51
|
Cai H, Liu G, Sun L, Ding J. Aldehyde Dehydrogenase 1 making molecular inroads into the differential vulnerability of nigrostriatal dopaminergic neuron subtypes in Parkinson's disease. Transl Neurodegener 2014; 3:27. [PMID: 25705376 PMCID: PMC4334846 DOI: 10.1186/2047-9158-3-27] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/01/2014] [Indexed: 12/03/2022] Open
Abstract
A preferential dysfunction/loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) accounts for the main motor symptoms of Parkinson’s disease (PD), the most common degenerative movement disorder. However, the neuronal loss is not stochastic, but rather displays regionally selectivity, indicating the existence of different DA subpopulations in the SNpc. To identify the underlying molecular determinants is thereby instrumental in understanding the pathophysiological mechanisms of PD-related neuron dysfunction/loss and offering new therapeutic targets. Recently, we have demonstrated that aldehyde dehydrogenase 1 (ALDH1A1) is one such molecular determinant that defines and protects an SNpc DA neuron subpopulation preferentially affected in PD. In this review, we provide further analysis and discussion on the roles of ALDH1A1 in the function and survival of SNpc DA neurons in both rodent and human brains. We also explore the feasibility of ALDH1A1 as a potential biomarker and therapeutic target for PD.
Collapse
Affiliation(s)
- Huaibin Cai
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892 USA
| | - Guoxiang Liu
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892 USA
| | - Lixin Sun
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892 USA
| | - Jinhui Ding
- Computational Biology Core, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
52
|
Veenvliet JV, Smidt MP. Molecular mechanisms of dopaminergic subset specification: fundamental aspects and clinical perspectives. Cell Mol Life Sci 2014; 71:4703-27. [PMID: 25064061 PMCID: PMC11113784 DOI: 10.1007/s00018-014-1681-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/04/2014] [Accepted: 07/10/2014] [Indexed: 12/22/2022]
Abstract
Dopaminergic (DA) neurons in the ventral mesodiencephalon control locomotion and emotion and are affected in psychiatric and neurodegenerative diseases, such as Parkinson's disease (PD). A clinical hallmark of PD is the specific degeneration of DA neurons located within the substantia nigra (SNc), whereas neurons in the ventral tegmental area remain unaffected. Recent advances have highlighted that the selective vulnerability of the SNc may originate in subset-specific molecular programming during DA neuron development, and significantly increased our understanding of the molecular code that drives specific SNc development. We here present an up-to-date overview of molecular mechanisms that direct DA subset specification, integrating our current knowledge about subset-specific roles of transcription factors, signaling pathways and morphogenes. We discuss strategies to further unravel subset-specific gene-regulatory networks, and the clinical promise of fundamental knowledge about subset specification of DA neurons, with regards to cell replacement therapy and cell-type-specific vulnerability in PD.
Collapse
Affiliation(s)
- Jesse V. Veenvliet
- Department of Molecular Neuroscience, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Marten P. Smidt
- Department of Molecular Neuroscience, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
53
|
Liu G, Yu J, Ding J, Xie C, Sun L, Rudenko I, Zheng W, Sastry N, Luo J, Rudow G, Troncoso JC, Cai H. Aldehyde dehydrogenase 1 defines and protects a nigrostriatal dopaminergic neuron subpopulation. J Clin Invest 2014; 124:3032-46. [PMID: 24865427 DOI: 10.1172/jci72176] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 04/07/2014] [Indexed: 11/17/2022] Open
Abstract
Subpopulations of dopaminergic (DA) neurons within the substantia nigra pars compacta (SNpc) display a differential vulnerability to loss in Parkinson's disease (PD); however, it is not clear why these subsets are preferentially selected in PD-associated neurodegeneration. In rodent SNpc, DA neurons can be divided into two subpopulations based on the expression of aldehyde dehydrogenase 1 (ALDH1A1). Here, we have shown that, in α-synuclein transgenic mice, a murine model of PD-related disease, DA neurodegeneration occurs mainly in a dorsomedial ALDH1A1-negative subpopulation that is also prone to cytotoxic aggregation of α-synuclein. Notably, the topographic ALDH1A1 pattern observed in α-synuclein transgenic mice was conserved in human SNpc. Postmortem evaluation of brains of patients with PD revealed a severe reduction of ALDH1A1 expression and neurodegeneration in the ventral ALDH1A1-positive DA subpopulations. ALDH1A1 expression was also suppressed in α-synuclein transgenic mice. Deletion of Aldh1a1 exacerbated α-synuclein-mediated DA neurodegeneration and α-synuclein aggregation, whereas Aldh1a1-null and control DA neurons were comparably susceptible to 1-methyl-4-phenylpyridinium-, glutamate-, or camptothecin-induced cell death. ALDH1A1 overexpression appeared to preferentially protect against α-synuclein-mediated DA neurodegeneration but did not rescue α-synuclein-induced loss of cortical neurons. Together, our findings suggest that ALDH1A1 protects subpopulations of SNpc DA neurons by preventing the accumulation of dopamine aldehyde intermediates and formation of cytotoxic α-synuclein oligomers.
Collapse
|
54
|
L'honoré A, Commère PH, Ouimette JF, Montarras D, Drouin J, Buckingham M. Redox regulation by Pitx2 and Pitx3 is critical for fetal myogenesis. Dev Cell 2014; 29:392-405. [PMID: 24871946 DOI: 10.1016/j.devcel.2014.04.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/21/2014] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
Abstract
During development, major metabolic changes occur as cells become more specialized within a lineage. In the case of skeletal muscle, differentiation is accompanied by a switch from a glycolytic proliferative progenitor state to an oxidative postmitotic differentiated state. Such changes require extensive mitochondrial biogenesis leading to increased reactive oxygen species (ROS) production that needs to be balanced by an antioxidant system. Our analysis of double conditional Pitx2/3 mouse mutants, both in vivo during fetal myogenesis and ex vivo in primary muscle cell cultures, reveals excessive upregulation of ROS levels leading to DNA damage and apoptosis of differentiating cells. This is a consequence of downregulation of Nrf1 and genes for antioxidant enzymes, direct targets of Pitx2/3, leading to decreased expression of antioxidant enzymes, as well as impairment of mitochondrial function. Our analysis identifies Pitx2 and Pitx3 as key regulators of the intracellular redox state preventing DNA damage as cells undergo differentiation.
Collapse
Affiliation(s)
- Aurore L'honoré
- Department of Developmental and Stem Cell Biology, CNRS URA 2578, 28 rue du Dr Roux, 75015 Paris, France.
| | | | - Jean-François Ouimette
- Laboratory of Molecular Genetics, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | - Didier Montarras
- Department of Developmental and Stem Cell Biology, CNRS URA 2578, 28 rue du Dr Roux, 75015 Paris, France
| | - Jacques Drouin
- Laboratory of Molecular Genetics, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | - Margaret Buckingham
- Department of Developmental and Stem Cell Biology, CNRS URA 2578, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
55
|
Allodi I, Hedlund E. Directed midbrain and spinal cord neurogenesis from pluripotent stem cells to model development and disease in a dish. Front Neurosci 2014; 8:109. [PMID: 24904255 PMCID: PMC4033221 DOI: 10.3389/fnins.2014.00109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/28/2014] [Indexed: 12/29/2022] Open
Abstract
Induction of specific neuronal fates is restricted in time and space in the developing CNS through integration of extrinsic morphogen signals and intrinsic determinants. Morphogens impose regional characteristics on neural progenitors and establish distinct progenitor domains. Such domains are defined by unique expression patterns of fate determining transcription factors. These processes of neuronal fate specification can be recapitulated in vitro using pluripotent stem cells. In this review, we focus on the generation of dopamine neurons and motor neurons, which are induced at ventral positions of the neural tube through Sonic hedgehog (Shh) signaling, and defined at anteroposterior positions by fibroblast growth factor (Fgf) 8, Wnt1, and retinoic acid (RA). In vitro utilization of these morphogenic signals typically results in the generation of multiple neuronal cell types, which are defined at the intersection of these signals. If the purpose of in vitro neurogenesis is to generate one cell type only, further lineage restriction can be accomplished by forced expression of specific transcription factors in a permissive environment. Alternatively, cell-sorting strategies allow for selection of neuronal progenitors or mature neurons. However, modeling development, disease and prospective therapies in a dish could benefit from structured heterogeneity, where desired neurons are appropriately synaptically connected and thus better reflect the three-dimensional structure of that region. By modulating the extrinsic environment to direct sequential generation of neural progenitors within a domain, followed by self-organization and synaptic establishment, a reductionist model of that brain region could be created. Here we review recent advances in neuronal fate induction in vitro, with a focus on the interplay between cell intrinsic and extrinsic factors, and discuss the implications for studying development and disease in a dish.
Collapse
Affiliation(s)
- Ilary Allodi
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| | - Eva Hedlund
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
56
|
Ransom J, Morgan PJ, McCaffery PJ, Stoney PN. The rhythm of retinoids in the brain. J Neurochem 2014; 129:366-76. [PMID: 24266881 PMCID: PMC4283048 DOI: 10.1111/jnc.12620] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/12/2013] [Accepted: 11/20/2013] [Indexed: 12/24/2022]
Abstract
The retinoids are a family of compounds that in nature are derived from vitamin A or pro-vitamin A carotenoids. An essential part of the diet for mammals, vitamin A has long been known to be essential for many organ systems in the adult. More recently, however, they have been shown to be necessary for function of the brain and new discoveries point to a central role in processes ranging from neuroplasticity to neurogenesis. Acting in several regions of the central nervous system including the eye, hippocampus and hypothalamus, one common factor in its action is control of biological rhythms. This review summarizes the role of vitamin A in the brain; its action through the metabolite retinoic acid via specific nuclear receptors, and the regulation of its concentration through controlled synthesis and catabolism. The action of retinoic acid to regulate several rhythms in the brain and body, from circadian to seasonal, is then discussed to finish with the importance of retinoic acid in the regular pattern of sleep. We review the role of vitamin A and retinoic acid (RA) as mediators of rhythm in the brain. In the suprachiasmatic nucleus and hippocampus they control expression of circadian clock genes while in the cortex retinoic acid is required for delta oscillations of sleep. Retinoic acid is also central to a second rhythm that keeps pace with the seasons, regulating function in the hypothalamus and pineal gland.
Collapse
Affiliation(s)
- Jemma Ransom
- Institute of Medical Sciences, School of Medical Sciences, University of AberdeenAberdeen, UK
| | - Peter J Morgan
- Rowett Institute of Nutrition and Health, University of AberdeenAberdeen, UK
| | - Peter J McCaffery
- Institute of Medical Sciences, School of Medical Sciences, University of AberdeenAberdeen, UK
| | - Patrick N Stoney
- Institute of Medical Sciences, School of Medical Sciences, University of AberdeenAberdeen, UK
| |
Collapse
|
57
|
Thyroid hormone regulation of gene expression in primary cerebrocortical cells: role of thyroid hormone receptor subtypes and interactions with retinoic acid and glucocorticoids. PLoS One 2014; 9:e91692. [PMID: 24618783 PMCID: PMC3950245 DOI: 10.1371/journal.pone.0091692] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/14/2014] [Indexed: 01/17/2023] Open
Abstract
The effects of thyroid hormone on brain development and function are largely mediated by the binding of 3,5,3'-triiodo-L-thyronine (T3) to its nuclear receptors (TR) to regulate positively or negatively gene expression. We have analyzed by quantitative polymerase chain reaction the effect of T3 on primary cultured cells from the embryonic mouse cerebral cortex, on the expression of Hr, Klf9, Shh, Dio3, Aldh1a1, and Aldh1a3. In particular we focused on T3 receptor specificity, and on the crosstalk between T3, retinoic acid and dexamethasone. To check for receptor subtype specificity we used cerebrocortical cells derived from wild type mice and from mice deficient in thyroid hormone receptor subtypes. Receptor subtype specificity was found for Dio3 and Aldh1a1, which were induced by T3 only in cells expressing the T3 receptor alpha 1 subtype. Interactions of T3 with retinoic acid signaling through the control of retinoic acid metabolism are likely to be important during development. T3 had opposing influences on retinoic acid synthesizing enzymes, increasing the expression of Aldh1a1, and decreasing Aldh1a3, while increasing the retinoic acid degrading enzyme Cyp26b1. Dexamethasone increased Klf9 and Aldh1a1 expression. The effects of T3 and dexamethasone on Aldh1a1 were highly synergistic, with mRNA increments of up to 20 fold. The results provide new data on thyroid hormone regulation of gene expression and underscore the importance of thyroid hormone interactions with retinoic acid and glucocorticoids during neural development.
Collapse
|
58
|
Stott SRW, Barker RA. Time course of dopamine neuron loss and glial response in the 6-OHDA striatal mouse model of Parkinson's disease. Eur J Neurosci 2014; 39:1042-1056. [PMID: 24372914 DOI: 10.1111/ejn.12459] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/22/2013] [Accepted: 11/19/2013] [Indexed: 01/02/2023]
Abstract
The 6-hydroxydopamine (6-OHDA) neurotoxic lesion of the midbrain dopamine (DA) system is one of the most widely used techniques for modelling Parkinson's disease in rodents. The majority of studies using this approach, however, largely limit their analysis to lesioning acutely, and looking at behavioural deficits and the number of surviving tyrosine hydroxylase (TH)-stained cells in the midbrain. Here we have analysed additional characteristics that occur following intrastriatal delivery of 6-OHDA, providing better understanding of the neurodegenerative process. Female C57/Black mice were given lesions at 10 weeks old, and killed at several different time points postoperatively (3 and 6 h, 1, 3, 6, 9 and 12 days). While the detrimental effect of the toxin on the TH+ fibres in the striatum was immediate, we found that the loss of TH+ dendritic fibres, reduction in cell size and intensity of TH expression, and eventual reduction in the number of TH+ neurons in the substantia nigra was delayed for several days post-surgery. We also investigated the expression of various transcription factors and proteins expressed by midbrain DA neurons following lesioning, and observed changes in the expression of Aldh1a1 (aldehyde dehydrogenase 1 family, member A1) as the neurodegenerative process evolved. Extracellularly, we looked at microglia and astrocytes in reaction to the 6-OHDA striatal lesion, and found a delay in their response and proliferation in the substantia nigra. In summary, this work highlights aspects of the neurodegenerative process in the 6-OHDA mouse model that can be applied to future studies looking at therapeutic interventions.
Collapse
Affiliation(s)
- Simon R W Stott
- John van Geest Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK
| |
Collapse
|
59
|
Wurst W, Prakash N. Wnt1-regulated genetic networks in midbrain dopaminergic neuron development. J Mol Cell Biol 2013; 6:34-41. [DOI: 10.1093/jmcb/mjt046] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
60
|
Smits SM, von Oerthel L, Hoekstra EJ, Burbach JPH, Smidt MP. Molecular marker differences relate to developmental position and subsets of mesodiencephalic dopaminergic neurons. PLoS One 2013; 8:e76037. [PMID: 24116087 PMCID: PMC3792114 DOI: 10.1371/journal.pone.0076037] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/23/2013] [Indexed: 12/02/2022] Open
Abstract
The development of mesodiencephalic dopaminergic (mdDA) neurons located in the substantia nigra compacta (SNc) and ventral tegmental area (VTA) follow a number of stages marked by distinct events. After preparation of the region by signals that provide induction and patterning, several transcription factors have been identified, which are involved in specifying the neuronal fate of these cells. The specific vulnerability of SNc neurons is thought to root in these specific developmental programs. The present study examines the positions of young postmitotic mdDA neurons to relate developmental position to mdDA subset specific markers. MdDA neurons were mapped relative to the neuromeric domains (prosomeres 1-3 (P1-3), midbrain, and hindbrain) as well as the longitudinal subdivisions (floor plate, basal plate, alar plate), as proposed by the prosomeric model. We found that postmitotic mdDA neurons are located mainly in the floorplate domain and very few in slightly more lateral domains. Moreover, mdDA neurons are present along a large proportion of the anterior/posterior axis extending from the midbrain to P3 in the diencephalon. The specific positions relate to some extent to the presence of specific subset markers as Ahd2. In the adult stage more of such subsets specific expressed genes are present and may represent a molecular map defining molecularly distinct groups of mdDA neurons.
Collapse
Affiliation(s)
- Simone M. Smits
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lars von Oerthel
- Molecular Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elisa J. Hoekstra
- Molecular Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - J. Peter H Burbach
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marten P. Smidt
- Molecular Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
61
|
Hoekstra EJ, von Oerthel L, van der Heide LP, Kouwenhoven WM, Veenvliet JV, Wever I, Jin YR, Yoon JK, van der Linden AJA, Holstege FCP, Groot Koerkamp MJ, Smidt MP. Lmx1a encodes a rostral set of mesodiencephalic dopaminergic neurons marked by the Wnt/B-catenin signaling activator R-spondin 2. PLoS One 2013; 8:e74049. [PMID: 24066094 PMCID: PMC3774790 DOI: 10.1371/journal.pone.0074049] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/25/2013] [Indexed: 11/18/2022] Open
Abstract
Recent developments in molecular programming of mesodiencephalic dopaminergic (mdDA) neurons have led to the identification of many transcription factors playing a role in mdDA specification. LIM homeodomain transcription factor Lmx1a is essential for chick mdDA development, and for the efficient differentiation of ES-cells towards a dopaminergic phenotype. In this study, we aimed towards a more detailed understanding of the subtle phenotype in Lmx1a-deficient (dreher) mice, by means of gene expression profiling. Transcriptome analysis was performed, to elucidate the exact molecular programming underlying the neuronal deficits after loss of Lmx1a. Subsequent expression analysis on brain sections, confirmed that Nurr1 is regulated by Lmx1a, and additional downstream targets were identified, like Pou4f1, Pbx1, Pitx2, C130021l20Rik, Calb2 and Rspo2. In line with a specific, rostral-lateral (prosomer 2/3) loss of expression of most of these genes during development, Nurr1 and C130021l20Rik were affected in the SNc of the mature mdDA system. Interestingly, this deficit was marked by the complete loss of the Wnt/b-catenin signaling activator Rspo2 in this domain. Subsequent analysis of Rspo2-/- embryos revealed affected mdDA neurons, partially phenocopying the Lmx1a mutant. To conclude, our study revealed that Lmx1a is essential for a rostral-lateral subset of the mdDA neuronal field, where it might serve a critical function in modulating proliferation and differentiation of mdDA progenitors through the regulation of the Wnt activator Rspo2.
Collapse
Affiliation(s)
- Elisa J. Hoekstra
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lars von Oerthel
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lars P. van der Heide
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Jesse V. Veenvliet
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Iris Wever
- Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yong-Ri Jin
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine, United States of America
| | - Jeong K. Yoon
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine, United States of America
| | - Annemarie J. A. van der Linden
- Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank C. P. Holstege
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Marten P. Smidt
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
62
|
Veenvliet JV, Dos Santos MTMA, Kouwenhoven WM, von Oerthel L, Lim JL, van der Linden AJA, Koerkamp MJAG, Holstege FCP, Smidt MP. Specification of dopaminergic subsets involves interplay of En1 and Pitx3. Development 2013; 140:3373-84. [PMID: 23863478 DOI: 10.1242/dev.094565] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mesodiencephalic dopaminergic (mdDA) neurons control locomotion and emotion and are affected in multiple psychiatric and neurodegenerative diseases, including Parkinson's disease (PD). The homeodomain transcription factor Pitx3 is pivotal in mdDA neuron development and loss of Pitx3 results in programming deficits in a rostrolateral subpopulation of mdDA neurons destined to form the substantia nigra pars compacta (SNc), reminiscent of the specific cell loss observed in PD. We show here that in adult mice in which the gene encoding a second homeoprotein, engrailed 1 (En1), has been deleted, dramatic loss of mdDA neurons and striatal innervation defects were observed, partially reminiscent of defects observed in Pitx3(-/-) mice. We then continue to reveal developmental crosstalk between En1 and Pitx3 through genome-wide expression analysis. During development, both En1 and Pitx3 are required to induce expression of mdDA genes in the rostrolateral subset destined to form the SNc. By contrast, Pitx3 and En1 reciprocally regulate a separate gene cluster, which includes Cck, demarcating a caudal mdDA subset in wild-type embryos. Whereas En1 is crucial for induction of this caudal phenotype, Pitx3 antagonizes it rostrolaterally. The combinatorial action of En1 and Pitx3 is potentially realized through at least three levels of molecular interaction: (1) influencing each other's expression level, (2) releasing histone deacetylase-mediated repression of Nurr1 target genes and (3) modulating En1 activity through Pitx3-driven activation of En1 modulatory proteins. These findings show how two crucial mediators of mdDA neuronal development, En1 and Pitx3, interact in dopaminergic subset specification, the importance of which is exemplified by the specific vulnerability of the SNc found in PD.
Collapse
Affiliation(s)
- Jesse V Veenvliet
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 3511 PG, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
van Heesbeen HJ, Mesman S, Veenvliet JV, Smidt MP. Epigenetic mechanisms in the development and maintenance of dopaminergic neurons. Development 2013; 140:1159-69. [PMID: 23444349 DOI: 10.1242/dev.089359] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mesodiencephalic dopaminergic (mdDA) neurons are located in the ventral mesodiencephalon and are involved in psychiatric disorders and severely affected in neurodegenerative diseases such as Parkinson's disease. mdDA neuronal development has received much attention in the last 15 years and many transcription factors involved in mdDA specification have been discovered. More recently however, the impact of epigenetic regulation has come into focus, and it's emerging that the processes of histone modification and DNA methylation form the basis of genetic switches that operate during mdDA development. Here, we review the epigenetic control of mdDA development, maturation and maintenance. As we highlight, epigenetic mechanisms play a pivotal role in all of these processes and the knowledge gathered from studying epigenetics in these contexts may aid our understanding of mdDA-related pathologies.
Collapse
Affiliation(s)
- Hendrikus J van Heesbeen
- Swammerdam Institute for Life Sciences, Science Park, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
64
|
van der Heide LP, Smidt MP. The BCL2 code to dopaminergic development and Parkinson's disease. Trends Mol Med 2013; 19:211-6. [DOI: 10.1016/j.molmed.2013.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/12/2013] [Accepted: 02/15/2013] [Indexed: 11/26/2022]
|
65
|
Luk KC, Rymar VV, van den Munckhof P, Nicolau S, Steriade C, Bifsha P, Drouin J, Sadikot AF. The transcription factor Pitx3 is expressed selectively in midbrain dopaminergic neurons susceptible to neurodegenerative stress. J Neurochem 2013; 125:932-43. [DOI: 10.1111/jnc.12160] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 12/17/2012] [Accepted: 01/09/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Kelvin C. Luk
- Department of Neurology and Neurosurgery; Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| | - Vladimir V. Rymar
- Department of Neurology and Neurosurgery; Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| | - Pepijn van den Munckhof
- Unité genetique moleculaire; Institut de recherches cliniques de Montreal; Montreal Quebec Canada
| | - Stefan Nicolau
- Department of Neurology and Neurosurgery; Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| | - Claude Steriade
- Department of Neurology and Neurosurgery; Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| | - Panojot Bifsha
- Unité genetique moleculaire; Institut de recherches cliniques de Montreal; Montreal Quebec Canada
| | - Jacques Drouin
- Unité genetique moleculaire; Institut de recherches cliniques de Montreal; Montreal Quebec Canada
| | - Abbas F. Sadikot
- Department of Neurology and Neurosurgery; Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| |
Collapse
|
66
|
Nolan YM, Sullivan AM, Toulouse A. Parkinson's disease in the nuclear age of neuroinflammation. Trends Mol Med 2013; 19:187-96. [PMID: 23318001 DOI: 10.1016/j.molmed.2012.12.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/29/2012] [Accepted: 12/13/2012] [Indexed: 12/19/2022]
Abstract
Chronic neuroinflammation is associated with the pathophysiology of Parkinson's disease, a movement disorder characterised by deterioration of the nigrostriatal system of the brain. Recent studies have yielded important insights into the regulation of inflammation by nuclear receptors, a superfamily of ligand-activated transcription factors. Certain nuclear receptors are also emerging as regulators of neurodegeneration, including the degeneration of dopaminergic neurons in Parkinson's disease, and the importance of transcriptional control in this process is becoming increasingly apparent. Here, we discuss the role of Nurr1, peroxisome proliferator-activated receptors (PPARs), retinoic acid receptors, and glucocorticoid receptors in neuroinflammatory processes that contribute to dopaminergic neuronal degeneration. We examine current evidence providing insight into the potential of these important players as therapeutic targets for Parkinson's disease.
Collapse
Affiliation(s)
- Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | | | | |
Collapse
|
67
|
Hoekstra EJ, von Oerthel L, van der Linden AJA, Schellevis RD, Scheppink G, Holstege FCP, Groot-Koerkamp MJ, van der Heide LP, Smidt MP. Lmx1a is an activator of Rgs4 and Grb10 and is responsible for the correct specification of rostral and medial mdDA neurons. Eur J Neurosci 2012; 37:23-32. [PMID: 23106268 DOI: 10.1111/ejn.12022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 11/26/2022]
Abstract
The LIM homeodomain transcription factor Lmx1a is a very potent inducer of stem cells towards dopaminergic neurons. Despite several studies on the function of this gene, the exact in vivo role of Lmx1a in mesodiencephalic dopamine (mdDA) neuronal specification is still not understood. To analyse the genes functioning downstream of Lmx1a, we performed expression microarray analysis of LMX1A-overexpressing MN9D dopaminergic cells. Several interesting regulated genes were identified, based on their regulation in other previously generated expression arrays and on their expression pattern in the developing mdDA neuronal field. Post analysis through in vivo expression analysis in Lmx1a mouse mutant (dr/dr) embryos demonstrated a clear decrease in expression of the genes Grb10 and Rgs4, in and adjacent to the rostral and dorsal mdDA neuronal field and within the Lmx1a expression domain. Interestingly, the DA marker Vmat2 was significantly up-regulated as a consequence of increased LMX1A dose, and subsequent analysis on Lmx1a-mutant E14.5 and adult tissue revealed a significant decrease in Vmat2 expression in mdDA neurons. Taken together, microarray analysis of an LMX1A-overexpression cell system resulted in the identification of novel direct or indirect downstream targets of Lmx1a in mdDA neurons: Grb10, Rgs4 and Vmat2.
Collapse
Affiliation(s)
- Elisa J Hoekstra
- Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Cellular programming and reprogramming: sculpting cell fate for the production of dopamine neurons for cell therapy. Stem Cells Int 2012; 2012:412040. [PMID: 22988464 PMCID: PMC3441013 DOI: 10.1155/2012/412040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 07/05/2012] [Indexed: 12/14/2022] Open
Abstract
Pluripotent stem cells are regarded as a promising cell source to obtain human dopamine neurons in sufficient amounts and purity for cell replacement therapy. Importantly, the success of clinical applications depends on our ability to steer pluripotent stem cells towards the right neuronal identity. In Parkinson disease, the loss of dopamine neurons is more pronounced in the ventrolateral population that projects to the sensorimotor striatum. Because synapses are highly specific, only neurons with this precise identity will contribute, upon transplantation, to the synaptic reconstruction of the dorsal striatum. Thus, understanding the developmental cell program of the mesostriatal dopamine neurons is critical for the identification of the extrinsic signals and cell-intrinsic factors that instruct and, ultimately, determine cell identity. Here, we review how extrinsic signals and transcription factors act together during development to shape midbrain cell fates. Further, we discuss how these same factors can be applied in vitro to induce, select, and reprogram cells to the mesostriatal dopamine fate.
Collapse
|
69
|
Hooker L, Smoczer C, KhosrowShahian F, Wolanski M, Crawford MJ. Microarray-based identification of Pitx3 targets during Xenopus embryogenesis. Dev Dyn 2012; 241:1487-505. [PMID: 22826267 DOI: 10.1002/dvdy.23836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Unexpected phenotypes resulting from morpholino-mediated translational knockdown of Pitx3 in Xenopus laevis required further investigation regarding the genetic networks in which the gene might play a role. Microarray analysis was, therefore, used to assess global transcriptional changes downstream of Pitx3. RESULTS From the large data set generated, selected candidate genes were confirmed by reverse transcriptase-polymerase chain reaction (RT-PCR) and in situ hybridization. CONCLUSIONS We have identified four genes as likely direct targets of Pitx3 action: Pax6, β Crystallin-b1 (Crybb1), Hes7.1, and Hes4. Four others show equivocal promise worthy of consideration: Vent2, and Ripply2 (aka Ledgerline or Stripy), eFGF and RXRα. We also describe the expression pattern of additional and novel genes that are Pitx3-sensitive but that are unlikely to be direct targets.
Collapse
Affiliation(s)
- Lara Hooker
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | | | | | | | | |
Collapse
|
70
|
Spatial and temporal lineage analysis of a Pitx3-driven Cre-recombinase knock-in mouse model. PLoS One 2012; 7:e42641. [PMID: 22870339 PMCID: PMC3411649 DOI: 10.1371/journal.pone.0042641] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/11/2012] [Indexed: 01/09/2023] Open
Abstract
Development and function of mesodiencephalic dopaminergic (mdDA) neurons has received a lot of scientific interest since these neurons are critically involved in neurological diseases as Parkinson and psychiatric diseases as schizophrenia, depression and attention deficit hyperactivity disorder (ADHD). The understanding of the molecular processes that lead to normal development and function of mdDA neurons has provided insight in the pathology and provided critical information on new treatment paradigms. In order to be able to study specific genetic ablation in mdDA neurons a new tools was developed that drives Cre-recombinase under the control of the Pitx3 locus. The Pitx3 gene is well known for its specific expression in mdDA neurons and is present at the onset of terminal differentiation. Analysis of newly generated Pitx3-Cre knock-in mice shows that Cre expression, measured through the activation of eYfp by removal of a "Stop" signal (LoxP-Stop-LoxP-eYfp reporter mouse), is present at the onset of terminal differentiation and mimics closely the native Pitx3 expression domain. In conclusion, we present here a new Cre-driver mouse model to be used in the restricted ablation of interesting genes in mdDA neurons in order to improve our understanding of the underlying molecular programming.
Collapse
|
71
|
Espadas I, Darmopil S, Vergaño-Vera E, Ortiz O, Oliva I, Vicario-Abejón C, Martín ED, Moratalla R. L-DOPA-induced increase in TH-immunoreactive striatal neurons in parkinsonian mice: insights into regulation and function. Neurobiol Dis 2012; 48:271-81. [PMID: 22820144 DOI: 10.1016/j.nbd.2012.07.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/06/2012] [Accepted: 07/10/2012] [Indexed: 12/17/2022] Open
Abstract
Tyrosine hydroxylase (TH)-immunoreactive (ir) neurons have been found in the striatum after dopamine depletion; however, little is known about the mechanism underlying their appearance or their functional significance. We previously showed an increase in striatal TH-ir neurons after L-DOPA treatment in mice with unilateral 6-OHDA lesions in the striatum. In the present study, we further examined the time-course and persistence of the effects of chronic L-DOPA treatment on the appearance and regulation of TH-ir neurons as well as their possible function. We found that the L-DOPA-induced increase in striatal TH-ir neurons is dose-dependent and persists for days after L-DOPA withdrawal, decreasing significantly 10 days after L-DOPA treatment ends. Using hemiparkinsonian D1 receptor knock-out (D1R-/-) and D2 receptor knock-out (D2R-/-) mice, we found that the D1R, but not the D2R, is required for the L-DOPA-induced appearance of TH-ir neurons in the dopamine-depleted striatum. Interestingly, our experiments in aphakia mice, which lack Pitx3 expression in the brain, indicate that the L-DOPA-dependent increase in the number of TH-ir neurons is independent of Pitx3, a transcription factor necessary for the development of mesencephalic dopaminergic neurons. To explore the possible function of L-DOPA-induced TH-ir neurons in the striatum, we examined dopamine overflow and forelimb use in L-DOPA-treated parkinsonian mice. These studies revealed a tight spatio-temporal correlation between the presence of striatal TH-ir neurons, the recovery of electrically stimulated dopamine overflow in the lesioned striatum, and the recovery of contralateral forelimb use with chronic L-DOPA treatment. Our results suggest that the presence of TH-ir neurons in the striatum may underlie the long-duration response to L-DOPA following withdrawal. Promotion of these neurons in the early stages of Parkinson's disease, when dopamine denervation is incomplete, may be beneficial for maintaining motor function.
Collapse
Affiliation(s)
- Isabel Espadas
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Meta-analysis of association between PITX3 gene polymorphism and Parkinson's disease. J Neurol Sci 2012; 317:80-6. [DOI: 10.1016/j.jns.2012.02.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 01/14/2012] [Accepted: 02/23/2012] [Indexed: 11/17/2022]
|
73
|
Chakrabarty K, Von Oerthel L, Hellemons A, Clotman F, Espana A, Groot Koerkamp M, Holstege FCP, Pasterkamp RJ, Smidt MP. Genome wide expression profiling of the mesodiencephalic region identifies novel factors involved in early and late dopaminergic development. Biol Open 2012; 1:693-704. [PMID: 23213462 PMCID: PMC3507229 DOI: 10.1242/bio.20121230] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Meso-diencephalic dopaminergic (mdDA) neurons are critical for motor control and cognitive functioning and their loss or dysfunction is associated with disorders such as Parkinson's disease (PD), schizophrenia and addiction. However, relatively little is known about the molecular mechanisms underlying mdDA neuron development and maintenance. Here, we determined the spatiotemporal map of genes involved in the development of mdDA neurons to gain further insight into their molecular programming. Genome-wide gene expression profiles of the developing ventral mesencephalon (VM) were compared at different developmental stages leading to the identification of novel regulatory roles of neuronal signaling through nicotinic acthylcholine receptors (Chrna6 and Chrnb3 subunits) and the identification of novel transcription factors (Oc2 and 3) involved in the generation of the mdDA neuronal field. We show here that Pitx3, in cooperation with Nurr1, is the critical component in the activation of the Chrna6 and Chrnb3 subunits in mdDA neurons. Furthermore, we provide evidence of two divergent regulatory pathways resulting in the expression of Chrna6 and Chrnb3 respectively.
Collapse
Affiliation(s)
- Koushik Chakrabarty
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht , 3584 CG Utrecht , The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Bye CR, Thompson LH, Parish CL. Birth dating of midbrain dopamine neurons identifies A9 enriched tissue for transplantation into parkinsonian mice. Exp Neurol 2012; 236:58-68. [PMID: 22524988 DOI: 10.1016/j.expneurol.2012.04.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/02/2012] [Accepted: 04/07/2012] [Indexed: 01/08/2023]
Abstract
Clinical trials have provided proof of principle that new dopamine neurons isolated from the developing ventral midbrain and transplanted into the denervated striatum can functionally integrate and alleviate symptoms in Parkinson's disease patients. However, extensive variability across patients has been observed, ranging from long-term motor improvement to the absence of symptomatic relief and development of dyskinesias. Heterogeneity of the donor tissue is likely to be a contributing factor in the variable outcomes. Dissections of ventral midbrain used for transplantation will variously contain progenitors for different dopamine neuron subtypes as well as different neurotransmitter phenotypes. The overall impact of the resulting graft will be determined by the functional contribution from these different cell types. The A9 substantia nigra pars compacta dopamine neurons, for example, are known to be particularly important for motor recovery in animal models. Serotonergic neurons, on the other hand, have been implicated in unwanted dyskinesias. Currently little knowledge exists on how variables such as donor age, which have not been controlled for in clinical trials, will impact on the final neuronal composition of fetal grafts. Here we performed a birth dating study to identify the time-course of neurogenesis within the various ventral midbrain dopamine subpopulations in an effort to identify A9-enriched donor tissue for transplantation. The results show that A9 neurons precede the birth of A10 ventral tegmental area dopamine neurons. Subsequent grafting of younger ventral midbrain donor tissue revealed significantly larger grafts containing more mitotic dopamine neuroblasts compared to older donor grafts. These grafts were enriched with A9 neurons and showed significantly greater innervation of the target dorso-lateral striatum and DA release. Younger donor grafts also contained significantly less serotonergic neurons. These findings demonstrate the importance of standardized methods to improve cell therapy for Parkinson's disease and have significant implications for the generation and selectivity of dopamine neurons from stem cell based sources.
Collapse
Affiliation(s)
- Christopher R Bye
- Florey Neuroscience Institutes, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
75
|
Inflammatory Pathways in Parkinson's Disease; A BNE Microarray Study. PARKINSONS DISEASE 2012; 2012:214714. [PMID: 22548201 PMCID: PMC3324922 DOI: 10.1155/2012/214714] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 01/04/2012] [Indexed: 12/18/2022]
Abstract
The aetiology of Parkinson's disease (PD) is yet to be fully understood but it is becoming more and more evident that neuronal cell death may be multifactorial in essence. The main focus of PD research is to better understand substantia nigra homeostasis disruption, particularly in relation to the wide-spread deposition of the aberrant protein α-synuclein. Microarray technology contributed towards PD research with several studies to date and one gene, ALDH1A1 (Aldehyde dehydrogenase 1 family, member A1), consistently reappeared across studies including the present study, highlighting dopamine (DA) metabolism dysfunction resulting in oxidative stress and most probably leading to neuronal cell death. Neuronal cell death leads to increased inflammation through the activation of astrocytes and microglia. Using our dataset, we aimed to isolate some of these pathways so to offer potential novel neuroprotective therapeutic avenues. To that effect our study has focused on the upregulation of P2X7 (purinergic receptor P2X, ligand-gated ion channel, 7) receptor pathway (microglial activation) and on the NOS3 (nitric oxide synthase 3) pathway (angiogenesis). In summary, although the exact initiator of striatal DA neuronal cell death remains to be determined, based on our analysis, this event does not remain without consequence. Extracellular ATP and reactive astrocytes appear to be responsible for the activation of microglia which in turn release proinflammatory cytokines contributing further to the parkinsonian condition. In addition to tackling oxidative stress pathways we also suggest to reduce microglial and endothelial activation to support neuronal outgrowth.
Collapse
|
76
|
Abstract
The generation of individual neuron types in the nervous system is a multistep process whose endpoint is the expression of neuron type-specific batteries of terminal differentiation genes that determine the functional properties of a neuron. This review focuses on the regulatory mechanisms that are involved in controlling the terminally differentiated state of a neuron. I review several case studies from invertebrate and vertebrate nervous systems that reveal that many terminal differentiation features of a neuron are coregulated via terminal selector transcription factors that initiate and maintain terminal differentiation programs.
Collapse
Affiliation(s)
- Oliver Hobert
- Howard Hughes Medical Institute, New York, NY 10032, USA.
| |
Collapse
|
77
|
Liu H, Wei L, Tao Q, Deng H, Ming M, Xu P, Le W. Decreased NURR1 and PITX3 gene expression in Chinese patients with Parkinson's disease. Eur J Neurol 2012; 19:870-5. [PMID: 22309633 DOI: 10.1111/j.1468-1331.2011.03644.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE The preferential degeneration of midbrain dopaminergic (mDA) neurons in the substantia nigra pars compacta is the pathological hallmark in Parkinson's disease (PD). The transcription factors NURR1 and PITX3 have been shown to play a crucial role in the maturation and survival of mDA neurons, and both of them were potential susceptibility genes for PD. METHODS To determine whether NURR1 and PITX3 gene expression are altered in Chinese patients with PD, we measured their gene expression in human peripheral blood lymphocytes (PBL) in 255 patients with PD and 211 age- and gender-matched healthy controls by quantitative real-time PCR technique. RESULTS We found that both NURR1 and PITX3 gene expression in PBL were significantly decreased in patients with PD as compared with controls (P < 0.0001). Lower levels of NURR1 and PITX3 gene expression were significantly associated with the increased risk for PD in male and older subjects, respectively. CONCLUSIONS Our results provide useful information that the NURR1 and PITX3 gene expression is decreased in the PBL of Chinese patients with PD, indicating their possible systemic involvement in PD.
Collapse
Affiliation(s)
- H Liu
- Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
78
|
Lahti L, Peltopuro P, Piepponen TP, Partanen J. Cell-autonomous FGF signaling regulates anteroposterior patterning and neuronal differentiation in the mesodiencephalic dopaminergic progenitor domain. Development 2012; 139:894-905. [PMID: 22278924 DOI: 10.1242/dev.071936] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The structure and projection patterns of adult mesodiencephalic dopaminergic (DA) neurons are one of the best characterized systems in the vertebrate brain. However, the early organization and development of these nuclei remain poorly understood. The induction of midbrain DA neurons requires sonic hedgehog (Shh) from the floor plate and fibroblast growth factor 8 (FGF8) from the isthmic organizer, but the way in which FGF8 regulates DA neuron development is unclear. We show that, during early embryogenesis, mesodiencephalic neurons consist of two distinct populations: a diencephalic domain, which is probably independent of isthmic FGFs; and a midbrain domain, which is dependent on FGFs. Within these domains, DA progenitors and precursors use partly different genetic programs. Furthermore, the diencephalic DA domain forms a distinct cell population, which also contains non-DA Pou4f1(+) cells. FGF signaling operates in proliferative midbrain DA progenitors, but is absent in postmitotic DA precursors. The loss of FGFR1/2-mediated signaling results in a maturation failure of the midbrain DA neurons and altered patterning of the midbrain floor. In FGFR mutants, the DA domain adopts characteristics that are typical for embryonic diencephalon, including the presence of Pou4f1(+) cells among TH(+) cells, and downregulation of genes typical of midbrain DA precursors. Finally, analyses of chimeric embryos indicate that FGF signaling regulates the development of the ventral midbrain cell autonomously.
Collapse
Affiliation(s)
- Laura Lahti
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
79
|
Jacobs FMJ, Veenvliet JV, Almirza WH, Hoekstra EJ, von Oerthel L, van der Linden AJA, Neijts R, Koerkamp MG, van Leenen D, Holstege FCP, Burbach JPH, Smidt MP. Retinoic acid-dependent and -independent gene-regulatory pathways of Pitx3 in meso-diencephalic dopaminergic neurons. Development 2012; 138:5213-22. [PMID: 22069189 DOI: 10.1242/dev.071704] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Development of meso-diencephalic dopamine (mdDA) neurons requires the combined actions of the orphan nuclear receptor Nurr1 and the paired-like homeobox transcription factor Pitx3. Whereas all mdDA neurons require Nurr1 for expression of Th and survival, dependence on Pitx3 is displayed only by the mdDA subpopulation that will form the substantia nigra (SNc). Previously, we have demonstrated that Pitx3(-/-) embryos lack the expression of the retinoic acid (RA)-generating enzyme Ahd2, which is normally selectively expressed in the Pitx3-dependent DA neurons of the SNc. Restoring RA signaling in Pitx3(-/-) embryos revealed a selective dependence of SNc neurons on the presence of RA for differentiation into Th-positive neurons and maintenance throughout embryonic development. Whereas these data are suggestive of an important developmental role for RA in neurons of the SNc, it remained unclear whether other Nurr1 and Pitx3 target genes depend on RA signaling in a manner similar to Th. In the search for genes that were affected in Pitx3-deficient mdDA neurons and restored upon embryonic RA treatment, we provide evidence that Delta-like 1, D2R (Drd2) and Th are regulated by Pitx3 and RA signaling, which influences the mdDA terminal differentiated phenotype. Furthermore, we show that regulation of Ahd2-mediated RA signaling represents only one aspect of the Pitx3 downstream cascade, as Vmat2, Dat, Ahd2 (Aldh1a1), En1, En2 and Cck were unaffected by RA treatment and are (subset) specifically modulated by Pitx3. In conclusion, our data reveal several RA-dependent and -independent aspects of the Pitx3-regulated gene cascade, suggesting that Pitx3 acts on multiple levels in the molecular subset-specification of mdDA neurons.
Collapse
Affiliation(s)
- Frank M J Jacobs
- Rudolf Magnus Institute, Department of Neuroscience and Pharmacology, UMC Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Simeone A, Puelles E, Omodei D, Acampora D, Di Giovannantonio LG, Di Salvio M, Mancuso P, Tomasetti C. Otx genes in neurogenesis of mesencephalic dopaminergic neurons. Dev Neurobiol 2011; 71:665-79. [PMID: 21309083 DOI: 10.1002/dneu.20877] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mesencephalic-diencephalic dopaminergic (mdDA) neurons play a relevant role in the control of movement, behavior, and cognition. Indeed loss and/or abnormal functioning of mdDA neurons are responsible for Parkinson's disease as well as for addictive and psychiatric disorders. In the last years a wealth of information has been provided on gene functions controlling identity, fate, and proliferation of mdDA progenitors. This review will focus on the role exerted by Otx genes in early decisions regulating sequential steps required for the neurogenesis of mesencephalic dopaminergic (mesDA) neurons. In this context, the regulatory network involving Otx functional interactions with signaling molecules and transcription factors required to promote or prevent the development of mesDA neurons will be analyzed in detail.
Collapse
Affiliation(s)
- Antonio Simeone
- CEINGE Biotecnologie Avanzate, SEMM European School of Molecular Medicine, via Gaetano Salvatore 486, 80145 Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Pitx3 is a critical mediator of GDNF-induced BDNF expression in nigrostriatal dopaminergic neurons. J Neurosci 2011; 31:12802-15. [PMID: 21900559 DOI: 10.1523/jneurosci.0898-11.2011] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pitx3 is a critical homeodomain transcription factor for the proper development and survival of mesodiencephalic dopaminergic (mdDA) neurons in mammals. Several variants of this gene have been associated with human Parkinson's disease (PD), and lack of Pitx3 in mice causes the preferential loss of substantia nigra pars compacta (SNc) mdDA neurons that are most affected in PD. It is currently unclear how Pitx3 activity promotes the survival of SNc mdDA neurons and which factors act upstream and downstream of Pitx3 in this context. Here we show that a transient expression of glial cell line-derived neurotrophic factor (GDNF) in the murine ventral midbrain (VM) induces transcription of Pitx3 via NF-κB-mediated signaling, and that Pitx3 is in turn required for activating the expression of brain-derived neurotrophic factor (BDNF) in a rostrolateral (SNc) mdDA neuron subpopulation during embryogenesis. The loss of BDNF expression correlates with the increased apoptotic cell death of this mdDA neuronal subpopulation in Pitx3(-/-) mice, whereas treatment of VM cell cultures with BDNF augments the survival of the Pitx3(-/-) mdDA neurons. Most importantly, only BDNF but not GDNF protects mdDA neurons against 6-hydroxydopamine-induced cell death in the absence of Pitx3. As the feedforward regulation of GDNF, Pitx3, and BDNF expression also persists in the adult rodent brain, our data suggest that the disruption of the regulatory interaction between these three factors contributes to the loss of mdDA neurons in Pitx3(-/-) mutant mice and perhaps also in human PD.
Collapse
|
82
|
Flames N, Hobert O. Transcriptional Control of the Terminal Fate of Monoaminergic Neurons. Annu Rev Neurosci 2011; 34:153-84. [DOI: 10.1146/annurev-neuro-061010-113824] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nuria Flames
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, New York 10032;
- Genes & Disease Program, Center for Genomic Regulation (CRG), Barcelona, Spain E-08003;
- Present address: Instituto de Biomedicina de Valencia IBV-CSIC, E-46010 Valencia, Spain
| | - Oliver Hobert
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, New York 10032;
| |
Collapse
|
83
|
Liu J, Sun QY, Tang BS, Hu L, Yu RH, Wang L, Shi CH, Yan XX, Pan Q, Xia K, Guo JF. PITX3 gene polymorphism is associated with Parkinson's disease in Chinese population. Brain Res 2011; 1392:116-20. [PMID: 21524731 DOI: 10.1016/j.brainres.2011.03.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 03/25/2011] [Accepted: 03/27/2011] [Indexed: 01/26/2023]
Abstract
Genetic variants of PITX3 gene have been reported to be associated with Parkinson's disease (PD) in several populations. We conducted a case-control study and genotyped the three SNPs of PITX3 gene: rs2281983, rs4919621 and rs3758549 in 512 mainland Chinese PD patients and 506 healthy controls. Our findings show that the PITX3 gene rs3758549 polymorphism is associated with PD (p=0.02). Moreover, the difference between late onset PD patients and healthy controls is stronger (p=0.007). There is no statistical difference in genotype or allele frequencies of rs2281983 or rs4919621 variant in PITX3 gene between sporadic PD (SPD) group and healthy control group in our study. To assess the possible role of the PITX3 gene rs3758549 polymorphism in PD, we conducted a meta-analysis on the topic. The results of meta-analysis further support that the PITX3 gene rs3758549 polymorphism is associated with PD: Z=3.09, p=0.002, OR=0.89. These findings suggest that the PITX3 gene rs3758549 polymorphism may increase the susceptibility of PD.
Collapse
Affiliation(s)
- Jia Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
The role of otx2 in adult mesencephalic-diencephalic dopaminergic neurons. Mol Neurobiol 2010; 43:107-13. [PMID: 21086067 DOI: 10.1007/s12035-010-8148-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 10/20/2010] [Indexed: 12/13/2022]
Abstract
Mesencephalic and diencephalic dopaminergic (mdDA) progenitors generate two major groups of neurons corresponding to the A9 neurons of the substantia nigra pars compacta (SNpc) and the A10 neurons of the ventral tegmental area (VTA). MdDA neurons control motor, sensorimotor and motivated behaviour and their degeneration or abnormal functioning is associated to Parkinson's disease and psychiatric disorders. Although relevant advances have been made, the molecular basis controlling identity, survival and vulnerability to neurodegeneration of SNpc and VTA neurons remains poorly understood. Here, we will review recent findings on the role exerted by the transcription factor Otx2 in adult mdDA neurons. Otx2 expression is restricted to a relevant fraction of VTA neurons and absent in the SNpc. In particular, Otx2 is prevalently excluded from neurons of the dorsal-lateral VTA, which expressed Girk2 and high level of the dopamine transporter (Dat). Loss and gain of function mouse models revealed that Otx2 controls neuron subtype identity by antagonizing molecular and functional features of the dorsal-lateral VTA such as Girk2 and Dat expression as well as vulnerability to the parkinsonian MPTP toxin. Furthermore, when ectopically expressed in the SNpc, Otx2 suppresses Dat expression and confers efficient neuroprotection to MPTP toxicity by suppressing efficient DA uptake.
Collapse
|
85
|
Uhde CW, Vives J, Jaeger I, Li M. Rmst is a novel marker for the mouse ventral mesencephalic floor plate and the anterior dorsal midline cells. PLoS One 2010; 5:e8641. [PMID: 20062813 PMCID: PMC2799666 DOI: 10.1371/journal.pone.0008641] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 12/14/2009] [Indexed: 11/19/2022] Open
Abstract
The availability of specific markers expressed in different regions of the developing nervous system provides a useful tool to illuminate their development, regulation and function. We have identified by expression profiling a putative non-coding RNA, Rmst, that exhibits prominent expression in the midbrain floor plate region, the isthmus and the roof plate of the anterior neural tube. At the developmental stage when the ventral dopaminergic neuron territory is being established, Rmst expression appears to be restricted to the presumptive dopaminergic neurons of the ventral tegmental area that lies close to the ventral midline. Thus this study presents Rmst as a novel marker for the developing dopaminergic neurons in the mesencephalic floor plate as well as a marker for the dorsal midline cells of the anterior neural tube and the isthmic organizer.
Collapse
Affiliation(s)
- Christopher W. Uhde
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Joaquim Vives
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ines Jaeger
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Meng Li
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
86
|
Abstract
Transplantation of foetal dopamine neurons into the striatum of Parkinson's disease patients can provide restoration of the dopamine system and alleviate motor deficits. However, cellular replacement is associated with several problems. As with pharmacological treatments, cell therapy can lead to disabling abnormal involuntary movements (dyskinesias). The exclusion of serotonin and GABA neurons, and enrichment of substantia nigra (A9) dopamine neurons, may circumvent this problem. Furthermore, although grafted foetal dopamine neurons can survive in Parkinson's patients for more than a decade, the occurrence of Lewy bodies within such transplanted cells and reduced dopamine transporter and tyrosine hydroxylase expression levels indicate that grafted cells are associated with pathology. It will be important to understand if such abnormalities are host- or graft induced and to develop methods to ensure survival of functional dopamine neurons. Careful preparation of cellular suspensions to minimize graft-induced inflammatory responses might influence the longevity of transplanted cells. Finally, a number of practical and ethical issues are associated with the use of foetal tissue sources. Thus, future cell therapy is aiming towards the use of embryonic stem cell or induced pluripotent stem cell derived dopamine neurons.
Collapse
Affiliation(s)
- E Hedlund
- Ludwig Institute for Cancer Research Ltd, Stockholm, Sweden.
| | | |
Collapse
|
87
|
Hwang DY, Hong S, Jeong JW, Choi S, Kim H, Kim J, Kim KS. Vesicular monoamine transporter 2 and dopamine transporter are molecular targets of Pitx3 in the ventral midbrain dopamine neurons. J Neurochem 2009; 111:1202-12. [PMID: 19780901 DOI: 10.1111/j.1471-4159.2009.06404.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Midbrain dopamine (mDA) neurons play critical roles in the regulation of voluntary movement and their dysfunction is associated with Parkinson's disease. Pitx3 has been implicated in the proper development of mDA neurons in the substantia nigra pars compacta, which are selectively lost in Parkinson's disease. However, the basic mechanisms underlying its role in mDA neuron development and/or survival are poorly understood. Toward this goal, we sought to identify downstream target genes of Pitx3 by comparing gene expression profiles in mDA neurons of wild-type and Pitx3-deficient aphakia mice. This global gene expression analysis revealed many potential target genes of Pitx3; in particular, the expression of vesicular monoamine transporter 2 and dopamine transporter, responsible for dopamine storage and reuptake, respectively, is greatly reduced in mDA neurons by Pitx3 ablation. In addition, gain-of-function analyses and chromatin immunoprecipitation strongly indicate that Pitx3 may directly activate transcription of vesicular monoamine transporter 2 and dopamine transporter genes, critically contributing to neurotransmission and/or survival of mDA neurons. As the two genes have been known to be regulated by Nurr1, another key dopaminergic transcription factor, we propose that Pitx3 and Nurr1 may coordinately regulate mDA specification and survival, at least in part, through a merging and overlapping downstream pathway.
Collapse
Affiliation(s)
- Dong-Youn Hwang
- Molecular Neurobiology Laboratory, McLean Hospital and Harvard Medical School, Belmont, MA, USA
| | | | | | | | | | | | | |
Collapse
|
88
|
Guibinga GH, Hsu S, Friedmann T. Deficiency of the housekeeping gene hypoxanthine-guanine phosphoribosyltransferase (HPRT) dysregulates neurogenesis. Mol Ther 2009; 18:54-62. [PMID: 19672249 DOI: 10.1038/mt.2009.178] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Neuronal transcription factors play vital roles in the specification and development of neurons, including dopaminergic (DA) neurons. Mutations in the gene encoding the purine biosynthetic enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) cause the resulting intractable and largely untreatable neurological impairment of Lesch-Nyhan disease (LND). The disorder is associated with a defect in basal ganglia DA pathways. The mechanisms connecting the purine metabolic defect and the central nervous system (CNS) phenotype are poorly understood but have been presumed to reflect a developmental defect of DA neurons. We have examined the effect of HPRT deficiency on the differentiation of neurons in the well-established human (NT2) embryonic carcinoma neurogenesis model. We have used a retrovirus expressing a small hairpin RNA (shRNA) to knock down HPRT gene expression and have examined the expression of a number of transcription factors essential for neuronal differentiation and marker genes involved in DA biosynthetic pathway. HPRT-deficient NT2 cells demonstrate aberrant expression of several transcription factors and DA markers. Although differentiated HPRT-deficient neurons also demonstrate a striking deficit in neurite outgrowth during differentiation, resulting neurons demonstrate wild-type electrophysiological properties. These results represent direct experimental evidence for aberrant neurogenesis in HPRT deficiency and suggest developmental roles for other housekeeping genes in neurodevelopmental disease.
Collapse
Affiliation(s)
- Ghiabe-Henri Guibinga
- Department of Pediatrics, Center for Molecular Genetics, University of California, San Diego School of Medicine, La Jolla, California 92093-0634, USA
| | | | | |
Collapse
|
89
|
Abstract
A conserved gene regulatory circuit for dopaminergic neuron differentiation. Comparison of a regulatory network that specifies dopaminergic neurons in Caenorhabditis elegans to the development of vertebrate dopamine systems in the mouse reveals a possible partial conservation of such a network.
Collapse
Affiliation(s)
- Marten P Smidt
- Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| | | |
Collapse
|
90
|
Jacobs FMJ, van der Linden AJA, Wang Y, von Oerthel L, Sul HS, Burbach JPH, Smidt MP. Identification of Dlk1, Ptpru and Klhl1 as novel Nurr1 target genes in meso-diencephalic dopamine neurons. Development 2009; 136:2363-73. [PMID: 19515692 DOI: 10.1242/dev.037556] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The orphan nuclear receptor Nurr1 is essential for the development of meso-diencephalic dopamine (mdDA) neurons and is required, together with the homeobox transcription factor Pitx3, for the expression of genes involved in dopamine metabolism. In order to elucidate the molecular mechanisms that underlie the neuronal deficits in Nurr1(-/-) mice, we performed combined gene expression microarrays and ChIP-on-chip analysis and thereby identified Dlk1, Ptpru and Klhl1 as novel Nurr1 target genes in vivo. In line with the previously described cooperativity between Nurr1 and Pitx3, we show that the expression of Ptpru and Klhl1 in mdDA neurons is also dependent on Pitx3. Furthermore, we demonstrate that Nurr1 interacts with the Ptpru promoter directly and requires Pitx3 for full expression of Ptpru in mdDA neurons. By contrast, the expression of Dlk1 is maintained in Pitx3(-/-) embryos and is even expanded into the rostral part of the mdDA area, suggesting a unique position of Dlk1 in the Nurr1 and Pitx3 transcriptional cascades. Expression analysis in Dlk1(-/-) embryos reveals that Dlk1 is required to prevent premature expression of Dat in mdDA neuronal precursors as part of the multifaceted process of mdDA neuronal differentiation driven by Nurr1 and Pitx3. Taken together, the involvement of Nurr1 and Pitx3 in the expression of novel target genes involved in important neuronal processes such as neuronal patterning, axon outgrowth and terminal differentiation, opens up new avenues to study the properties of mdDA neurons during development and in neuronal pathology as observed in Parkinson's disease.
Collapse
Affiliation(s)
- Frank M J Jacobs
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
91
|
Papanikolaou T, Amano T, Lennington J, Sink K, Farrar AM, Salamone J, Yang X, Conover JC. In-vitro analysis of Pitx3 in mesodiencephalic dopaminergic neuron maturation. Eur J Neurosci 2009; 29:2264-75. [PMID: 19508691 DOI: 10.1111/j.1460-9568.2009.06784.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The transcription factor Pitx3 is expressed exclusively by mesodiencephalic dopaminergic neurons; however, ablation of Pitx3 results in selective degeneration of primarily dopaminergic neurons of the substantia nigra pars compacta, the neuronal population that is most vulnerable in Parkinson's disease. Although the exact molecular mechanisms of the action of Pitx3 are unclear, roles in both terminal maturation and/or survival of substantia nigra dopaminergic neurons have been suggested. To investigate the connection between Pitx3 and selective neurodegeneration, we generated embryonic stem cells from a Pitx3-deficient mouse (aphakia) for in-vitro differentiation to dopaminergic neurons. This 'loss of function'in-vitro system allowed us to examine characteristic features in dopaminergic neuron development and to assess the role that Pitx3 plays in the differentiation/maturation process. We found that aphakia embryonic stem cells generated 50% fewer tyrosine hydroxylase-positive/microtubule-associated protein (Map)2-positive mature neurons compared with control cultures. The expression of dopamine transport regulators and vesicle release proteins was reduced and dopamine release was unregulated in the Pitx3-deficient tyrosine hydroxylase-positive neurons generated. Treatment of aphakia embryonic stem cell cultures with retinoic acid resulted in a significant increase in mesodiencephalic tyrosine hydroxylase-positive neurons, providing further support for the role of Pitx3 in dopaminergic neuron specification through the retinoic acid pathway. Our study, using Pitx3-deficient embryonic stem cells in an in-vitro differentiation culture system, allowed us to assess the role of Pitx3 in the specification and final maturation of dopaminergic neurons.
Collapse
Affiliation(s)
- Theodora Papanikolaou
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-4243, USA
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Amano T, Papanikolaou T, Sung LY, Lennington J, Conover J, Yang X. Nuclear transfer embryonic stem cells provide an in vitro culture model for Parkinson's disease. CLONING AND STEM CELLS 2009; 11:77-88. [PMID: 19196042 DOI: 10.1089/clo.2008.0059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Somatic cell nuclear transfer enables the generation of embryonic stem cells (ESCs) that genetically match the donor and can be used to treat disease through cell replacement therapies or to recapitulate patient-specific disease via in vitro differentiation. We performed a "proof-of-principle" study using tail tip fibroblasts from a mouse model of Parkinson's disease (Aphakia) as the donor cell nuclei for nuclear transfer and derived "customized" ESCs for in vitro analysis. Aphakia mice contain deletions in the pitx3 gene and show selective loss of dopamine neurons of the substantia nigra, specifically the neuron population susceptible to degeneration in Parkinson's disease. Using electrofusion nuclear transfer, we produced cloned Aphakia oocytes at rates similar to those for control, cloned oocytes. Aphakia ESCs were isolated and live mice were generated using tetraploid embryo complementation. In vitro differentiation of Aphakia ESCs to dopaminergic neurons revealed significantly fewer TH+ neurons that expressed MAP2, DAT, synaptophysin, VMAT2, and AHD2 compared to control nuclear transfer ESC cultures, supporting a role for Pitx3 in mesodiencephalic dopamine neuron maturation. Taken together, our studies define a customized in vitro ESC culture system used to analyze gene-specific contribution to dopamine neuron generation, maturation, and susceptibility to degeneration.
Collapse
Affiliation(s)
- Tomokazu Amano
- Center for Regenerative Biology, University of Connecticut, Storrs, USA
| | | | | | | | | | | |
Collapse
|
93
|
Le W, Nguyen D, Lin XW, Rawal P, Huang M, Ding Y, Xie W, Deng H, Jankovic J. Transcription factor PITX3 gene in Parkinson's disease. Neurobiol Aging 2009; 32:750-3. [PMID: 19394114 DOI: 10.1016/j.neurobiolaging.2009.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 03/17/2009] [Accepted: 03/22/2009] [Indexed: 12/01/2022]
Abstract
PITX3 is a transcription factor important for the differentiation and survival of midbrain dopaminergic neurons during the development. Recent reports suggest that single nucleotide polymorphisms (SNP) in the gene may be associated with Parkinson's disease (PD). To verify their findings and to determine the nature of the association in a subset of our PD patients we have analyzed two PITX3 SNPs (rs2281983 and rs4919621) in 265 PD patients and compared them with 210 age-matched healthy controls. Our data show that the substitutions of C/T in SNP1 and A/T in SNP2 are significantly higher in PD, and this finding is even more robust in young onset and familial PD as compared with age-matched healthy controls. Our findings indicate that PITX3 may play a role in the pathogenesis of PD.
Collapse
Affiliation(s)
- Weidong Le
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Hanna MC, Blackstone C. Interaction of the SPG21 protein ACP33/maspardin with the aldehyde dehydrogenase ALDH16A1. Neurogenetics 2009; 10:217-28. [PMID: 19184135 DOI: 10.1007/s10048-009-0172-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 01/08/2009] [Indexed: 11/27/2022]
Abstract
Mast syndrome (SPG21) is an autosomal-recessive complicated form of hereditary spastic paraplegia characterized by dementia, thin corpus callosum, white matter abnormalities, and cerebellar and extrapyramidal signs in addition to spastic paraparesis. A nucleotide insertion resulting in premature truncation of the SPG21 gene product acidic cluster protein 33 (ACP33)/maspardin underlies this disorder, likely causing loss of protein function. However, little is known about the function of maspardin. Here, we report that maspardin localizes prominently to cytoplasm as well as to membranes, possibly at trans-Golgi network/late endosomal compartments. Immunoprecipitation of maspardin with identification of coprecipitating proteins by mass spectrometry revealed the aldehyde dehydrogenase ALDH16A1 as an interacting protein. This interaction was confirmed using overexpressed proteins as well as by fusion protein pull down experiments, and these proteins colocalized in cells. Further studies of the function of ALDH16A1 and the role of the maspardin-ALDH16A1 interaction in neuronal cells may clarify the cellular pathogenesis of Mast syndrome.
Collapse
Affiliation(s)
- Michael C Hanna
- Department of Biological and Environmental Sciences, Texas A & M University-Commerce, Commerce, TX 75428, USA.
| | | |
Collapse
|
95
|
Yang D, Peng C, Li X, Fan X, Li L, Ming M, Chen S, Le W. Pitx3-transfected astrocytes secrete brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor and protect dopamine neurons in mesencephalon cultures. J Neurosci Res 2009; 86:3393-400. [PMID: 18646205 DOI: 10.1002/jnr.21774] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The transcription factor Pitx3 is crucial for the development and differentiation of dopamine (DA) neurons. Our previous work has shown the Pitx3 can up-regulate the expression of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) in neuroblastoma cell line SH-SY5Y. Primary astrocytes are the major nonneuronal cells and can be easily modified genetically to deliver therapeutic molecules into the brain, so we investigated whether Pitx3 can increase the expression and secretion of BDNF and GDNF in primary astrocytes. We first transfected Pitx3 plasmid in purified rat astrocytes and collected the conditioned medium (CM) from the Pitx3-transfected cultures, and then we measured the BDNF and GDNF levels from the CM and tested the protective effect of the CM against rotenone-induced DA neuron injury in ventral mesencephalon (VM) cultures. We found that the BDNF and GDNF levels were 1.4-fold and 1.5-fold higher in the CM from Pitx3-transfected astrocytes than empty vectors-transfected controls. Incubation with the CM from Pitx3-transfected astrocytes significantly attenuated the rotenone-induced DA neuron injury, and such protection can be significantly blocked by preincubation with antibodies against either BDNF or GDNF, whereas preincubation with purified BDNF or GDNF replicated the neuroprotection against rotenone-induced injury in VM cultures. These results demonstrate that Pitx3-transfection in astrocytes can up-regulate BDNF and GDNF expression and produce protective benefit to DA neurons, which might be a potential therapeutic alternative for Parkinson's disease.
Collapse
Affiliation(s)
- Dehua Yang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Jacobs FMJ, van Erp S, van der Linden AJA, von Oerthel L, Burbach JPH, Smidt MP. Pitx3 potentiates Nurr1 in dopamine neuron terminal differentiation through release of SMRT-mediated repression. Development 2009; 136:531-40. [PMID: 19144721 DOI: 10.1242/dev.029769] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In recent years, the meso-diencephalic dopaminergic (mdDA) neurons have been extensively studied for their association with Parkinson's disease. Thus far, specification of the dopaminergic phenotype of mdDA neurons is largely attributed to the orphan nuclear receptor Nurr1. In this study, we provide evidence for extensive interplay between Nurr1 and the homeobox transcription factor Pitx3 in vivo. Both Nurr1 and Pitx3 interact with the co-repressor PSF and occupy the promoters of Nurr1 target genes in concert. Moreover, in vivo expression analysis reveals that Nurr1 alone is not sufficient to drive the dopaminergic phenotype in mdDA neurons but requires Pitx3 for full activation of target gene expression. In the absence of Pitx3, Nurr1 is kept in a repressed state through interaction with the co-repressor SMRT. Highly resembling the effect of ligand activation of nuclear receptors, recruitment of Pitx3 modulates the Nurr1 transcriptional complex by decreasing the interaction with SMRT, which acts through HDACs to keep promoters in a repressed deacetylated state. Indeed, interference with HDAC-mediated repression in Pitx3(-/-) embryos efficiently reactivates the expression of Nurr1 target genes, bypassing the necessity for Pitx3. These data position Pitx3 as an essential potentiator of Nurr1 in specifying the dopaminergic phenotype, providing novel insights into mechanisms underlying development of mdDA neurons in vivo, and the programming of stem cells as a future cell replacement therapy for Parkinson's disease.
Collapse
Affiliation(s)
- Frank M J Jacobs
- Department of Neuroscience & Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
97
|
Terminal Differentiation of Mesodiencephalic Dopaminergic Neurons:. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009. [DOI: 10.1007/978-1-4419-0322-8_4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
98
|
Cai J, Donaldson A, Yang M, German MS, Enikolopov G, Iacovitti L. The role of Lmx1a in the differentiation of human embryonic stem cells into midbrain dopamine neurons in culture and after transplantation into a Parkinson's disease model. Stem Cells 2009; 27:220-9. [PMID: 18832589 DOI: 10.1634/stemcells.2008-0734] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent studies have provided important insight into the homeoprotein LIM homeobox transcription factor 1alpha (Lmx1a) and its role in the commitment of cells to a midbrain dopamine (mDA) fate in the developing mouse. We show here that Lmx1a also plays a pivotal role in the mDA differentiation of human embryonic stem (hES) cells. Thus, as indicated by small interfering RNA experiments, the transient early expression of Lmx1a is necessary for the coordinated expression of all other dopamine (DA)-specific phenotypic traits as hES cells move from multipotent human neural progenitor cells (hNPs) to more restricted precursor cells in vitro. Moreover, only Lmx1a-specified hNPs have the potential to differentiate into bona fide mDA neurons after transplantation into the 6-hydroxydopamine-treated rat striatum. In contrast, cortical human neuronal precursor cells (HNPCs) and mouse subventricular zone cells do not express Lmx1a or become mDA neurons even when placed in an environment that fosters their DA differentiation in vitro or in vivo. These findings suggest that Lmx1a may be critical to the development of mDA neurons from hES cells and that, along with other key early DA markers (i.e., Aldh1a1), may prove to be extremely useful for the selection of appropriately staged and suitably mDA-specified hES cells for cell replacement in Parkinson's disease.
Collapse
Affiliation(s)
- Jingli Cai
- Farber Institute for Neurosciences, Department of Neurology, Thomas Jefferson University Medical College, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
99
|
Schweitzer J, Driever W. Development of the dopamine systems in zebrafish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 651:1-14. [PMID: 19731546 DOI: 10.1007/978-1-4419-0322-8_1] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Dopaminergic neurons develop in several distinct regions of the vertebrate brain and project locally or send long axonal projections to distant parts of the CNS to modulate the activity of a variety of circuits, controlling aspects of physiology, behavior and movement. The molecular control of dopaminergic differentiation and the evolution of the various dopaminergic systems are not well understood, as research has mostly focused on ascending mammalian dopaminergic systems of the substantia nigra and ventral tegmental area. Zebrafish have evolved as an excellent genetic and experimental embryological model to study specification and axonal projectivity of dopaminergic neurons. The large evolutionary distance between fish and mammals provides the opportunity to identify conserved core regulatory mechanisms that control differentiation and projection behavior of the various dopaminergic groups in vertebrates. Here, we present an overview of the formation of dopaminergic groups and their projections in zebrafish. We will further review the results from genetic analyses, which have revealed insights on signals as well as transcription factors contributing to dopaminergic differentiation. Together with recently established paradigms for behavioral analysis, dopaminergic systems are studied at all levels in zebrafish, from molecular and cellular to systems and behavioral.
Collapse
Affiliation(s)
- Jörn Schweitzer
- Institute Biology 1, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
100
|
Thompson LH, Björklund A. Transgenic reporter mice as tools for studies of transplantability and connectivity of dopamine neuron precursors in fetal tissue grafts. PROGRESS IN BRAIN RESEARCH 2009; 175:53-79. [PMID: 19660649 DOI: 10.1016/s0079-6123(09)17505-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Cell therapy for Parkinson's disease (PD) is based on the idea that new midbrain dopamine (mDA) neurons, implanted directly into the brain of the patient, can structurally and functionally replace those lost to the disease. Clinical trials have provided proof-of-principle that the grafted mDA neurons can survive and function after implantation in order to provide sustained improvement in motor function for some patients. Nonetheless, there are a number of issues limiting the application of this approach as mainstream therapy, including: the use of human fetal tissue as the only safe and reliable source of transplantable mDA neurons, and variability in the therapeutic outcome. Here we review recent progress in this area from investigations using rodent models of PD, paying particular attention to the use of transgenic reporter mice as tools for neural transplantation studies. Cell type-specific expression of reporter genes, such as green fluorescent protein, affords valuable technical advantages in transplantation experiments, such as the ability to selectively isolate specific cell fractions from mixed populations prior to grafting, and the unambiguous visualization of graft-derived dopamine neuron fiber patterns after transplantation. The results from these investigations have given new insights into the transplantability of mDA precursors as well as their connectivity after grafting and have interesting implications for the development of stem cell based approaches for the treatment of PD.
Collapse
Affiliation(s)
- Lachlan H Thompson
- Florey Neuroscience Institutes, University of Melbourne, Parkville, Victoria, Australia.
| | | |
Collapse
|