51
|
Chowdhary S, Hadjantonakis AK. Journey of the mouse primitive endoderm: from specification to maturation. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210252. [PMID: 36252215 PMCID: PMC9574636 DOI: 10.1098/rstb.2021.0252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
The blastocyst is a conserved stage and distinct milestone in the development of the mammalian embryo. Blastocyst stage embryos comprise three cell lineages which arise through two sequential binary cell fate specification steps. In the first, extra-embryonic trophectoderm (TE) cells segregate from inner cell mass (ICM) cells. Subsequently, ICM cells acquire a pluripotent epiblast (Epi) or extra-embryonic primitive endoderm (PrE, also referred to as hypoblast) identity. In the mouse, nascent Epi and PrE cells emerge in a salt-and-pepper distribution in the early blastocyst and are subsequently sorted into adjacent tissue layers by the late blastocyst stage. Epi cells cluster at the interior of the ICM, while PrE cells are positioned on its surface interfacing the blastocyst cavity, where they display apicobasal polarity. As the embryo implants into the maternal uterus, cells at the periphery of the PrE epithelium, at the intersection with the TE, break away and migrate along the TE as they mature into parietal endoderm (ParE). PrE cells remaining in association with the Epi mature into visceral endoderm. In this review, we discuss our current understanding of the PrE from its specification to its maturation. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Sayali Chowdhary
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
52
|
Krawczyk K, Wilczak K, Szczepańska K, Maleszewski M, Suwińska A. Paracrine interactions through FGFR1 and FGFR2 receptors regulate the development of preimplantation mouse chimaeric embryo. Open Biol 2022; 12:220193. [PMID: 36382369 PMCID: PMC9667143 DOI: 10.1098/rsob.220193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The preimplantation mammalian embryo has the potential to self-organize, allowing the formation of a correctly patterned embryo despite experimental perturbation. To better understand the mechanisms controlling the developmental plasticity of the early mouse embryo, we used chimaeras composed of an embryonic day (E)3.5 or E4.5 inner cell mass (ICM) and cleaving 8-cell embryo. We revealed that the restricted potential of the ICM can be compensated for by uncommitted 8-cell embryo-derived blastomeres, thus leading to the formation of a normal chimaeric blastocyst that can undergo full development. However, whether such chimaeras maintain developmental competence depends on the presence or specific orientation of the polarized primitive endoderm layer in the ICM component. We also demonstrated that downregulated FGFR1 and FGFR2 expression in 8-cell embryos disturbs intercellular interactions between both components and results in an inverse proportion of primitive endoderm and epiblast within the resulting ICM and abnormal embryo development. This finding suggests that FGF signalling is a key part of the regulatory mechanism that assigns cells to a given lineage and ensures the proper composition of the blastocyst, which is a prerequisite for its successful implantation in the uterus and for further development.
Collapse
Affiliation(s)
- Katarzyna Krawczyk
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Katarzyna Wilczak
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Katarzyna Szczepańska
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Marek Maleszewski
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Aneta Suwińska
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
53
|
Vrij EJ, Scholte op Reimer YS, Fuentes LR, Guerreiro IM, Holzmann V, Aldeguer JF, Sestini G, Koo BK, Kind J, van Blitterswijk CA, Rivron NC. A pendulum of induction between the epiblast and extra-embryonic endoderm supports post-implantation progression. Development 2022; 149:dev192310. [PMID: 35993866 PMCID: PMC9534490 DOI: 10.1242/dev.192310] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/23/2022] [Indexed: 08/17/2023]
Abstract
Embryogenesis is supported by dynamic loops of cellular interactions. Here, we create a partial mouse embryo model to elucidate the principles of epiblast (Epi) and extra-embryonic endoderm co-development (XEn). We trigger naive mouse embryonic stem cells to form a blastocyst-stage niche of Epi-like cells and XEn-like cells (3D, hydrogel free and serum free). Once established, these two lineages autonomously progress in minimal medium to form an inner pro-amniotic-like cavity surrounded by polarized Epi-like cells covered with visceral endoderm (VE)-like cells. The progression occurs through reciprocal inductions by which the Epi supports the primitive endoderm (PrE) to produce a basal lamina that subsequently regulates Epi polarization and/or cavitation, which, in return, channels the transcriptomic progression to VE. This VE then contributes to Epi bifurcation into anterior- and posterior-like states. Similarly, boosting the formation of PrE-like cells within blastoids supports developmental progression. We argue that self-organization can arise from lineage bifurcation followed by a pendulum of induction that propagates over time.
Collapse
Affiliation(s)
- Erik J. Vrij
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Yvonne S. Scholte op Reimer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Laury Roa Fuentes
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
| | - Isabel Misteli Guerreiro
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, UtrechtUppsalalaan 8, 3584 CT Utrecht, Netherlands
| | - Viktoria Holzmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Javier Frias Aldeguer
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, UtrechtUppsalalaan 8, 3584 CT Utrecht, Netherlands
| | - Giovanni Sestini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Jop Kind
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, UtrechtUppsalalaan 8, 3584 CT Utrecht, Netherlands
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, Netherlands
| | - Clemens A. van Blitterswijk
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, Netherlands
| | - Nicolas C. Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
54
|
Kale HT, Rajpurohit RS, Jana D, Vishnu VV, Srivastava M, Mourya PR, Srinivas G, Shekar PC. A NANOG‐pERK reciprocal regulatory circuit regulates
Nanog
autoregulation and ERK signaling dynamics. EMBO Rep 2022; 23:e54421. [PMID: 36066347 PMCID: PMC9638859 DOI: 10.15252/embr.202154421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022] Open
Abstract
The self‐renewal and differentiation potential of embryonic stem cells (ESCs) is maintained by the regulated expression of core pluripotency factors. Expression levels of the core pluripotency factor Nanog are tightly regulated by a negative feedback autorepression loop. However, it remains unclear how ESCs perceive NANOG levels and execute autorepression. Here, we show that a dose‐dependent induction of Fgfbp1 and Fgfr2 by NANOG activates autocrine‐mediated ERK signaling in Nanog‐high cells to trigger autorepression. pERK recruits NONO to the Nanog locus to repress transcription by preventing POL2 loading. This Nanog autorepression process establishes a self‐perpetuating reciprocal NANOG‐pERK regulatory circuit. We further demonstrate that this reciprocal regulatory circuit induces pERK heterogeneity and ERK signaling dynamics in pluripotent stem cells. Collectively our data suggest that NANOG induces Fgfr2 and Fgfbp1 to activate ERK signaling in Nanog‐high cells to establish a NANOG‐pERK reciprocal regulatory circuit. This circuit regulates ERK signaling dynamics and Nanog autoregulation in pluripotent cells.
Collapse
Affiliation(s)
- Hanuman T Kale
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
| | | | - Debabrata Jana
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
| | - Vijay V Vishnu
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
| | - Mansi Srivastava
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Preeti R Mourya
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
| | - Gunda Srinivas
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
| | - P Chandra Shekar
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
55
|
Endoh M, Niwa H. Stepwise pluripotency transitions in mouse stem cells. EMBO Rep 2022; 23:e55010. [PMID: 35903955 PMCID: PMC9442314 DOI: 10.15252/embr.202255010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 07/31/2023] Open
Abstract
Pluripotent cells in mouse embryos, which first emerge in the inner cell mass of the blastocyst, undergo gradual transition marked by changes in gene expression, developmental potential, polarity, and morphology as they develop from the pre-implantation until post-implantation gastrula stage. Recent studies of cultured mouse pluripotent stem cells (PSCs) have clarified the presence of intermediate pluripotent stages between the naïve pluripotent state represented by embryonic stem cells (ESCs-equivalent to the pre-implantation epiblast) and the primed pluripotent state represented by epiblast stem cells (EpiSCs-equivalent to the late post-implantation gastrula epiblast). In this review, we discuss these recent findings in light of our knowledge on peri-implantation mouse development and consider the implications of these new PSCs to understand their temporal sequence and the feasibility of using them as model system for pluripotency.
Collapse
Affiliation(s)
- Mitsuhiro Endoh
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG)Kumamoto UniversityKumamotoJapan
| | - Hitoshi Niwa
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG)Kumamoto UniversityKumamotoJapan
| |
Collapse
|
56
|
Dubois A, Vincenti L, Chervova A, Greenberg MVC, Vandormael-Pournin S, Bourc'his D, Cohen-Tannoudji M, Navarro P. H3K9 tri-methylation at Nanog times differentiation commitment and enables the acquisition of primitive endoderm fate. Development 2022; 149:276335. [PMID: 35976266 PMCID: PMC9482333 DOI: 10.1242/dev.201074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022]
Abstract
Mouse embryonic stem cells have an inherent propensity to explore gene regulatory states associated with either self-renewal or differentiation. This property depends on ERK, which downregulates pluripotency genes such as Nanog. Here, we aimed at identifying repressive histone modifications that would mark Nanog for inactivation in response to ERK activity. We found that the transcription factor ZFP57, which binds methylated DNA to nucleate heterochromatin, is recruited upstream of Nanog, within a region enriched for histone H3 lysine 9 tri-methylation (H3K9me3). Whereas before differentiation H3K9me3 at Nanog depends on ERK, in somatic cells it becomes independent of ERK. Moreover, the loss of H3K9me3 at Nanog, induced by deleting the region or by knocking out DNA methyltransferases or Zfp57, is associated with reduced heterogeneity of NANOG, delayed commitment into differentiation and impaired ability to acquire a primitive endoderm fate. Hence, a network axis centred on DNA methylation, ZFP57 and H3K9me3 links Nanog regulation to ERK activity for the timely establishment of new cell identities. We suggest that establishment of irreversible H3K9me3 at specific master regulators allows the acquisition of particular cell fates during differentiation. Summary: A regulatory axis integrating ERK, ZFP57, DNA and H3K9 methylation underlies the transition of Nanog expression from heterogeneous and dynamic to irreversibly silenced, enabling differentiation commitment and primitive endoderm specification.
Collapse
Affiliation(s)
- Agnès Dubois
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit 1 Department of Developmental and Stem Cell Biology , , F-75015 Paris , France
| | - Loris Vincenti
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit 1 Department of Developmental and Stem Cell Biology , , F-75015 Paris , France
| | - Almira Chervova
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit 1 Department of Developmental and Stem Cell Biology , , F-75015 Paris , France
| | - Maxim V. C. Greenberg
- Department of Genetics and Developmental Biology, Institut Curie, PSL Research University, INSERM, CNRS 2 , 75005 Paris , France
- Université Paris Cité, CNRS, Institut Jacques Monod 3 , F-75013 Paris , France
| | - Sandrine Vandormael-Pournin
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit 1 Department of Developmental and Stem Cell Biology , , F-75015 Paris , France
| | - Déborah Bourc'his
- Department of Genetics and Developmental Biology, Institut Curie, PSL Research University, INSERM, CNRS 2 , 75005 Paris , France
| | - Michel Cohen-Tannoudji
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit 1 Department of Developmental and Stem Cell Biology , , F-75015 Paris , France
| | - Pablo Navarro
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit 1 Department of Developmental and Stem Cell Biology , , F-75015 Paris , France
| |
Collapse
|
57
|
Perera M, Nissen SB, Proks M, Pozzi S, Monteiro RS, Trusina A, Brickman JM. Transcriptional heterogeneity and cell cycle regulation as central determinants of primitive endoderm priming. eLife 2022; 11:78967. [PMID: 35969041 PMCID: PMC9417417 DOI: 10.7554/elife.78967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
During embryonic development cells acquire identity as they proliferate, implying that an intrinsic facet of cell fate choice requires coupling lineage decisions to cell division. How is the cell cycle regulated to promote or suppress heterogeneity and differentiation? We explore this question combining time lapse imaging with single-cell RNA-seq in the contexts of self-renewal, priming, and differentiation of mouse embryonic stem cells (ESCs) towards the Primitive Endoderm (PrE) lineage. Since ESCs are derived from the inner cell mass (ICM) of the mammalian blastocyst, ESCs in standard culture conditions are transcriptionally heterogeneous containing dynamically interconverting subfractions primed for either of the two ICM lineages, Epiblast and PrE. Here, we find that differential regulation of cell cycle can tip the balance between these primed populations, such that naïve ESC culture promotes Epiblast-like expansion and PrE differentiation stimulates the selective survival and proliferation of PrE-primed cells. In endoderm differentiation, this change is accompanied by a counter-intuitive increase in G1 length, also observed in vivo. While fibroblast growth factor/extracellular signal-regulated kinase (FGF/ERK) signalling is a key regulator of ESC differentiation and PrE specification, we find it is not just responsible for ESCs heterogeneity, but also the inheritance of similar cell cycles between sisters and cousins. Taken together, our results indicate a tight relationship between transcriptional heterogeneity and cell cycle regulation in lineage specification, with primed cell populations providing a pool of flexible cell types that can be expanded in a lineage-specific fashion while allowing plasticity during early determination.
Collapse
Affiliation(s)
- Marta Perera
- The Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Martin Proks
- The Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sara Pozzi
- The Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rita Soares Monteiro
- The Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ala Trusina
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Joshua M Brickman
- The Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
58
|
Ducos B, Bensimon D, Scerbo P. Vertebrate Cell Differentiation, Evolution, and Diseases: The Vertebrate-Specific Developmental Potential Guardians VENTX/ NANOG and POU5/ OCT4 Enter the Stage. Cells 2022; 11:cells11152299. [PMID: 35892595 PMCID: PMC9331430 DOI: 10.3390/cells11152299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 01/02/2023] Open
Abstract
During vertebrate development, embryonic cells pass through a continuum of transitory pluripotent states that precede multi-lineage commitment and morphogenesis. Such states are referred to as “refractory/naïve” and “competent/formative” pluripotency. The molecular mechanisms maintaining refractory pluripotency or driving the transition to competent pluripotency, as well as the cues regulating multi-lineage commitment, are evolutionarily conserved. Vertebrate-specific “Developmental Potential Guardians” (vsDPGs; i.e., VENTX/NANOG, POU5/OCT4), together with MEK1 (MAP2K1), coordinate the pluripotency continuum, competence for multi-lineage commitment and morphogenesis in vivo. During neurulation, vsDPGs empower ectodermal cells of the neuro-epithelial border (NEB) with multipotency and ectomesenchyme potential through an “endogenous reprogramming” process, giving rise to the neural crest cells (NCCs). Furthermore, vsDPGs are expressed in undifferentiated-bipotent neuro-mesodermal progenitor cells (NMPs), which participate in posterior axis elongation and growth. Finally, vsDPGs are involved in carcinogenesis, whereby they confer selective advantage to cancer stem cells (CSCs) and therapeutic resistance. Intriguingly, the heterogenous distribution of vsDPGs in these cell types impact on cellular potential and features. Here, we summarize the findings about the role of vsDPGs during vertebrate development and their selective advantage in evolution. Our aim to present a holistic view regarding vsDPGs as facilitators of both cell plasticity/adaptability and morphological innovation/variation. Moreover, vsDPGs may also be at the heart of carcinogenesis by allowing malignant cells to escape from physiological constraints and surveillance mechanisms.
Collapse
Affiliation(s)
- Bertrand Ducos
- LPENS, PSL, CNRS, 24 rue Lhomond, 75005 Paris, France
- IBENS, PSL, CNRS, 46 rue d’Ulm, 75005 Paris, France
- High Throughput qPCR Core Facility, ENS, PSL, 46 rue d’Ulm, 75005 Paris, France
- Correspondence: (B.D.); (D.B.); (P.S.)
| | - David Bensimon
- LPENS, PSL, CNRS, 24 rue Lhomond, 75005 Paris, France
- IBENS, PSL, CNRS, 46 rue d’Ulm, 75005 Paris, France
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90094, USA
- Correspondence: (B.D.); (D.B.); (P.S.)
| | - Pierluigi Scerbo
- LPENS, PSL, CNRS, 24 rue Lhomond, 75005 Paris, France
- IBENS, PSL, CNRS, 46 rue d’Ulm, 75005 Paris, France
- Correspondence: (B.D.); (D.B.); (P.S.)
| |
Collapse
|
59
|
Thompson JJ, Lee DJ, Mitra A, Frail S, Dale RK, Rocha PP. Extensive co-binding and rapid redistribution of NANOG and GATA6 during emergence of divergent lineages. Nat Commun 2022; 13:4257. [PMID: 35871075 PMCID: PMC9308780 DOI: 10.1038/s41467-022-31938-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/11/2022] [Indexed: 11/26/2022] Open
Abstract
Fate-determining transcription factors (TFs) can promote lineage-restricted transcriptional programs from common progenitor states. The inner cell mass (ICM) of mouse blastocysts co-expresses the TFs NANOG and GATA6, which drive the bifurcation of the ICM into either the epiblast (Epi) or the primitive endoderm (PrE), respectively. Here, we induce GATA6 in embryonic stem cells-that also express NANOG-to characterize how a state of co-expression of opposing TFs resolves into divergent lineages. Surprisingly, we find that GATA6 and NANOG co-bind at the vast majority of Epi and PrE enhancers, a phenomenon we also observe in blastocysts. The co-bound state is followed by eviction and repression of Epi TFs, and quick remodeling of chromatin and enhancer-promoter contacts thus establishing the PrE lineage while repressing the Epi fate. We propose that co-binding of GATA6 and NANOG at shared enhancers maintains ICM plasticity and promotes the rapid establishment of Epi- and PrE-specific transcriptional programs.
Collapse
Affiliation(s)
- Joyce J Thompson
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel J Lee
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarah Frail
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
- National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
60
|
Nichols J, Lima A, Rodríguez TA. Cell competition and the regulative nature of early mammalian development. Cell Stem Cell 2022; 29:1018-1030. [PMID: 35803224 DOI: 10.1016/j.stem.2022.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mammalian embryo exhibits a remarkable plasticity that allows it to correct for the presence of aberrant cells, adjust its growth so that its size is in accordance with its developmental stage, or integrate cells of another species to form fully functional organs. Here, we will discuss the contribution that cell competition, a quality control that eliminates viable cells that are less fit than their neighbors, makes to this plasticity. We will do this by reviewing the roles that cell competition plays in the early mammalian embryo and how they contribute to ensure normal development of the embryo.
Collapse
Affiliation(s)
- Jennifer Nichols
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK; Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK.
| | - Ana Lima
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | - Tristan A Rodríguez
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
61
|
Allègre N, Chauveau S, Dennis C, Renaud Y, Meistermann D, Estrella LV, Pouchin P, Cohen-Tannoudji M, David L, Chazaud C. NANOG initiates epiblast fate through the coordination of pluripotency genes expression. Nat Commun 2022; 13:3550. [PMID: 35729116 PMCID: PMC9213552 DOI: 10.1038/s41467-022-30858-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 05/24/2022] [Indexed: 12/20/2022] Open
Abstract
The epiblast is the source of all mammalian embryonic tissues and of pluripotent embryonic stem cells. It differentiates alongside the primitive endoderm in a “salt and pepper” pattern from inner cell mass (ICM) progenitors during the preimplantation stages through the activity of NANOG, GATA6 and the FGF pathway. When and how epiblast lineage specification is initiated is still unclear. Here, we show that the coordinated expression of pluripotency markers defines epiblast identity. Conversely, ICM progenitor cells display random cell-to-cell variability in expression of various pluripotency markers, remarkably dissimilar from the epiblast signature and independently from NANOG, GATA6 and FGF activities. Coordination of pluripotency markers expression fails in Nanog and Gata6 double KO (DKO) embryos. Collectively, our data suggest that NANOG triggers epiblast specification by ensuring the coordinated expression of pluripotency markers in a subset of cells, implying a stochastic mechanism. These features are likely conserved, as suggested by analysis of human embryos. Pluripotent epiblast cells segregate from primitive endoderm in the blastocyst inner cell mass (ICM). Here the authors show that mosaic epiblast differentiation during mouse and human preimplantation development initiates stochastically in ICM progenitors, independently of the FGF pathway, and requires NANOG activity
Collapse
Affiliation(s)
- Nicolas Allègre
- Université Clermont Auvergne, CNRS, INSERM, GReD Institute, Faculté de Médecine, F-63000, Clermont-Ferrand, France
| | - Sabine Chauveau
- Université Clermont Auvergne, CNRS, INSERM, GReD Institute, Faculté de Médecine, F-63000, Clermont-Ferrand, France
| | - Cynthia Dennis
- Université Clermont Auvergne, CNRS, INSERM, GReD Institute, Faculté de Médecine, F-63000, Clermont-Ferrand, France
| | - Yoan Renaud
- Université Clermont Auvergne, CNRS, INSERM, GReD Institute, Faculté de Médecine, F-63000, Clermont-Ferrand, France.,Byonet, 19 rue du courait, F-63200, Riom, France
| | - Dimitri Meistermann
- Université de Nantes, CHU Nantes, INSERM, CR2TI, UMR 1064, ITUN, F-44000, Nantes, France.,Université de Nantes, CNRS, LS2N, CNRS UMR 6004, F-44000, Nantes, France
| | - Lorena Valverde Estrella
- Université Clermont Auvergne, CNRS, INSERM, GReD Institute, Faculté de Médecine, F-63000, Clermont-Ferrand, France
| | - Pierre Pouchin
- Université Clermont Auvergne, CNRS, INSERM, GReD Institute, Faculté de Médecine, F-63000, Clermont-Ferrand, France
| | - Michel Cohen-Tannoudji
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, F-75015, Paris, France
| | - Laurent David
- Université de Nantes, CHU Nantes, INSERM, CR2TI, UMR 1064, ITUN, F-44000, Nantes, France.,Université de Nantes, CHU Nantes, INSERM, CNRS, UMS Biocore, INSERM UMS 016, CNRS UMS 3556, F-44000, Nantes, France
| | - Claire Chazaud
- Université Clermont Auvergne, CNRS, INSERM, GReD Institute, Faculté de Médecine, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
62
|
Abstract
POUV is a relatively newly emerged class of POU transcription factors present in jawed vertebrates (Gnathostomata). The function of POUV-class proteins is inextricably linked to zygotic genome activation (ZGA). A large body of evidence now extends the role of these proteins to subsequent developmental stages. While some functions resemble those of other POU-class proteins and are related to neuroectoderm development, others have emerged de novo. The most notable of the latter functions is pluripotency control by Oct4 in mammals. In this review, we focus on these de novo functions in the best-studied species harbouring POUV proteins-zebrafish, Xenopus (anamniotes) and mammals (amniotes). Despite the broad diversity of their biological functions in vertebrates, POUV proteins exert a common feature related to their role in safeguarding the undifferentiated state of cells. Here we summarize numerous pieces of evidence for these specific functions of the POUV-class proteins and recap available loss-of-function data.
Collapse
Affiliation(s)
- Evgeny I. Bakhmet
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Alexey N. Tomilin
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| |
Collapse
|
63
|
Li Y, Xia Z, Yin H, Dai Y, Li F, Chen J, Qiu M, Huang H. An efficient method of inducing differentiation of mouse embryonic stem cells into primitive endodermal cells. Biochem Biophys Res Commun 2022; 599:156-163. [PMID: 35202849 DOI: 10.1016/j.bbrc.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/01/2022] [Indexed: 11/02/2022]
Abstract
Primitive Endoderm (PrE) is an extraembryonic structure derived from inner cell mass (ICM) in the blastocysts. Its interaction with the epiblast is critical to sustain embryonic growth and embryonic pattern. In this study, we reported a simple and efficient method to induce the differentiation of mouse Embryonic Stem Cells (mESCs) into PrE cells. In the process of ESC monolayer adherent culture, 1 μM atRA and 10 μM CHIR inducers were used to activate RA and Wnt signaling pathways respectively. After 9 days of differentiation, the proportion of PrE cells was up to 85%. Further studies indicated that Wnt signaling pathway acted as a switch that RA induces mESCs differentiation between SMC and PrE cell. In the presence of only RA signaling, mESCs adopted the fate of smooth muscle cells (SMCs); Simultaneous activation of the Wnt signaling pathway changed the differentiation fate of mESCs into PrE cells. This efficient induction method can provide new cellular resources and models for relevant studies of PrE.
Collapse
Affiliation(s)
- Yan Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, 311121, China
| | - Zhiyu Xia
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, 311121, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Haihong Yin
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, 311121, China
| | - Youran Dai
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, 311121, China
| | - Feixue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, 311121, China
| | - Jianming Chen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, 311121, China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, 311121, China
| | - Huarong Huang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, 311121, China.
| |
Collapse
|
64
|
Alonso-Alonso S, Santaló J, Ibáñez E. Efficient generation of embryonic stem cells from single blastomeres of cryopreserved mouse embryos in the presence of signalling modulators. Reprod Fertil Dev 2022; 34:576-587. [PMID: 35157826 DOI: 10.1071/rd21297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/23/2022] [Indexed: 11/23/2022] Open
Abstract
CONTEXT Derivation of embryonic stem cells (ESC) from single blastomeres is an interesting alternative to the use of whole blastocysts, but derivation rates are lower and the requirements for successful ESC obtention are still poorly defined. AIMS To investigate the effects of embryo cryopreservation and of signalling modulators present during embryo culture and/or ESC establishment on ESC derivation efficiency from single 8-cell mouse blastomeres. METHOD Fresh and cryopreserved 2-cell embryos were cultured and biopsied at the 8-cell stage. Single blastomeres were cultured in the presence of 2i or R2i cocktails, with or without adrenocorticotropic hormone (ACTH). We analysed ESC derivation efficiencies and characterised pluripotency genes expression and karyotype integrity of the resulting lines. We also evaluated the impact of embryo preculture with R2i on epiblast cell numbers and derivation rates. KEY RESULTS The ESC generation was not compromised by embryo cryopreservation and ACTH was dispensable under most of the conditions tested. While 2i and R2i were similarly effective for ESC derivation, R2i provided higher karyotype integrity. Embryo preculture with R2i yielded increased numbers of epiblast cells but did not lead to increased ESC generation. CONCLUSIONS Our findings help to define a simplified and efficient procedure for the establishment of mouse ESC from single 8-cell blastomeres. IMPLICATIONS This study will contribute to improving the potential of this experimental procedure, providing a tool to investigate the developmental potential of blastomeres isolated from different embryonic stages and to reduce the number of embryos needed for ESC derivation.
Collapse
Affiliation(s)
- Sandra Alonso-Alonso
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Josep Santaló
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Elena Ibáñez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
65
|
Zhang F, Pang C, Zhu H, Chen Y. Timely stimulation of early embryo promotes the acquisition of pluripotency. Cytometry A 2022; 101:682-691. [PMID: 35332996 DOI: 10.1002/cyto.a.24551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/16/2022] [Accepted: 03/15/2022] [Indexed: 11/06/2022]
Abstract
Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are both pluripotent stem cells from early embryos. Another type of pluripotent stem cells, which are similar with EpiSCs and derive from pre-implantation embryos in feeder-free and chemically defined medium containing Activin A and basic fibroblast growth factors (bFGF), is termed as AFSCs. The pluripotency and self-renewal maintenance of ESCs rely on Leukemia inhibitory factor (LIF)/STAT/BMP4/SMAD signaling, while the pluripotency and self-renewal maintenance of EpiSCs and AFSCs rely on bFGF and Activin/Nodal signaling. However, the establishment efficiency of AFSCs lines is low. In this study, we stimulated early embryos by 2i/LIF (CHIR99021 + PD0325901 + LIF) and Activin A + bFGF respectively, to change the cell fate in inner cell mass (ICM). The "fate changed embryos" by 2i/LIF can efficiently produce AFSCs in feeder-free and chemically defined medium, but the efficiency of embryos treated with Activin A + bFGF were poor. The AFSCs from fate-changed embryos share similar molecular characteristics with conventional AFSCs and EpiSCs. Our results suggest that the advanced stimulation of 2i/LIF and the premature stimulation of Activin A + bFGF contribute to capturing the pluripotent stem cells in early embryos, and the FGF/MAPK signaling dominate early embryo development. Our study provides a new approach to capturing pluripotency from pre-implantation embryos.
Collapse
Affiliation(s)
- Fengying Zhang
- Southern Medical University Central Laboratory, Southern Medical University, Guangzhou, China
| | - Changmiao Pang
- School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Haoyun Zhu
- School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yanglin Chen
- School of Basic Medical Science, Southern Medical University, Guangzhou, China
| |
Collapse
|
66
|
Luijkx D, Shankar V, van Blitterswijk C, Giselbrecht S, Vrij E. From Mice to Men: Generation of Human Blastocyst-Like Structures In Vitro. Front Cell Dev Biol 2022; 10:838356. [PMID: 35359453 PMCID: PMC8963787 DOI: 10.3389/fcell.2022.838356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 01/04/2023] Open
Abstract
Advances in the field of stem cell-based models have in recent years lead to the development of blastocyst-like structures termed blastoids. Blastoids can be used to study key events in mammalian pre-implantation development, as they mimic the blastocyst morphologically and transcriptionally, can progress to the post-implantation stage and can be generated in large numbers. Blastoids were originally developed using mouse pluripotent stem cells, and since several groups have successfully generated blastocyst models of the human system. Here we provide a comparison of the mouse and human protocols with the aim of deriving the core requirements for blastoid formation, discuss the models’ current ability to mimic blastocysts and give an outlook on potential future applications.
Collapse
Affiliation(s)
| | | | | | | | - Erik Vrij
- *Correspondence: Erik Vrij, ; Stefan Giselbrecht,
| |
Collapse
|
67
|
Hiltunen AE, Vuolteenaho R, Ronkainen VP, Miinalainen I, Uusimaa J, Lehtonen S, Hinttala R. Nhlrc2 is crucial during mouse gastrulation. Genesis 2022; 60:e23470. [PMID: 35258166 PMCID: PMC9286871 DOI: 10.1002/dvg.23470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 11/30/2022]
Abstract
The loss of NHL repeat containing 2 (Nhlrc2) leads to early embryonic lethality in mice, but the exact timing is currently unknown. In this study, we determined the time of lethality for Nhlrc2 knockout (KO), C57BL/6NCrl‐Nhlrc2tm1a(KOMP)Wtsi/Oulu, embryos and the in situ expression pattern of Nhlrc2 based on LacZ reporter gene expression during this period. Nhlrc2 KO preimplantation mouse embryos developed normally after in vitro fertilization. Embryonic stem (ES) cells established from KO blastocysts proliferated normally despite a complete loss of the NHLRC2 protein. Nhlrc2 KO embryos from timed matings implanted and were indistinguishable from their wildtype littermates on embryonic day (E) 6.5. On E7.5, Nhlrc2 KO embryo development was arrested, and on E8.5, only 6% of the genotyped embryos were homozygous for the Nhlrc2tm1a(KOMP)Wtsi allele. Nhlrc2 KO E8.5 embryos showed limited embryonic or extraembryonic tissue differentiation and remained at the cylinder stage. Nhlrc2 expression was ubiquitous but strongest in the epiblast/ectoderm and extraembryonic ectoderm on E6.5 and E7.5. NHLRC2 is essential for early postimplantation development, and its loss leads to failed gastrulation and amniotic folding in mice. Future studies on the evolutionarily conserved NHLRC2 will provide new insights into the molecular pathways involved in the early steps of postimplantation development.
Collapse
Affiliation(s)
- Anniina E Hiltunen
- Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu and Oulu University Hospital, Oulu, Finland
| | | | | | | | - Johanna Uusimaa
- Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu and Oulu University Hospital, Oulu, Finland.,Clinic for Children and Adolescents, Pediatric Neurology Unit, Oulu University Hospital, Oulu, Finland
| | - Siri Lehtonen
- Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu and Oulu University Hospital, Oulu, Finland.,Department of Obstetrics and Gynecology, Oulu University Hospital, Oulu, Finland
| | - Reetta Hinttala
- Medical Research Center Oulu and PEDEGO Research Unit, University of Oulu and Oulu University Hospital, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
68
|
Al-Mousawi J, Boskovic A. Transcriptional and epigenetic control of early life cell fate decisions. Curr Opin Oncol 2022; 34:148-154. [PMID: 35025815 DOI: 10.1097/cco.0000000000000814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Global epigenetic reprogramming of the parental genomes after fertilization ensures the establishment of genome organization permissive for cell specialization and differentiation during development. In this review, we highlight selected, well-characterized relationships between epigenetic factors and transcriptional cell fate regulators during the initial stages of mouse development. RECENT FINDINGS Blastomeres of the mouse embryo are characterized by atypical and dynamic histone modification arrangements, noncoding RNAs and DNA methylation profiles. Moreover, asymmetries in epigenomic patterning between embryonic cells arise as early as the first cleavage, with potentially instructive roles during the first lineage allocations in the mouse embryo. Although it is widely appreciated that transcription factors and developmental signaling pathways play a crucial role in cell fate specification at the onset of development, it is increasingly clear that their function is tightly connected to the underlying epigenetic status of the embryonic cells in which they act. SUMMARY Findings on the interplay between genetic, epigenetic and environmental factors during reprogramming and differentiation in the embryo are crucial for understanding the molecular underpinnings of disease processes, particularly tumorigenesis, which is characterized by global epigenetic rewiring and progressive loss of cellular identity.
Collapse
Affiliation(s)
- Jasmina Al-Mousawi
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
| | | |
Collapse
|
69
|
Ohinata Y, Endo TA, Sugishita H, Watanabe T, Iizuka Y, Kawamoto Y, Saraya A, Kumon M, Koseki Y, Kondo T, Ohara O, Koseki H. Establishment of mouse stem cells that can recapitulate the developmental potential of primitive endoderm. Science 2022; 375:574-578. [PMID: 35113719 DOI: 10.1126/science.aay3325] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The mammalian blastocyst consists of three distinct cell types: epiblast, trophoblast (TB), and primitive endoderm (PrE). Although embryonic stem cells (ESCs) and trophoblast stem cells (TSCs) retain the functional properties of epiblast and TB, respectively, stem cells that fully recapitulate the developmental potential of PrE have not been established. Here, we report derivation of primitive endoderm stem cells (PrESCs) in mice. PrESCs recapitulate properties of embryonic day 4.5 founder PrE, are efficiently incorporated into PrE upon blastocyst injection, generate functionally competent PrE-derived tissues, and support fetal development of PrE-depleted blastocysts in chimeras. Furthermore, PrESCs can establish interactions with ESCs and TSCs and generate descendants with yolk sac-like structures in utero. Establishment of PrESCs will enable the elucidation of the mechanisms for PrE specification and subsequent pre- and postimplantation development.
Collapse
Affiliation(s)
- Yasuhide Ohinata
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo ward, Chiba 260-8670, Japan.,Laboratory for Developmental Genetics, RIKEN Center for Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Takaho A Endo
- Laboratory for Integrative Genomics, RIKEN Center for Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Hiroki Sugishita
- Laboratory for Developmental Genetics, RIKEN Center for Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Takashi Watanabe
- Laboratory for Integrative Genomics, RIKEN Center for Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Yusuke Iizuka
- Laboratory for Developmental Genetics, RIKEN Center for Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Yurie Kawamoto
- Laboratory for Developmental Genetics, RIKEN Center for Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Atsunori Saraya
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo ward, Chiba 260-8670, Japan
| | - Mami Kumon
- Laboratory for Developmental Genetics, RIKEN Center for Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Yoko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Takashi Kondo
- Laboratory for Developmental Genetics, RIKEN Center for Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN Center for Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.,Facility for Clinical Omics Analysis, Kazusa DNA Research Institure, 2-6-7 Kazusakamatori, Kisarazu, Chiba 292-0818, Japan
| | - Haruhiko Koseki
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo ward, Chiba 260-8670, Japan.,Laboratory for Developmental Genetics, RIKEN Center for Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
70
|
Abuhashem A, Garg V, Hadjantonakis AK. RNA polymerase II pausing in development: orchestrating transcription. Open Biol 2022; 12:210220. [PMID: 34982944 PMCID: PMC8727152 DOI: 10.1098/rsob.210220] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023] Open
Abstract
The coordinated regulation of transcriptional networks underpins cellular identity and developmental progression. RNA polymerase II promoter-proximal pausing (Pol II pausing) is a prevalent mechanism by which cells can control and synchronize transcription. Pol II pausing regulates the productive elongation step of transcription at key genes downstream of a variety of signalling pathways, such as FGF and Nodal. Recent advances in our understanding of the Pol II pausing machinery and its role in transcription call for an assessment of these findings within the context of development. In this review, we discuss our current understanding of the molecular basis of Pol II pausing and its function during organismal development. By critically assessing the tools used to study this process we conclude that combining recently developed genomics approaches with refined perturbation systems has the potential to expand our understanding of Pol II pausing mechanistically and functionally in the context of development and beyond.
Collapse
Affiliation(s)
- Abderhman Abuhashem
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medical College, New York, NY 10021, USA
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medical College, New York, NY 10021, USA
| |
Collapse
|
71
|
Strawbridge SE, Clarke J, Guo G, Nichols J. Deriving Human Naïve Embryonic Stem Cell Lines from Donated Supernumerary Embryos Using Physical Distancing and Signal Inhibition. Methods Mol Biol 2022; 2416:1-12. [PMID: 34870826 DOI: 10.1007/978-1-0716-1908-7_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Until recently, naïve pluripotent stem cell lines were not captured from human embryos because protocols were based upon those devised for murine embryonic stem cells. In contrast with early lineage segregation in mouse embryos, human hypoblast specification is not solely dependent upon FGF signaling; consequently, its maturation during embryo explant culture may provide inductive signals to drive differentiation of the epiblast. To overcome this potential risk, here we describe how cells of the immature inner cell mass of human embryos can be physically separated during derivation, achieved via "immunosurgery", to eliminate the trophectoderm, followed by disaggregation of the remaining inner cell mass cells. A modification of a culture regime developed for propagation of human pluripotent stem cells reset to the naïve state is used, which comprises serum-free medium supplemented with various inhibitors of signaling pathways, polarization, and differentiation. Colonies arising from the first plating of an inner cell mass may be pooled for ease of handling, or propagated separately to allow establishment of clonal human naïve embryonic stem cell lines.
Collapse
Affiliation(s)
- Stanley E Strawbridge
- Jeffrey Cheah Biomedical Centre, Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - James Clarke
- Jeffrey Cheah Biomedical Centre, Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Ge Guo
- Jeffrey Cheah Biomedical Centre, Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Jennifer Nichols
- Jeffrey Cheah Biomedical Centre, Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK. .,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK. .,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
72
|
Yeh CY, Huang WH, Chen HC, Meir YJJ. Capturing Pluripotency and Beyond. Cells 2021; 10:cells10123558. [PMID: 34944066 PMCID: PMC8700150 DOI: 10.3390/cells10123558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
During the development of a multicellular organism, the specification of different cell lineages originates in a small group of pluripotent cells, the epiblasts, formed in the preimplantation embryo. The pluripotent epiblast is protected from premature differentiation until exposure to inductive cues in strictly controlled spatially and temporally organized patterns guiding fetus formation. Epiblasts cultured in vitro are embryonic stem cells (ESCs), which recapitulate the self-renewal and lineage specification properties of their endogenous counterparts. The characteristics of totipotency, although less understood than pluripotency, are becoming clearer. Recent studies have shown that a minor ESC subpopulation exhibits expanded developmental potential beyond pluripotency, displaying a characteristic reminiscent of two-cell embryo blastomeres (2CLCs). In addition, reprogramming both mouse and human ESCs in defined media can produce expanded/extended pluripotent stem cells (EPSCs) similar to but different from 2CLCs. Further, the molecular roadmaps driving the transition of various potency states have been clarified. These recent key findings will allow us to understand eutherian mammalian development by comparing the underlying differences between potency network components during development. Using the mouse as a paradigm and recent progress in human PSCs, we review the epiblast's identity acquisition during embryogenesis and their ESC counterparts regarding their pluripotent fates and beyond.
Collapse
Affiliation(s)
- Chih-Yu Yeh
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.Y.); (W.-H.H.)
| | - Wei-Han Huang
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.Y.); (W.-H.H.)
| | - Hung-Chi Chen
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.-Y.Y.); (W.-H.H.)
- Limbal Stem Cell Laboratory, Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Correspondence: (H.-C.C.); (Y.-J.J.M.)
| | - Yaa-Jyuhn James Meir
- Limbal Stem Cell Laboratory, Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (H.-C.C.); (Y.-J.J.M.)
| |
Collapse
|
73
|
Cell fate determination and Hippo signaling pathway in preimplantation mouse embryo. Cell Tissue Res 2021; 386:423-444. [PMID: 34586506 DOI: 10.1007/s00441-021-03530-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
First cell fate determination plays crucial roles in cell specification during early phases of embryonic development. Three classical concepts have been proposed to explain the lineage specification mechanism of the preimplantation embryo: inside-outside, pre-patterning, and polarity models. Transcriptional effectors of the Hippo signal pathway are YAP and TAZ activators that can create a shuttle between the cytoplasm and the nucleus. Despite different localizations of YAP in the cell, it determines the fate of ICM and TE. How the decisive cue driving factors that determine YAP localization are coordinated remains a central unanswered question. How can an embryonic cell find its position? The objective of this review is to summarize the molecular and mechanical aspects in cell fate decision during mouse preimplantation embryonic development. The findings will reveal the relationship between cell-cell adhesion, cell polarity, and determination of cell fate during early embryonic development in mice and elucidate the inducing/inhibiting mechanisms that are involved in cell specification following zygotic genome activation and compaction processes. With future studies, new biophysical and chemical cues in the cell fate determination will impart significant spatiotemporal effects on early embryonic development. The achieved knowledge will provide important information to the development of new approaches to be used in infertility treatment and increase the success of pregnancy.
Collapse
|
74
|
Springer C, Zakhartchenko V, Wolf E, Simmet K. Hypoblast Formation in Bovine Embryos Does Not Depend on NANOG. Cells 2021; 10:cells10092232. [PMID: 34571882 PMCID: PMC8466907 DOI: 10.3390/cells10092232] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022] Open
Abstract
The role of the pluripotency factor NANOG during the second embryonic lineage differentiation has been studied extensively in mouse, although species-specific differences exist. To elucidate the role of NANOG in an alternative model organism, we knocked out NANOG in fibroblast cells and produced bovine NANOG-knockout (KO) embryos via somatic cell nuclear transfer (SCNT). At day 8, NANOG-KO blastocysts showed a decreased total cell number when compared to controls from SCNT (NT Ctrl). The pluripotency factors OCT4 and SOX2 as well as the hypoblast (HB) marker GATA6 were co-expressed in all cells of the inner cell mass (ICM) and, in contrast to mouse Nanog-KO, expression of the late HB marker SOX17 was still present. We blocked the MEK-pathway with a MEK 1/2 inhibitor, and control embryos showed an increase in NANOG positive cells, but SOX17 expressing HB precursor cells were still present. NANOG-KO together with MEK-inhibition was lethal before blastocyst stage, similarly to findings in mouse. Supplementation of exogenous FGF4 to NANOG-KO embryos did not change SOX17 expression in the ICM, unlike mouse Nanog-KO embryos, where missing SOX17 expression was completely rescued by FGF4. We conclude that NANOG mediated FGF/MEK signaling is not required for HB formation in the bovine embryo and that another—so far unknown—pathway regulates HB differentiation.
Collapse
Affiliation(s)
- Claudia Springer
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (V.Z.); (E.W.)
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
| | - Valeri Zakhartchenko
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (V.Z.); (E.W.)
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (V.Z.); (E.W.)
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Kilian Simmet
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (V.Z.); (E.W.)
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
- Correspondence:
| |
Collapse
|
75
|
p38-MAPK-mediated translation regulation during early blastocyst development is required for primitive endoderm differentiation in mice. Commun Biol 2021; 4:788. [PMID: 34172827 PMCID: PMC8233355 DOI: 10.1038/s42003-021-02290-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Successful specification of the two mouse blastocyst inner cell mass (ICM) lineages (the primitive endoderm (PrE) and epiblast) is a prerequisite for continued development and requires active fibroblast growth factor 4 (FGF4) signaling. Previously, we identified a role for p38 mitogen-activated protein kinases (p38-MAPKs) during PrE differentiation, but the underlying mechanisms have remained unresolved. Here, we report an early blastocyst window of p38-MAPK activity that is required to regulate ribosome-related gene expression, rRNA precursor processing, polysome formation and protein translation. We show that p38-MAPK inhibition-induced PrE phenotypes can be partially rescued by activating the translational regulator mTOR. However, similar PrE phenotypes associated with extracellular signal-regulated kinase (ERK) pathway inhibition targeting active FGF4 signaling are not affected by mTOR activation. These data indicate a specific role for p38-MAPKs in providing a permissive translational environment during mouse blastocyst PrE differentiation that is distinct from classically reported FGF4-based mechanisms.
Collapse
|
76
|
Ávila-González D, Portillo W, García-López G, Molina-Hernández A, Díaz-Martínez NE, Díaz NF. Unraveling the Spatiotemporal Human Pluripotency in Embryonic Development. Front Cell Dev Biol 2021; 9:676998. [PMID: 34249929 PMCID: PMC8262797 DOI: 10.3389/fcell.2021.676998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
There have been significant advances in understanding human embryogenesis using human pluripotent stem cells (hPSCs) in conventional monolayer and 3D self-organized cultures. Thus, in vitro models have contributed to elucidate the molecular mechanisms for specification and differentiation during development. However, the molecular and functional spectrum of human pluripotency (i.e., intermediate states, pluripotency subtypes and regionalization) is still not fully understood. This review describes the mechanisms that establish and maintain pluripotency in human embryos and their differences with mouse embryos. Further, it describes a new pluripotent state representing a transition between naïve and primed pluripotency. This review also presents the data that divide pluripotency into substates expressing epiblast regionalization and amnion specification as well as primordial germ cells in primates. Finally, this work analyzes the amnion's relevance as an "signaling center" for regionalization before the onset of gastrulation.
Collapse
Affiliation(s)
- Daniela Ávila-González
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
- Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | | | | | - Néstor E. Díaz-Martínez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Néstor F. Díaz
- Instituto Nacional de Perinatología, Mexico City, Mexico
| |
Collapse
|
77
|
Hayward MK, Muncie JM, Weaver VM. Tissue mechanics in stem cell fate, development, and cancer. Dev Cell 2021; 56:1833-1847. [PMID: 34107299 PMCID: PMC9056158 DOI: 10.1016/j.devcel.2021.05.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022]
Abstract
Cells in tissues experience a plethora of forces that regulate their fate and modulate development and homeostasis. Cells sense mechanical cues through localized mechanoreceptors or by influencing cytoskeletal or plasma membrane organization. Cells translate force and modulate their behavior through a process termed mechanotransduction. Cells tune their tension upon exposure to chronic force by engaging cellular machinery that modulates actin tension, which in turn stimulates matrix remodeling and stiffening and alters cell-cell adhesions until cells achieve a state of tensional homeostasis. Loss of tensional homeostasis can be induced through oncogene activity and/or tissue fibrosis, accompanies tumor progression, and is associated with increased cancer risk. The mechanical stresses that develop in tumors can also foster the mesenchymal-like transdifferentiation of cells to induce a stem-like phenotype that contributes to their aggression, metastatic dissemination, and treatment resistance. Thus, strategies that ameliorate tumor mechanics may comprise an effective strategy to prevent aggressive tumor behavior.
Collapse
Affiliation(s)
- Mary-Kate Hayward
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences and Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; The Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
78
|
Totipotency of mouse zygotes extends to single blastomeres of embryos at the four-cell stage. Sci Rep 2021; 11:11167. [PMID: 34045607 PMCID: PMC8160171 DOI: 10.1038/s41598-021-90653-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
In multicellular organisms, oocytes and sperm undergo fusion during fertilization and the resulting zygote gives rise to a new individual. The ability of zygotes to produce a fully formed individual from a single cell when placed in a supportive environment is known as totipotency. Given that totipotent cells are the source of all multicellular organisms, a better understanding of totipotency may have a wide-ranging impact on biology. The precise delineation of totipotent cells in mammals has remained elusive, however, although zygotes and single blastomeres of embryos at the two-cell stage have been thought to be the only totipotent cells in mice. We now show that a single blastomere of two- or four-cell mouse embryos can give rise to a fertile adult when placed in a uterus, even though blastomere isolation disturbs the transcriptome of derived embryos. Single blastomeres isolated from embryos at the eight-cell or morula stages and cultured in vitro manifested pronounced defects in the formation of epiblast and primitive endoderm by the inner cell mass and in the development of blastocysts, respectively. Our results thus indicate that totipotency of mouse zygotes extends to single blastomeres of embryos at the four-cell stage.
Collapse
|
79
|
Abstract
In this issue of Cell Stem Cell, De Belly et al. (2021) and Bergert et al. (2021) reveal that membrane tension regulates the pluripotent state via endocytosis-mediated ERK signaling. These findings advance our understanding of naive pluripotency and highlight how cell mechanics are intertwined with molecular signaling to drive cell fate decisions.
Collapse
Affiliation(s)
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF Comprehensive Cancer Center, Helen Diller Family Cancer Research Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, Department of Bioengineering and Therapeutic Sciences, Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
80
|
Alberio R, Kobayashi T, Surani MA. Conserved features of non-primate bilaminar disc embryos and the germline. Stem Cell Reports 2021; 16:1078-1092. [PMID: 33979595 PMCID: PMC8185373 DOI: 10.1016/j.stemcr.2021.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Post-implantation embryo development commences with a bilaminar disc in most mammals, including humans. Whereas access to early human embryos is limited and subject to greater ethical scrutiny, studies on non-primate embryos developing as bilaminar discs offer exceptional opportunities for advances in gastrulation, the germline, and the basis for evolutionary divergence applicable to human development. Here, we discuss the advantages of investigations in the pig embryo as an exemplar of development of a bilaminar disc embryo with relevance to early human development. Besides, the pig has the potential for the creation of humanized organs for xenotransplantation. Precise genetic engineering approaches, imaging, and single-cell analysis are cost effective and efficient, enabling research into some outstanding questions on human development and for developing authentic models of early human development with stem cells.
Collapse
Affiliation(s)
- Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| | - Toshihiro Kobayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan; The Graduate University of Advanced Studies, Okazaki, Aichi 444-8787, Japan
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|
81
|
Nakamura T, Fujiwara K, Saitou M, Tsukiyama T. Non-human primates as a model for human development. Stem Cell Reports 2021; 16:1093-1103. [PMID: 33979596 PMCID: PMC8185448 DOI: 10.1016/j.stemcr.2021.03.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Human development has been studied for over a century, but the molecular mechanisms underlying human embryogenesis remain largely unknown due to technical difficulties and ethical issues. Accordingly, mice have been used as a model for mammalian development and studied extensively to infer human biology based on the conservation of fundamental processes between the two species. As research has progressed, however, species-specific differences in characteristics between rodents and primates have become apparent. Non-human primates (NHPs) have also been used for biomedical research, and are now attracting attention as a model for human development. Here, we summarize primate species from the evolutionary and genomic points of view. Then we review the current issues and progress in gene modification technology for NHPs. Finally, we discuss recent studies on the early embryogenesis of primates and future perspectives.
Collapse
Affiliation(s)
- Tomonori Nakamura
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; The Hakubi Center for Advanced Research, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Kohei Fujiwara
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomoyuki Tsukiyama
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Research Center for Animal Life Science, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.
| |
Collapse
|
82
|
Springer C, Wolf E, Simmet K. A New Toolbox in Experimental Embryology-Alternative Model Organisms for Studying Preimplantation Development. J Dev Biol 2021; 9:15. [PMID: 33918361 PMCID: PMC8167745 DOI: 10.3390/jdb9020015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Preimplantation development is well conserved across mammalian species, but major differences in developmental kinetics, regulation of early lineage differentiation and implantation require studies in different model organisms, especially to better understand human development. Large domestic species, such as cattle and pig, resemble human development in many different aspects, i.e., the timing of zygotic genome activation, mechanisms of early lineage differentiations and the period until blastocyst formation. In this article, we give an overview of different assisted reproductive technologies, which are well established in cattle and pig and make them easily accessible to study early embryonic development. We outline the available technologies to create genetically modified models and to modulate lineage differentiation as well as recent methodological developments in genome sequencing and imaging, which form an immense toolbox for research. Finally, we compare the most recent findings in regulation of the first lineage differentiations across species and show how alternative models enhance our understanding of preimplantation development.
Collapse
Affiliation(s)
- Claudia Springer
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
| | - Kilian Simmet
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
| |
Collapse
|
83
|
Yu S, Li J, Ji G, Ng ZL, Siew J, Lo WN, Ye Y, Chew YY, Long YC, Zhang W, Guccione E, Loh YH, Jiang ZH, Yang H, Wu Q. Npac Is a Co-factor of Histone H3K36me3 and Regulates Transcriptional Elongation in Mouse Embryonic Stem Cells. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 20:110-128. [PMID: 33676077 PMCID: PMC9510873 DOI: 10.1016/j.gpb.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 07/16/2020] [Accepted: 08/15/2020] [Indexed: 12/31/2022]
Abstract
Chromatin modification contributes to pluripotency maintenance in embryonic stem cells (ESCs). However, the related mechanisms remain obscure. Here, we show that Npac, a “reader” of histone H3 lysine 36 trimethylation (H3K36me3), is required to maintain mouse ESC (mESC) pluripotency since knockdown of Npac causes mESC differentiation. Depletion of Npac in mouse embryonic fibroblasts (MEFs) inhibits reprogramming efficiency. Furthermore, our chromatin immunoprecipitation followed by sequencing (ChIP-seq) results of Npac reveal that Npac co-localizes with histone H3K36me3 in gene bodies of actively transcribed genes in mESCs. Interestingly, we find that Npac interacts with positive transcription elongation factor b (p-TEFb), Ser2-phosphorylated RNA Pol II (RNA Pol II Ser2P), and Ser5-phosphorylated RNA Pol II (RNA Pol II Ser5P). Furthermore, depletion of Npac disrupts transcriptional elongation of the pluripotency genes Nanog and Rif1. Taken together, we propose that Npac is essential for the transcriptional elongation of pluripotency genes by recruiting p-TEFb and interacting with RNA Pol II Ser2P and Ser5P.
Collapse
Affiliation(s)
- Sue Yu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jia Li
- Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore
| | - Guanxu Ji
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region 999078, China
| | - Zhen Long Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jiamin Siew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Wan Ning Lo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ying Ye
- Cam-Su Genomic Resource Center, Soochow University, Suzhou 215123, China
| | - Yuan Yuan Chew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yun Chau Long
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Soochow University, Suzhou 215123, China
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Yuin Han Loh
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Zhi-Hong Jiang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region 999078, China
| | - Henry Yang
- Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore.
| | - Qiang Wu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau Special Administrative Region 999078, China.
| |
Collapse
|
84
|
Toyooka Y. Pluripotent stem cells in the research for extraembryonic cell differentiation. Dev Growth Differ 2021; 63:127-139. [PMID: 33583019 DOI: 10.1111/dgd.12716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
Mouse embryonic stem cells (mESCs) are pluripotent stem cell populations derived from the preimplantation embryo and are used to study the differentiation of many types of somatic and germ cells in developing embryos. They are also used to study cell lineages of extraembryonic tissues, such as the trophectoderm (TE) and the primitive endoderm (PrE). mESC cultures are suitable systems for reproducing cellular and molecular events occurring during the differentiation of these cell types, such as changes in gene expression patterns, signaling events, and genome rearrangements although the consistency between the results obtained using mESCs and those of in vivo studies on embryos should be carefully taken into account. Since TE and PrE cells can be induced from mESCs in vitro, mESC cultures are useful systems to study differentiation of these cell lineages during development, if used appropriately. In addition, human pluripotent stem cells (hPSCs), such as human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs), are capable of generating extraembryonic lineages in vitro and are promising tools to study the differentiation of these lineages in the human embryo.
Collapse
Affiliation(s)
- Yayoi Toyooka
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
85
|
Stanoev A, Schröter C, Koseska A. Robustness and timing of cellular differentiation through population-based symmetry breaking. Development 2021; 148:dev.197608. [PMID: 33472845 DOI: 10.1242/dev.197608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/24/2020] [Indexed: 01/23/2023]
Abstract
During mammalian development and homeostasis, cells often transition from a multilineage primed state to one of several differentiated cell types that are marked by the expression of mutually exclusive genetic markers. These observations have been classically explained by single-cell multistability as the dynamical basis of differentiation, where robust cell-type proportioning relies on pre-existing cell-to-cell differences. We propose a conceptually different dynamical mechanism in which cell types emerge and are maintained collectively by cell-cell communication as a novel inhomogeneous state of the coupled system. Differentiation can be triggered by cell number increase as the population grows in size, through organisation of the initial homogeneous population before the symmetry-breaking bifurcation point. Robust proportioning and reliable recovery of the differentiated cell types following a perturbation is an inherent feature of the inhomogeneous state that is collectively maintained. This dynamical mechanism is valid for systems with steady-state or oscillatory single-cell dynamics. Therefore, our results suggest that timing and subsequent differentiation in robust cell-type proportions can emerge from the cooperative behaviour of growing cell populations during development.
Collapse
Affiliation(s)
- Angel Stanoev
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Christian Schröter
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Aneta Koseska
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| |
Collapse
|
86
|
Interspecific Variation in One-Carbon Metabolism within the Ovarian Follicle, Oocyte, and Preimplantation Embryo: Consequences for Epigenetic Programming of DNA Methylation. Int J Mol Sci 2021; 22:ijms22041838. [PMID: 33673278 PMCID: PMC7918761 DOI: 10.3390/ijms22041838] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
One-carbon (1C) metabolism provides methyl groups for the synthesis and/or methylation of purines and pyrimidines, biogenic amines, proteins, and phospholipids. Our understanding of how 1C pathways operate, however, pertains mostly to the (rat) liver. Here we report that transcripts for all bar two genes (i.e., BHMT, MAT1A) encoding enzymes in the linked methionine-folate cycles are expressed in all cell types within the ovarian follicle, oocyte, and blastocyst in the cow, sheep, and pig; as well as in rat granulosa cells (GCs) and human KGN cells (a granulosa-like tumor cell line). Betaine-homocysteine methyltransferase (BHMT) protein was absent in bovine theca and GCs, as was activity of this enzyme in GCs. Mathematical modeling predicted that absence of this enzyme would lead to more volatile S-adenosylmethionine-mediated transmethylation in response to 1C substrate (e.g., methionine) or cofactor provision. We tested the sensitivity of bovine GCs to reduced methionine (from 50 to 10 µM) and observed a diminished flux of 1C units through the methionine cycle. We then used reduced-representation bisulfite sequencing to demonstrate that this reduction in methionine during bovine embryo culture leads to genome-wide alterations to DNA methylation in >1600 genes, including a cohort of imprinted genes linked to an abnormal fetal-overgrowth phenotype. Bovine ovarian and embryonic cells are acutely sensitive to methionine, but further experimentation is required to determine the significance of interspecific variation in BHMT expression.
Collapse
|
87
|
Zhao YH, Wang JJ, Zhang PP, Hao HS, Pang YW, Wang HY, Du WH, Zhao SJ, Ruan WM, Zou HY, Hao T, Zhu HB, Zhao XM. Oocyte IVM or vitrification significantly impairs DNA methylation patterns in blastocysts as analysed by single-cell whole-genome methylation sequencing. Reprod Fertil Dev 2021; 32:676-689. [PMID: 32317092 DOI: 10.1071/rd19234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
To explore the mechanisms leading to the poor quality of IVF blastocysts, the single-cell whole-genome methylation sequencing technique was used in this study to analyse the methylation patterns of bovine blastocysts derived from invivo, fresh (IVF) or vitrified (V_IVF) oocytes. Genome methylation levels of blastocysts in the IVF and V_IVF groups were significantly lower than those of the invivo group (P<0.05). In all, 1149 differentially methylated regions (DMRs) were identified between the IVF and invivo groups, 1578 DMRs were identified between the V_IVF and invivo groups and 151 DMRs were identified between the V_IVF and IVF groups. For imprinted genes, methylation levels of insulin-like growth factor 2 receptor (IGF2R) and protein phosphatase 1 regulatory subunit 9A (PPP1R9A) were lower in the IVF and V_IVF groups than in the invivo group, and the methylation level of paternally expressed 3 (PEG3) was lower in the V_IVF group than in the IVF and invivo groups. Genes with DMRs between the IVF and invivo and the V_IVF and IVF groups were primarily enriched in oocyte maturation pathways, whereas DMRs between the V_IVF and invivo groups were enriched in fertilisation and vitrification-vulnerable pathways. The results of this study indicate that differences in the methylation of critical DMRs may contribute to the differences in quality between invitro- and invivo-derived embryos.
Collapse
Affiliation(s)
- Ya-Han Zhao
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Jing-Jing Wang
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Pei-Pei Zhang
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Hai-Sheng Hao
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Yun-Wei Pang
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Hao-Yu Wang
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Wei-Hua Du
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Shan-Jiang Zhao
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Wei-Min Ruan
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Ming Lun Street, Kaifeng, Henan, 475004, PR China
| | - Hui-Ying Zou
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Tong Hao
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Hua-Bin Zhu
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China
| | - Xue-Ming Zhao
- Embryo Biotechnology and Reproduction Laboratory and the Centre of Domestic Animal Reproduction and Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, PR China; and Corresponding author.
| |
Collapse
|
88
|
O'Connor SK, Katz DB, Oswald SJ, Groneck L, Guilak F. Formation of Osteochondral Organoids from Murine Induced Pluripotent Stem Cells. Tissue Eng Part A 2020; 27:1099-1109. [PMID: 33191853 DOI: 10.1089/ten.tea.2020.0273] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis is a debilitating joint disease that is characterized by pathologic changes in both cartilage and bone, potentially involving cross talk between these tissues that is complicated by extraneous factors that are difficult to study in vivo. To create a model system of these cartilage-bone interactions, we developed an osteochondral organoid from murine induced pluripotent stem cells (iPSCs). Using this approach, we grew organoids from a single cell type through time-dependent sequential exposure of growth factors, namely transforming growth factor β-3 and bone morphogenic protein 2, to mirror bone development through endochondral ossification. The result is a cartilaginous region and a calcified bony region comprising an organoid with the potential for joint disease drug screening and investigation of genetic risk in a patient or disease-specific manner. Furthermore, we also investigated the possibility of the differentiated cells within the organoid to revert to a pluripotent state. It was found that while the cells themselves maintain the capacity for reinduction of pluripotency, encapsulation in the newly formed 3D matrix prevents this process from occurring, which could have implications for future clinical use of iPSCs.
Collapse
Affiliation(s)
- Shannon K O'Connor
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA.,Shriners Hospitals for Children, St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Dakota B Katz
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA.,Shriners Hospitals for Children, St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA.,Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Sara J Oswald
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA.,Shriners Hospitals for Children, St. Louis, St. Louis, Missouri, USA.,Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Logan Groneck
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA.,Shriners Hospitals for Children, St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA.,Shriners Hospitals for Children, St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA.,Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
89
|
Embryonic Stem Cell-Derived Extracellular Vesicles Maintain ESC Stemness by Activating FAK. Dev Cell 2020; 56:277-291.e6. [PMID: 33321103 DOI: 10.1016/j.devcel.2020.11.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/02/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
It is critical that epiblast cells within blastocyst-stage embryos receive the necessary regulatory cues to remain pluripotent until the appropriate time when they are stimulated to undergo differentiation, ultimately to give rise to an entire organism. Here, we show that exposure of embryonic stem cells (ESCs), which are the in vitro equivalents of epiblasts, to ESC-derived extracellular vesicles (EVs) helps to maintain their stem cell properties even under culture conditions that would otherwise induce differentiation. EV-treated ESCs continued to express stemness genes, preserving their pluripotency and ability to generate chimeric mice. These effects were triggered by fibronectin bound to the surfaces of EVs, enabling them to interact with ESC-associated integrins and activate FAK more effectively than fibronectin alone. Overall, these findings highlight a potential regulatory mechanism whereby epiblast cells, via their shed EVs, create an environment within the blastocyst that prevents their premature differentiation and maintains their pluripotent state.
Collapse
|
90
|
Fiorentino J, Torres-Padilla ME, Scialdone A. Measuring and Modeling Single-Cell Heterogeneity and Fate Decision in Mouse Embryos. Annu Rev Genet 2020; 54:167-187. [PMID: 32867543 DOI: 10.1146/annurev-genet-021920-110200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellular heterogeneity is a property of any living system; however, its relationship with cellular fate decision remains an open question. Recent technological advances have enabled valuable insights, especially in complex systems such as the mouse embryo. In this review, we discuss recent studies that characterize cellular heterogeneity at different levels during mouse development, from the two-cell stage up to gastrulation. In addition to key experimental findings, we review mathematical modeling approaches that help researchers interpret these findings. Disentangling the role of heterogeneity in cell fate decision will likely rely on the refined integration of experiments, large-scale omics data, and mathematical modeling, complemented by the use of synthetic embryos and gastruloids as promising in vitro models.
Collapse
Affiliation(s)
- Jonathan Fiorentino
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany; .,Institute of Functional Epigenetics (IFE) and Institute of Computational Biology (ICB), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany; .,Faculty of Biology, Ludwig-Maximilians Universität, D-82152 Planegg-Martinsried, Germany
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum München, D-81377 München, Germany; .,Institute of Functional Epigenetics (IFE) and Institute of Computational Biology (ICB), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| |
Collapse
|
91
|
De Belly H, Stubb A, Yanagida A, Labouesse C, Jones PH, Paluch EK, Chalut KJ. Membrane Tension Gates ERK-Mediated Regulation of Pluripotent Cell Fate. Cell Stem Cell 2020; 28:273-284.e6. [PMID: 33217323 PMCID: PMC7875115 DOI: 10.1016/j.stem.2020.10.018] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 09/18/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022]
Abstract
Cell fate transitions are frequently accompanied by changes in cell shape and mechanics. However, how cellular mechanics affects the instructive signaling pathways controlling cell fate is poorly understood. To probe the interplay between shape, mechanics, and fate, we use mouse embryonic stem cells (ESCs), which change shape as they undergo early differentiation. We find that shape change is regulated by a β-catenin-mediated decrease in RhoA activity and subsequent decrease in the plasma membrane tension. Strikingly, preventing a decrease in membrane tension results in early differentiation defects in ESCs and gastruloids. Decreased membrane tension facilitates the endocytosis of FGF signaling components, which activate ERK signaling and direct the exit from the ESC state. Increasing Rab5a-facilitated endocytosis rescues defective early differentiation. Thus, we show that a mechanically triggered increase in endocytosis regulates early differentiation. Our findings are of fundamental importance for understanding how cell mechanics regulates biochemical signaling and therefore cell fate.
Collapse
Affiliation(s)
- Henry De Belly
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Wellcome/MRC Cambridge Stem Cell Research Institute, Puddicombe Way, University of Cambridge, Cambridge CB2 0AW, UK; Department of Physiology, Development, and Neuroscience, Downing Street, University of Cambridge, Cambridge CB2 3DY, UK
| | - Aki Stubb
- Department of Physiology, Development, and Neuroscience, Downing Street, University of Cambridge, Cambridge CB2 3DY, UK
| | - Ayaka Yanagida
- Wellcome/MRC Cambridge Stem Cell Research Institute, Puddicombe Way, University of Cambridge, Cambridge CB2 0AW, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Céline Labouesse
- Wellcome/MRC Cambridge Stem Cell Research Institute, Puddicombe Way, University of Cambridge, Cambridge CB2 0AW, UK
| | - Philip H Jones
- Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK
| | - Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Department of Physiology, Development, and Neuroscience, Downing Street, University of Cambridge, Cambridge CB2 3DY, UK.
| | - Kevin J Chalut
- Wellcome/MRC Cambridge Stem Cell Research Institute, Puddicombe Way, University of Cambridge, Cambridge CB2 0AW, UK.
| |
Collapse
|
92
|
Simon CS, Rahman S, Raina D, Schröter C, Hadjantonakis AK. Live Visualization of ERK Activity in the Mouse Blastocyst Reveals Lineage-Specific Signaling Dynamics. Dev Cell 2020; 55:341-353.e5. [PMID: 33091370 PMCID: PMC7658048 DOI: 10.1016/j.devcel.2020.09.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/05/2020] [Accepted: 09/28/2020] [Indexed: 01/16/2023]
Abstract
FGF/ERK signaling is crucial for the patterning and proliferation of cell lineages that comprise the mouse blastocyst. However, ERK signaling dynamics have never been directly visualized in live embryos. To address whether differential signaling is associated with particular cell fates and states, we generated a targeted mouse line expressing an ERK-kinase translocation reporter (KTR) that enables live quantification of ERK activity at single-cell resolution. 3D time-lapse imaging of this biosensor in embryos revealed spatially graded ERK activity in the trophectoderm prior to overt polar versus mural differentiation. Within the inner cell mass (ICM), all cells relayed FGF/ERK signals with varying durations and magnitude. Primitive endoderm cells displayed higher overall levels of ERK activity, while pluripotent epiblast cells exhibited lower basal activity with sporadic pulses. These results constitute a direct visualization of signaling events during mammalian pre-implantation development and reveal the existence of spatial and temporal lineage-specific dynamics.
Collapse
Affiliation(s)
- Claire S Simon
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shahadat Rahman
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dhruv Raina
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Christian Schröter
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
93
|
MLL1 Inhibition and Vitamin D Signaling Cooperate to Facilitate the Expanded Pluripotency State. Cell Rep 2020; 29:2659-2671.e6. [PMID: 31775036 PMCID: PMC9119704 DOI: 10.1016/j.celrep.2019.10.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 05/17/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022] Open
Abstract
Dynamic establishment of histone modifications in early development coincides with programed cell fate restriction and loss of totipotency beyond the early blastocyst stage. Causal function of histone-modifying enzymes in this process remains to be defined. Here we show that inhibiting histone methyltransferase MLL1 reprograms naive embryonic stem cells (ESCs) to expanded pluripotent stem cells (EPSCs), with differentiation potential toward both embryonic and extraembryonic lineages in vitro and in vivo. MLL1 inhibition or deletion upregulates gene signatures of early blastomere development. The function of MLL1 in restricting induction of EPSCs is mediated partly by Gc, which regulates cellular response to vitamin D signaling. Combined treatment of MLL1 inhibitor and 1α,25-dihydroxyvitamin D3 (1,25-(OH)2D3) cooperatively enhanced functionality of EPSCs, triggering an extended 2C-like state in vitro and robust totipotent-like property in vivo. Our study sheds light on interplay between epigenetics and vitamin D pathway in cell fate determination.
Collapse
|
94
|
Saiz N, Hadjantonakis AK. Coordination between patterning and morphogenesis ensures robustness during mouse development. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190562. [PMID: 32829684 PMCID: PMC7482220 DOI: 10.1098/rstb.2019.0562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
The mammalian preimplantation embryo is a highly tractable, self-organizing developmental system in which three cell types are consistently specified without the need for maternal factors or external signals. Studies in the mouse over the past decades have greatly improved our understanding of the cues that trigger symmetry breaking in the embryo, the transcription factors that control lineage specification and commitment, and the mechanical forces that drive morphogenesis and inform cell fate decisions. These studies have also uncovered how these multiple inputs are integrated to allocate the right number of cells to each lineage despite inherent biological noise, and as a response to perturbations. In this review, we summarize our current understanding of how these processes are coordinated to ensure a robust and precise developmental outcome during early mouse development. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.
Collapse
Affiliation(s)
- Néstor Saiz
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
95
|
Fu W, Yue Y, Miao K, Xi G, Zhang C, Wang W, An L, Tian J. Repression of FGF signaling is responsible for Dnmt3b inhibition and impaired de novo DNA methylation during early development of in vitro fertilized embryos. Int J Biol Sci 2020; 16:3085-3099. [PMID: 33061820 PMCID: PMC7545699 DOI: 10.7150/ijbs.51607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/12/2020] [Indexed: 12/30/2022] Open
Abstract
Well-orchestrated epigenetic modifications during early development are essential for embryonic survival and postnatal growth. Erroneous epigenetic modifications due to environmental perturbations such as manipulation and culture of embryos during in vitro fertilization (IVF) are linked to various short- or long-term consequences. Among these, DNA methylation defects are of great concern. Despite the critical role of DNA methylation in determining embryonic development potential, the mechanisms underlying IVF-associated DNA methylation defects, however, remains largely elusive. We reported herein that repression of fibroblast growth factor (FGF) signaling as the main reason for IVF-associated DNA methylation defects. Comparative methylome analysis by postimplantation stage suggested that IVF mouse embryos undergo impaired de novo DNA methylation during implantation stage. Further analyses indicated that Dnmt3b, the main de novo DNA methyltransferase, was consistently inhibited during the transition from the blastocyst to postimplantation stage (Embryonic day 7.5, E7.5). Using blastocysts and embryonic stem cells (ESCs) as the model, we showed repression of FGF signaling is responsible for Dnmt3b inhibition and global hypomethylation during early development, and MEK/ERK-SP1 pathway plays an essential mediating role in FGF signaling-induced transcriptional activation of Dnmt3b. Supplementation of FGF2, which was exclusively produced in the maternal oviduct, into embryo culture medium significantly rescued Dnmt3b inhibition. Our study, using mouse embryos as the model, not only identifies FGF signaling as the main target for correcting IVF-associated epigenetic errors, but also highlights the importance of oviductal paracrine factors in supporting early embryonic development and improving in vitro culture system.
Collapse
Affiliation(s)
- Wei Fu
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Yuan Yue
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Kai Miao
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Guangyin Xi
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Chao Zhang
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Wenjuan Wang
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Lei An
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Jianhui Tian
- National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture; College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| |
Collapse
|
96
|
Jimenez T, Barrios A, Tucker A, Collazo J, Arias N, Fazel S, Baker M, Halim M, Huynh T, Singh R, Pervin S. DUSP9-mediated reduction of pERK1/2 supports cancer stem cell-like traits and promotes triple negative breast cancer. Am J Cancer Res 2020; 10:3487-3506. [PMID: 33163285 PMCID: PMC7642669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023] Open
Abstract
Breast cancer remains a complex disease resulting in high mortality in women. A subset of cancer stem cell (CSC)-like cells expressing aldehyde dehydrogenase 1 (ALDH1) and SOX2/OCT4 are implicated in aggressive biology of specific subtypes of breast cancer. Targeting these populations in breast tumors remain challenging. We examined xenografts from three poorly studied triple negative (TN) breast cancer cells (MDA-MB-468, HCC70 and HCC1806) as well as HMLEHRASV12 for stem cell (SC)-specific proteins, proliferation pathways and dual-specific phosphatases (DUSPs) by quantitative real-time PCR (qRT-PCR), immunoblot analysis and immunohistochemistry. We found that pERK1/2 remained suppressed in TN xenografts examined at various stages of growth, while the levels of pp38 MAPK and pAKT was upregulated. We found that DUSP was involved in the suppression of pERK1/2, which was MEK1/2 independent. Our in vitro assays, using HMLEHRASV12 xenografts as a positive control, confirmed increased phosphatase activity that specifically influenced pERK1/2 but not pp38MAPK or pJNK levels. Family members of DUSPs examined, showed increase in DUSP9 expression in TN xenografts. Increased DUSP9 expression in xenografts was consistently associated with upregulation of SC-specific proteins, ALDH1 and SOX2/OCT4. HRAS driven HMLEHRASV12 xenografts as well as mammospheres from TN breast cancer cells showed inverse relationship between pERK1/2 and increased expression of DUSP9 and CSC traits. In addition, treatment in vitro, with MEK1/2 inhibitor, PD 98059, reduced pERK1/2 levels and increased DUSP9 and SC-specific proteins. Depletion of subsets of SOX2/OCT4 by fluorescence-activated cell sorting (FACS), as well as pharmacological and genetic reduction of DUSP9 levels influenced ALDH1 and SOX2/OCT4 expression and reduced mammosphere growth in vitro as well as tumor growth in vivo. Collectively our data support the possibility that DUSP9 contributed to stem cell-like cells that could influence TN breast tumor growth. Conclusion: Our study shows that subsets of TN breast cancers with MEK1/2 independent reduced pERK1/2 levels will respond less to MEK1/2 inhibitors, thereby questioning their therapeutic efficacy. Our study also demonstrates context-dependent DUSP9-mediated reduced pERK1/2 levels could influence stem cell-like traits in TN breast tumors. Therefore, targeting DUSP9 could be an attractive target for improved clinical outcome in a subset of basal-like breast cancers.
Collapse
Affiliation(s)
- Thalia Jimenez
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science1748 118 Street, Los Angeles, CA 90059, USA
| | - Albert Barrios
- Department of Biology, California State University Dominguez HillsLos Angeles, CA 90747, USA
| | - Alexandria Tucker
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science1748 118 Street, Los Angeles, CA 90059, USA
| | - Javier Collazo
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science1748 118 Street, Los Angeles, CA 90059, USA
| | - Nataly Arias
- Department of Biology, California State University Dominguez HillsLos Angeles, CA 90747, USA
| | - Sayeda Fazel
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science1748 118 Street, Los Angeles, CA 90059, USA
| | - Melanie Baker
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science1748 118 Street, Los Angeles, CA 90059, USA
| | - Mariza Halim
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science1748 118 Street, Los Angeles, CA 90059, USA
| | - Travis Huynh
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science1748 118 Street, Los Angeles, CA 90059, USA
| | - Rajan Singh
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science1748 118 Street, Los Angeles, CA 90059, USA
- Department of Obstetrics and Gynecology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLALos Angeles, CA 90095, USA
| | - Shehla Pervin
- Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science1748 118 Street, Los Angeles, CA 90059, USA
- Department of Obstetrics and Gynecology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLALos Angeles, CA 90095, USA
| |
Collapse
|
97
|
Global hyperactivation of enhancers stabilizes human and mouse naive pluripotency through inhibition of CDK8/19 Mediator kinases. Nat Cell Biol 2020; 22:1223-1238. [PMID: 32989249 DOI: 10.1038/s41556-020-0573-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
Pluripotent stem cells (PSCs) transition between cell states in vitro, reflecting developmental changes in the early embryo. PSCs can be stabilized in the naive state by blocking extracellular differentiation stimuli, particularly FGF-MEK signalling. Here, we report that multiple features of the naive state in human and mouse PSCs can be recapitulated without affecting FGF-MEK signalling or global DNA methylation. Mechanistically, chemical inhibition of CDK8 and CDK19 (hereafter CDK8/19) kinases removes their ability to repress the Mediator complex at enhancers. CDK8/19 inhibition therefore increases Mediator-driven recruitment of RNA polymerase II (RNA Pol II) to promoters and enhancers. This efficiently stabilizes the naive transcriptional program and confers resistance to enhancer perturbation by BRD4 inhibition. Moreover, naive pluripotency during embryonic development coincides with a reduction in CDK8/19. We conclude that global hyperactivation of enhancers drives naive pluripotency, and this can be achieved in vitro by inhibiting CDK8/19 kinase activity. These principles may apply to other contexts of cellular plasticity.
Collapse
|
98
|
Riveiro AR, Brickman JM. From pluripotency to totipotency: an experimentalist's guide to cellular potency. Development 2020; 147:147/16/dev189845. [PMID: 32847824 DOI: 10.1242/dev.189845] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Embryonic stem cells (ESCs) are derived from the pre-implantation mammalian blastocyst. At this point in time, the newly formed embryo is concerned with the generation and expansion of both the embryonic lineages required to build the embryo and the extra-embryonic lineages that support development. When used in grafting experiments, embryonic cells from early developmental stages can contribute to both embryonic and extra-embryonic lineages, but it is generally accepted that ESCs can give rise to only embryonic lineages. As a result, they are referred to as pluripotent, rather than totipotent. Here, we consider the experimental potential of various ESC populations and a number of recently identified in vitro culture systems producing states beyond pluripotency and reminiscent of those observed during pre-implantation development. We also consider the nature of totipotency and the extent to which cell populations in these culture systems exhibit this property.
Collapse
Affiliation(s)
- Alba Redó Riveiro
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Joshua Mark Brickman
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
99
|
Mapping the Effects of Genetic Variation on Chromatin State and Gene Expression Reveals Loci That Control Ground State Pluripotency. Cell Stem Cell 2020; 27:459-469.e8. [PMID: 32795400 DOI: 10.1016/j.stem.2020.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 02/07/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022]
Abstract
Mouse embryonic stem cells (mESCs) cultured in the presence of LIF occupy a ground state with highly active pluripotency-associated transcriptional and epigenetic circuitry. However, ground state pluripotency in some inbred strain backgrounds is unstable in the absence of ERK1/2 and GSK3 inhibition. Using an unbiased genetic approach, we dissect the basis of this divergent response to extracellular cues by profiling gene expression and chromatin accessibility in 170 genetically heterogeneous mESCs. We map thousands of loci affecting chromatin accessibility and/or transcript abundance, including 10 QTL hotspots where genetic variation at a single locus coordinates the regulation of genes throughout the genome. For one hotspot, we identify a single enhancer variant ∼10 kb upstream of Lifr associated with chromatin accessibility and mediating a cascade of molecular events affecting pluripotency. We validate causation through reciprocal allele swaps, demonstrating the functional consequences of noncoding variation in gene regulatory networks that stabilize pluripotent states in vitro.
Collapse
|
100
|
Saiz N, Mora-Bitria L, Rahman S, George H, Herder JP, Garcia-Ojalvo J, Hadjantonakis AK. Growth-factor-mediated coupling between lineage size and cell fate choice underlies robustness of mammalian development. eLife 2020; 9:e56079. [PMID: 32720894 PMCID: PMC7513828 DOI: 10.7554/elife.56079] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 07/24/2020] [Indexed: 01/03/2023] Open
Abstract
Precise control and maintenance of population size is fundamental for organismal development and homeostasis. The three cell types of the mammalian blastocyst are generated in precise proportions over a short time, suggesting a mechanism to ensure a reproducible outcome. We developed a minimal mathematical model demonstrating growth factor signaling is sufficient to guarantee this robustness and which anticipates an embryo's response to perturbations in lineage composition. Addition of lineage-restricted cells both in vivo and in silico, causes a shift of the fate of progenitors away from the supernumerary cell type, while eliminating cells using laser ablation biases the specification of progenitors toward the targeted cell type. Finally, FGF4 couples fate decisions to lineage composition through changes in local growth factor concentration, providing a basis for the regulative abilities of the early mammalian embryo whereby fate decisions are coordinated at the population level to robustly generate tissues in the right proportions.
Collapse
Affiliation(s)
- Néstor Saiz
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Laura Mora-Bitria
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Shahadat Rahman
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Hannah George
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Jeremy P Herder
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|