis of animals lacking SRC64B and SRC42A reveals defects in commissure formation similar to those observed in Wnt5 and derailed mutants. Reductions in SRC64B expression levels suppress a Wnt5/derailed-dependent dominant gain-of-function phenotype, and increased levels of either SRC64B or SRC42A enhance Wnt5/derailed-mediated axon commissure switching. Derailed and SRC64B form a complex, which contains catalytically active SRC64B, the formation or stability of which requires SRC64B kinase activity. Furthermore, Derailed is phosphorylated in a SRC64B-dependent manner and coexpression of Derailed and SRC64B results in the activation of SRC64B. The mammalian orthologs of Derailed and SRC64B also form complexes, suggesting that Src roles in RYK signaling are conserved. Finally, we show that coexpression of WNT5 and Derailed has no apparent effect upon TCF/LEF-dependent transcription, suggesting that the WNT5/Derailed signaling pathway is unlikely to directly regulate canonical Wnt pathway targets. Together, these findings indicate that the Src family kinases play novel roles in WNT5/Derailed-mediated signaling.
Collapse
Affiliation(s)
- Rene R Wouda
- Laboratory of Developmental Neurobiology, Department of Molecular and Cell Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
74
|
Bovolenta P, Esteve P, Ruiz JM, Cisneros E, Lopez-Rios J. Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J Cell Sci 2008; 121:737-46. [PMID: 18322270 DOI: 10.1242/jcs.026096] [Citation(s) in RCA: 476] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The secreted Frizzled-related proteins (SFRPs) are a family of soluble proteins that are structurally related to Frizzled (Fz) proteins, the serpentine receptors that mediate the extensively used cell-cell communication pathway involving Wnt signalling. Because of their homology with the Wnt-binding domain on the Fz receptors, SFRPs were immediately characterised as antagonists that bind to Wnt proteins to prevent signal activation. Since these initial studies, interest in the family of SFRPs has grown progressively, offering new perspectives on their function and mechanism of action in both development and disease. These studies indicate that SFRPs are not merely Wnt-binding proteins, but can also antagonise one another's activity, bind to Fz receptors and influence axon guidance, interfere with BMP signalling by acting as proteinase inhibitors, and interact with other receptors or matrix molecules. Furthermore, their expression is altered in different types of cancers, bone pathologies, retinal degeneration and hypophosphatemic diseases, indicating that their activity is fundamental for tissue homeostasis. Here we review some of the debated aspects of SFRP-Wnt interactions and discuss the new and emerging roles of SFRPs.
Collapse
Affiliation(s)
- Paola Bovolenta
- Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal, CSIC, Dr Arce 37, Madrid 28002, Spain.
| | | | | | | | | |
Collapse
|
75
|
Abstract
The Wnt family of secreted signaling factors plays numerous roles in embryonic development and in stem cell biology. In the adult, Wnt signaling is involved in tissue homeostasis and mutations that lead to the overexpression of Wnt can be linked to cancer. Wnt signaling is transduced intracellularly by the Frizzled (Fzd) family of receptors. In the canonical pathway, accumulation of beta-catenin and the subsequent formation of a complex with T cell factors (TCF) or lymphoid enhancing factors (Lef) lead to target gene activation. The identification of Ryk as an alternative Wnt receptor and the discovery of the novel Fzd ligands Norrie disease protein (NDP) and R-Spondin, changed the traditional view of Wnts binding to Fzd receptors. Mouse R-Spondin cooperates with Wnt signaling and Low density lipoprotein (LDL) receptor related protein (LRP) to activate beta-catenin dependent gene expression and is involved in processes such as limb and placental development in the mouse. NDP is the product of the Norrie disease gene and controls vascular development in the retina, inner ear and in the female reproductive system during pregnancy. In this review a functional overview of the interactions of the different Wnt and non-Wnt ligands with the Fzd receptors is given as well as a survey of Wnts binding to Ryk and we discuss the biological significance of these interactions.
Collapse
Affiliation(s)
- Marijke Hendrickx
- Vrije Universiteit Brussel, Lab for Cell Genetics, 2 Pleinlaan, B-1050 Brussels, Belgium
| | | |
Collapse
|
76
|
Farrar NR, Spencer GE. Pursuing a 'turning point' in growth cone research. Dev Biol 2008; 318:102-11. [PMID: 18436201 DOI: 10.1016/j.ydbio.2008.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 01/13/2023]
Abstract
Growth cones are highly motile structures found at the leading edge of developing and regenerating nerve processes. Their role in axonal pathfinding has been well established and many guidance cues that influence growth cone behavior have now been identified. Many studies are now providing insights into the transduction and integration of signals in the growth cone, though a full understanding of growth cone behavior still eludes us. This review focuses on recent studies adding to the growing body of literature on growth cone behavior, focusing particularly on the level of autonomy the growth cone possesses and the role of local protein synthesis.
Collapse
Affiliation(s)
- Nathan R Farrar
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1
| | | |
Collapse
|
77
|
Yamauchi K, Phan KD, Butler SJ. BMP type I receptor complexes have distinct activities mediating cell fate and axon guidance decisions. Development 2008; 135:1119-28. [DOI: 10.1242/dev.012989] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The finding that morphogens, signalling molecules that specify cell identity, also act as axon guidance molecules has raised the possibility that the mechanisms that establish neural cell fate are also used to assemble neuronal circuits. It remains unresolved, however, how cells differentially transduce the cell fate specification and guidance activities of morphogens. To address this question, we have examined the mechanism by which the Bone morphogenetic proteins (BMPs) guide commissural axons in the developing spinal cord. In contrast to studies that have suggested that morphogens direct axon guidance decisions using non-canonical signal transduction factors, our results indicate that canonical components of the BMP signalling pathway, the type I BMP receptors (BMPRs), are both necessary and sufficient to specify the fate of commissural neurons and guide their axonal projections. However,whereas the induction of cell fate is a shared property of both type I BMPRs,axon guidance is chiefly mediated by only one of the type I BMPRs, BMPRIB. Taken together, these results indicate that the diverse activities of BMP morphogens can be accounted for by the differential use of distinct components of the canonical BMPR complex.
Collapse
Affiliation(s)
- Ken Yamauchi
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Keith D. Phan
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Samantha J. Butler
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
78
|
Wnt-3a and Dickkopf-1 stimulate neurite outgrowth in Ewing tumor cells via a Frizzled3- and c-Jun N-terminal kinase-dependent mechanism. Mol Cell Biol 2008; 28:2368-79. [PMID: 18212053 DOI: 10.1128/mcb.01780-07] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant Wnt-3a stimulated the rapid formation of elongated processes in Ewing sarcoma family tumor (ESFT) cells that were identified as neurites. The processes stained positively for polymerized actin and microtubules as well as synapsin I and growth-associated protein 43. Inhibition of the Wnt receptor, Frizzled3 (Fzd3), with antiserum or by short interfering RNA (siRNA) markedly reduced neurite extension. Knockdown of Dishevelled-2 (Dvl-2) and Dvl-3 also suppressed neurite outgrowth. Surprisingly, disruption of the Wnt/Fzd/lipoprotein receptor-related protein (LRP) complex and the associated beta-catenin signaling by treating cells either with the Wnt antagonist Dickkopf-1 (Dkk1) or LRP5/LRP6 siRNA enhanced neuritogenesis. Neurite outgrowth induced by Dkk1 or with LRP5/LRP6 siRNA was inhibited by secreted Fzd-related protein 1, a Wnt antagonist that binds directly to Wnt. Moreover, Dkk1 stimulation of neurite outgrowth was blocked by Fzd3 siRNA. These results suggested that Dkk1 shifted endogenous Wnt activity from the beta-catenin pathway to Fzd3-mediated, noncanonical signaling that is responsible for neurite formation. In particular, c-Jun amino-terminal kinase (JNK) was important for neurite outgrowth stimulated by both Wnt-3a and Dkk1. Our data demonstrate that Fzd3, Dvl, and JNK activity mediate Wnt-dependent neurite outgrowth and that ESFT cell lines will be useful experimental models for the study of Wnt-dependent neurite extension.
Collapse
|
79
|
Vergés M. Retromer: multipurpose sorting and specialization in polarized transport. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 271:153-98. [PMID: 19081543 DOI: 10.1016/s1937-6448(08)01204-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Retromer is an evolutionary conserved protein complex required for endosome-to-Golgi retrieval of lysosomal hydrolases' receptors. A dimer of two sorting nexins-typically, SNX1 and/or SNX2-deforms the membrane and thus cooperates with retromer to ensure cargo sorting. Research in various model organisms indicates that retromer participates in sorting of additional molecules whose proper transport has important repercussions in development and disease. The role of retromer as well as SNXs in endosomal protein (re)cycling and protein targeting to specialized plasma membrane domains in polarized cells adds further complexity and has implications in growth control, the establishment of developmental patterns, cell adhesion, and migration. This chapter will discuss the functions of retromer described in various model systems and will focus on relevant aspects in polarized transport.
Collapse
Affiliation(s)
- Marcel Vergés
- Laboratory of Epithelial Cell Biology, Centro de Investigación Príncipe Felipe, C/E.P. Avda. Autopista del Saler, Valencia, Spain
| |
Collapse
|
80
|
Abstract
New studies on the molecular logic of synapse specificity in the fly and worm have brought neurobiologists back to an ancient family of morphogens best known for establishing pattern in the early embryonic nervous system.
Collapse
|
81
|
Visel A, Carson J, Oldekamp J, Warnecke M, Jakubcakova V, Zhou X, Shaw CA, Alvarez-Bolado G, Eichele G. Regulatory pathway analysis by high-throughput in situ hybridization. PLoS Genet 2007; 3:1867-83. [PMID: 17953485 PMCID: PMC2041993 DOI: 10.1371/journal.pgen.0030178] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Accepted: 09/05/2007] [Indexed: 11/19/2022] Open
Abstract
Automated in situ hybridization enables the construction of comprehensive atlases of gene expression patterns in mammals. Such atlases can become Web-searchable digital expression maps of individual genes and thus offer an entryway to elucidate genetic interactions and signaling pathways. Towards this end, an atlas housing ∼1,000 spatial gene expression patterns of the midgestation mouse embryo was generated. Patterns were textually annotated using a controlled vocabulary comprising >90 anatomical features. Hierarchical clustering of annotations was carried out using distance scores calculated from the similarity between pairs of patterns across all anatomical structures. This process ordered hundreds of complex expression patterns into a matrix that reflects the embryonic architecture and the relatedness of patterns of expression. Clustering yielded 12 distinct groups of expression patterns. Because of the similarity of expression patterns within a group, members of each group may be components of regulatory cascades. We focused on the group containing Pax6, an evolutionary conserved transcriptional master mediator of development. Seventeen of the 82 genes in this group showed a change of expression in the developing neocortex of Pax6-deficient embryos. Electromobility shift assays were used to test for the presence of Pax6-paired domain binding sites. This led to the identification of 12 genes not previously known as potential targets of Pax6 regulation. These findings suggest that cluster analysis of annotated gene expression patterns obtained by automated in situ hybridization is a novel approach for identifying components of signaling cascades. Signaling pathways drive biological processes with high specificity. Reductionist approaches such as mutagenesis provide one strategy to identity components of pathways. We used high throughput in situ hybridization to systematically map the spatiotemporal expression pattern of ∼1,000 developmental genes in the mouse embryo. The rich information collectively contained in these patterns was captured in annotation tables that were systematically mined using hierarchical clustering, resulting in 12 groups of genes with related expression patterns. We show that this process generates biologically meaningful, high-content information. The expression pattern of developmental master regulator Pax6 is found in a cluster together with that of 81 other genes. The paired DNA binding domain of Pax6 can bind to regulatory sequences in 14 of the 81 genes. We also found that the expression pattern of all these 14 genes is up- or downregulated in Pax6 mutant mice. These results emphasize that determining the expression pattern of many genes in a systematic way followed by an application of integrative tools leads to the identification of novel candidate components of signaling pathways. More generally, when complemented with appropriate data-mining strategies, transcriptome-scale in situ hybridization can be turned into a powerful instrument for systems biology.
Collapse
Affiliation(s)
- Axel Visel
- Department of Genes and Behavior, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
- Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - James Carson
- Biological Monitoring and Modeling Department, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Judit Oldekamp
- Department of Genes and Behavior, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Marei Warnecke
- Department of Genes and Behavior, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Vladimira Jakubcakova
- Department of Genes and Behavior, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Xunlei Zhou
- Department of Genes and Behavior, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Gonzalo Alvarez-Bolado
- Department of Genes and Behavior, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
| | - Gregor Eichele
- Department of Genes and Behavior, Max Planck Institute of Biophysical Chemistry, Goettingen, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
82
|
Li WC, Cooke T, Sautois B, Soffe SR, Borisyuk R, Roberts A. Axon and dendrite geography predict the specificity of synaptic connections in a functioning spinal cord network. Neural Dev 2007; 2:17. [PMID: 17845723 PMCID: PMC2071915 DOI: 10.1186/1749-8104-2-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 09/10/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND How specific are the synaptic connections formed as neuronal networks develop and can simple rules account for the formation of functioning circuits? These questions are assessed in the spinal circuits controlling swimming in hatchling frog tadpoles. This is possible because detailed information is now available on the identity and synaptic connections of the main types of neuron. RESULTS The probabilities of synapses between 7 types of identified spinal neuron were measured directly by making electrical recordings from 500 pairs of neurons. For the same neuron types, the dorso-ventral distributions of axons and dendrites were measured and then used to calculate the probabilities that axons would encounter particular dendrites and so potentially form synaptic connections. Surprisingly, synapses were found between all types of neuron but contact probabilities could be predicted simply by the anatomical overlap of their axons and dendrites. These results suggested that synapse formation may not require axons to recognise specific, correct dendrites. To test the plausibility of simpler hypotheses, we first made computational models that were able to generate longitudinal axon growth paths and reproduce the axon distribution patterns and synaptic contact probabilities found in the spinal cord. To test if probabilistic rules could produce functioning spinal networks, we then made realistic computational models of spinal cord neurons, giving them established cell-specific properties and connecting them into networks using the contact probabilities we had determined. A majority of these networks produced robust swimming activity. CONCLUSION Simple factors such as morphogen gradients controlling dorso-ventral soma, dendrite and axon positions may sufficiently constrain the synaptic connections made between different types of neuron as the spinal cord first develops and allow functional networks to form. Our analysis implies that detailed cellular recognition between spinal neuron types may not be necessary for the reliable formation of functional networks to generate early behaviour like swimming.
Collapse
Affiliation(s)
- Wen-Chang Li
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
| | - Tom Cooke
- Centre for Theoretical and Computational Neuroscience, University of Plymouth, Plymouth PL4 8AA, UK
| | - Bart Sautois
- Department of Applied Mathematics and Computer Science, Ghent University, Krijgslaan 281-S9, B-9000 Ghent, Belgium
| | - Stephen R Soffe
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
| | - Roman Borisyuk
- Centre for Theoretical and Computational Neuroscience, University of Plymouth, Plymouth PL4 8AA, UK
| | - Alan Roberts
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
| |
Collapse
|
83
|
Endo Y, Rubin JS. Wnt signaling and neurite outgrowth: insights and questions. Cancer Sci 2007; 98:1311-7. [PMID: 17627619 PMCID: PMC11159174 DOI: 10.1111/j.1349-7006.2007.00536.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 04/20/2007] [Accepted: 04/27/2007] [Indexed: 11/30/2022] Open
Abstract
Wnt signaling consists of a highly conserved set of biochemical pathways that have a multitude of functions during embryonic development and in the adult. The Wnt proteins are extracellular agents that often act as gradient morphogens, indicating that their distribution in tissues is tightly controlled. This attribute is also characteristic of factors that regulate neurite outgrowth and guide axons precisely to their specific destinations. Several studies in various species now have established that Wnts and their receptors have an important role in axonal guidance. Different ligand/receptor combinations have been identified that mediate this activity in many of the experimental models. Clues about downstream effector molecules have come from in vitro systems. In this article, the authors review the results from many of these models, evaluate what is known about the associated signaling pathways and speculate about the direction of future research.
Collapse
Affiliation(s)
- Yoshimi Endo
- National Cancer Institute, 37 Convent Drive, Bethesda, MD 20892-4256, USA
| | | |
Collapse
|
84
|
Merchán P, Bribián A, Sánchez-Camacho C, Lezameta M, Bovolenta P, de Castro F. Sonic hedgehog promotes the migration and proliferation of optic nerve oligodendrocyte precursors. Mol Cell Neurosci 2007; 36:355-68. [PMID: 17826177 DOI: 10.1016/j.mcn.2007.07.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/19/2007] [Accepted: 07/24/2007] [Indexed: 11/26/2022] Open
Abstract
Optic nerve (ON) oligodendrocyte precursors (OPCs) are generated under the influence of the Sonic hedgehog (Shh) in the preoptic area from where they migrate to colonise the entire nerve. The molecular events that control this migration are still poorly understood. Recent studies suggested that Shh is often used by the same cell population to control different processes, including cell proliferation and migration, raising the possibility that Shh could contribute to these aspects of OPC development. In support of this idea, we show here that Shh induces the proliferation of OPCs derived from embryonic mouse ON explants and acts as a chemoattractant for their migration. In ovo injections of hybridomas secreting Shh-specific blocking antibody decreases the number of OPCs present in chick ONs, particularly in the retinal portion of the nerve. Altogether these data indicate that Shh contributes to OPC proliferation and distribution along the ON, in addition to their specification.
Collapse
Affiliation(s)
- Paloma Merchán
- Grupo de Neurobiología del Desarrollo, Hospital Nacional de Parapléjicos, Finca La Peraleda, s/n, E-45071-Toledo, Spain
| | | | | | | | | | | |
Collapse
|
85
|
Fischer T, Guimera J, Wurst W, Prakash N. Distinct but redundant expression of the Frizzled Wnt receptor genes at signaling centers of the developing mouse brain. Neuroscience 2007; 147:693-711. [PMID: 17582687 DOI: 10.1016/j.neuroscience.2007.04.060] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 04/05/2007] [Accepted: 04/05/2007] [Indexed: 01/07/2023]
Abstract
The establishment of the regional subdivisions of the vertebrate CNS is accomplished through the activity of different neuroepithelial organizing centers. The wingless/int (Wnt) family of secreted glycoproteins, among other factors, plays a crucial role in signaling from these centers. Wnt1 secreted from the boundary between the mid- and hindbrain, for instance, controls the development of this brain region and of associated neuronal populations. Different Wnts secreted from the caudomedial pallium, the cortical hem, pattern the adjacent hippocampal field. The first step in Wnt signal transduction is binding of the Wnt ligand to its receptors, the seven-pass transmembrane Frizzled proteins. Inactivation of different Frizzled genes in mice have revealed an extensive functional redundancy between these receptors. In order to discriminate between a possible participation of different Frizzled receptors in the transduction of Wnt signals at the mid-/hindbrain boundary and the cortical hem, we have performed a detailed expression study of the 10 known murine Frizzled genes at crucial stages of mouse embryonic development. Our analysis reveals a highly dynamic yet distinct expression pattern of individual Frizzled genes in the anterior neural tube of the developing mouse embryo. The overlapping spatio-temporal expression of at least two and up to six Frizzled genes in any region of the developing mouse brain, however, also suggests a vast functional redundancy of the murine Frizzled receptors. This redundancy has to be taken into consideration for future analyses of Frizzled receptor function at these signaling centers in the mouse.
Collapse
Affiliation(s)
- T Fischer
- GSF-National Research Center for Environment and Health, Technical University Munich, Institute of Developmental Genetics, Munich, Neuherberg, Germany
| | | | | | | |
Collapse
|
86
|
Wang Y, Nathans J. Tissue/planar cell polarity in vertebrates: new insights and new questions. Development 2007; 134:647-58. [PMID: 17259302 DOI: 10.1242/dev.02772] [Citation(s) in RCA: 341] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focuses on the tissue/planar cell polarity (PCP) pathway and its role in generating spatial patterns in vertebrates. Current evidence suggests that PCP integrates both global and local signals to orient diverse structures with respect to the body axes. Interestingly, the system acts on both subcellular structures, such as hair bundles in auditory and vestibular sensory neurons, and multicellular structures, such as hair follicles. Recent work has shown that intriguing connections exist between the PCP-based orienting system and left-right asymmetry, as well as between the oriented cell movements required for neural tube closure and tubulogenesis. Studies in mice, frogs and zebrafish have revealed that similarities, as well as differences, exist between PCP in Drosophila and vertebrates.
Collapse
Affiliation(s)
- Yanshu Wang
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
87
|
Harris KE, Beckendorf SK. Different Wnt signals act through the Frizzled and RYK receptors during Drosophila salivary gland migration. Development 2007; 134:2017-25. [PMID: 17507403 DOI: 10.1242/dev.001164] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Guided cell migration is necessary for the proper function and development of many tissues, one of which is the Drosophila embryonic salivary gland. Here we show that two distinct Wnt signaling pathways regulate salivary gland migration. Early in migration, the salivary gland responds to a WNT4-Frizzled signal for proper positioning within the embryo. Disruption of this signal, through mutations in Wnt4, frizzled or frizzled 2, results in misguided salivary glands that curve ventrally. Furthermore, disruption of downstream components of the canonical Wnt pathway,such as dishevelled or Tcf, also results in ventrally curved salivary glands. Analysis of a second Wnt signal, which acts through the atypical Wnt receptor Derailed, indicates a requirement for Wnt5signaling late in salivary gland migration. WNT5 is expressed in the central nervous system and acts as a repulsive signal, needed to keep the migrating salivary gland on course. The receptor for WNT5, Derailed, is expressed in the actively migrating tip of the salivary glands. In embryos mutant for derailed or Wnt5, salivary gland migration is disrupted; the tip of the gland migrates abnormally toward the central nervous system. Our results suggest that both the Wnt4-frizzled pathway and a separate Wnt5-derailed pathway are needed for proper salivary gland migration.
Collapse
Affiliation(s)
- Katherine E Harris
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
88
|
Garcia MC, Abbasi M, Singh S, He Q. Role of Drosophila gene dunc-115 in nervous system. INVERTEBRATE NEUROSCIENCE 2007; 7:119-28. [PMID: 17505850 DOI: 10.1007/s10158-007-0047-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 04/20/2007] [Indexed: 10/23/2022]
Abstract
Axonal guidance signals are transduced through growth cone surface receptors to the interior leading to changes of actin dynamics and actin binding proteins, which are critical in determining the outcome of actin cytoskeleton reorganization. We report here the characterization of the Drosophila actin binding protein abLIM/Unc-115 homolog Dunc-115 and its role in the nervous system. Three Dunc-115 isoforms are identified as Dunc-115L, M and S, respectively. While Dunc-115L is a canonical homolog of Unc-115 with four LIM domains and one villin headpiece domain, Dunc-115M and S are novel isoforms without counterparts in other species. Our molecular modeling shows Dunc-115L is likely to bind to actin. Mutant analysis reveals that Dunc-115 is involved in axonal projection in both the visual and central nervous system.
Collapse
Affiliation(s)
- Melissa C Garcia
- Biology Doctoral Program, The Graduate Center, Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | | | | | | |
Collapse
|