51
|
Rossant J, Tam PP. Early human embryonic development: Blastocyst formation to gastrulation. Dev Cell 2022; 57:152-165. [DOI: 10.1016/j.devcel.2021.12.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/29/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022]
|
52
|
Strawbridge SE, Clarke J, Guo G, Nichols J. Deriving Human Naïve Embryonic Stem Cell Lines from Donated Supernumerary Embryos Using Physical Distancing and Signal Inhibition. Methods Mol Biol 2022; 2416:1-12. [PMID: 34870826 DOI: 10.1007/978-1-0716-1908-7_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Until recently, naïve pluripotent stem cell lines were not captured from human embryos because protocols were based upon those devised for murine embryonic stem cells. In contrast with early lineage segregation in mouse embryos, human hypoblast specification is not solely dependent upon FGF signaling; consequently, its maturation during embryo explant culture may provide inductive signals to drive differentiation of the epiblast. To overcome this potential risk, here we describe how cells of the immature inner cell mass of human embryos can be physically separated during derivation, achieved via "immunosurgery", to eliminate the trophectoderm, followed by disaggregation of the remaining inner cell mass cells. A modification of a culture regime developed for propagation of human pluripotent stem cells reset to the naïve state is used, which comprises serum-free medium supplemented with various inhibitors of signaling pathways, polarization, and differentiation. Colonies arising from the first plating of an inner cell mass may be pooled for ease of handling, or propagated separately to allow establishment of clonal human naïve embryonic stem cell lines.
Collapse
Affiliation(s)
- Stanley E Strawbridge
- Jeffrey Cheah Biomedical Centre, Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - James Clarke
- Jeffrey Cheah Biomedical Centre, Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Ge Guo
- Jeffrey Cheah Biomedical Centre, Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Jennifer Nichols
- Jeffrey Cheah Biomedical Centre, Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK. .,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK. .,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
53
|
Wooldridge LK, Ealy AD. Leukemia Inhibitory Factor Stimulates Primitive Endoderm Expansion in the Bovine Inner Cell Mass. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.796489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous work determined that bovine interleukin-6 (IL6) increases inner cell mass (ICM), primitive endoderm (PE), and total cell number in in vitro produced (IVP) bovine blastocysts. Another IL6 family member, leukemia inhibitory factor (LIF), has the potential to produce the same effects of IL6 due to the presence of its receptor in bovine blastocysts. We compared the abilities of LIF and IL6 to increase ICM cell numbers in day 7, 8, and 9 IVP bovine blastocysts. Supplementation with 100 ng/ml LIF from day 5 onward improved blastocyst formation rates on days 7 and 8 similar to what was observed when supplementing 100 ng/ml IL6. However, LIF supplementation did not cause an increase in ICM numbers like was observed after supplementing IL6. On day 9, increases in PE cell numbers were detected after LIF supplementation, but 300 ng/ml LIF was required to achieve the same effect on PE numbers that was observed by providing 100 ng/ml IL6. Collectively, these results show that LIF can mimic at least some of the effects of IL6 in bovine blastocyst.
Collapse
|
54
|
Xiao Y, Sosa F, Ross PJ, Diffenderfer KE, Hansen PJ. Regulation of NANOG and SOX2 expression by activin A and a canonical WNT agonist in bovine embryonic stem cells and blastocysts. Biol Open 2021; 10:bio058669. [PMID: 34643229 PMCID: PMC8649639 DOI: 10.1242/bio.058669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Bovine embryonic stem cells (ESC) have features associated with the primed pluripotent state including low expression of one of the core pluripotency transcription factors, NANOG. It has been reported that NANOG expression can be upregulated in porcine ESC by treatment with activin A and the WNT agonist CHIR99021. Accordingly, it was tested whether expression of NANOG and another pluripotency factor SOX2 could be stimulated by activin A and the WNT agonist CHIR99021. Immunoreactive NANOG and SOX2 were analyzed for bovine ESC lines derived under conditions in which activin A and CHIR99021 were added singly or in combination. Activin A enhanced NANOG expression but also reduced SOX2 expression. CHIR99021 depressed expression of both NANOG and SOX2. In a second experiment, activin A enhanced blastocyst development while CHIR99021 treatment impaired blastocyst formation and reduced number of blastomeres. Activin A treatment decreased blastomeres in the blastocyst that were positive for either NANOG or SOX2 but increased those that were CDX2+ and that were GATA6+ outside the inner cell mass. CHIR99021 reduced SOX2+ and NANOG+ blastomeres without affecting the number or percent of blastomeres that were CDX2+ and GATA6+. Results indicate activation of activin A signaling stimulates NANOG expression during self-renewal of bovine ESC but suppresses cells expressing pluripotency markers in the blastocyst and increases cells expressing CDX2. Actions of activin A to promote blastocyst development may involve its role in promoting trophectoderm formation. Furthermore, results demonstrate the negative role of canonical WNT signaling in cattle for pluripotency marker expression in ESC and in formation of the inner cell mass and epiblast during embryonic development. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yao Xiao
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL 32611-0910, USA
| | - Froylan Sosa
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL 32611-0910, USA
| | - Pablo J. Ross
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | | | - Peter J. Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL 32611-0910, USA
| |
Collapse
|
55
|
Duan K, Si CY, Zhao SM, Ai ZY, Niu BH, Yin Y, Xiang LF, Ding H, Zheng Y. The Long Terminal Repeats of ERV6 Are Activated in Pre-Implantation Embryos of Cynomolgus Monkey. Cells 2021; 10:cells10102710. [PMID: 34685690 PMCID: PMC8534818 DOI: 10.3390/cells10102710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
Precise gene regulation is critical during embryo development. Long terminal repeat elements (LTRs) of endogenous retroviruses (ERVs) are dynamically expressed in blastocysts of mammalian embryos. However, the expression pattern of LTRs in monkey blastocyst is still unknown. By single-cell RNA-sequencing (seq) data of cynomolgus monkeys, we found that LTRs of several ERV families, including MacERV6, MacERV3, MacERV2, MacERVK1, and MacERVK2, were highly expressed in pre-implantation embryo cells including epiblast (EPI), trophectoderm (TrB), and primitive endoderm (PrE), but were depleted in post-implantation. We knocked down MacERV6-LTR1a in cynomolgus monkeys with a short hairpin RNA (shRNA) strategy to examine the potential function of MacERV6-LTR1a in the early development of monkey embryos. The silence of MacERV6-LTR1a mainly postpones the differentiation of TrB, EPI, and PrE cells in embryos at day 7 compared to control. Moreover, we confirmed MacERV6-LTR1a could recruit Estrogen Related Receptor Beta (ESRRB), which plays an important role in the maintenance of self-renewal and pluripotency of embryonic and trophoblast stem cells through different signaling pathways including FGF and Wnt signaling pathways. In summary, these results suggest that MacERV6-LTR1a is involved in gene regulation of the pre-implantation embryo of the cynomolgus monkeys.
Collapse
Affiliation(s)
- Kui Duan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (K.D.); (C.-Y.S.); (S.-M.Z.); (Z.-Y.A.); (B.-H.N.); (Y.Y.); (L.-F.X.); (H.D.)
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Provincial Academy of Science and Technology, Kunming 650500, China
| | - Chen-Yang Si
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (K.D.); (C.-Y.S.); (S.-M.Z.); (Z.-Y.A.); (B.-H.N.); (Y.Y.); (L.-F.X.); (H.D.)
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Provincial Academy of Science and Technology, Kunming 650500, China
| | - Shu-Mei Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (K.D.); (C.-Y.S.); (S.-M.Z.); (Z.-Y.A.); (B.-H.N.); (Y.Y.); (L.-F.X.); (H.D.)
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Provincial Academy of Science and Technology, Kunming 650500, China
| | - Zong-Yong Ai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (K.D.); (C.-Y.S.); (S.-M.Z.); (Z.-Y.A.); (B.-H.N.); (Y.Y.); (L.-F.X.); (H.D.)
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Provincial Academy of Science and Technology, Kunming 650500, China
| | - Bao-Hua Niu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (K.D.); (C.-Y.S.); (S.-M.Z.); (Z.-Y.A.); (B.-H.N.); (Y.Y.); (L.-F.X.); (H.D.)
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Provincial Academy of Science and Technology, Kunming 650500, China
| | - Yu Yin
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (K.D.); (C.-Y.S.); (S.-M.Z.); (Z.-Y.A.); (B.-H.N.); (Y.Y.); (L.-F.X.); (H.D.)
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Provincial Academy of Science and Technology, Kunming 650500, China
| | - Li-Feng Xiang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (K.D.); (C.-Y.S.); (S.-M.Z.); (Z.-Y.A.); (B.-H.N.); (Y.Y.); (L.-F.X.); (H.D.)
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Provincial Academy of Science and Technology, Kunming 650500, China
| | - Hao Ding
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (K.D.); (C.-Y.S.); (S.-M.Z.); (Z.-Y.A.); (B.-H.N.); (Y.Y.); (L.-F.X.); (H.D.)
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Provincial Academy of Science and Technology, Kunming 650500, China
| | - Yun Zheng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (K.D.); (C.-Y.S.); (S.-M.Z.); (Z.-Y.A.); (B.-H.N.); (Y.Y.); (L.-F.X.); (H.D.)
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming 650500, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Provincial Academy of Science and Technology, Kunming 650500, China
- Correspondence:
| |
Collapse
|
56
|
Akizawa H, Saito S, Kohri N, Furukawa E, Hayashi Y, Bai H, Nagano M, Yanagawa Y, Tsukahara H, Takahashi M, Kagawa S, Kawahara-Miki R, Kobayashi H, Kono T, Kawahara M. Deciphering two rounds of cell lineage segregations during bovine preimplantation development. FASEB J 2021; 35:e21904. [PMID: 34569650 DOI: 10.1096/fj.202002762rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
Blastocyst formation gives rise to the inner cell mass (ICM) and trophectoderm (TE) and is followed by the differentiation of the epiblast (Epi) and primitive endoderm (PrE) within the ICM. Although these two-round cell lineage differentiations underpin proper embryogenesis in every mammal, their spatiotemporal dynamics are quite diverse among species. Here, molecular details of the blastocyst stage in cattle were dissected using an optimized in vitro culture method. Blastocyst embryos were placed on agarose gel filled with nutrient-rich media to expose embryos to both gaseous and liquid phases. Embryos derived from this "on-gel" culture were transferred to surrogate mothers on day (D) 10 after fertilization and successfully implanted. Immunofluorescent studies using on-gel-cultured embryos revealed that the proportion of TE cells expressing the pluripotent ICM marker, OCT4, which was beyond 80% on D8, was rapidly reduced after D9 and reached 0% on D9.5. This first lineage segregation process was temporally parallel with the second one, identified by the spatial separation of Epi cells expressing SOX2 and PrE cells expressing SOX17. RNA-seq comparison of TE cells from D8 in vitro fertilized embryos and D14 in vivo embryos revealed that besides drastic reduction of pluripotency-related genes, TE cells highly expressed Wnt, FGF, and VEGF signaling pathways-related genes to facilitate the functional maturation required for feto-maternal interaction. Quantitative PCR analysis of TE cells derived from on-gel culture further confirmed time-dependent increments in the expression of key TE markers. Altogether, the present study provides platforms to understand species-specific strategies for mammalian preimplantation development.
Collapse
Affiliation(s)
- Hiroki Akizawa
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shun Saito
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Nanami Kohri
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Eri Furukawa
- Laboratory of Theriogenology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshihiro Hayashi
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hanako Bai
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Masashi Nagano
- Laboratory of Animal Reproduction, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Yojiro Yanagawa
- Laboratory of Theriogenology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hayato Tsukahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Masashi Takahashi
- Global Station for Food, Land and Water Resources, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido, Japan
| | - Shinjiro Kagawa
- Livestock Research Institute, Aomori Prefectural Industrial Technology Research Center, Aomori, Japan
| | | | - Hisato Kobayashi
- Department of Embryology, Nara Medical University, Kashihara, Japan
| | - Tomohiro Kono
- Department of Bioscience, Tokyo University of Agriculture, Setagaya, Japan
| | - Manabu Kawahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
57
|
Gutiérrez-Añez JC, Henning H, Lucas-Hahn A, Baulain U, Aldag P, Sieg B, Hensel V, Herrmann D, Niemann H. Melatonin improves rate of monospermic fertilization and early embryo development in a bovine IVF system. PLoS One 2021; 16:e0256701. [PMID: 34473747 PMCID: PMC8412339 DOI: 10.1371/journal.pone.0256701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/12/2021] [Indexed: 01/09/2023] Open
Abstract
The developmental competence of male and female gametes is frequently reduced under in vitro conditions, mainly due to oxidative stress during handling. The amino-acid derived hormone melatonin has emerged as a potent non-enzymatic antioxidant in many biological systems. The goal of the present study was to evaluate the effects of melatonin on post-thaw sperm quality, fertilizing ability, and embryo development and competence in vitro after in vitro fertilization. Frozen-thawed bovine spermatozoa were incubated either in the presence of 10−11 M melatonin (MT), or its solvent (ethanol; Sham-Control), or plain Tyrode’s Albumin Lactate Pyruvate medium (TALP, Control). Computer-Assisted Sperm Analysis (CASA) and flow cytometry data after 30 min, 120 min, and 180 min incubation did not reveal any significant effects of melatonin on average motility parameters, sperm subpopulation structure as determined by hierarchical cluster, or on the percentage of viable, acrosome intact sperm, or viable sperm with active mitochondria. Nevertheless, in vitro matured cumulus-oocyte-complexes fertilized with spermatozoa which had been preincubated with 10−11 M melatonin (MT-Sperm) showed higher (P < 0.01) rates of monospermic fertilization, reduced (P < 0.05) polyspermy and enhanced (P < 0.05) embryo development compared to the Control group. Moreover, the relative abundance of MAPK13 in the in vitro-derived blastocysts was greater (P < 0.05) than observed in the Control group. In conclusion, adding melatonin to the sperm-preparation protocol for bovine IVF improved proper fertilization and enhanced embryonic development and competence in vitro.
Collapse
Affiliation(s)
- Juan Carlos Gutiérrez-Añez
- Institute of Farm Animal Genetics, Friedrich Loeffler Institut (FLI), Mariensee, Germany
- Medical-Surgical Department, College of Veterinary Medicine, University of Zulia, Maracaibo, Venezuela
- * E-mail: , (JCGA); (HN)
| | - Heiko Henning
- Institute of Farm Animal Genetics, Friedrich Loeffler Institut (FLI), Mariensee, Germany
| | - Andrea Lucas-Hahn
- Institute of Farm Animal Genetics, Friedrich Loeffler Institut (FLI), Mariensee, Germany
| | - Ulrich Baulain
- Institute of Farm Animal Genetics, Friedrich Loeffler Institut (FLI), Mariensee, Germany
| | - Patrick Aldag
- Institute of Farm Animal Genetics, Friedrich Loeffler Institut (FLI), Mariensee, Germany
| | - Birgit Sieg
- Institute of Farm Animal Genetics, Friedrich Loeffler Institut (FLI), Mariensee, Germany
| | - Vivian Hensel
- Institute of Farm Animal Genetics, Friedrich Loeffler Institut (FLI), Mariensee, Germany
| | - Doris Herrmann
- Institute of Farm Animal Genetics, Friedrich Loeffler Institut (FLI), Mariensee, Germany
| | - Heiner Niemann
- Clinic for Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
- * E-mail: , (JCGA); (HN)
| |
Collapse
|
58
|
Springer C, Zakhartchenko V, Wolf E, Simmet K. Hypoblast Formation in Bovine Embryos Does Not Depend on NANOG. Cells 2021; 10:cells10092232. [PMID: 34571882 PMCID: PMC8466907 DOI: 10.3390/cells10092232] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022] Open
Abstract
The role of the pluripotency factor NANOG during the second embryonic lineage differentiation has been studied extensively in mouse, although species-specific differences exist. To elucidate the role of NANOG in an alternative model organism, we knocked out NANOG in fibroblast cells and produced bovine NANOG-knockout (KO) embryos via somatic cell nuclear transfer (SCNT). At day 8, NANOG-KO blastocysts showed a decreased total cell number when compared to controls from SCNT (NT Ctrl). The pluripotency factors OCT4 and SOX2 as well as the hypoblast (HB) marker GATA6 were co-expressed in all cells of the inner cell mass (ICM) and, in contrast to mouse Nanog-KO, expression of the late HB marker SOX17 was still present. We blocked the MEK-pathway with a MEK 1/2 inhibitor, and control embryos showed an increase in NANOG positive cells, but SOX17 expressing HB precursor cells were still present. NANOG-KO together with MEK-inhibition was lethal before blastocyst stage, similarly to findings in mouse. Supplementation of exogenous FGF4 to NANOG-KO embryos did not change SOX17 expression in the ICM, unlike mouse Nanog-KO embryos, where missing SOX17 expression was completely rescued by FGF4. We conclude that NANOG mediated FGF/MEK signaling is not required for HB formation in the bovine embryo and that another—so far unknown—pathway regulates HB differentiation.
Collapse
Affiliation(s)
- Claudia Springer
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (V.Z.); (E.W.)
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
| | - Valeri Zakhartchenko
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (V.Z.); (E.W.)
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (V.Z.); (E.W.)
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Kilian Simmet
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (V.Z.); (E.W.)
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
- Correspondence:
| |
Collapse
|
59
|
Gerri C, Menchero S, Mahadevaiah SK, Turner JMA, Niakan KK. Human Embryogenesis: A Comparative Perspective. Annu Rev Cell Dev Biol 2021; 36:411-440. [PMID: 33021826 DOI: 10.1146/annurev-cellbio-022020-024900] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding human embryology has historically relied on comparative approaches using mammalian model organisms. With the advent of low-input methods to investigate genetic and epigenetic mechanisms and efficient techniques to assess gene function, we can now study the human embryo directly. These advances have transformed the investigation of early embryogenesis in nonrodent species, thereby providing a broader understanding of conserved and divergent mechanisms. Here, we present an overview of the major events in human preimplantation development and place them in the context of mammalian evolution by comparing these events in other eutherian and metatherian species. We describe the advances of studies on postimplantation development and discuss stem cell models that mimic postimplantation embryos. A comparative perspective highlights the importance of analyzing different organisms with molecular characterization and functional studies to reveal the principles of early development. This growing field has a fundamental impact in regenerative medicine and raises important ethical considerations.
Collapse
Affiliation(s)
- Claudia Gerri
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Sergio Menchero
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Shantha K Mahadevaiah
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| |
Collapse
|
60
|
Bora P, Gahurova L, Hauserova A, Stiborova M, Collier R, Potěšil D, Zdráhal Z, Bruce AW. DDX21 is a p38-MAPK-sensitive nucleolar protein necessary for mouse preimplantation embryo development and cell-fate specification. Open Biol 2021; 11:210092. [PMID: 34255976 PMCID: PMC8277471 DOI: 10.1098/rsob.210092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Successful navigation of the mouse preimplantation stages of development, during which three distinct blastocyst lineages are derived, represents a prerequisite for continued development. We previously identified a role for p38-mitogen-activated kinases (p38-MAPK) regulating blastocyst inner cell mass (ICM) cell fate, specifically primitive endoderm (PrE) differentiation, that is intimately linked to rRNA precursor processing, polysome formation and protein translation regulation. Here, we develop this work by assaying the role of DEAD-box RNA helicase 21 (DDX21), a known regulator of rRNA processing, in the context of p38-MAPK regulation of preimplantation mouse embryo development. We show nuclear DDX21 protein is robustly expressed from the 16-cell stage, becoming exclusively nucleolar during blastocyst maturation, a localization dependent on active p38-MAPK. siRNA-mediated clonal Ddx21 knockdown within developing embryos is associated with profound cell-autonomous and non-autonomous proliferation defects and reduced blastocyst volume, by the equivalent peri-implantation blastocyst stage. Moreover, ICM residing Ddx21 knockdown clones express the EPI marker NANOG but rarely express the PrE differentiation marker GATA4. These data contribute further significance to the emerging importance of lineage-specific translation regulation, as identified for p38-MAPK, during mouse preimplantation development.
Collapse
Affiliation(s)
- Pablo Bora
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Lenka Gahurova
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic.,Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, Rumburská 89, 27721 Liběchov, Czech Republic
| | - Andrea Hauserova
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Martina Stiborova
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Rebecca Collier
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Alexander W Bruce
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
61
|
Frum T, Ralston A. Culture conditions antagonize lineage-promoting signaling in the mouse blastocyst. Reproduction 2021; 160:V5-V7. [PMID: 32484160 DOI: 10.1530/rep-20-0107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/30/2020] [Indexed: 01/09/2023]
Abstract
The mouse preimplantation embryo is a paradigm for discovery of the molecular principles governing formation of specific cell types during development. In this Point of View Article, we show that conditions commonly used for ex vivo culture of preimplantation development are themselves antagonistic to a pathway that is critical for blastocyst lineage commitment.
Collapse
|
62
|
Molè MA, Coorens THH, Shahbazi MN, Weberling A, Weatherbee BAT, Gantner CW, Sancho-Serra C, Richardson L, Drinkwater A, Syed N, Engley S, Snell P, Christie L, Elder K, Campbell A, Fishel S, Behjati S, Vento-Tormo R, Zernicka-Goetz M. A single cell characterisation of human embryogenesis identifies pluripotency transitions and putative anterior hypoblast centre. Nat Commun 2021; 12:3679. [PMID: 34140473 PMCID: PMC8211662 DOI: 10.1038/s41467-021-23758-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/11/2021] [Indexed: 01/02/2023] Open
Abstract
Following implantation, the human embryo undergoes major morphogenetic transformations that establish the future body plan. While the molecular events underpinning this process are established in mice, they remain unknown in humans. Here we characterise key events of human embryo morphogenesis, in the period between implantation and gastrulation, using single-cell analyses and functional studies. First, the embryonic epiblast cells transition through different pluripotent states and act as a source of FGF signals that ensure proliferation of both embryonic and extra-embryonic tissues. In a subset of embryos, we identify a group of asymmetrically positioned extra-embryonic hypoblast cells expressing inhibitors of BMP, NODAL and WNT signalling pathways. We suggest that this group of cells can act as the anterior singalling centre to pattern the epiblast. These results provide insights into pluripotency state transitions, the role of FGF signalling and the specification of anterior-posterior axis during human embryo development.
Collapse
Affiliation(s)
- Matteo A Molè
- Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | | | - Marta N Shahbazi
- Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Antonia Weberling
- Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
| | - Bailey A T Weatherbee
- Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
| | - Carlos W Gantner
- Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK
| | | | - Lucy Richardson
- Herts & Essex Fertility Centre, Bishops College, Cheshunt, Herts, UK
| | - Abbie Drinkwater
- Herts & Essex Fertility Centre, Bishops College, Cheshunt, Herts, UK
| | - Najma Syed
- Herts & Essex Fertility Centre, Bishops College, Cheshunt, Herts, UK
| | - Stephanie Engley
- Herts & Essex Fertility Centre, Bishops College, Cheshunt, Herts, UK
| | | | | | | | | | - Simon Fishel
- CARE Fertility Group, Nottingham, UK
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, UK.
- Cambridge University Hospital, NHS Foundation Trust, Cambridge, UK.
- Department of Paediatrics, University of Cambridge, Cambridge, UK.
| | | | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
63
|
Pérez-Gómez A, González-Brusi L, Bermejo-Álvarez P, Ramos-Ibeas P. Lineage Differentiation Markers as a Proxy for Embryo Viability in Farm Ungulates. Front Vet Sci 2021; 8:680539. [PMID: 34212020 PMCID: PMC8239129 DOI: 10.3389/fvets.2021.680539] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/24/2021] [Indexed: 12/28/2022] Open
Abstract
Embryonic losses constitute a major burden for reproductive efficiency of farm animals. Pregnancy losses in ungulate species, which include cattle, pigs, sheep and goats, majorly occur during the second week of gestation, when the embryo experiences a series of cell differentiation, proliferation, and migration processes encompassed under the term conceptus elongation. Conceptus elongation takes place following blastocyst hatching and involves a massive proliferation of the extraembryonic membranes trophoblast and hypoblast, and the formation of flat embryonic disc derived from the epiblast, which ultimately gastrulates generating the three germ layers. This process occurs prior to implantation and it is exclusive from ungulates, as embryos from other mammalian species such as rodents or humans implant right after hatching. The critical differences in embryo development between ungulates and mice, the most studied mammalian model, have precluded the identification of the genes governing lineage differentiation in livestock species. Furthermore, conceptus elongation has not been recapitulated in vitro, hindering the study of these cellular events. Luckily, recent advances on transcriptomics, genome modification and post-hatching in vitro culture are shedding light into this largely unknown developmental window, uncovering possible molecular markers to determine embryo quality. In this review, we summarize the events occurring during ungulate pre-implantation development, highlighting recent findings which reveal that several dogmas in Developmental Biology established by knock-out murine models do not hold true for other mammals, including humans and farm animals. The developmental failures associated to in vitro produced embryos in farm animals are also discussed together with Developmental Biology tools to assess embryo quality, including molecular markers to assess proper lineage commitment and a post-hatching in vitro culture system able to directly determine developmental potential circumventing the need of experimental animals.
Collapse
Affiliation(s)
- Alba Pérez-Gómez
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - Leopoldo González-Brusi
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - Pablo Bermejo-Álvarez
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - Priscila Ramos-Ibeas
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| |
Collapse
|
64
|
Weatherbee BAT, Cui T, Zernicka-Goetz M. Modeling human embryo development with embryonic and extra-embryonic stem cells. Dev Biol 2021; 474:91-99. [PMID: 33333069 PMCID: PMC8232073 DOI: 10.1016/j.ydbio.2020.12.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022]
Abstract
Early human post-implantation development involves extensive growth combined with a series of complex morphogenetic events. The lack of precise spatial and temporal control over these processes leads to pregnancy loss. Given the ethical and technical limitations in studying the natural human embryo, alternative approaches are needed to investigate mechanisms underlying this critical stage of human development. Here, we present an overview of the different stem cells and stem cell-derived models which serve as useful, albeit imperfect, tools in understanding human embryogenesis. Current models include stem cells that represent each of the three earliest lineages: human embryonic stem cells corresponding to the epiblast, hypoblast-like stem cells and trophoblast stem cells. We also review the use of human embryonic stem cells to model complex aspects of epiblast morphogenesis and differentiation. Additionally, we propose that the combination of both embryonic and extra-embryonic stem cells to form three-dimensional embryo models will provide valuable insights into cell-cell chemical and mechanical interactions that are essential for natural embryogenesis.
Collapse
Affiliation(s)
- Bailey A T Weatherbee
- Mouse and Human Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge, CB2 3EG, UK
| | - Tongtong Cui
- Plasticity and Synthetic Embryology Group, California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA
| | - Magdalena Zernicka-Goetz
- Mouse and Human Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge, CB2 3EG, UK; Plasticity and Synthetic Embryology Group, California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA.
| |
Collapse
|
65
|
Pereira Daoud AM, Popovic M, Dondorp WJ, Trani Bustos M, Bredenoord AL, Chuva de Sousa Lopes SM, van den Brink SC, Roelen BAJ, de Wert GMWR, Heindryckx B. Modelling human embryogenesis: embryo-like structures spark ethical and policy debate. Hum Reprod Update 2021; 26:779-798. [PMID: 32712668 DOI: 10.1093/humupd/dmaa027] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/06/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Studying the human peri-implantation period remains hindered by the limited accessibility of the in vivo environment and scarcity of research material. As such, continuing efforts have been directed towards developing embryo-like structures (ELS) from pluripotent stem cells (PSCs) that recapitulate aspects of embryogenesis in vitro. While the creation of such models offers immense potential for studying fundamental processes in both pre- and early post-implantation development, it also proves ethically contentious due to wide-ranging views on the moral and legal reverence due to human embryos. Lack of clarity on how to qualify and regulate research with ELS thus presents a challenge in that it may either limit this new field of research without valid grounds or allow it to develop without policies that reflect justified ethical concerns. OBJECTIVE AND RATIONALE The aim of this article is to provide a comprehensive overview of the existing scientific approaches to generate ELS from mouse and human PSCs, as well as discuss future strategies towards innovation in the context of human development. Concurrently, we aim to set the agenda for the ethical and policy issues surrounding research on human ELS. SEARCH METHODS The PubMed database was used to search peer-reviewed articles and reviews using the following terms: 'stem cells', 'pluripotency', 'implantation', 'preimplantation', 'post-implantation', 'blastocyst', 'embryoid bodies', 'synthetic embryos', 'embryo models', 'self-assembly', 'human embryo-like structures', 'artificial embryos' in combination with other keywords related to the subject area. The PubMed and Web of Science databases were also used to systematically search publications on the ethics of ELS and human embryo research by using the aforementioned keywords in combination with 'ethics', 'law', 'regulation' and equivalent terms. All relevant publications until December 2019 were critically evaluated and discussed. OUTCOMES In vitro systems provide a promising way forward for uncovering early human development. Current platforms utilize PSCs in both two- and three-dimensional settings to mimic various early developmental stages, including epiblast, trophoblast and amniotic cavity formation, in addition to axis development and gastrulation. Nevertheless, much hinges on the term 'embryo-like'. Extension of traditional embryo frameworks to research with ELS reveals that (i) current embryo definitions require reconsideration, (ii) cellular convertibility challenges the attribution of moral standing on the basis of 'active potentiality' and (iii) meaningful application of embryo protective directives will require rethinking of the 14-day culture limit and moral weight attributed to (non-)viability. Many conceptual and normative (dis)similarities between ELS and embryos thus remain to be thoroughly elucidated. WIDER IMPLICATIONS Modelling embryogenesis holds vast potential for both human developmental biology and understanding various etiologies associated with infertility. To date, ELS have been shown to recapitulate several aspects of peri-implantation development, but critically, cannot develop into a fetus. Yet, concurrent to scientific innovation, considering the extent to which the use of ELS may raise moral concerns typical of human embryo research remains paramount. This will be crucial for harnessing the potential of ELS as a valuable research tool, whilst remaining within a robust moral and legal framework of professionally acceptable practices.
Collapse
Affiliation(s)
- Ana M Pereira Daoud
- Department of Health Ethics and Society, Maastricht University, Maastricht, The Netherlands.,Department of Medical Humanities, Utrecht University Medical Center, Utrecht, The Netherlands.,School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - Mina Popovic
- Ghent-Fertility And Stem cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Wybo J Dondorp
- Department of Health Ethics and Society, Maastricht University, Maastricht, The Netherlands.,School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands.,School for Care and Public Health Research (CAPHRI), Maastricht University, Maastricht, The Netherlands.,Socrates chair Ethics of Reproductive Genetics endowed by the Dutch Humanist Association, Amsterdam, The Netherlands
| | - Marc Trani Bustos
- Ghent-Fertility And Stem cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium.,Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annelien L Bredenoord
- Department of Medical Humanities, Utrecht University Medical Center, Utrecht, The Netherlands
| | - Susana M Chuva de Sousa Lopes
- Ghent-Fertility And Stem cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium.,Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Susanne C van den Brink
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bernard A J Roelen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Guido M W R de Wert
- Department of Health Ethics and Society, Maastricht University, Maastricht, The Netherlands.,School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands.,School for Care and Public Health Research (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Björn Heindryckx
- Ghent-Fertility And Stem cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
66
|
Meistermann D, Bruneau A, Loubersac S, Reignier A, Firmin J, François-Campion V, Kilens S, Lelièvre Y, Lammers J, Feyeux M, Hulin P, Nedellec S, Bretin B, Castel G, Allègre N, Covin S, Bihouée A, Soumillon M, Mikkelsen T, Barrière P, Chazaud C, Chappell J, Pasque V, Bourdon J, Fréour T, David L. Integrated pseudotime analysis of human pre-implantation embryo single-cell transcriptomes reveals the dynamics of lineage specification. Cell Stem Cell 2021; 28:1625-1640.e6. [PMID: 34004179 DOI: 10.1016/j.stem.2021.04.027] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 07/16/2020] [Accepted: 04/22/2021] [Indexed: 12/22/2022]
Abstract
Understanding lineage specification during human pre-implantation development is a gateway to improving assisted reproductive technologies and stem cell research. Here we employ pseudotime analysis of single-cell RNA sequencing (scRNA-seq) data to reconstruct early mouse and human embryo development. Using time-lapse imaging of annotated embryos, we provide an integrated, ordered, and continuous analysis of transcriptomics changes throughout human development. We reveal that human trophectoderm/inner cell mass transcriptomes diverge at the transition from the B2 to the B3 blastocyst stage, just before blastocyst expansion. We explore the dynamics of the fate markers IFI16 and GATA4 and show that they gradually become mutually exclusive upon establishment of epiblast and primitive endoderm fates, respectively. We also provide evidence that NR2F2 marks trophectoderm maturation, initiating from the polar side, and subsequently spreads to all cells after implantation. Our study pinpoints the precise timing of lineage specification events in the human embryo and identifies transcriptomics hallmarks and cell fate markers.
Collapse
Affiliation(s)
- Dimitri Meistermann
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LS2N, UNIV Nantes, CNRS, Nantes, France
| | - Alexandre Bruneau
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France
| | - Sophie Loubersac
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; CHU Nantes, Université de Nantes, Service de Biologie de la Reproduction, 44000 Nantes, France
| | - Arnaud Reignier
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; CHU Nantes, Université de Nantes, Service de Biologie de la Reproduction, 44000 Nantes, France
| | - Julie Firmin
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; CHU Nantes, Université de Nantes, Service de Biologie de la Reproduction, 44000 Nantes, France
| | - Valentin François-Campion
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France
| | - Stéphanie Kilens
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France
| | | | - Jenna Lammers
- CHU Nantes, Université de Nantes, Service de Biologie de la Reproduction, 44000 Nantes, France
| | - Magalie Feyeux
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; Université de Nantes, CHU Nantes, INSERM, CNRS, SFR Santé, FED 4203, INSERM UMS 016, CNRS UMS 3556, Nantes, France
| | - Phillipe Hulin
- Université de Nantes, CHU Nantes, INSERM, CNRS, SFR Santé, FED 4203, INSERM UMS 016, CNRS UMS 3556, Nantes, France
| | - Steven Nedellec
- Université de Nantes, CHU Nantes, INSERM, CNRS, SFR Santé, FED 4203, INSERM UMS 016, CNRS UMS 3556, Nantes, France
| | - Betty Bretin
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France
| | - Gaël Castel
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France
| | - Nicolas Allègre
- GReD Laboratory, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, CRBC, 63000 Clermont-Ferrand, France
| | - Simon Covin
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France
| | - Audrey Bihouée
- Université de Nantes, CHU Nantes, INSERM, CNRS, SFR Santé, FED 4203, INSERM UMS 016, CNRS UMS 3556, Nantes, France; Institut du Thorax, UNIV Nantes, INSERM, CNRS, Nantes, France
| | - Magali Soumillon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Tarjei Mikkelsen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Paul Barrière
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; CHU Nantes, Université de Nantes, Service de Biologie de la Reproduction, 44000 Nantes, France
| | - Claire Chazaud
- GReD Laboratory, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, CRBC, 63000 Clermont-Ferrand, France
| | - Joel Chappell
- KU Leuven - University of Leuven, Department of Development and Regeneration, Institute for Single Cell Omics, Leuven Stem Cell Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Vincent Pasque
- KU Leuven - University of Leuven, Department of Development and Regeneration, Institute for Single Cell Omics, Leuven Stem Cell Institute, Herestraat 49, 3000 Leuven, Belgium
| | | | - Thomas Fréour
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; CHU Nantes, Université de Nantes, Service de Biologie de la Reproduction, 44000 Nantes, France.
| | - Laurent David
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; Université de Nantes, CHU Nantes, INSERM, CNRS, SFR Santé, FED 4203, INSERM UMS 016, CNRS UMS 3556, Nantes, France.
| |
Collapse
|
67
|
Spiteri C, Caprettini V, Chiappini C. Biomaterials-based approaches to model embryogenesis. Biomater Sci 2021; 8:6992-7013. [PMID: 33136109 DOI: 10.1039/d0bm01485k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Understanding, reproducing, and regulating the cellular and molecular processes underlying human embryogenesis is critical to improve our ability to recapitulate tissues with proper architecture and function, and to address the dysregulation of embryonic programs that underlies birth defects and cancer. The rapid emergence of stem cell technologies is enabling enormous progress in understanding embryogenesis using simple, powerful, and accessible in vitro models. Biomaterials are playing a central role in providing the spatiotemporal organisation of biophysical and biochemical signalling necessary to mimic, regulate and dissect the evolving embryonic niche in vitro. This contribution is rapidly improving our understanding of the mechanisms underlying embryonic patterning, in turn enabling the development of more effective clinical interventions for regenerative medicine and oncology. Here we highlight how key biomaterial approaches contribute to organise signalling in human embryogenesis models, and we summarise the biological insights gained from these contributions. Importantly, we highlight how nanotechnology approaches have remained largely untapped in this space, and we identify their key potential contributions.
Collapse
Affiliation(s)
- Chantelle Spiteri
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK.
| | | | | |
Collapse
|
68
|
Moris N, Alev C, Pera M, Martinez Arias A. Biomedical and societal impacts of in vitro embryo models of mammalian development. Stem Cell Reports 2021; 16:1021-1030. [PMID: 33979591 PMCID: PMC8185435 DOI: 10.1016/j.stemcr.2021.03.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/30/2022] Open
Abstract
In recent years, a diverse array of in vitro cell-derived models of mammalian development have been described that hold immense potential for exploring fundamental questions in developmental biology, particularly in the case of the human embryo where ethical and technical limitations restrict research. These models open up new avenues toward biomedical advances in in vitro fertilization, clinical research, and drug screening with potential to impact wider society across many diverse fields. These technologies raise challenging questions with profound ethical, regulatory, and social implications that deserve due consideration. Here, we discuss the potential impacts of embryo-like models, and their biomedical potential and current limitations.
Collapse
Affiliation(s)
- Naomi Moris
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK.
| | - Cantas Alev
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8510, Japan.
| | - Martin Pera
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
69
|
Alberio R, Kobayashi T, Surani MA. Conserved features of non-primate bilaminar disc embryos and the germline. Stem Cell Reports 2021; 16:1078-1092. [PMID: 33979595 PMCID: PMC8185373 DOI: 10.1016/j.stemcr.2021.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Post-implantation embryo development commences with a bilaminar disc in most mammals, including humans. Whereas access to early human embryos is limited and subject to greater ethical scrutiny, studies on non-primate embryos developing as bilaminar discs offer exceptional opportunities for advances in gastrulation, the germline, and the basis for evolutionary divergence applicable to human development. Here, we discuss the advantages of investigations in the pig embryo as an exemplar of development of a bilaminar disc embryo with relevance to early human development. Besides, the pig has the potential for the creation of humanized organs for xenotransplantation. Precise genetic engineering approaches, imaging, and single-cell analysis are cost effective and efficient, enabling research into some outstanding questions on human development and for developing authentic models of early human development with stem cells.
Collapse
Affiliation(s)
- Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| | - Toshihiro Kobayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan; The Graduate University of Advanced Studies, Okazaki, Aichi 444-8787, Japan
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|
70
|
Llobat L. Pluripotency and Growth Factors in Early Embryonic Development of Mammals: A Comparative Approach. Vet Sci 2021; 8:vetsci8050078. [PMID: 34064445 PMCID: PMC8147802 DOI: 10.3390/vetsci8050078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 12/24/2022] Open
Abstract
The regulation of early events in mammalian embryonic development is a complex process. In the early stages, pluripotency, cellular differentiation, and growth should occur at specific times and these events are regulated by different genes that are expressed at specific times and locations. The genes related to pluripotency and cellular differentiation, and growth factors that determine successful embryonic development are different (or differentially expressed) among mammalian species. Some genes are fundamental for controlling pluripotency in some species but less fundamental in others, for example, Oct4 is particularly relevant in bovine early embryonic development, whereas Oct4 inhibition does not affect ovine early embryonic development. In addition, some mechanisms that regulate cellular differentiation do not seem to be clear or evolutionarily conserved. After cellular differentiation, growth factors are relevant in early development, and their effects also differ among species, for example, insulin-like growth factor improves the blastocyst development rate in some species but does not have the same effect in mice. Some growth factors influence genes related to pluripotency, and therefore, their role in early embryo development is not limited to cell growth but could also involve the earliest stages of development. In this review, we summarize the differences among mammalian species regarding the regulation of pluripotency, cellular differentiation, and growth factors in the early stages of embryonic development.
Collapse
Affiliation(s)
- Lola Llobat
- Research Group Microbiological Agents Associated with Animal Reproduction (PROVAGINBIO), Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA) Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Valencia, Spain
| |
Collapse
|
71
|
Nakamura T, Fujiwara K, Saitou M, Tsukiyama T. Non-human primates as a model for human development. Stem Cell Reports 2021; 16:1093-1103. [PMID: 33979596 PMCID: PMC8185448 DOI: 10.1016/j.stemcr.2021.03.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Human development has been studied for over a century, but the molecular mechanisms underlying human embryogenesis remain largely unknown due to technical difficulties and ethical issues. Accordingly, mice have been used as a model for mammalian development and studied extensively to infer human biology based on the conservation of fundamental processes between the two species. As research has progressed, however, species-specific differences in characteristics between rodents and primates have become apparent. Non-human primates (NHPs) have also been used for biomedical research, and are now attracting attention as a model for human development. Here, we summarize primate species from the evolutionary and genomic points of view. Then we review the current issues and progress in gene modification technology for NHPs. Finally, we discuss recent studies on the early embryogenesis of primates and future perspectives.
Collapse
Affiliation(s)
- Tomonori Nakamura
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; The Hakubi Center for Advanced Research, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Kohei Fujiwara
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomoyuki Tsukiyama
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Research Center for Animal Life Science, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.
| |
Collapse
|
72
|
Paonessa M, Borini A, Coticchio G. Genetic causes of preimplantation embryo developmental failure. Mol Reprod Dev 2021; 88:338-348. [PMID: 33843124 DOI: 10.1002/mrd.23471] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/27/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
Embryo development requires orchestrated events, finely regulated at the molecular and cellular level by mechanisms which are progressively emerging from animal studies. With progress in genetic technologies-such as genome editing and single-cell RNA analysis-we can now assess embryo gene expression with increased precision and gain new insights into complex processes until recently difficult to explore. Multiple genes and regulative pathways have been identified for each developmental stage. We have learned that embryos with undisturbed and timely gene expression have higher chances of successful development. For example, selected genes are highly expressed during the first stages, being involved in cell adhesion, cell cycle, and regulation of transcription; other genes are instead crucial for lineage specification and therefore expressed at later stages. Due to ethical constraints, studies on human embryos remain scarce, mainly descriptive, and unable to provide functional evidence. This highlights the importance of animal studies as basic knowledge to test and appraise in a clinical context. In this review, we report on preimplantation development with a focus on genes whose impairment leads to developmental arrest. Preconceptional genetic screening could identify loss-of-function mutations of these genes; thereby, novel biomarkers of embryo quality could be adopted to improve diagnosis and treatment of infertility.
Collapse
Affiliation(s)
- Mariagrazia Paonessa
- 9.Baby, Family and Fertility Center, Bologna, Italy.,Casa di Cura Candela Spa, Palermo, Italy
| | | | | |
Collapse
|
73
|
Springer C, Wolf E, Simmet K. A New Toolbox in Experimental Embryology-Alternative Model Organisms for Studying Preimplantation Development. J Dev Biol 2021; 9:15. [PMID: 33918361 PMCID: PMC8167745 DOI: 10.3390/jdb9020015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Preimplantation development is well conserved across mammalian species, but major differences in developmental kinetics, regulation of early lineage differentiation and implantation require studies in different model organisms, especially to better understand human development. Large domestic species, such as cattle and pig, resemble human development in many different aspects, i.e., the timing of zygotic genome activation, mechanisms of early lineage differentiations and the period until blastocyst formation. In this article, we give an overview of different assisted reproductive technologies, which are well established in cattle and pig and make them easily accessible to study early embryonic development. We outline the available technologies to create genetically modified models and to modulate lineage differentiation as well as recent methodological developments in genome sequencing and imaging, which form an immense toolbox for research. Finally, we compare the most recent findings in regulation of the first lineage differentiations across species and show how alternative models enhance our understanding of preimplantation development.
Collapse
Affiliation(s)
- Claudia Springer
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
| | - Kilian Simmet
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
| |
Collapse
|
74
|
A multiscale model via single-cell transcriptomics reveals robust patterning mechanisms during early mammalian embryo development. PLoS Comput Biol 2021; 17:e1008571. [PMID: 33684098 PMCID: PMC7971879 DOI: 10.1371/journal.pcbi.1008571] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/18/2021] [Accepted: 11/27/2020] [Indexed: 01/18/2023] Open
Abstract
During early mammalian embryo development, a small number of cells make robust fate decisions at particular spatial locations in a tight time window to form inner cell mass (ICM), and later epiblast (Epi) and primitive endoderm (PE). While recent single-cell transcriptomics data allows scrutinization of heterogeneity of individual cells, consistent spatial and temporal mechanisms the early embryo utilize to robustly form the Epi/PE layers from ICM remain elusive. Here we build a multiscale three-dimensional model for mammalian embryo to recapitulate the observed patterning process from zygote to late blastocyst. By integrating the spatiotemporal information reconstructed from multiple single-cell transcriptomic datasets, the data-informed modeling analysis suggests two major processes critical to the formation of Epi/PE layers: a selective cell-cell adhesion mechanism (via EphA4/EphrinB2) for fate-location coordination and a temporal attenuation mechanism of cell signaling (via Fgf). Spatial imaging data and distinct subsets of single-cell gene expression data are then used to validate the predictions. Together, our study provides a multiscale framework that incorporates single-cell gene expression datasets to analyze gene regulations, cell-cell communications, and physical interactions among cells in complex geometries at single-cell resolution, with direct application to late-stage development of embryogenesis.
Collapse
|
75
|
Rossant J, Tam PPL. Opportunities and challenges with stem cell-based embryo models. Stem Cell Reports 2021; 16:1031-1038. [PMID: 33667412 PMCID: PMC8185371 DOI: 10.1016/j.stemcr.2021.02.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cell-based embryo models open an unprecedented avenue for modeling embryogenesis, cell lineage differentiation, tissue morphogenesis, and organogenesis in mammalian development. Experimentation on these embryo models can lead to a better understanding of the mechanisms of development and offers opportunities for functional genomic studies of disease-causing mechanisms, identification of therapeutic targets, and preclinical modeling of advanced therapeutics for precision medicine. An immediate challenge is to create embryo models of high fidelity to embryogenesis and organogenesis in vivo, to ensure that the knowledge gleaned is biologically meaningful and clinically relevant.
Collapse
Affiliation(s)
- Janet Rossant
- Hospital for Sick Children, University of Toronto, and The Gairdner Foundation, Toronto, Canada.
| | - Patrick P L Tam
- Children's Medical Research Institute, University of Sydney, and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| |
Collapse
|
76
|
Toyooka Y. Pluripotent stem cells in the research for extraembryonic cell differentiation. Dev Growth Differ 2021; 63:127-139. [PMID: 33583019 DOI: 10.1111/dgd.12716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
Mouse embryonic stem cells (mESCs) are pluripotent stem cell populations derived from the preimplantation embryo and are used to study the differentiation of many types of somatic and germ cells in developing embryos. They are also used to study cell lineages of extraembryonic tissues, such as the trophectoderm (TE) and the primitive endoderm (PrE). mESC cultures are suitable systems for reproducing cellular and molecular events occurring during the differentiation of these cell types, such as changes in gene expression patterns, signaling events, and genome rearrangements although the consistency between the results obtained using mESCs and those of in vivo studies on embryos should be carefully taken into account. Since TE and PrE cells can be induced from mESCs in vitro, mESC cultures are useful systems to study differentiation of these cell lineages during development, if used appropriately. In addition, human pluripotent stem cells (hPSCs), such as human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs), are capable of generating extraembryonic lineages in vitro and are promising tools to study the differentiation of these lineages in the human embryo.
Collapse
Affiliation(s)
- Yayoi Toyooka
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
77
|
Interleukin-6 promotes primitive endoderm development in bovine blastocysts. BMC DEVELOPMENTAL BIOLOGY 2021; 21:3. [PMID: 33430761 PMCID: PMC7802221 DOI: 10.1186/s12861-020-00235-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/29/2020] [Indexed: 12/18/2022]
Abstract
Background Interleukin-6 (IL6) was recently identified as an embryotrophic factor in bovine embryos, where it acts primarily to mediate inner cell mass (ICM) size. This work explored whether IL6 affects epiblast (EPI) and primitive endoderm (PE) development, the two embryonic lineages generated from the ICM after its formation. Nuclear markers for EPI (NANOG) and PE (GATA6) were used to differentiate the two cell types. Results Increases (P < 0.05) in total ICM cell numbers and PE cell numbers were detected in bovine blastocysts at day 8 and 9 post-fertilization after exposure to 100 ng/ml recombinant bovine IL6. Also, IL6 increased (P < 0.05) the number of undifferentiated ICM cells (cells containing both PE and EPI markers). The effects of IL6 on EPI cell numbers were inconsistent. Studies were also completed to explore the importance of Janus kinase 2 (JAK2)-dependent signaling in bovine PE cells. Definitive activation of STAT3, a downstream target for JAK2, was observed in PE cells. Also, pharmacological inhibition of JAK2 decreased (P < 0.05) PE cell numbers. Conclusions To conclude, IL6 manipulates ICM development after EPI/PE cell fates are established. The PE cells are the target for IL6, where a JAK-dependent signal is used to regulate PE numbers. Supplementary Information The online version contains supplementary material available at 10.1186/s12861-020-00235-z.
Collapse
|
78
|
Carreiro LE, Santos GSD, Luedke FE, Goissis MD. Cell differentiation events in pre-implantation mouse and bovine embryos. Anim Reprod 2021; 18:e20210054. [PMID: 35035540 PMCID: PMC8747937 DOI: 10.1590/1984-3143-ar2021-0054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022] Open
Abstract
Early mammal embryogenesis starts with oocyte fertilization, giving rise to the zygote. The events that the newly formed zygote surpasses are crucial to the embryo developmental success. Shortly after activation of its genome, cells of the embryo segregate into the inner cell mass (ICM) or the trophectoderm (TE). The first will give rise to the embryo while the latter will become the placenta. This first segregation involves cellular and molecular processes that include cell polarity linked to intracellular pathway activation, which will regulate the transcription of trophectoderm-related genes. Then, cells of the ICM undergo the second event of mammalian cell differentiation, which consists of the separation between epiblast (EPI) and hypoblast or primitive endoderm (PrE). This second segregation involves paracrine signaling, leading to differential expression of key genes that will dictate the fate of the cell. Although these processes are described in detail in the mouse, recent studies suggest that the bovine embryo could also be an interesting model for early development, since there are differences to the mouse and similarities with early human embryogenesis. In this review, we gathered the main data available in the literature upon bovine and mouse early development events, suggesting that both models should be analyzed and studied in a complementary way, to better model early events occurring in human development.
Collapse
|
79
|
Smith MK, Clark CC, McCoski SR. Technical note: improving the efficiency of generating bovine extraembryonic endoderm cells. J Anim Sci 2020; 98:5871434. [PMID: 32663851 DOI: 10.1093/jas/skaa222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/10/2020] [Indexed: 11/12/2022] Open
Abstract
The formation of extraembryonic endoderm (XEN) occurs early in embryonic development. The cell types that develop from the XEN remain poorly studied in ruminant species because of the lack of suitable cell culture model systems. The goal of this work was to establish a protocol for producing XEN cell cultures from bovine blastocysts. Previous work identified fibroblast growth factor 2 (FGF2) as a facilitator of bovine XEN development. Further refinements in culture conditions studied here included exposure to 20% fetal bovine serum and FGF2 replenishment. These modifications yielded an endoderm outgrowth formation incidence of 81.6% ± 5.5% compared with 33.3% ± 5.5% in bovine serum albumin (BSA)-supplemented controls. These cells resembled XEN when examined morphologically and contained XEN transcripts (GATA binding protein 4 [GATA4] and GATA binding protein 6 [GATA6]) as well as transcripts present in visceral (BCL2 interacting protein 1 [BNIP1] and vascular endothelial growth factor A [VEGFA]) and parietal (C-X-C motif chemokine receptor 4 [CXCR4], thrombomodulin [THBD], and hematopoietically expressed homeobox [HHEX]) XEN. Two XEN cell lines were maintained for prolonged culture. Both lines continued to proliferate for approximately 6 wk before becoming senescent. These cultures maintained an XEN-like state and continued to express GATA4 and GATA6 until senescence. An increase in the abundance of visceral and parietal XEN transcripts was observed with continued culture, suggesting that these cells either undergo spontaneous differentiation or retain the ability to form various XEN cell types. Stocks of cultured cells exposed to a freeze-thaw procedure possessed similar phenotypic and genotypic behaviors as nonfrozen cells. To conclude, a procedure for efficient production of primary bovine XEN cell cultures was developed. This new protocol may assist researchers in exploring this overlooked cell type for its roles in nutrient supply during embryogenesis.
Collapse
Affiliation(s)
- Mary K Smith
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Catherine C Clark
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Sarah R McCoski
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT
| |
Collapse
|
80
|
Saiz N, Mora-Bitria L, Rahman S, George H, Herder JP, Garcia-Ojalvo J, Hadjantonakis AK. Growth-factor-mediated coupling between lineage size and cell fate choice underlies robustness of mammalian development. eLife 2020; 9:e56079. [PMID: 32720894 PMCID: PMC7513828 DOI: 10.7554/elife.56079] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 07/24/2020] [Indexed: 01/03/2023] Open
Abstract
Precise control and maintenance of population size is fundamental for organismal development and homeostasis. The three cell types of the mammalian blastocyst are generated in precise proportions over a short time, suggesting a mechanism to ensure a reproducible outcome. We developed a minimal mathematical model demonstrating growth factor signaling is sufficient to guarantee this robustness and which anticipates an embryo's response to perturbations in lineage composition. Addition of lineage-restricted cells both in vivo and in silico, causes a shift of the fate of progenitors away from the supernumerary cell type, while eliminating cells using laser ablation biases the specification of progenitors toward the targeted cell type. Finally, FGF4 couples fate decisions to lineage composition through changes in local growth factor concentration, providing a basis for the regulative abilities of the early mammalian embryo whereby fate decisions are coordinated at the population level to robustly generate tissues in the right proportions.
Collapse
Affiliation(s)
- Néstor Saiz
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Laura Mora-Bitria
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Shahadat Rahman
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Hannah George
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Jeremy P Herder
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
81
|
Origin and function of the yolk sac in primate embryogenesis. Nat Commun 2020; 11:3760. [PMID: 32724077 PMCID: PMC7387521 DOI: 10.1038/s41467-020-17575-w] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Human embryogenesis is hallmarked by two phases of yolk sac development. The primate hypoblast gives rise to a transient primary yolk sac, which is rapidly superseded by a secondary yolk sac during gastrulation. Moreover, primate embryos form extraembryonic mesoderm prior to gastrulation, in contrast to mouse. The function of the primary yolk sac and the origin of extraembryonic mesoderm remain unclear. Here, we hypothesise that the hypoblast-derived primary yolk sac serves as a source for early extraembryonic mesoderm, which is supplemented with mesoderm from the gastrulating embryo. We discuss the intricate relationship between the yolk sac and the primate embryo and highlight the pivotal role of the yolk sac as a multifunctional hub for haematopoiesis, germ cell development and nutritional supply.
Collapse
|
82
|
Płusa B, Piliszek A. Common principles of early mammalian embryo self-organisation. Development 2020; 147:147/14/dev183079. [PMID: 32699138 DOI: 10.1242/dev.183079] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pre-implantation mammalian development unites extreme plasticity with a robust outcome: the formation of a blastocyst, an organised multi-layered structure ready for implantation. The process of blastocyst formation is one of the best-known examples of self-organisation. The first three cell lineages in mammalian development specify and arrange themselves during the morphogenic process based on cell-cell interactions. Despite decades of research, the unifying principles driving early mammalian development are still not fully defined. Here, we discuss the role of physical forces, and molecular and cellular mechanisms, in driving self-organisation and lineage formation that are shared between eutherian mammals.
Collapse
Affiliation(s)
- Berenika Płusa
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Anna Piliszek
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
83
|
Williams K, Johnson MH. Adapting the 14-day rule for embryo research to encompass evolving technologies. REPRODUCTIVE BIOMEDICINE & SOCIETY ONLINE 2020; 10:1-9. [PMID: 32154395 PMCID: PMC7052500 DOI: 10.1016/j.rbms.2019.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 05/04/2023]
Abstract
We consider the scientific evidence that research on in-vitro development of embryos beyond 14 days is necessary. We then examine potential new developments in the use of stem cells to make embryoids or synthetic human entities with embryo-like features, and consider whether they also require legal control. Next, we consider the arguments advanced against extending the 14-day period during which research on human embryos is currently permitted, and find none of them to be convincing. We end by proposing a new objective limit that could serve as a mechanism for regulating the use of embryos for research in vitro.
Collapse
Affiliation(s)
- Kate Williams
- St John’s College, University of Cambridge, Cambridge, UK
| | - Martin H. Johnson
- School of Anatomy, Department of Physiology, Development and Neuroscience, Downing College, University of Cambridge, Cambridge, UK
- Corresponding author.
| |
Collapse
|
84
|
Warzych E, Pawlak P, Lechniak D, Madeja ZE. WNT signalling supported by MEK/ERK inhibition is essential to maintain pluripotency in bovine preimplantation embryo. Dev Biol 2020; 463:63-76. [PMID: 32360193 DOI: 10.1016/j.ydbio.2020.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 12/21/2022]
Abstract
Capturing stable embryonic stem cell (ESC) lines from domesticated animals still remains one of the challenges of non-rodent embryology. The stake is high, as stable ESCs derived from species such as cattle present high economic and scientific value. Understanding of the processes leading to the embryonic lineage segregation is crucial to provide species-orientated molecular environment capable of supporting self-renewal and pluripotency. Therefore, the aim of this study was to validate the action of the two core regulatory pathways (WNT and MEK/ERK) during bovine embryo development. In vitro produced bovine embryos were obtained in the presence of inhibitors (i), which enable activation of the WNT pathway (via GSK3i, CHIR99021) and suppression of MEK signalling by PD0325901 in the 2i system and PD184325 and SU5402 in the 3i system. We have followed the changes in the distribution of the key lineage specific markers both at the transcript and protein level. Our results showed that WNT signalling promotes the expression of key inner cell mass (ICM) specific markers in bovine embryos, regardless of the MEK/ERK inhibitor cocktail used. MEK/ERK downregulation is crucial to maintain OCT4 and NANOG expression within the ICM and to prevent their exclusion from the trophectoderm (TE). At the same time, the classical TE marker (CDX2) was downregulated at the mRNA and protein level. As a follow up for the observed pluripotency stimulating effect of the inhibitors, we have tested the potential of the 2i and the 3i culture conditions (supported by LIF) to derive primary bovine ESC lines. As a result, we propose a model in which all of the primary signalling pathways determining embryonic cell fate are active in bovine embryos, yet the requirement for pluripotency maintenance in cattle may differ from the described standards. WNT activation leads to the formation (and stabilisation of the ICM) and MEK/ERK signalling is maintained at low levels. Unlike in the mouse, GATA6 is expressed in both ICM and TE. MEK/ERK signalling affects HP formation in cattle, but this process is activated at the post-blastocyst stage. With regard to self-renewal, 2i is preferable, as 3i also blocks the FGF receptor, what may prevent PI3K signalling, important for pluripotency and self-renewal.
Collapse
Affiliation(s)
- Ewelina Warzych
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| | - Piotr Pawlak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| | - Dorota Lechniak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| | - Zofia Eliza Madeja
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| |
Collapse
|
85
|
Initiation of X Chromosome Inactivation during Bovine Embryo Development. Cells 2020; 9:cells9041016. [PMID: 32325818 PMCID: PMC7226380 DOI: 10.3390/cells9041016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
X-chromosome inactivation (XCI) is a developmental process that aims to equalize the dosage of X-linked gene products between XY males and XX females in eutherian mammals. In female mouse embryos, paternal XCI is initiated at the 4-cell stage; however, the X chromosome is reactivated in the inner cell mass cells of blastocysts, and random XCI is subsequently initiated in epiblast cells. However, recent findings show that the patterns of XCI are not conserved among mammals. In this study, we used quantitative RT-PCR and RNA in situ hybridization combined with immunofluorescence to investigate the pattern of XCI during bovine embryo development. Expression of XIST (X-inactive specific transcript) RNA was significantly upregulated at the morula stage. For the first time, we demonstrate that XIST accumulation in bovine embryos starts in nuclei of female morulae, but its colocalization with histone H3 lysine 27 trimethylation was first detected in day 7 blastocysts. Both in the inner cell mass and in putative epiblast precursors, we observed a proportion of cells with XIST RNA and H3K27me3 colocalization. Surprisingly, the onset of XCI did not lead to a global downregulation of X-linked genes, even in day 9 blastocysts. Together, our findings confirm that diverse patterns of XCI initiation exist among developing mammalian embryos.
Collapse
|
86
|
Taei A, Rasooli P, Braun T, Hassani SN, Baharvand H. Signal regulators of human naïve pluripotency. Exp Cell Res 2020; 389:111924. [PMID: 32112799 DOI: 10.1016/j.yexcr.2020.111924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 02/18/2020] [Accepted: 02/23/2020] [Indexed: 12/19/2022]
Abstract
Pluripotent cells transiently develop during peri-implantation embryogenesis and have the capacity to convert into three embryonic lineages. Two typical states of pluripotency, naïve and primed, can be experimentally induced in vitro. The in vitro naïve state can be stabilized in response to environmental inductive cues via a unique transcriptional regulatory program. However, interference with various signaling pathways creates a spectrum of alternative pluripotent cells that display different functions and molecular expression patterns. Similarly, human naïve pluripotent cells can be placed into two main levels - intermediate and bona fide. Here, we discuss several culture conditions that have been used to establish naïve-associated gene regulatory networks in human pluripotent cells. We also describe different transcriptional patterns in various culture systems that are associated with these two levels of human naïve pluripotency.
Collapse
Affiliation(s)
- Adeleh Taei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Paniz Rasooli
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Thomas Braun
- Max-Planck Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
87
|
The effect of dual inhibition of Ras-MEK-ERK and GSK3β pathways on development of in vitro cultured rabbit embryos. ZYGOTE 2020; 28:183-190. [PMID: 32192548 DOI: 10.1017/s0967199419000753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Dual inhibition (2i) of Ras-MEK-ERK and GSK3β pathways enables the derivation of embryo stem cells (ESCs) from refractory mouse strains and, for permissive strains, allows ESC derivation with no external protein factor stimuli involvement. In addition, blocking of ERK signalling in 8-cell-stage mouse embryos leads to ablation of GATA4/6 expression in hypoblasts, suggesting fibroblast growth factor (FGF) dependence of hypoblast formation in the mouse. In human, bovine or porcine embryos, the hypoblast remains unaffected or displays slight-to-moderate reduction in cell number. In this study, we demonstrated that segregation of the hypoblast and the epiblast in rabbit embryos is FGF independent and 2i treatment elicits only a limited reinforcement in favour of OCT4-positive epiblast populations against the GATA4-/6-positive hypoblast population. It has been previously shown that TGFβ/Activin A inhibition overcomes the pervasive differentiation and inhomogeneity of rat iPSCs, rat ESCs and human iPSCs while prompting them to acquire naïve properties. However, TGFβ/Activin A inhibition, alone or together with Rho-associated, coiled-coil containing protein kinase (ROCK) inhibition, was not compatible with the viability of rabbit embryos according to the ultrastructural analysis of preimplantation rabbit embryos by electron microscopy. In rabbit models ovulation upon mating allows the precise timing of progression of the pregnancy. It produces several embryos of the desired stage in one pregnancy and a relatively short gestation period, making the rabbit embryo a suitable model to discover the cellular functions and mechanisms of maintenance of pluripotency in embryonic cells and the embryo-derived stem cells of other mammals.
Collapse
|
88
|
Wamaitha SE, Grybel KJ, Alanis-Lobato G, Gerri C, Ogushi S, McCarthy A, Mahadevaiah SK, Healy L, Lea RA, Molina-Arcas M, Devito LG, Elder K, Snell P, Christie L, Downward J, Turner JMA, Niakan KK. IGF1-mediated human embryonic stem cell self-renewal recapitulates the embryonic niche. Nat Commun 2020; 11:764. [PMID: 32034154 PMCID: PMC7005693 DOI: 10.1038/s41467-020-14629-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/23/2020] [Indexed: 02/05/2023] Open
Abstract
Our understanding of the signalling pathways regulating early human development is limited, despite their fundamental biological importance. Here, we mine transcriptomics datasets to investigate signalling in the human embryo and identify expression for the insulin and insulin growth factor 1 (IGF1) receptors, along with IGF1 ligand. Consequently, we generate a minimal chemically-defined culture medium in which IGF1 together with Activin maintain self-renewal in the absence of fibroblast growth factor (FGF) signalling. Under these conditions, we derive several pluripotent stem cell lines that express pluripotency-associated genes, retain high viability and a normal karyotype, and can be genetically modified or differentiated into multiple cell lineages. We also identify active phosphoinositide 3-kinase (PI3K)/AKT/mTOR signalling in early human embryos, and in both primed and naïve pluripotent culture conditions. This demonstrates that signalling insights from human blastocysts can be used to define culture conditions that more closely recapitulate the embryonic niche.
Collapse
Affiliation(s)
- Sissy E Wamaitha
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Molecular, Cell and Developmental Biology, and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA
| | - Katarzyna J Grybel
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Gregorio Alanis-Lobato
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Claudia Gerri
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sugako Ogushi
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Afshan McCarthy
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | | | - Lyn Healy
- Human Embryo and Stem Cell Unit, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Rebecca A Lea
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Miriam Molina-Arcas
- Oncogene Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Liani G Devito
- Human Embryo and Stem Cell Unit, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge, CB23 2TN, UK
| | - Phil Snell
- Bourn Hall Clinic, Bourn, Cambridge, CB23 2TN, UK
| | | | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
89
|
Ortega MS, Kelleher AM, O’Neil E, Benne J, Cecil R, Spencer TE. NANOG is required to form the epiblast and maintain pluripotency in the bovine embryo. Mol Reprod Dev 2020; 87:152-160. [PMID: 31803983 PMCID: PMC6983337 DOI: 10.1002/mrd.23304] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022]
Abstract
During preimplantation development, the embryo undergoes two consecutive lineages specifications. The first cell fate decision determines which cells give rise to the trophectoderm (TE) and the inner cell mass (ICM). Subsequently, the ICM differentiates into hypoblast and epiblast, the latter giving rise to the embryo proper. The transcription factors that govern these cell fate decisions have been extensively studied in the mouse, but are still poorly understood in other mammalian species. In the present study, the role of NANOG in the formation of the epiblast and maintenance of pluripotency in the bovine embryo was investigated. Using a CRISPR-Cas9 approach, guide RNAs were designed to target exon 2, resulting in a functional deletion of bovine NANOG at the zygote stage. Disruption of NANOG resulted in the embryos that form a blastocoel and an ICM composed of hypoblast cells. Furthermore, NANOG-null embryos showed lower expression of epiblast cell markers SOX2 and HA2AFZ, and hypoblast marker GATA6; without affecting the expression of TE markers CDX2 and KRT8. Results indicate that NANOG, has no apparent role in segregation or maintenance of the TE, but it is required to derive and maintain the pluripotent epiblast and during the second lineage commitment in the bovine embryo.
Collapse
Affiliation(s)
- M. Sofia Ortega
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211
| | - Andrew M. Kelleher
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211
- Current Address: University of Texas Southwestern Medical Center, Dallas, TX,75390
| | - Eleanore O’Neil
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211
| | - Joshua Benne
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211
| | - Raissa Cecil
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211
| | - Thomas E. Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211
| |
Collapse
|
90
|
Molè MA, Weberling A, Zernicka-Goetz M. Comparative analysis of human and mouse development: From zygote to pre-gastrulation. Curr Top Dev Biol 2019; 136:113-138. [PMID: 31959285 DOI: 10.1016/bs.ctdb.2019.10.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Development of the mammalian embryo begins with formation of the totipotent zygote during fertilization. This initial cell is able to give rise to every embryonic tissue of the developing organism as well as all extra-embryonic lineages, such as the placenta and the yolk sac, which are essential for the initial patterning and support growth of the fetus until birth. As the embryo transits from pre- to post-implantation, major structural and transcriptional changes occur within the embryonic lineage to set up the basis for the subsequent phase of gastrulation. Fine-tuned coordination of cell division, morphogenesis and differentiation is essential to ultimately promote assembly of the future fetus. Here, we review the current knowledge of mammalian development of both mouse and human focusing on morphogenetic processes leading to the onset of gastrulation, when the embryonic anterior-posterior axis becomes established and the three germ layers start to be specified.
Collapse
|
91
|
Linneberg-Agerholm M, Wong YF, Romero Herrera JA, Monteiro RS, Anderson KGV, Brickman JM. Naïve human pluripotent stem cells respond to Wnt, Nodal and LIF signalling to produce expandable naïve extra-embryonic endoderm. Development 2019; 146:dev.180620. [PMID: 31740534 DOI: 10.1242/dev.180620] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022]
Abstract
Embryonic stem cells (ESCs) exist in at least two states that transcriptionally resemble different stages of embryonic development. Naïve ESCs resemble peri-implantation stages and primed ESCs the pre-gastrulation epiblast. In mouse, primed ESCs give rise to definitive endoderm in response to the pathways downstream of Nodal and Wnt signalling. However, when these pathways are activated in naïve ESCs, they differentiate to a cell type resembling early primitive endoderm (PrE), the blastocyst-stage progenitor of the extra-embryonic endoderm. Here, we apply this context dependency to human ESCs, showing that activation of Nodal and Wnt signalling drives the differentiation of naïve pluripotent cells toward extra-embryonic PrE, or hypoblast, and these can be expanded as an in vitro model for naïve extra-embryonic endoderm (nEnd). Consistent with observations made in mouse, human PrE differentiation is dependent on FGF signalling in vitro, and we show that, by inhibiting FGF receptor signalling, we can simplify naïve pluripotent culture conditions, such that the inhibitor requirements closer resemble those used in mouse. The expandable nEnd cultures reported here represent stable extra-embryonic endoderm, or human hypoblast, cell lines.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Madeleine Linneberg-Agerholm
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Yan Fung Wong
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Jose Alejandro Romero Herrera
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Rita S Monteiro
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Kathryn G V Anderson
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Joshua M Brickman
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
92
|
Abstract
Early embryogenesis is characterized by the segregation of cell lineages that fulfill critical roles in the establishment of pregnancy and development of the fetus. The formation of the blastocyst marks the emergence of extraembryonic precursors, needed for implantation, and of pluripotent cells, which differentiate toward the major lineages of the adult organism. The coordinated emergence of these cell types shows that these processes are broadly conserved in mammals. However, developmental heterochrony and changes in gene regulatory networks highlight unique evolutionary adaptations that may explain the diversity in placentation and in the mechanisms controlling pluripotency in mammals. The incorporation of new technologies, including single-cell omics, imaging, and gene editing, is instrumental for comparative embryology. Broadening the knowledge of mammalian embryology will provide new insights into the mechanisms driving evolution and development. This knowledge can be readily translated into biomedical and biotechnological applications in humans and livestock, respectively.
Collapse
Affiliation(s)
- Ramiro Alberio
- School of Biosciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom;
| |
Collapse
|
93
|
Idrees M, Xu L, Song SH, Joo MD, Lee KL, Muhammad T, El Sheikh M, Sidrat T, Kong IK. PTPN11 (SHP2) Is Indispensable for Growth Factors and Cytokine Signal Transduction During Bovine Oocyte Maturation and Blastocyst Development. Cells 2019; 8:cells8101272. [PMID: 31635340 PMCID: PMC6830097 DOI: 10.3390/cells8101272] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/05/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
This study was aimed to investigate the role of SHP2 (Src-homology-2-containing phosphotyrosine phosphatase) in intricate signaling networks invoked by bovine oocyte to achieve maturation and blastocyst development. PTPN11 (Protein Tyrosine Phosphatase, non-receptor type 11) encoding protein SHP2, a positive transducer of RTKs (Receptor Tyrosine Kinases) and cytokine receptors, can play a significant role in bovine oocyte maturation and embryo development, but this phenomenon has not yet been explored. Here, we used different growth factors, cytokines, selective activator, and a specific inhibitor of SHP2 to ascertain its role in bovine oocyte developmental stages in vitro. We found that SHP2 became activated by growth factors and cytokines treatment and was highly involved in the activation of oocyte maturation and embryo development pathways. Activation of SHP2 triggered MAPK (mitogen-activated protein kinases) and PI3K/AKT (Phosphoinositide 3-kinase/Protein kinase B) signaling cascades, which is not only important for GVBD (germinal vesical breakdown) induction but also for maternal mRNA translation. Inhibition of phosphatase activity of SHP2 with PHPS1 (Phenylhydrazonopyrazolone sulfonate 1) reduced oocytes maturation as well as bovine blastocyst ICM (inner cell mass) volume. Supplementation of LIF (Leukemia Inhibitory Factor) to embryos showed an unconventional direct relation between p-SHP2 and p-STAT3 (Signal transducer and activator of transcription 3) for blastocyst ICM development. Other than growth factors and cytokines, cisplatin was used to activate SHP2. Cisplatin activated SHP2 modulate growth factors effect and combine treatment significantly enhanced quality and rate of developed blastocysts.
Collapse
Affiliation(s)
- Muhammad Idrees
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| | - Lianguang Xu
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| | - Seok-Hwan Song
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| | - Myeong-Don Joo
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| | | | - Tahir Muhammad
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| | - Marwa El Sheikh
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| | - Tabinda Sidrat
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
- The King Kong Ltd., Daegu 43017, Korea.
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| |
Collapse
|
94
|
Hansen PJ, Tríbulo P. Regulation of present and future development by maternal regulatory signals acting on the embryo during the morula to blastocyst transition - insights from the cow. Biol Reprod 2019; 101:526-537. [PMID: 31220231 PMCID: PMC8127039 DOI: 10.1093/biolre/ioz030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 02/18/2019] [Indexed: 12/18/2022] Open
Abstract
The preimplantation embryo has a remarkable ability to execute its developmental program using regulatory information inherent within itself. Nonetheless, the uterine environment is rich in cell signaling molecules termed embryokines that act on the embryo during the morula-to-blastocyst transition, promoting blastocyst formation and programming the embryo for subsequent developmental events. Programming can not only affect developmental processes important for continuance of development in utero but also affect characteristics of the offspring during postnatal life. Given the importance of embryokines for regulation of embryonic development, it is likely that some causes of infertility involve aberrant secretion of embryokines by the uterus. Embryokines found to regulate development of the bovine embryo include insulin-like growth factor 1, colony stimulating factor 2 (CSF2), and dickkopf WNT signaling pathway inhibitor 1. Embryo responses to CSF2 exhibit sexual dimorphism, suggesting that sex-specific programming of postnatal function is caused by maternal signals acting on the embryo during the preimplantation period that regulate male embryos differently than female embryos.
Collapse
Affiliation(s)
- Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Paula Tríbulo
- Instituto de Reproducción Animal Córdoba (IRAC), Zona Rural General Paz, Córdoba, Argentina
| |
Collapse
|
95
|
Ealy AD, Wooldridge LK, McCoski SR. BOARD INVITED REVIEW: Post-transfer consequences of in vitro-produced embryos in cattle. J Anim Sci 2019; 97:2555-2568. [PMID: 30968113 DOI: 10.1093/jas/skz116] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/08/2019] [Indexed: 01/09/2023] Open
Abstract
In vitro embryo production (IVP) in cattle has gained worldwide interest in recent years, but the efficiency of using IVP embryos for calf production is far from optimal. This review will examine the pregnancy retention rates of IVP embryos and explore causes for pregnancy failures. Based on work completed over the past 25 yr, only 27% of cattle receiving IVP embryos will produce a live calf. Approximately 60% of these pregnancies fail during the first 6 wk of gestation. When compared with embryos generated by superovulation, pregnancy rates are 10% to 40% lower for cattle carrying IVP embryos, exemplifying that IVP embryos are consistently less competent than in vivo-generated embryos. Several abnormalities have been observed in the morphology of IVP conceptuses. After transfer, IVP embryos are less likely to undergo conceptus elongation, have reduced embryonic disk diameter, and have compromised yolk sac development. Marginal binucleate cell development, cotyledon development, and placental vascularization have also been documented, and these abnormalities are associated with altered fetal growth trajectories. Additionally, in vitro culture conditions increase the risk of large offspring syndrome. Further work is needed to decipher how the embryo culture environment alters post-transfer embryo development and survival. The risk of these neonatal disorders has been reduced by the use of serum-free synthetic oviductal fluid media formations and culture in low oxygen tension. However, alterations are still evident in IVP oocyte and embryo transcript abundances, timing of embryonic cleavage events and blastulation, incidence of aneuploidy, and embryonic methylation status. The inclusion of oviductal and uterine-derived embryokines in culture media is being examined as one way to improve the competency of IVP embryos. To conclude, the evidence presented herein clearly shows that bovine IVP systems still must be refined to make it an economical technology in cattle production systems. However, the current shortcomings do not negate its current value for certain embryo production needs and for investigating early embryonic development in cattle.
Collapse
Affiliation(s)
- Alan D Ealy
- Department of Animal & Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Lydia K Wooldridge
- Department of Animal & Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Sarah R McCoski
- Department of Animal & Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| |
Collapse
|
96
|
Canizo JR, Ynsaurralde Rivolta AE, Vazquez Echegaray C, Suvá M, Alberio V, Aller JF, Guberman AS, Salamone DF, Alberio RH, Alberio R. A dose-dependent response to MEK inhibition determines hypoblast fate in bovine embryos. BMC DEVELOPMENTAL BIOLOGY 2019; 19:13. [PMID: 31272387 PMCID: PMC6610975 DOI: 10.1186/s12861-019-0193-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/14/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND The segregation of the hypoblast and the emergence of the pluripotent epiblast mark the final stages of blastocyst formation in mammalian embryos. In bovine embryos the formation of the hypoblast has been partially studied, and evidence shows that MEK signalling plays a limited role in the segregation of this lineage. Here we explored the role of different signalling pathways during lineage segregation in the bovine embryo using immunofluorescence analysis of NANOG and SOX17 as readouts of epiblast and hypoblast, respectively. RESULTS We show that SOX17 starts to be expressed in 16-32-cell stage embryos, whereas NANOG is first detected from 8-cell stage. SOX17 is first co-expressed with NANOG, but these markers become mutually exclusive by the late blastocyst stage. By assessing the expression kinetics of NANOG/SOX17 we show that inhibition of MEK signalling can eliminate SOX17 expression in bovine blastocysts, without altering NANOG expression. Modulation of WNT, PKC and LIF did not affect NANOG expression in the epiblast when used in combination with the ERK inhibitor. CONCLUSIONS This study shows that SOX17 can be used as a reliable early marker of hypoblast in the bovine, and based on its expression profile we show that the hypoblast segregates in day 7 blastocysts. Furthermore, SOX17 expression is abolished using 1 μM of PD0325901, without affecting the NANOG population in the epiblast. Modulation of WNT, PKC and LIF are not sufficient to support enhanced NANOG expression in the epiblast when combined with ERK inhibitor, indicating that additional signalling pathways should be examined to determine their potential roles in epiblast expansion.
Collapse
Affiliation(s)
- Jesica R Canizo
- Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce, Argentina.,Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Amada E Ynsaurralde Rivolta
- Laboratorio de Biotecnología Animal, FAUBA/INPA- CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.,Estación Experimental Agropecuaria Mercedes, Instituto Nacional de Tecnología Agropecuaria (INTA), Corrientes, Argentina
| | - Camila Vazquez Echegaray
- Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Suvá
- Laboratorio de Biotecnología Animal, FAUBA/INPA- CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Virgilia Alberio
- Laboratorio de Biotecnología Animal, FAUBA/INPA- CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan F Aller
- Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce, Argentina
| | - Alejandra S Guberman
- Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Fisiología y Biología Molecular y Celular, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Daniel F Salamone
- Laboratorio de Biotecnología Animal, FAUBA/INPA- CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ricardo H Alberio
- Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria (INTA), Balcarce, Argentina.,Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK.
| |
Collapse
|
97
|
Aberkane A, Essahib W, Spits C, De Paepe C, Sermon K, Adriaenssens T, Mackens S, Tournaye H, Brosens JJ, Van de Velde H. Expression of adhesion and extracellular matrix genes in human blastocysts upon attachment in a 2D co-culture system. Mol Hum Reprod 2019; 24:375-387. [PMID: 29846687 DOI: 10.1093/molehr/gay024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/25/2018] [Indexed: 12/15/2022] Open
Abstract
STUDY QUESTION What are the changes in human embryos, in terms of morphology and gene expression, upon attachment to endometrial epithelial cells? SUMMARY ANSWER Apposition and adhesion of human blastocysts to endometrial epithelial cells are predominantly initiated at the embryonic pole and these steps are associated with changes in expression of adhesion and extracellular matrix (ECM) genes in the embryo. WHAT IS KNOWN ALREADY Both human and murine embryos have been co-cultured with Ishikawa cells, although embryonic gene expression associated with attachment has not yet been investigated in an in vitro implantation model. STUDY DESIGN, SIZE, DURATION Vitrified human blastocysts were warmed and co-cultured for up to 48 h with Ishikawa cells, a model cell line for receptive endometrial epithelium. PARTICIPANTS/MATERIALS, SETTING, METHODS Six days post-fertilization (6dpf) human embryos were co-cultured with Ishikawa cells for 12, 24 (7dpf) or 48 h (8dpf) and attachment rate and morphological development investigated. Expression of 84 adhesion and ECM genes was analysed by quantitative PCR. Immunofluorescence microscopy was used to assess the expression of three informative genes at the protein level. Data are reported on 145 human embryos. Mann-Whitney U was used for statistical analysis between two groups, with P < 0.05 considered significant. MAIN RESULTS AND THE ROLE OF CHANCE The majority of embryos attached to Ishikawa cells at the level of the polar trophectoderm; 41% of co-cultured embryos were loosely attached after 12 h and 86% firmly attached after 24 h. Outgrowth of hCG-positive embryonic cells at 8dpf indicated differentiation of trophectoderm into invasive syncytiotrophoblast. Gene expression analysis was performed on loosely attached and unattached embryos co-cultured with Ishikawa cells for 12 h. In contrast to unattached embryos, loosely attached embryos expressed THBS1, TNC, COL12A1, CTNND2, ITGA3, ITGAV and LAMA3 and had significantly higher CD44 and TIMP1 transcript levels (P = 0.014 and P = 0.029, respectively). LAMA3, THBS1 and TNC expressions were validated at the protein level in firmly attached 7dpf embryos. Thrombospondin 1 (THBS1) resided in the cytoplasm of embryonic cells whereas laminin subunit alpha 3 (LAMA3) and tenascin C (TNC) were expressed on the cell surface of trophectoderm cells. Incubation with a neutralizing TNC antibody did not affect the rate of embryo attachment or hCG secretion. LARGE SCALE DATA None. LIMITATIONS, REASONS FOR CAUTION This in vitro study made use of an endometrial adenocarcinoma cell line to mimic receptive luminal epithelium. Also, the number of embryos was limited. Contamination of recovered embryos with Ishikawa cells was unlikely based on their differential gene expression profiles. WIDER IMPLICATIONS OF THE FINDINGS Taken together, we provide a 'proof of concept' that initiation of the implantation process coincides with the induction of specific embryonic genes. Genome-wide expression profiling of a larger sample set may provide insights into the molecular embryonic pathways underlying successful or failed implantation. STUDY FUNDING AND COMPETING INTEREST(S) A.A. was supported by a grant from the 'Instituut voor Innovatie door Wetenschap en Technologie' (IWT, 121716, Flanders, Belgium). This work was supported by the 'Wetenschappelijk Fonds Willy Gepts' (WFWG G142 and G170, Universitair Ziekenhuis Brussel). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- A Aberkane
- Research Group Reproduction and Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - W Essahib
- Research Group Reproduction and Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - C Spits
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | - C De Paepe
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | - K Sermon
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | - T Adriaenssens
- Research Group Follicle Biology, Vrije Universiteit Brussel, Brussels, Belgium
| | - S Mackens
- Research Group Reproduction and Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Centre for Reproductive Medicine, Brussels University Hospital, Brussels, Belgium
| | - H Tournaye
- Centre for Reproductive Medicine, Brussels University Hospital, Brussels, Belgium
| | - J J Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - H Van de Velde
- Research Group Reproduction and Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Centre for Reproductive Medicine, Brussels University Hospital, Brussels, Belgium
| |
Collapse
|
98
|
Singh S, Shyam S, Sah S, Singh MK, Palta P. Treatment of Buffalo ( Bubalus bubalis) Somatic Cell Nuclear Transfer Embryos with MicroRNA-29b Mimic Improves Their Quality, Reduces DNA Methylation, and Changes Gene Expression Without Affecting Their Developmental Competence. Cell Reprogram 2019; 21:210-219. [PMID: 31199675 DOI: 10.1089/cell.2019.0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
microRNA-29b (miR-29b) plays an important role in controlling DNA methylation in cells. We investigated its role during early embryonic development in buffalo embryos produced by somatic cell nuclear transfer (SCNT) and in vitro fertilization (IVF). miR-29b expression was highest at the 2-cell stage, decreased (p < 0.001) at the 4-cell stage, and remained low thereafter at the 8-cell, morula, and blastocyst stages, showing a similar pattern in cloned and IVF embryos. Treatment of reconstructed embryos with miR-29b mimic for 1 hour after 1 hour of electrofusion increased (p < 0.05) the total cell number and decreased (p < 0.05) the levels of apoptosis and DNA methylation compared with controls. It also increased (p < 0.05) the ratio of inner cell mass:trophectoderm cell numbers of blastocysts compared with controls to the levels observed in IVF blastocysts. However, the blastocyst rate was not affected by treatment with miR-29b mimic (29.0% ± 2.0% vs. 27.0% ± 2.0% for controls). The treatment decreased (p < 0.001) the expression of epigenetic-related genes, DNMT3A and DNMT3B, but not DNMT1, and increased (p < 0.05) that of pluripotency- (NANOG, OCT4, and SOX2) and development-related genes (FGF4 and GLUT1) in blastocysts compared with controls. Our results suggest that miR-29b mimic treatment of reconstructed embryos improves the quality, reduces the level of apoptosis and DNA methylation, and changes gene expression in SCNT blastocysts without affecting the blastocyst rate.
Collapse
Affiliation(s)
- Shikha Singh
- Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal, India
| | - Songyukta Shyam
- Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal, India
| | - Shrutika Sah
- Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal, India
| | - Manoj K Singh
- Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal, India
| | - Prabhat Palta
- Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
99
|
Negrón-Pérez VM, Hansen PJ. Role of yes-associated protein 1, angiomotin, and mitogen-activated kinase kinase 1/2 in development of the bovine blastocyst. Biol Reprod 2019; 98:170-183. [PMID: 29228123 DOI: 10.1093/biolre/iox172] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 12/07/2017] [Indexed: 12/15/2022] Open
Abstract
The morula-stage embryo is transformed into a blastocyst composed of epiblast, hypoblast, and trophectoderm (TE) through mechanisms that, in the mouse, involve the Hippo signaling and mitogen-activated kinase (MAPK) pathways. Using the cow as an additional model, we tested the hypotheses that TE and hypoblast differentiation were regulated by the Hippo pathway regulators, yes-associated protein 1 (YAP1) and angiomotin (AMOT), and MAPK kinase 1/2 (MAPK1/2). The presence of YAP1 and CDX2 in the nucleus and cytoplasm of MII oocytes and embryos was evaluated by immunofluorescence labeling. For both molecules, localization changed from cytoplasmic to nuclear as development advanced. Inhibition of YAP1 activity, either by verteporfin or a YAP1 targeting GapmeR, reduced the percent of zygotes that became blastocysts, the proportion of blastocysts that hatched and numbers of CDX2+ cells in blastocysts. Moreover, the YAP1-targeting GapmeR altered expression of 15 of 91 genes examined in the day 7.5 blastocyst. Treatment of embryos with an AMOT targeting GapmeR did not affect blastocyst development or hatching but altered expression of 16 of 91 genes examined at day 7.5 and reduced the number of CDX2+ nuclei and YAP1+ nuclei in blastocysts at day 8.5 of development. Inhibition of MAPK1/2 with PD0325901 did not affect blastocyst development but increased the number of epiblast cells. Results indicate a role for YAP1 and AMOT in function of TE in the bovine blastocyst. YAP1 can also affect function of the epiblast and hypoblast, and MAPK signaling is important for inner cell mass differentiation by reducing epiblast numbers.
Collapse
Affiliation(s)
- Verónica M Negrón-Pérez
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Peter J Hansen
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
100
|
HosseinNia P, Hajian M, Jafarpour F, Hosseini SM, Tahmoorespur M, Nasr-Esfahani MH. Dynamics of The Expression of Pluripotency and Lineage Specific Genes in The Pre and Peri-Implantation Goat Embryo. CELL JOURNAL 2019; 21:194-203. [PMID: 30825293 PMCID: PMC6397601 DOI: 10.22074/cellj.2019.5732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 08/19/2018] [Indexed: 01/08/2023]
Abstract
Objective Two critical points of early development are the first and second lineage segregations, which are regulated by a wide spectrum of molecular and cellular factors. Gene regulatory networks, are one of the important components which handle inner cell mass (ICM) and trophectoderm (TE) fates and the pluripotency status across different mammalian species. Considering the importance of goats in agriculture and biotechnology, this study set out to investigate the dynamics of expression of the core pluripotency markers at the mRNA and protein levels. Materials and Methods In this experimental study, the expression pattern of three pluripotency markers (Oct4, Nanog and Sox2) and the linage specific markers (Rex1, Gata4 and Cdx2) were quantitatively assessed in in vitro matured (MII) oocytes and embryos at three distinctive stages: 8-16 cell stage, day-7 (D7) blastocysts and D14 blastocysts. Moreover, expression of Nanog, Oct4, Sox2 proteins, and their localization in the goat blastocyst was observed through immunocytochemistry. Results Relative levels of mRNA transcripts for Nanog and Sox2 in D3 (8-16 cell) embryos were significantly higher than D7 blastocysts and mature oocytes, while Oct4 was only significantly higher than D7 blastocysts. However, the expression pattern of Rex1, as an epiblast linage marker, decreased from the oocyte to the D14 stage. The expression pattern of Gata4 and Cdx2, as extra embryonic linage markers, also showed a similar trend from oocyte to D3 while their expressions were up-regulated in D14 blastocysts. Conclusion Reduction in Nanog, Oct4, Sox2 mRNA transcription and a late increase in extra embryonic linage markers suggests that the developmental program of linage differentiation is retarded in goat embryos compared to previously reported data on mice and humans. This is likely related to late the implantation in goats.
Collapse
Affiliation(s)
- Pouria HosseinNia
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.,Department of Research and Development, ROJETechnologies, Yazd, Iran
| | - Mehdi Hajian
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farnoosh Jafarpour
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Seyed Morteza Hosseini
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mojtaba Tahmoorespur
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. electronic Address:
| |
Collapse
|