51
|
Rahman MM, Lai YC, Husna AA, Chen HW, Tanaka Y, Kawaguchi H, Miyoshi N, Nakagawa T, Fukushima R, Miura N. Micro RNA Transcriptome Profile in Canine Oral Melanoma. Int J Mol Sci 2019; 20:E4832. [PMID: 31569419 PMCID: PMC6801976 DOI: 10.3390/ijms20194832] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/13/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) dysregulation contribute the cancer pathogenesis. However, the miRNA profile of canine oral melanoma (COM), one of the frequent malignant melanoma in dogs is still unrevealed. The aim of this study is to reveal the miRNA profile in canine oral melanoma. MiRNAs profile of oral tissues from normal healthy dogs and COM patients were compared by next-generation sequencing. Along with tumour suppressor miRNAs, we report 30 oncogenic miRNAs in COM. The expressions of miRNAs were further confirmed by quantitative real-time PCR (qPCR). Pathway analysis showed that deregulated miRNAs impact on cancer and signalling pathways. Three oncogenic miRNAs targets (miR-450b, 301a, and 223) from human study also were down-regulated in COM and had a significant negative correlation with their respective miRNA. Furthermore, we found that miR-450b expression is higher in metastatic cells and regulated MMP9 expression through a PAX9-BMP4-MMP9 axis. In silico analysis indicated that miR-126, miR-20b, and miR-106a regulated the highest numbers of differentially expressed transcription factors with respect to human melanoma. Chromosomal enrichment analysis revealed the X chromosome was enriched with oncogenic miRNAs. We comprehensively analyzed the miRNA's profile in COM which will be a useful resource for developing therapeutic interventions in both species.
Collapse
Affiliation(s)
- Md Mahfuzur Rahman
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Yamaguchi 753-8515, Japan.
| | - Yu-Chang Lai
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.
| | - Al Asmaul Husna
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Yamaguchi 753-8515, Japan.
| | - Hui-Wen Chen
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.
| | - Yuiko Tanaka
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan.
| | - Hiroaki Kawaguchi
- Hygiene and Health Promotion Medicine, Kagoshima University Graduate School of Medicine and Dental Science, Kagoshima, Kagoshima 890-8544, Japan.
| | - Noriaki Miyoshi
- Department of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan.
| | - Ryuji Fukushima
- Animal Medical Centre, Tokyo University of Agriculture and Technology, Tokyo, Tokyo 183-8538, Japan.
| | - Naoki Miura
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Yamaguchi 753-8515, Japan.
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.
| |
Collapse
|
52
|
Dynamic mRNA Expression Analysis of the Secondary Palatal Morphogenesis in Miniature Pigs. Int J Mol Sci 2019; 20:ijms20174284. [PMID: 31480549 PMCID: PMC6747431 DOI: 10.3390/ijms20174284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022] Open
Abstract
Normal mammalian palatogenesis is a complex process that requires the occurrence of a tightly regulated series of specific and sequentially regulated cellular events. Cleft lip/palate (CLP), the most frequent craniofacial malformation birth defects, may occur if any of these events undergo abnormal interference. Such defects not only affect the patients, but also pose a financial risk for the families. In our recent study, the miniature pig was shown to be a valuable alternative large animal model for exploring human palate development by histology. However, few reports exist in the literature to document gene expression and function during swine palatogenesis. To better understand the genetic regulation of palate development, an mRNA expression profiling analysis was performed on miniature pigs, Sus scrofa. Five key developmental stages of miniature pigs from embryonic days (E) 30–50 were selected for transcriptome sequencing. Gene expression profiles in different palate development stages of miniature pigs were identified. Nine hundred twenty significant differentially expressed genes were identified, and the functional characteristics of these genes were determined by gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Some of these genes were associated with HH (hedgehog), WNT (wingless-type mouse mammary tumor virus integration site family), and MAPK (mitogen-activated protein kinase) signaling, etc., which were shown in the literature to affect palate development, while some genes, such as HIP (hedgehog interacting protein), WNT16, MAPK10, and LAMC2 (laminin subunit gamma 2), were additions to the current understanding of palate development. The present study provided a comprehensive analysis for understanding the dynamic gene regulation during palate development and provided potential ideas and resources to further study normal palate development and the etiology of cleft palate.
Collapse
|
53
|
Li R, Chen Z, Yu Q, Weng M, Chen Z. The Function and Regulatory Network of Pax9 Gene in Palate Development. J Dent Res 2018; 98:277-287. [PMID: 30583699 DOI: 10.1177/0022034518811861] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cleft palate, a common congenital deformity, can arise from disruptions in any stage of palatogenesis, including palatal shelf growth, elevation, adhesion, and fusion. Paired box gene 9 (Pax9) is recognized as a vital regulator of palatogenesis with great relevance to cleft palate in humans and mice. Pax9-deficient murine palatal shelves displayed deficient elongation, postponed elevation, failed contact, and fusion. Pax9 is expressed in epithelium and mesenchyme, exhibiting a dynamic expression pattern that changes according to the proceeding of palatogenesis. Recent studies highlighted the Pax9-related genetic interactions and their critical roles during palatogenesis. During palate growth, PAX9 interacts with numerous molecules and members of pathways (e.g., OSR2, FGF10, SHOS2, MSX1, BARX1, TGFβ3, LDB1, BMP, WNT β-catenin dependent, and EDA) in the mesenchyme and functions as a key mediator in epithelial-mesenchymal communications with FGF8, TBX1, and the SHH pathway. During palate elevation, PAX9 is hypothesized to mediate the time point of the elevation event in the anterior and posterior parts of the palatal shelves. The delayed elevation of Pax9 mutant palatal shelves probably results from abnormal expressions of a series of genes ( Osr2 and Bmpr1a) leading to deficient palate growth, abnormal tongue morphology, and altered hyaluronic acid distribution. The interactions between PAX9 and genes encoding the OSR2, TGFβ3, and WNT β-catenin-dependent pathways provide evidence that PAX9 might participate in the regulation of palate fusion. This review summarizes the current understanding of PAX9’s functions and emphasizes the interactions between PAX9 and vital genes during palatogenesis. We hope to provide some clues for further exploration of the function and mechanism of PAX9, especially during palate elevation and fusion events.
Collapse
Affiliation(s)
- R. Li
- Department of Orthodontics, Ninth People’s Hospital, School of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Z. Chen
- Department of Orthodontics, Ninth People’s Hospital, School of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Q. Yu
- Department of Orthodontics, Ninth People’s Hospital, School of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - M. Weng
- Department of Orthodontics, Ninth People’s Hospital, School of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Z. Chen
- Department of Orthodontics, Ninth People’s Hospital, School of Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
54
|
Zhang T, Zhao X, Hou F, Sun Y, Wu J, Ma T, Zhang X. A novel
PAX9
mutation found in a Chinese patient with hypodontia via whole exome sequencing. Oral Dis 2018; 25:234-241. [DOI: 10.1111/odi.12982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/31/2018] [Accepted: 09/20/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Tingting Zhang
- Department of Oral and Maxillofacial Surgery, School of Stomatology Tianjin Medical University Tianjin China
| | - Xiaoxue Zhao
- Department of Pediatric Dentistry, School of Stomatology Tianjin Medical University Tianjin China
| | - Feifei Hou
- Department of Pediatric Dentistry, School of Stomatology Tianjin Medical University Tianjin China
| | - Yanwei Sun
- Department of Pediatric Dentistry, School of Stomatology Tianjin Medical University Tianjin China
| | - Jing Wu
- Department of Pediatric Dentistry, School of Stomatology Tianjin Medical University Tianjin China
| | - Tengfei Ma
- Department of Pediatric Dentistry, School of Stomatology Tianjin Medical University Tianjin China
| | - Xiangyu Zhang
- Department of Pediatric Dentistry, School of Stomatology Tianjin Medical University Tianjin China
| |
Collapse
|
55
|
Xavier GM, Seppala M, Papageorgiou SN, Fan CM, Cobourne MT. Genetic interactions between the hedgehog co-receptors Gas1 and Boc regulate cell proliferation during murine palatogenesis. Oncotarget 2018; 7:79233-79246. [PMID: 27811357 PMCID: PMC5346710 DOI: 10.18632/oncotarget.13011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/05/2016] [Indexed: 12/26/2022] Open
Abstract
Abnormal regulation of Sonic hedgehog (Shh) signaling has been described in a variety of human cancers and developmental anomalies, which highlights the essential role of this signaling molecule in cell cycle regulation and embryonic development. Gas1 and Boc are membrane co-receptors for Shh, which demonstrate overlapping domains of expression in the early face. This study aims to investigate potential interactions between these co-receptors during formation of the secondary palate. Mice with targeted mutation in Gas1 and Boc were used to generate Gas1; Boc compound mutants. The expression of key Hedgehog signaling family members was examined in detail during palatogenesis via radioactive in situ hybridization. Morphometric analysis involved computational quantification of BrdU-labeling and cell packing; whilst TUNEL staining was used to assay cell death. Ablation of Boc in a Gas1 mutant background leads to reduced Shh activity in the palatal shelves and an increase in the penetrance and severity of cleft palate, associated with failed elevation, increased proliferation and reduced cell death. Our findings suggest a dual requirement for Boc and Gas1 during early development of the palate, mediating cell cycle regulation during growth and subsequent fusion of the palatal shelves.
Collapse
Affiliation(s)
- Guilherme M Xavier
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Guy's Hospital, SE1 9RT, London, UK.,Department of Orthodontics, King's College London Dental Institute, Guy's Hospital, SE1 9RT, London, UK
| | - Maisa Seppala
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Guy's Hospital, SE1 9RT, London, UK.,Department of Orthodontics, King's College London Dental Institute, Guy's Hospital, SE1 9RT, London, UK
| | - Spyridon N Papageorgiou
- Department of Orthodontics, School of Dentistry, University of Bonn, 53111, Bonn, Germany.,Department of Oral Technology, School of Dentistry, University of Bonn, 53111, Bonn, Germany
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21218, USA
| | - Martyn T Cobourne
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Guy's Hospital, SE1 9RT, London, UK.,Department of Orthodontics, King's College London Dental Institute, Guy's Hospital, SE1 9RT, London, UK
| |
Collapse
|
56
|
Xiong Z, Ren S, Chen H, Liu Y, Huang C, Zhang YL, Odera JO, Chen T, Kist R, Peters H, Garman K, Sun Z, Chen X. PAX9 regulates squamous cell differentiation and carcinogenesis in the oro-oesophageal epithelium. J Pathol 2018; 244:164-175. [PMID: 29055049 PMCID: PMC5842438 DOI: 10.1002/path.4998] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 12/28/2022]
Abstract
PAX9 is a transcription factor of the PAX family characterized by a DNA-binding paired domain. Previous studies have suggested a potential role of PAX9 in squamous cell differentiation and carcinogenesis of the oro-oesophageal epithelium. However, its functional roles in differentiation and carcinogenesis remain unclear. In this study, Pax9 deficiency in mouse oesophagus promoted cell proliferation, delayed cell differentiation, and altered the global gene expression profile. Ethanol exposure downregulated PAX9 expression in human oesophageal epithelial cells in vitro and mouse forestomach and tongue in vivo. We further showed that PAX9 was downregulated in human oro-oesophageal squamous cell carcinoma (OESCC), and its downregulation was associated with alcohol drinking and promoter hypermethylation. Moreover, ad libitum feeding with a liquid diet containing ethanol for 40 weeks or Pax9 deficiency promoted N-nitrosomethylbenzylamine-induced squamous cell carcinogenesis in mouse tongue, oesophagus, and forestomach. In conclusion, PAX9 regulates squamous cell differentiation in the oro-oesophageal epithelium. Alcohol drinking and promoter hypermethylation are associated with PAX9 silencing in human OESCC. PAX9 downregulation may contribute to alcohol-associated oro-oesophageal squamous cell carcinogenesis. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zhaohui Xiong
- Department of Oral Medicine, Beijing Hospital for Stomatology, Capital Medical University, 4 Tian-Tan-Xi-Li, Beijing 100050, China
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Shuang Ren
- Department of Oral Medicine, Beijing Hospital for Stomatology, Capital Medical University, 4 Tian-Tan-Xi-Li, Beijing 100050, China
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Hao Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Yao Liu
- Department of Oral Medicine, Beijing Hospital for Stomatology, Capital Medical University, 4 Tian-Tan-Xi-Li, Beijing 100050, China
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Caizhi Huang
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Yawan Lyvia Zhang
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Joab Otieno Odera
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Tong Chen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, 410 West 12 Avenue, Columbus, OH 43210, USA
| | - Ralf Kist
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4BW, UK
- Institute of Human Genetics, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Heiko Peters
- Institute of Human Genetics, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Katherine Garman
- Division of Gastroenterology, Department of Medicine, Duke University, DUMC 3913, Durham, NC 27710, USA
| | - Zheng Sun
- Department of Oral Medicine, Beijing Hospital for Stomatology, Capital Medical University, 4 Tian-Tan-Xi-Li, Beijing 100050, China
| | - Xiaoxin Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
57
|
Regulation of mesenchymal signaling in palatal mucosa differentiation. Histochem Cell Biol 2017; 149:143-152. [DOI: 10.1007/s00418-017-1620-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2017] [Indexed: 12/24/2022]
|
58
|
Okello DO, Iyyanar PPR, Kulyk WM, Smith TM, Lozanoff S, Ji S, Nazarali AJ. Six2 Plays an Intrinsic Role in Regulating Proliferation of Mesenchymal Cells in the Developing Palate. Front Physiol 2017; 8:955. [PMID: 29218017 PMCID: PMC5704498 DOI: 10.3389/fphys.2017.00955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/09/2017] [Indexed: 02/04/2023] Open
Abstract
Cleft palate is a common congenital abnormality that results from defective secondary palate (SP) formation. The Sine oculis-related homeobox 2 (Six2) gene has been linked to abnormalities of craniofacial and kidney development. Our current study examined, for the first time, the specific role of Six2 in embryonic mouse SP development. Six2 mRNA and protein expression were identified in the palatal shelves from embryonic days (E)12.5 to E15.5, with peak levels during early stages of palatal shelf outgrowth. Immunohistochemical staining (IHC) showed that Six2 protein is abundant throughout the mesenchyme in the oral half of each palatal shelf, whereas there is a pronounced decline in Six2 expression by mesenchyme cells in the nasal half of the palatal shelf by stages E14.5-15.5. An opposite pattern was observed in the surface epithelium of the palatal shelf. Six2 expression was prominent at all stages in the epithelial cell layer located on the nasal side of each palatal shelf but absent from the epithelium located on the oral side of the palatal shelf. Six2 is a putative downstream target of transcription factor Hoxa2 and we previously demonstrated that Hoxa2 plays an intrinsic role in embryonic palate formation. We therefore investigated whether Six2 expression was altered in the developing SP of Hoxa2 null mice. Reverse transcriptase PCR and Western blot analyses revealed that Six2 mRNA and protein levels were upregulated in Hoxa2-/- palatal shelves at stages E12.5-14.5. Moreover, the domain of Six2 protein expression in the palatal mesenchyme of Hoxa2-/- embryos was expanded to include the entire nasal half of the palatal shelf in addition to the oral half. The palatal shelves of Hoxa2-/- embryos displayed a higher density of proliferating, Ki-67 positive palatal mesenchyme cells, as well as a higher density of Six2/Ki-67 double-positive cells. Furthermore, Hoxa2-/- palatal mesenchyme cells in culture displayed both increased proliferation and elevated Cyclin D1 expression relative to wild-type cultures. Conversely, siRNA-mediated Six2 knockdown restored proliferation and Cyclin D1 expression in Hoxa2-/- palatal mesenchyme cultures to near wild-type levels. Our findings demonstrate that Six2 functions downstream of Hoxa2 as a positive regulator of mesenchymal cell proliferation during SP development.
Collapse
Affiliation(s)
- Dennis O Okello
- Laboratory of Molecular Cell Biology, Neuroscience Research Cluster, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paul P R Iyyanar
- Laboratory of Molecular Cell Biology, Neuroscience Research Cluster, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - William M Kulyk
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tara M Smith
- Laboratory of Molecular Cell Biology, Neuroscience Research Cluster, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.,Med-life Discoveries LP, Saskatoon, SK, Canada
| | - Scott Lozanoff
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Shaoping Ji
- Laboratory of Molecular Cell Biology, Neuroscience Research Cluster, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, China
| | - Adil J Nazarali
- Laboratory of Molecular Cell Biology, Neuroscience Research Cluster, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
59
|
Iyyanar PPR, Nazarali AJ. Hoxa2 Inhibits Bone Morphogenetic Protein Signaling during Osteogenic Differentiation of the Palatal Mesenchyme. Front Physiol 2017; 8:929. [PMID: 29184513 PMCID: PMC5694536 DOI: 10.3389/fphys.2017.00929] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/02/2017] [Indexed: 12/15/2022] Open
Abstract
Cleft palate is one of the most common congenital birth defects worldwide. The homeobox (Hox) family of genes are key regulators of embryogenesis, with Hoxa2 having a direct role in secondary palate development. Hoxa2−/− mice exhibit cleft palate; however, the cellular and molecular mechanisms leading to cleft palate in Hoxa2−/− mice is largely unknown. Addressing this issue, we found that Hoxa2 regulates spatial and temporal programs of osteogenic differentiation in the developing palate by inhibiting bone morphogenetic protein (BMP) signaling dependent osteoblast markers. Expression of osteoblast markers, including Runx2, Sp7, and AlpI were increased in Hoxa2−/− palatal shelves at embryonic day (E) 13.5 and E15.5. Hoxa2−/− mouse embryonic palatal mesenchyme (MEPM) cells exhibited increased bone matrix deposition and mineralization in vitro. Moreover, loss of Hoxa2 resulted in increased osteoprogenitor cell proliferation and osteogenic commitment during early stages of palate development at E13.5. Consistent with upregulation of osteoblast markers, Hoxa2−/− palatal shelves displayed higher expression of canonical BMP signaling in vivo. Blocking BMP signaling in Hoxa2−/− primary MEPM cells using dorsomorphin restored cell proliferation and osteogenic differentiation to wild-type levels. Collectively, these data demonstrate for the first time that Hoxa2 may regulate palate development by inhibiting osteogenic differentiation of palatal mesenchyme via modulating BMP signaling.
Collapse
Affiliation(s)
- Paul P R Iyyanar
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition and Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
| | - Adil J Nazarali
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition and Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
60
|
Jia S, Zhou J, Fanelli C, Wee Y, Bonds J, Schneider P, Mues G, D'Souza RN. Small-molecule Wnt agonists correct cleft palates in Pax9 mutant mice in utero. Development 2017; 144:3819-3828. [PMID: 28893947 DOI: 10.1242/dev.157750] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/05/2017] [Indexed: 01/01/2023]
Abstract
Clefts of the palate and/or lip are among the most common human craniofacial malformations and involve multiple genetic and environmental factors. Defects can only be corrected surgically and require complex life-long treatments. Our studies utilized the well-characterized Pax9-/- mouse model with a consistent cleft palate phenotype to test small-molecule Wnt agonist therapies. We show that the absence of Pax9 alters the expression of Wnt pathway genes including Dkk1 and Dkk2, proven antagonists of Wnt signaling. The functional interactions between Pax9 and Dkk1 are shown by the genetic rescue of secondary palate clefts in Pax9-/-Dkk1f/+;Wnt1Cre embryos. The controlled intravenous delivery of small-molecule Wnt agonists (Dkk inhibitors) into pregnant Pax9+/- mice restored Wnt signaling and led to the growth and fusion of palatal shelves, as marked by an increase in cell proliferation and osteogenesis in utero, while other organ defects were not corrected. This work underscores the importance of Pax9-dependent Wnt signaling in palatogenesis and suggests that this functional upstream molecular relationship can be exploited for the development of therapies for human cleft palates that arise from single-gene disorders.
Collapse
Affiliation(s)
- Shihai Jia
- School of Dentistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Jing Zhou
- School of Dentistry, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Yinshen Wee
- School of Dentistry, University of Utah, Salt Lake City, UT 84112, USA
| | - John Bonds
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Gabriele Mues
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Rena N D'Souza
- School of Dentistry, University of Utah, Salt Lake City, UT 84112, USA .,Departments of Neurobiology & Anatomy, Pathology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
61
|
Jia S, Zhou J, Wee Y, Mikkola ML, Schneider P, D'Souza RN. Anti-EDAR Agonist Antibody Therapy Resolves Palate Defects in Pax9 -/- Mice. J Dent Res 2017; 96:1282-1289. [PMID: 28813171 DOI: 10.1177/0022034517726073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
To date, surgical interventions are the only means by which craniofacial anomalies can be corrected so that function, esthetics, and the sense of well-being are restored in affected individuals. Unfortunately, for patients with cleft palate-one of the most common of congenital birth defects-treatment following surgery is prolonged over a lifetime and often involves multidisciplinary regimens. Hence, there is a need to understand the molecular pathways that control palatogenesis and to translate such information for the development of noninvasive therapies that can either prevent or correct cleft palates in humans. Here, we use the well-characterized model of the Pax9-/- mouse, which displays a consistent phenotype of a secondary cleft palate, to test a novel therapeutic. Specifically, we demonstrate that the controlled intravenous delivery of a novel mouse monoclonal antibody replacement therapy, which acts as an agonist for the ectodysplasin (Eda) pathway, can resolve cleft palate defects in Pax9-/- embryos in utero. Such pharmacological interventions did not reverse the arrest in tooth, thymus, and parathyroid gland development, suggesting that the relationship of Pax9 to the Eda/Edar pathway is both unique and essential for palatogenesis. Expression analyses and unbiased gene expression profiling studies offer a molecular explanation for the resolution of palatal defects, showing that Eda and Edar-related genes are expressed in normal palatal tissues and that the Eda/Edar signaling pathway is downstream of Pax9 in palatogenesis. Taken together, our data uncover a unique relationship between Pax9 and the Eda/Edar signaling pathway that can be further exploited for the development of noninvasive, safe, and effective therapies for the treatment of cleft palate conditions and other single-gene disorders affecting the craniofacial complex.
Collapse
Affiliation(s)
- S Jia
- 1 School of Dentistry, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - J Zhou
- 1 School of Dentistry, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Y Wee
- 1 School of Dentistry, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - M L Mikkola
- 2 Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - P Schneider
- 3 Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - R N D'Souza
- 1 School of Dentistry, School of Medicine, University of Utah, Salt Lake City, UT, USA.,4 Departments of Neurobiology & Anatomy, Pathology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
62
|
Abstract
Development of the mammalian secondary palate involves highly dynamic morphogenetic processes, including outgrowth of palatal shelves from the oral side of the embryonic maxillary prominences, elevation of the initially vertically oriented palatal shelves to the horizontal position above the embryonic tongue, and subsequently adhesion and fusion of the paired palatal shelves at the midline to separate the oral cavity from the nasal cavity. Perturbation of any of these processes could cause cleft palate, a common birth defect that significantly affects patients' quality of life even after surgical treatment. In addition to identifying a large number of genes required for palate development, recent studies have begun to unravel the extensive cross-regulation of multiple signaling pathways, including Sonic hedgehog, bone morphogenetic protein, fibroblast growth factor, transforming growth factor β, and Wnt signaling, and multiple transcription factors during palatal shelf growth and patterning. Multiple studies also provide new insights into the gene regulatory networks and/or dynamic cellular processes underlying palatal shelf elevation, adhesion, and fusion. Here we summarize major recent advances and integrate the genes and molecular pathways with the cellular and morphogenetic processes of palatal shelf growth, patterning, elevation, adhesion, and fusion.
Collapse
Affiliation(s)
- C Li
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Y Lan
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,2 Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - R Jiang
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,2 Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
63
|
Fu X, Xu J, Chaturvedi P, Liu H, Jiang R, Lan Y. Identification of Osr2 Transcriptional Target Genes in Palate Development. J Dent Res 2017; 96:1451-1458. [PMID: 28731788 DOI: 10.1177/0022034517719749] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previous studies have identified the odd-skipped related 2 (Osr2) transcription factor as a key intrinsic regulator of palatal shelf growth and morphogenesis. However, little is known about the molecular program acting downstream of Osr2 in the regulation of palatogenesis. In this study, we isolated palatal mesenchyme cells from embryonic day 12.5 (E12.5) and E13.5 Osr2RFP/+ and Osr2RFP/- mutant mouse embryos and performed whole transcriptome RNA sequencing analyses. Differential expression analysis of the RNA sequencing datasets revealed that expression of 70 genes was upregulated and expression of 61 genes was downregulated by >1.5-fold at both E12.5 and E13.5 in the Osr2RFP/- palatal mesenchyme cells, in comparison with Osr2RFP/+ littermates. Gene ontology analysis revealed enrichment of signaling molecules and transcription factors crucial for skeletal development and osteoblast differentiation among those significantly upregulated in the Osr2 mutant palatal mesenchyme. Using quantitative real-time polymerase chain reaction (RT-PCR)and in situ hybridization assays, we validated that the Osr2-/- embryos exhibit significantly increased and expanded expression of many osteogenic pathway genes, including Bmp3, Bmp5, Bmp7, Mef2c, Sox6, and Sp7 in the developing palatal mesenchyme. Furthermore, we demonstrate that expression of Sema3a, Sema3d, and Sema3e, is ectopically activated in the developing palatal mesenchyme in Osr2-/- embryos. Through chromatin immunoprecipitation, followed by RT-PCR analysis, we demonstrate that endogenous Osr2 protein binds to the promoter regions of the Sema3a and Sema3d genes in the embryonic palatal mesenchyme. Moreover, Osr2 expression repressed the transcription from the Sema3a and Sema3d promoters in cotransfected cells. Since the Sema3 subfamily of signaling molecules plays diverse roles in the regulation of cell proliferation, migration, and differentiation, these data reveal a novel role for Osr2 in regulation of palatal morphogenesis through preventing aberrant activation of Sema3 signaling. Together, these data indicate that Osr2 controls multiple molecular pathways, including BMP and Sema3 signaling, in palate development.
Collapse
Affiliation(s)
- X Fu
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - J Xu
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - P Chaturvedi
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - H Liu
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - R Jiang
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,2 Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Y Lan
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,2 Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
64
|
Li C, Lan Y, Krumlauf R, Jiang R. Modulating Wnt Signaling Rescues Palate Morphogenesis in Pax9 Mutant Mice. J Dent Res 2017; 96:1273-1281. [PMID: 28692808 DOI: 10.1177/0022034517719865] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cleft palate is a common birth defect caused by disruption of palatogenesis during embryonic development. Although mutations disrupting components of the Wnt signaling pathway have been associated with cleft lip and palate in humans and mice, the mechanisms involving canonical Wnt signaling and its regulation in secondary palate development are not well understood. Here, we report that canonical Wnt signaling plays an important role in Pax9-mediated regulation of secondary palate development. We found that cleft palate pathogenesis in Pax9-deficient embryos is accompanied by significantly reduced expression of Axin2, an endogenous target of canonical Wnt signaling, in the developing palatal mesenchyme, particularly in the posterior regions of the palatal shelves. We found that expression of Dkk2, encoding a secreted Wnt antagonist, is significantly increased whereas the levels of active β-catenin protein, the essential transcriptional coactivator of canonical Wnt signaling, is significantly decreased in the posterior regions of the palatal shelves in embryonic day 13.5 Pax9-deficent embryos in comparison with control littermates. We show that small molecule-mediated inhibition of Dickkopf (DKK) activity in utero during palatal shelf morphogenesis partly rescued secondary palate development in Pax9-deficient embryos. Moreover, we found that genetic inactivation of Wise, which is expressed in the developing palatal shelves and encodes another secreted antagonist of canonical Wnt signaling, also rescued palate morphogenesis in Pax9-deficient mice. Furthermore, whereas Pax9del/del embryos exhibit defects in palatal shelf elevation/reorientation and significant reduction in accumulation of hyaluronic acid-a high molecular extracellular matrix glycosaminoglycan implicated in playing an important role in palatal shelf elevation-80% of Pax9del/del;Wise-/- double-mutant mouse embryos exhibit rescued palatal shelf elevation/reorientation, accompanied by restored hyaluronic acid accumulation in the palatal mesenchyme. Together, these data identify a crucial role for canonical Wnt signaling in acting downstream of Pax9 to regulate palate morphogenesis.
Collapse
Affiliation(s)
- C Li
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Y Lan
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,2 Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - R Krumlauf
- 3 Stowers Institute for Medical Research, Kansas City, MO, USA.,4 Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - R Jiang
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,2 Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
65
|
Tian H, Feng J, Li J, Ho TV, Yuan Y, Liu Y, Brindopke F, Figueiredo JC, Magee W, Sanchez-Lara PA, Chai Y. Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate. Hum Mol Genet 2017; 26:860-872. [PMID: 28069795 DOI: 10.1093/hmg/ddx002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 01/03/2016] [Indexed: 01/08/2023] Open
Abstract
Ciliopathies are pleiotropic human diseases resulting from defects of the primary cilium, and these patients often have cleft lip and palate. IFT88 is required for the assembly and function of the primary cilia, which mediate the activity of key developmental signaling pathways. Through whole exome sequencing of a family of three affected siblings with isolated cleft lip and palate, we discovered that they share a novel missense mutation in IFT88 (c.915G > C, p.E305D), suggesting this gene should be considered a candidate for isolated orofacial clefting. In order to evaluate the function of IFT88 in regulating craniofacial development, we generated Wnt1-Cre;Ift88fl/fl mice to eliminate Ift88 specifically in cranial neural crest (CNC) cells. Wnt1-Cre;Ift88fl/flpups died at birth due to severe craniofacial defects including bilateral cleft lip and palate and tongue agenesis, following the loss of the primary cilia in the CNC-derived palatal mesenchyme. Loss of Ift88 also resulted in a decrease in neural crest cell proliferation during early stages of palatogenesis as well as a downregulation of the Shh signaling pathway in the palatal mesenchyme. Importantly, Osr2KI-Cre;Ift88fl/flmice, in which Ift88 is lost specifically in the palatal mesenchyme, exhibit isolated cleft palate. Taken together, our results demonstrate that IFT88 has a highly conserved function within the primary cilia of the CNC-derived mesenchyme in the lip and palate region in mice and is a strong candidate as an orofacial clefting gene in humans.
Collapse
Affiliation(s)
- Hua Tian
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.,Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jingyuan Li
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.,Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, China
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Frederick Brindopke
- Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Jane C Figueiredo
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - William Magee
- Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Pedro A Sanchez-Lara
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.,Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.,Department of Pathology & Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
66
|
Lan Y, Zhang N, Liu H, Xu J, Jiang R. Golgb1 regulates protein glycosylation and is crucial for mammalian palate development. Development 2016; 143:2344-55. [PMID: 27226319 DOI: 10.1242/dev.134577] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/09/2016] [Indexed: 12/14/2022]
Abstract
Cleft palate is a common major birth defect for which currently known causes account for less than 30% of pathology in humans. In this study, we carried out mutagenesis screening in mice to identify new regulators of palatogenesis. Through genetic linkage mapping and whole-exome sequencing, we identified a loss-of-function mutation in the Golgb1 gene that co-segregated with cleft palate in a new mutant mouse line. Golgb1 is a ubiquitously expressed large coiled-coil protein, also known as giantin, that is localized at the Golgi membrane. Using CRISPR/Cas9-mediated genome editing, we generated and analyzed developmental defects in mice carrying additional Golgb1 loss-of-function mutations, which supported a crucial requirement for Golgb1 in palate development. Through maxillary explant culture assays, we demonstrate that the Golgb1 mutant embryos have intrinsic defects in palatal shelf elevation. Just prior to the developmental stage of palatal shelf elevation in wild-type littermates, Golgb1 mutant embryos exhibit increased cell density, reduced hyaluronan accumulation and impaired protein glycosylation in the palatal mesenchyme. Together, these results demonstrate that, although it is a ubiquitously expressed Golgi-associated protein, Golgb1 has specific functions in protein glycosylation and tissue morphogenesis.
Collapse
Affiliation(s)
- Yu Lan
- Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Nian Zhang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Han Liu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jingyue Xu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rulang Jiang
- Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
67
|
Gentile M, De Mattia D, Pansini A, Schettini F, Buonadonna AL, Capozza M, Ficarella R, Laforgia N. 14q13 distal microdeletion encompassingNKX2-1andPAX9: Patient report and refinement of the associated phenotype. Am J Med Genet A 2016; 170:1884-8. [DOI: 10.1002/ajmg.a.37691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/15/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Mattia Gentile
- Department of Medical Genetics; Hospital Di Venere - ASL BARI; Bari Italy
| | - Delia De Mattia
- Neonatology and NICU; Department of Biochemical Sciences and Human Oncology; University of Bari; Bari Italy
| | - Angela Pansini
- Department of Medical Genetics; Hospital Di Venere - ASL BARI; Bari Italy
| | - Federico Schettini
- Neonatology and NICU; Department of Biochemical Sciences and Human Oncology; University of Bari; Bari Italy
| | | | - Manuela Capozza
- Neonatology and NICU; Department of Biochemical Sciences and Human Oncology; University of Bari; Bari Italy
| | - Romina Ficarella
- Department of Medical Genetics; Hospital Di Venere - ASL BARI; Bari Italy
| | - Nicola Laforgia
- Neonatology and NICU; Department of Biochemical Sciences and Human Oncology; University of Bari; Bari Italy
| |
Collapse
|
68
|
Wang S, Huang G, Hu Q, Zou Q. A network-based method for the identification of putative genes related to infertility. Biochim Biophys Acta Gen Subj 2016; 1860:2716-24. [PMID: 27102279 DOI: 10.1016/j.bbagen.2016.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/02/2016] [Accepted: 04/08/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND Infertility has become one of the major health problems worldwide, with its incidence having risen markedly in recent decades. There is an urgent need to investigate the pathological mechanisms behind infertility and to design effective treatments. However, this is made difficult by the fact that various biological factors have been identified to be related to infertility, including genetic factors. METHODS A network-based method was established to identify new genes potentially related to infertility. A network constructed using human protein-protein interactions based on previously validated infertility-related genes enabled the identification of some novel candidate genes. These genes were then filtered by a permutation test and their functional and structural associations with infertility-related genes. RESULTS Our method identified 23 novel genes, which have strong functional and structural associations with previously validated infertility-related genes. CONCLUSIONS Substantial evidence indicates that the identified genes are strongly related to dysfunction of the four main biological processes of fertility: reproductive development and physiology, gametogenesis, meiosis and recombination, and hormone regulation. GENERAL SIGNIFICANCE The newly discovered genes may provide new directions for investigating infertility. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
Affiliation(s)
- ShaoPeng Wang
- College of Life Science, Shanghai University, Shanghai 200444, China.
| | - GuoHua Huang
- College of Life Science, Shanghai University, Shanghai 200444, China.
| | - Qinghua Hu
- School of Computer Science and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of System Bioengineering of the Ministry of Education, Tianjin University, Tianjin 300072, China.
| | - Quan Zou
- School of Computer Science and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin 300071, China.
| |
Collapse
|
69
|
Burg ML, Chai Y, Yao CA, Magee W, Figueiredo JC. Epidemiology, Etiology, and Treatment of Isolated Cleft Palate. Front Physiol 2016; 7:67. [PMID: 26973535 PMCID: PMC4771933 DOI: 10.3389/fphys.2016.00067] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/12/2016] [Indexed: 01/21/2023] Open
Abstract
Isolated cleft palate (CPO) is the rarest form of oral clefting. The incidence of CPO varies substantially by geography from 1.3 to 25.3 per 10,000 live births, with the highest rates in British Columbia, Canada and the lowest rates in Nigeria, Africa. Stratified by ethnicity/race, the highest rates of CPO are observed in non-Hispanic Whites and the lowest in Africans; nevertheless, rates of CPO are consistently higher in females compared to males. Approximately fifty percent of cases born with cleft palate occur as part of a known genetic syndrome or with another malformation (e.g., congenital heart defects) and the other half occur as solitary defects, referred to often as non-syndromic clefts. The etiology of CPO is multifactorial involving genetic and environmental risk factors. Several animal models have yielded insight into the molecular pathways responsible for proper closure of the palate, including the BMP, TGF-β, and SHH signaling pathways. In terms of environmental exposures, only maternal tobacco smoke has been found to be strongly associated with CPO. Some studies have suggested that maternal glucocorticoid exposure may also be important. Clearly, there is a need for larger epidemiologic studies to further investigate both genetic and environmental risk factors and gene-environment interactions. In terms of treatment, there is a need for long-term comprehensive care including surgical, dental and speech pathology. Overall, five main themes emerge as critical in advancing research: (1) monitoring of the occurrence of CPO (capacity building); (2) detailed phenotyping of the severity (biology); (3) understanding of the genetic and environmental risk factors (primary prevention); (4) access to early detection and multidisciplinary treatment (clinical services); and (5) understanding predictors of recurrence and possible interventions among families with a child with CPO (secondary prevention).
Collapse
Affiliation(s)
- Madeleine L Burg
- Department of Medicine, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California Los Angeles, CA, USA
| | - Caroline A Yao
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA, USA; Division of Plastic and Maxillofacial Surgery, Children's Hospital Los AngelesLos Angeles, CA, USA
| | - William Magee
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine, University of Southern CaliforniaLos Angeles, CA, USA; Division of Plastic and Maxillofacial Surgery, Children's Hospital Los AngelesLos Angeles, CA, USA
| | - Jane C Figueiredo
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
70
|
Yin W, Bian Z. Hypodontia, a prospective predictive marker for tumor? Oral Dis 2016; 22:265-73. [DOI: 10.1111/odi.12400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/28/2015] [Accepted: 11/11/2015] [Indexed: 12/11/2022]
Affiliation(s)
- W Yin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
- Department of Endodontics & Periodontics; College of Stomatology; Dalian Medical University; Dalian China
| | - Z Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School & Hospital of Stomatology; Wuhan University; Wuhan China
| |
Collapse
|
71
|
Xu J, Liu H, Lan Y, Aronow BJ, Kalinichenko VV, Jiang R. A Shh-Foxf-Fgf18-Shh Molecular Circuit Regulating Palate Development. PLoS Genet 2016; 12:e1005769. [PMID: 26745863 PMCID: PMC4712829 DOI: 10.1371/journal.pgen.1005769] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/03/2015] [Indexed: 12/20/2022] Open
Abstract
Cleft palate is among the most common birth defects in humans. Previous studies have shown that Shh signaling plays critical roles in palate development and regulates expression of several members of the forkhead-box (Fox) family transcription factors, including Foxf1 and Foxf2, in the facial primordia. Although cleft palate has been reported in mice deficient in Foxf2, whether Foxf2 plays an intrinsic role in and how Foxf2 regulates palate development remain to be elucidated. Using Cre/loxP-mediated tissue-specific gene inactivation in mice, we show that Foxf2 is required in the neural crest-derived palatal mesenchyme for normal palatogenesis. We found that Foxf2 mutant embryos exhibit altered patterns of expression of Shh, Ptch1, and Shox2 in the developing palatal shelves. Through RNA-seq analysis, we identified over 150 genes whose expression was significantly up- or down-regulated in the palatal mesenchyme in Foxf2-/- mutant embryos in comparison with control littermates. Whole mount in situ hybridization analysis revealed that the Foxf2 mutant embryos exhibit strikingly corresponding patterns of ectopic Fgf18 expression in the palatal mesenchyme and concomitant loss of Shh expression in the palatal epithelium in specific subdomains of the palatal shelves that correlate with where Foxf2, but not Foxf1, is expressed during normal palatogenesis. Furthermore, tissue specific inactivation of both Foxf1 and Foxf2 in the early neural crest cells resulted in ectopic activation of Fgf18 expression throughout the palatal mesenchyme and dramatic loss of Shh expression throughout the palatal epithelium. Addition of exogenous Fgf18 protein to cultured palatal explants inhibited Shh expression in the palatal epithelium. Together, these data reveal a novel Shh-Foxf-Fgf18-Shh circuit in the palate development molecular network, in which Foxf1 and Foxf2 regulate palatal shelf growth downstream of Shh signaling, at least in part, by repressing Fgf18 expression in the palatal mesenchyme to ensure maintenance of Shh expression in the palatal epithelium. Cleft lip and/or cleft palate (CL/P) are among the most common birth defects in humans, occurring at a frequency of about 1 in 500–2500 live births. The etiology and pathogenesis of CL/P are complex and poorly understood. Generation and analysis of mice carrying targeted null and conditional mutations in many genes have revealed that functional disruption of each of more than 100 genes could cause cleft palate. However, how these genes work together to regulate palate development is not well understood. In this study, we identify a novel molecular circuit consisting of two critical molecular pathways, the fibroblast growth factor (FGF) and Sonic hedgehog (SHH) signaling pathways, and the Forkhead family transcription factors Foxf1 and Foxf2, mediating reciprocal epithelial-mesenchymal signaling interactions that control palatogenesis. As mutations affecting each of multiple components of both the FGF and SHH signaling pathways have been associated with CL/P in humans, our results provide significant new insight into the mechanisms regulating palatogenesis and cleft palate pathogenesis.
Collapse
Affiliation(s)
- Jingyue Xu
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Han Liu
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Yu Lan
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Plastic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Bruce J. Aronow
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Vladimir V. Kalinichenko
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Plastic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
72
|
Anthwal N, Peters H, Tucker AS. Species-specific modifications of mandible shape reveal independent mechanisms for growth and initiation of the coronoid. EvoDevo 2015; 6:35. [PMID: 26568815 PMCID: PMC4644282 DOI: 10.1186/s13227-015-0030-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/12/2015] [Indexed: 01/10/2023] Open
Abstract
Background The variation in mandibular morphology of mammals reflects specialisations for different diets. Omnivorous and carnivorous mammals posses large mandibular coronoid processes, while herbivorous mammals have proportionally smaller or absent coronoids. This is correlated with the relative size of the temporalis muscle that forms an attachment to the coronoid process. The role of this muscle attachment in the development of the variation of the coronoid is unclear. Results By comparative developmental biology and mouse knockout studies, we demonstrate here that the initiation and growth of the coronoid are two independent processes, with initiation being intrinsic to the ossifying bone and growth dependent upon the extrinsic effect of muscle attachment. A necessary component of the intrinsic patterning is identified as the paired domain transcription factor Pax9. We also demonstrate that Sox9 plays a role independent of chondrogenesis in the growth of the coronoid process in response to muscle interaction. Conclusions The mandibular coronoid process is initiated by intrinsic factors, but later growth is dependent on extrinsic signals from the muscle. These extrinsic influences are hypothesised to be the basis of the variation in coronoid length seen across the mammalian lineage.
Collapse
Affiliation(s)
- Neal Anthwal
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, London, SE1 9RT UK
| | - Heiko Peters
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Newcastle upon Tyne, NE1 3BZ UK
| | - Abigail S Tucker
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, London, SE1 9RT UK
| |
Collapse
|
73
|
Abstract
Palatogenesis involves the initiation, growth, morphogenesis, and fusion of the primary and secondary palatal shelves from initially separate facial prominences during embryogenesis to form the intact palate separating the oral cavity from the nostrils. The palatal shelves consist mainly of cranial neural crest-derived mesenchymal cells covered by a simple embryonic epithelium. The growth and patterning of the palatal shelves are controlled by reciprocal epithelial-mesenchymal interactions regulated by multiple signaling pathways and transcription factors. During palatal shelf outgrowth, the embryonic epithelium develops a "teflon" coat consisting of a single, continuous layer of periderm cells that prevents the facial prominences and palatal shelves from forming aberrant interepithelial adhesions. Palatal fusion involves not only spatiotemporally regulated disruption of the periderm but also dynamic cellular and molecular processes that result in adhesion and intercalation of the palatal medial edge epithelia to form an intershelf epithelial seam, and subsequent dissolution of the epithelial seam to form the intact roof of the oral cavity. The complexity of regulation of these morphogenetic processes is reflected by the common occurrence of cleft palate in humans. This review will summarize major recent advances and discuss major remaining gaps in the understanding of cellular and molecular mechanisms controlling palatogenesis.
Collapse
Affiliation(s)
- Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
| | - Jingyue Xu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
| |
Collapse
|
74
|
Wu W, Gu S, Sun C, He W, Xie X, Li X, Ye W, Qin C, Chen Y, Xiao J, Liu C. Altered FGF Signaling Pathways Impair Cell Proliferation and Elevation of Palate Shelves. PLoS One 2015; 10:e0136951. [PMID: 26332583 PMCID: PMC4558018 DOI: 10.1371/journal.pone.0136951] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 08/10/2015] [Indexed: 01/15/2023] Open
Abstract
In palatogenesis, palatal shelves are patterned along the mediolateral axis as well as the anteroposterior axis before the onset of palatal fusion. Fgf10 specifically expressed in lateral mesenchyme of palate maintains Shh transcription in lateral epithelium, while Fgf7 activated in medial mesenchyme by Dlx5, suppressed the expansion of Shh expression to medial epithelium. How FGF signaling pathways regulate the cell behaviors of developing palate remains elusive. In our study, we found that when Fgf8 is ectopically expressed in the embryonic palatal mesenchyme, the elevation of palatal shelves is impaired and the posterior palatal shelves are enlarged, especially in the medial side. The palatal deformity results from the drastic increase of cell proliferation in posterior mesenchyme and decrease of cell proliferation in epithelium. The expression of mesenchymal Fgf10 and epithelial Shh in the lateral palate, as well as the Dlx5 and Fgf7 transcription in the medial mesenchyme are all interrupted, indicating that the epithelial-mesenchymal interactions during palatogenesis are disrupted by the ectopic activation of mesenchymal Fgf8. Besides the altered Fgf7, Fgf10, Dlx5 and Shh expression pattern, the reduced Osr2 expression domain in the lateral mesenchyme also suggests an impaired mediolateral patterning of posterior palate. Moreover, the ectopic Fgf8 expression up-regulates pJak1 throughout the palatal mesenchyme and pErk in the medial mesenchyme, but down-regulates pJak2 in the epithelium, suggesting that during normal palatogenesis, the medial mesenchymal cell proliferation is stimulated by FGF/Erk pathway, while the epithelial cell proliferation is maintained through FGF/Jak2 pathway.
Collapse
Affiliation(s)
- Weijie Wu
- Department of Stomatology, Shanghai Zhongshan Hospital, Shanghai, China
- Department of Cell & Molecular Biology, Sciences and Engineering School, Tulane University, New Orleans, Louisiana, United States of America
| | - Shuping Gu
- Department of Cell & Molecular Biology, Sciences and Engineering School, Tulane University, New Orleans, Louisiana, United States of America
| | - Cheng Sun
- Department of Cell & Molecular Biology, Sciences and Engineering School, Tulane University, New Orleans, Louisiana, United States of America
| | - Wei He
- Department of Cell & Molecular Biology, Sciences and Engineering School, Tulane University, New Orleans, Louisiana, United States of America
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, China
| | - Xiaohua Xie
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Sciences Center, Dallas, Texas, United States of America
- Department of Endodontics, Institute of Hard Tissue Development and Regeneration, the 2 Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xihai Li
- Department of Cell & Molecular Biology, Sciences and Engineering School, Tulane University, New Orleans, Louisiana, United States of America
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wenduo Ye
- Department of Cell & Molecular Biology, Sciences and Engineering School, Tulane University, New Orleans, Louisiana, United States of America
| | - Chunlin Qin
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Sciences Center, Dallas, Texas, United States of America
| | - Yiping Chen
- Department of Cell & Molecular Biology, Sciences and Engineering School, Tulane University, New Orleans, Louisiana, United States of America
| | - Jing Xiao
- Department of Oral Biology, College of Stomatology, Dalian Medical University, Dalian, China
- * E-mail: (JX); (CL)
| | - Chao Liu
- Department of Cell & Molecular Biology, Sciences and Engineering School, Tulane University, New Orleans, Louisiana, United States of America
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Sciences Center, Dallas, Texas, United States of America
- Department of Oral Biology, College of Stomatology, Dalian Medical University, Dalian, China
- * E-mail: (JX); (CL)
| |
Collapse
|
75
|
Seki D, Takeshita N, Oyanagi T, Sasaki S, Takano I, Hasegawa M, Takano-Yamamoto T. Differentiation of Odontoblast-Like Cells From Mouse Induced Pluripotent Stem Cells by Pax9 and Bmp4 Transfection. Stem Cells Transl Med 2015; 4:993-7. [PMID: 26136503 DOI: 10.5966/sctm.2014-0292] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/27/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The field of tooth regeneration has progressed in recent years, and human tooth regeneration could become viable in the future. Because induced pluripotent stem (iPS) cells can differentiate into odontogenic cells given appropriate conditions, iPS cells are a potential cell source for tooth regeneration. However, a definitive method to induce iPS cell-derived odontogenic cells has not been established. We describe a novel method of odontoblast differentiation from iPS cells using gene transfection. We generated mouse iPS cell-derived neural crest-like cells (iNCLCs), which exhibited neural crest markers. Next, we differentiated iNCLCs into odontoblast-like cells by transfection of Pax9 and Bmp4 expression plasmids. Exogenous Pax9 upregulated expression of Msx1 and dentin matrix protein 1 (Dmp1) in iNCLCs but not bone morphogenetic protein 4 (Bmp4) or dentin sialophosphoprotein (Dspp). Exogenous Bmp4 upregulated expression of Msx1, Dmp1, and Dspp in iNCLCs, but not Pax9. Moreover, cotransfection of Pax9 and Bmp4 plasmids in iNCLCs revealed a higher expression of Pax9 than when Pax9 plasmid was used alone. In contrast, exogenous Pax9 downregulated Bmp4 overexpression. Cotransfection of Pax9 and Bmp4 synergistically upregulated Dmp1 expression; however, Pax9 overexpression downregulated exogenous Bmp4-induced Dspp expression. Together, these findings suggest that an interaction between exogenous Pax9- and Bmp4-induced signaling modulated Dmp1 and Dspp expression. In conclusion, transfection of Pax9 and Bmp4 expression plasmids in iNCLCs induced gene expression associated with odontoblast differentiation, suggesting that iNCLCs differentiated into odontoblast-like cells. The iPS cell-derived odontoblast-like cells could be a useful cell source for tooth regeneration. SIGNIFICANCE It has been reported that induced pluripotent stem (iPS) cells differentiate into odontogenic cells by administration of recombinant growth factors and coculture with odontogenic cells. Therefore, they can be potential cell sources for tooth regeneration. However, these previous methods still have problems, such as usage of other cell types, heterogeneity of differentiated cells, and tumorigenicity. In the present study, a novel method to differentiate iPS cells into odontoblast-like cells without tumorigenicity using gene transfection was established. It is an important advance in the establishment of efficient methods to generate homogeneous functional odontogenic cells derived from iPS cells.
Collapse
Affiliation(s)
- Daisuke Seki
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Miyagi, Japan
| | - Nobuo Takeshita
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Miyagi, Japan
| | - Toshihito Oyanagi
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Miyagi, Japan
| | - Shutaro Sasaki
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Miyagi, Japan
| | - Ikuko Takano
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Miyagi, Japan
| | - Masakazu Hasegawa
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Miyagi, Japan
| | - Teruko Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Miyagi, Japan
| |
Collapse
|
76
|
Abstract
Mammalian tooth development is a precise and complicated procedure. Several signaling pathways, such as nuclear factor (NF)-κB and WNT, are key regulators of tooth development. Any disturbance of these signaling pathways can potentially affect or block normal tooth development, and presently, there are more than 150 syndromes and 80 genes known to be related to tooth agenesis. Clarifying the interaction and crosstalk among these genes will provide important information regarding the mechanisms underlying missing teeth. In the current review, we summarize recently published findings on genes related to isolated and syndromic tooth agenesis; most of these genes function as positive regulators of cell proliferation or negative regulators of cell differentiation and apoptosis. Furthermore, we explore the corresponding networks involving these genes in addition to their implications for the clinical management of tooth agenesis. We conclude that this requires further study to improve patients' quality of life in the future.
Collapse
Affiliation(s)
- W Yin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China Department of Endodontics & Periodontics, College of Stomatology, Dalian Medical University, Dalian, China
| | - Z Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
77
|
Tokita M. How the pterosaur got its wings. Biol Rev Camb Philos Soc 2014; 90:1163-78. [PMID: 25361444 DOI: 10.1111/brv.12150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/10/2014] [Accepted: 10/01/2014] [Indexed: 12/19/2022]
Abstract
Throughout the evolutionary history of life, only three vertebrate lineages took to the air by acquiring a body plan suitable for powered flight: birds, bats, and pterosaurs. Because pterosaurs were the earliest vertebrate lineage capable of powered flight and included the largest volant animal in the history of the earth, understanding how they evolved their flight apparatus, the wing, is an important issue in evolutionary biology. Herein, I speculate on the potential basis of pterosaur wing evolution using recent advances in the developmental biology of flying and non-flying vertebrates. The most significant morphological features of pterosaur wings are: (i) a disproportionately elongated fourth finger, and (ii) a wing membrane called the brachiopatagium, which stretches from the posterior surface of the arm and elongated fourth finger to the anterior surface of the leg. At limb-forming stages of pterosaur embryos, the zone of polarizing activity (ZPA) cells, from which the fourth finger eventually differentiates, could up-regulate, restrict, and prolong expression of 5'-located Homeobox D (Hoxd) genes (e.g. Hoxd11, Hoxd12, and Hoxd13) around the ZPA through pterosaur-specific exploitation of sonic hedgehog (SHH) signalling. 5'Hoxd genes could then influence downstream bone morphogenetic protein (BMP) signalling to facilitate chondrocyte proliferation in long bones. Potential expression of Fgf10 and Tbx3 in the primordium of the brachiopatagium formed posterior to the forelimb bud might also facilitate elongation of the phalanges of the fourth finger. To establish the flight-adapted musculoskeletal morphology shared by all volant vertebrates, pterosaurs probably underwent regulatory changes in the expression of genes controlling forelimb and pectoral girdle musculoskeletal development (e.g. Tbx5), as well as certain changes in the mode of cell-cell interactions between muscular and connective tissues in the early phase of their evolution. Developmental data now accumulating for extant vertebrate taxa could be helpful in understanding the cellular and molecular mechanisms of body-plan evolution in extinct vertebrates as well as extant vertebrates with unique morphology whose embryonic materials are hard to obtain.
Collapse
Affiliation(s)
- Masayoshi Tokita
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, U.S.A
| |
Collapse
|
78
|
Lane J, Kaartinen V. Signaling networks in palate development. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2014; 6:271-8. [PMID: 24644145 DOI: 10.1002/wsbm.1265] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/24/2014] [Accepted: 01/24/2014] [Indexed: 01/04/2023]
Abstract
UNLABELLED Palatogenesis, the formation of the palate, is a dynamic process regulated by a complex series of context-dependent morphogenetic signaling events. Many genes involved in palatogenesis have been discovered through the use of genetically manipulated mouse models as well as from human genetic studies, but the roles of these genes and their products in signaling networks regulating palatogenesis are still poorly known. In this review, we give a brief overview on palatogenesis and introduce key signaling cascades leading to formation of the intact palate. Moreover, we review conceptual differences between pathway biology and network biology and discuss how some of the recent technological advances in conjunction with mouse genetic models have contributed to our understanding of signaling networks regulating palate growth and fusion. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Jamie Lane
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | | |
Collapse
|
79
|
Neural crest-specific deletion of Ldb1 leads to cleft secondary palate with impaired palatal shelf elevation. BMC DEVELOPMENTAL BIOLOGY 2014; 14:3. [PMID: 24433583 PMCID: PMC3899388 DOI: 10.1186/1471-213x-14-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 01/08/2014] [Indexed: 11/10/2022]
Abstract
Background LIM domain binding protein 1 (LDB1) is a transcriptional co-factor, which interacts with multiple transcription factors and other proteins containing LIM domains. Complete inactivation of Ldb1 in mice resulted in early embryonic lethality with severe patterning defects during gastrulation. Tissue-specific deletions using a conditional knockout allele revealed additional roles of Ldb1 in the development of the central nervous system, hematopoietic system, and limbs. The goal of the current study was to determine the importance of Ldb1 function during craniofacial development in mouse embryos. Results We generated tissue-specific Ldb1 mutants using Wnt1-Cre, which causes deletion of a floxed allele in the neural crest; neural crest-derived cells contribute to most of the mesenchyme of the developing face. All examined Wnt1-Cre;Ldb1fl/- mutants suffered from cleft secondary palate. Therefore, we performed a series of experiments to investigate how Ldb1 regulated palate development. First, we examined the expression of Ldb1 during normal development, and found that Ldb1 was expressed broadly in the palatal mesenchyme during early stages of palate development. Second, we compared the morphology of the developing palate in control and Ldb1 mutant embryos using sections. We found that the mutant palatal shelves had abnormally blunt appearance, and failed to elevate above the tongue at the posterior domain. An in vitro head culture experiment indicated that the elevation defect was not due to interference by the tongue. Finally, in the Ldb1 mutant palatal shelves, cell proliferation was abnormal in the anterior, and the expression of Wnt5a, Pax9 and Osr2, which regulate palatal shelf elevation, was also altered. Conclusions The function of Ldb1 in the neural crest-derived palatal mesenchyme is essential for normal morphogenesis of the secondary palate.
Collapse
|