51
|
Kalha S, Shrestha B, Sanz Navarro M, Jones KB, Klein OD, Michon F. Bmi1+ Progenitor Cell Dynamics in Murine Cornea During Homeostasis and Wound Healing. Stem Cells 2018; 36:562-573. [PMID: 29282831 DOI: 10.1002/stem.2767] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/27/2017] [Accepted: 12/09/2017] [Indexed: 01/06/2023]
Abstract
The outermost layer of the eye, the cornea, is renewed continuously throughout life. Stem cells of the corneal epithelium reside in the limbus at the corneal periphery and ensure homeostasis of the central epithelium. However, in young mice, homeostasis relies on cells located in the basal layer of the central corneal epithelium. Here, we first studied corneal growth during the transition from newborn to adult and assessed Keratin 19 (Krt19) expression as a hallmark of corneal maturation. Next, we set out to identify a novel marker of murine corneal epithelial progenitor cells before, during and after maturation, and we found that Bmi1 is expressed in the basal epithelium of the central cornea and limbus. Furthermore, we demonstrated that Bmi1+ cells participated in tissue replenishment in the central cornea. These Bmi1+ cells did not maintain homeostasis of the cornea for more than 3 months, reflecting their status as progenitor rather than stem cells. Finally, after injury, Bmi1+ cells fueled homeostatic maintenance, whereas wound closure occurred via epithelial reorganization. Stem Cells 2018;36:562-573.
Collapse
Affiliation(s)
- Solja Kalha
- Helsinki Institute of Life Science, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Bideep Shrestha
- Helsinki Institute of Life Science, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Maria Sanz Navarro
- Helsinki Institute of Life Science, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Kyle B Jones
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, USA
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, USA.,Department of Pediatrics and Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | - Frederic Michon
- Helsinki Institute of Life Science, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Keele Medical School and Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire, England, United Kingdom
| |
Collapse
|
52
|
Bigas A, Porcheri C. Notch and Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:235-263. [DOI: 10.1007/978-3-319-89512-3_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
53
|
Zhou Y, Xia L, Wang H, Oyang L, Su M, Liu Q, Lin J, Tan S, Tian Y, Liao Q, Cao D. Cancer stem cells in progression of colorectal cancer. Oncotarget 2017; 9:33403-33415. [PMID: 30279970 PMCID: PMC6161799 DOI: 10.18632/oncotarget.23607] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/05/2017] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is one of the most common cancers worldwide with high mortality. Distant metastasis and relapse are major causes of patient death. Cancer stem cells (CSCs) play a critical role in the metastasis and relapse of colorectal cancer. CSCs are a subpopulation of cancer cells with unique properties of self-renewal, infinite division and multi-directional differentiation potential. Colorectal CSCs are defined with a group of cell surface markers, such as CD44, CD133, CD24, EpCAM, LGR5 and ALDH. They are highly tumorigenic, chemoresistant and radioresistant and thus are critical in the metastasis and recurrence of colorectal cancer and disease-free survival. This review article updates the colorectal CSCs with a focus on their role in tumor initiation, progression, drug resistance and tumor relapse.
Collapse
Affiliation(s)
- Yujuan Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Heran Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Qiang Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jingguan Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yutong Tian
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Deliang Cao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, 62794, USA
| |
Collapse
|
54
|
Fesler A, Liu H, Ju J. Modified miR-15a has therapeutic potential for improving treatment of advanced stage colorectal cancer through inhibition of BCL2, BMI1, YAP1 and DCLK1. Oncotarget 2017; 9:2367-2383. [PMID: 29416778 PMCID: PMC5788646 DOI: 10.18632/oncotarget.23414] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/08/2017] [Indexed: 12/17/2022] Open
Abstract
Despite advances in colon cancer treatments, resistance and recurrence remain a significant challenge in treating patients. Novel therapeutic strategies are in urgent need to overcome resistance and improve patient outcomes. MicroRNA based therapeutics have potential to help combat resistance. In this study, we have shown that low miR-15a expression correlates with poor patient prognosis. We have demonstrated the therapeutic potential of miR-15a in colon cancer. miR-15a inhibits several important genes (BCL2, BMI1, YAP1 and DCLK1), decreasing cancer progression and resistance. Additionally, by replacing uracil in miR-15a with 5-fluorouracil, we created a novel miR-15a mimic with enhanced therapeutic potential. This mimic maintains target specificity and is more potent than unmodified miR-15a in vitro and inhibits colon tumor metastasis in vivo. This mimic has great potential for therapeutic development for treating colon cancer patients. This novel modification has potential to advance the development of other microRNA based therapeutics beyond miR-15a.
Collapse
Affiliation(s)
- Andrew Fesler
- Department of Pathology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hua Liu
- Department of Pathology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jingfang Ju
- Department of Pathology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
55
|
Liu X, Wei W, Li X, Shen P, Ju D, Wang Z, Zhang R, Yang F, Chen C, Cao K, Zhu G, Chen H, Chen L, Sui J, Zhang E, Wu K, Wang F, Zhao L, Xi R. BMI1 and MEL18 Promote Colitis-Associated Cancer in Mice via REG3B and STAT3. Gastroenterology 2017; 153:1607-1620. [PMID: 28780076 DOI: 10.1053/j.gastro.2017.07.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Polycomb group proteins are epigenetic factors that silence gene expression; they are dysregulated in cancer cells and contribute to carcinogenesis by unclear mechanisms. We investigated whether BMI1 proto-oncogene, polycomb ring finger (BMI1), and polycomb group ring finger 2 (PCGF2, also called MEL18) are involved in the initiation and progression of colitis-associated cancer (CAC) in mice. METHODS We generated mice containing floxed alleles of Bmi1 and/or Mel18 and/or Reg3b using the villin-Cre promoter (called Bmi1ΔIEC, Mel18ΔIEC, DKO, and TKO mice). We also disrupted Bmi1 and/or Mel18 specifically in intestinal epithelial cells (IECs) using the villin-CreERT2-inducible promoter. CAC was induced in cre-negative littermate mice (control) and mice with conditional disruption of Bmi1 and/or Mel18 by intraperitoneal injection of azoxymethane (AOM) followed by addition of dextran sulfate sodium (DSS) to drinking water. Colon tissues were collected from mice and analyzed by histology and immunoblots; IECs were isolated and used in cDNA microarray analyses. RESULTS Following administration of AOM and DSS, DKO mice developed significantly fewer polyps than control, Bmi1ΔIEC, Mel18ΔIEC, Reg3bΔIEC, or TKO mice. Adenomas in the colons of DKO mice were low-grade dysplasias, whereas adenomas in control, Bmi1ΔIEC, Mel18ΔIEC, Reg3bΔIEC, or TKO mice were high-grade dysplasias with aggressive invasion of the muscularis mucosa. Disruption of Bmi1 and Mel18 (DKO mice) during late stages of carcinogenesis significantly reduced the numbers of large adenomas and the load of total adenomas, reduced proliferation, and increased apoptosis in colon tissues. IECs isolated from DKO mice after AOM and DSS administration had increased expression of Reg3b compared with control, Bmi1ΔIEC, or Mel18ΔIEC mice. Expression of REG3B was sufficient to inhibit cytokine-induced activation of STAT3 in IECs. The human REG3β protein, the functional counterpart of mouse REG3B, inhibited STAT3 activity in human 293T cells, and its expression level in colorectal tumors correlated inversely with pSTAT3 level and survival times of patients. CONCLUSIONS BMI1 and MEL18 contribute to the development of CAC in mice by promoting proliferation and reducing apoptosis via suppressing expression of Reg3b. REG3B negatively regulates cytokine-induced activation of STAT3 in colon epithelial cells. This pathway might be targeted in patients with colitis to reduce carcinogenesis.
Collapse
Affiliation(s)
- Xicheng Liu
- National Institute of Biological Sciences, Beijing, China
| | - Wendi Wei
- National Institute of Biological Sciences, Beijing, China
| | - Xiaowei Li
- National Institute of Biological Sciences, Beijing, China; State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Pengcheng Shen
- National Institute of Biological Sciences, Beijing, China
| | - Dapeng Ju
- National Institute of Biological Sciences, Beijing, China
| | - Zhen Wang
- National Institute of Biological Sciences, Beijing, China
| | - Rukui Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Fu Yang
- National Institute of Biological Sciences, Beijing, China
| | - Chunyan Chen
- National Institute of Biological Sciences, Beijing, China
| | - Kun Cao
- National Institute of Biological Sciences, Beijing, China
| | - Guoli Zhu
- National Institute of Biological Sciences, Beijing, China
| | - Hongyan Chen
- National Institute of Biological Sciences, Beijing, China
| | - Liang Chen
- National Institute of Biological Sciences, Beijing, China
| | - Jianhua Sui
- National Institute of Biological Sciences, Beijing, China
| | - Erquan Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing, China
| | - Liping Zhao
- National Institute of Biological Sciences, Beijing, China
| | - Rongwen Xi
- National Institute of Biological Sciences, Beijing, China; Shanghai 10th People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
56
|
Zang MD, Hu L, Fan ZY, Wang HX, Zhu ZL, Cao S, Wu XY, Li JF, Su LP, Li C, Zhu ZG, Yan M, Liu BY. Luteolin suppresses gastric cancer progression by reversing epithelial-mesenchymal transition via suppression of the Notch signaling pathway. J Transl Med 2017; 15:52. [PMID: 28241766 PMCID: PMC5327575 DOI: 10.1186/s12967-017-1151-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/17/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most malignant tumors and the second leading cause of cancer-related deaths in the world. Luteolin, a flavonoid present in many fruits and green plants, suppresses cancer progression. The effects of luteolin on GC cells and their underlying mechanisms remain unclear. METHODS Effects of luteolin on cell proliferation, migration, invasion, and apoptosis were examined in vitro and in vivo by cell counting kit-8 (CCK-8), transwell assays, and flow cytometry, respectively. Real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blots were performed to evaluate Notch1 signaling and activation of epithelial-mesenchymal transition (EMT) in GC cells treated with or without luteolin. Immunohistochemistry was performed to examine proliferation and Notch1 expression in xenograft tumors. RESULTS Luteolin significantly inhibited cell proliferation, invasion, and migration in a dose-dependent and time-dependent manner and promoted cell apoptosis. Luteolin reversed EMT by shrinking the cytoskeleton and by inducing the expression of epithelial biomarker E-cadherin and downregulating the mesenchymal biomarkers N-cadherin, vimentin and Snail. Furthermore, Notch1 signaling was inhibited by luteolin, and downregulation of Notch1 had similar effects as luteolin treatment on cell proliferation, migration, and apoptosis. In addition, luteolin suppressed tumor growth in vivo. A higher expression of Notch1 correlated with a poor overall survival and a poor time to first progression. Furthermore, co-immunoprecipitation analysis revealed that activated Notch1 and β-catenin formed a complex and regulated cell proliferation, migration, and invasion. CONCLUSIONS In this study, GC progression was inhibited by luteolin through suppressing Notch1 signaling and reversing EMT, suggesting that luteolin may serve as an effective anti-tumor drug in GC treatment.
Collapse
Affiliation(s)
- Ming-de Zang
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 People’s Republic of China
| | - Lei Hu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 People’s Republic of China
| | - Zhi-yuan Fan
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 People’s Republic of China
| | - He-xiao Wang
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 People’s Republic of China
| | - Zheng-lun Zhu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 People’s Republic of China
| | - Shu Cao
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 People’s Republic of China
| | - Xiong-yan Wu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 People’s Republic of China
| | - Jian-fang Li
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 People’s Republic of China
| | - Li-ping Su
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 People’s Republic of China
| | - Chen Li
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 People’s Republic of China
| | - Zheng-gang Zhu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 People’s Republic of China
| | - Min Yan
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 People’s Republic of China
| | - Bing-ya Liu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 People’s Republic of China
| |
Collapse
|
57
|
Abstract
Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.
Collapse
Affiliation(s)
- Tan Boon Toh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jhin Jieh Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational Medicine, National University of Singapore, 14 Medical Drive #12-01, Singapore, 117599 Singapore
| |
Collapse
|
58
|
Smith NR, Davies PS, Levin TG, Gallagher AC, Keene DR, Sengupta SK, Wieghard N, El Rassi E, Wong MH. Cell Adhesion Molecule CD166/ALCAM Functions Within the Crypt to Orchestrate Murine Intestinal Stem Cell Homeostasis. Cell Mol Gastroenterol Hepatol 2017; 3:389-409. [PMID: 28462380 PMCID: PMC5404029 DOI: 10.1016/j.jcmgh.2016.12.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 12/04/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Intestinal epithelial homeostasis is maintained by active-cycling and slow-cycling stem cells confined within an instructive crypt-based niche. Exquisite regulating of these stem cell populations along the proliferation-to-differentiation axis maintains a homeostatic balance to prevent hyperproliferation and cancer. Although recent studies focus on how secreted ligands from mesenchymal and epithelial populations regulate intestinal stem cells (ISCs), it remains unclear what role cell adhesion plays in shaping the regulatory niche. Previously we have shown that the cell adhesion molecule and cancer stem cell marker, CD166/ALCAM (activated leukocyte cell adhesion molecule), is highly expressed by both active-cycling Lgr5+ ISCs and adjacent Paneth cells within the crypt base, supporting the hypothesis that CD166 functions to mediate ISC maintenance and signal coordination. METHODS Here we tested this hypothesis by analyzing a CD166-/- mouse combined with immunohistochemical, flow cytometry, gene expression, and enteroid culture. RESULTS We found that animals lacking CD166 expression harbored fewer active-cycling Lgr5+ ISCs. Homeostasis was maintained by expansion of the transit-amplifying compartment and not by slow-cycling Bmi1+ ISC stimulation. Loss of active-cycling ISCs was coupled with deregulated Paneth cell homeostasis, manifested as increased numbers of immature Paneth progenitors due to decreased terminal differentiation, linked to defective Wnt signaling. CD166-/- Paneth cells expressed reduced Wnt3 ligand expression and depleted nuclear β-catenin. CONCLUSIONS These data support a function for CD166 as an important cell adhesion molecule that shapes the signaling microenvironment by mediating ISC-niche cell interactions. Furthermore, loss of CD166 expression results in decreased ISC and Paneth cell homeostasis and an altered Wnt microenvironment.
Collapse
Key Words
- BrdU, bromodeoxyuridine
- CD166
- CLEM, correlative light and electron microscopy
- FACS, fluorescence-activated cell sorting
- FITC, fluorescein isothiocyanate
- GFP, green fluorescent protein
- HBSS, Hank’s balanced salt solution
- Homeostasis
- IHC, immunohistochemistry
- ISC, intestinal stem cell
- Intestinal Stem Cell
- Lyz, lysozyme
- Muc2, mucin 2
- Paneth Cell
- SEM, standard error of the mean
- Stem Cell Niche
- TA, transit-amplifying
- TEM, transmission electron microscopy
- WT, wild-type
- qRT-PCR, quantitative reverse transcription polymerase chain reaction
Collapse
Affiliation(s)
- Nicholas R. Smith
- Department of Cell, Developmental and Cancer Biology and Oregon Health & Science University, Portland, OR 97239, USA
| | - Paige S. Davies
- Department of Cell, Developmental and Cancer Biology and Oregon Health & Science University, Portland, OR 97239, USA
| | - Trevor G. Levin
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Alexandra C. Gallagher
- Department of Cell, Developmental and Cancer Biology and Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Sidharth K. Sengupta
- Department of Cell, Developmental and Cancer Biology and Oregon Health & Science University, Portland, OR 97239, USA
| | - Nikki Wieghard
- Department of Surgery, Oregon Health & Science University, Portland, Oregon
| | - Edward El Rassi
- Department of Otolaryngology, Oregon Health & Science University, Portland, Oregon
| | - Melissa H. Wong
- Department of Cell, Developmental and Cancer Biology and Oregon Health & Science University, Portland, OR 97239, USA,OHSU Stem Cell Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon,Correspondence Address correspondence to: Melissa H. Wong, PhD, Oregon Health & Science University, Department of Cell, Developmental and Cancer Biology, 3181 SW Sam Jackson Park Road, Mail Code L215, Portland, Oregon 97239. fax: (503) 494-4253.Oregon Health & Science UniversityDepartment of CellDevelopmental and Cancer Biology3181 SW Sam Jackson Park RoadMail Code L215PortlandOregon 97239
| |
Collapse
|
59
|
Badenes M, Trindade A, Pissarra H, Lopes-da-Costa L, Duarte A. Delta-like 4/Notch signaling promotes Apc Min/+ tumor initiation through angiogenic and non-angiogenic related mechanisms. BMC Cancer 2017; 17:50. [PMID: 28086833 PMCID: PMC5237288 DOI: 10.1186/s12885-016-3036-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 12/27/2016] [Indexed: 01/27/2023] Open
Abstract
Background Delta like 4 (Dll4)/Notch signaling is a key regulator of tumor angiogenesis. Additionally, the role of Dll4 has been studied on tumor stem cells. However, as these cells are implicated in tumor angiogenesis, it is conceivable that the effect of Dll4 on these cells may be a consequence of its angiogenic function. Our aim was to evaluate the expression and dissect the functions of Dll4 in the ApcMin/+ model of colorectal cancer. Methods We evaluated the protein expression pattern of Dll4 and other Notch members in the ApcMin/+ tumors relatively to the normal gut and compared endothelial-specific with ubiquitous Dll4 knockout mice on an ApcMin/+ background. Results All Notch pathway members were present in the normal small and large intestine and in the adenomas of the same regions. Dll4, all Notch receptors and Hes1 expression seemed upregulated in the tumors, with some regional differences. The same members and Hes5, instead of Hes1, presented ectopic expression in the tumor parenchyma. Dll4 expression was most pronounced in the tumor cells but it was also present in the tumor blood vessels and in other stromal cells. Ubiquitous and endothelial-specific Dll4 deletion led to an equivalent reduction of tumor growth because of a similarly marked tumoral angiogenic phenotype promoting non-productive vasculature and consequently hypoxia and apoptosis. The ubiquitous Dll4 inhibition led to a stronger decrease of tumor multiplicity than the endothelial-specific deletion by further reducing tumor proliferation and tumor stem cell density through upregulation of the cyclin-dependent kinase inhibitors 1C and 1B and downregulation of Myc, Cyclin D1 and D2 independently of β-catenin activation. This phenotype was associated to the observed increased epithelial differentiation deviated towards the secretory lineages by Atoh1 and Klf4 upregulation only in the ubiquitous Dll4 mutants. Conclusions Dll4 seems to promote ApcMin/+ tumorigenesis through both angiogenic and non-angiogenic related mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-3036-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marina Badenes
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), University of Lisbon, Lisbon, Portugal
| | - Alexandre Trindade
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), University of Lisbon, Lisbon, Portugal
| | - Hugo Pissarra
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), University of Lisbon, Lisbon, Portugal
| | - Luís Lopes-da-Costa
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), University of Lisbon, Lisbon, Portugal
| | - António Duarte
- Centro Interdisciplinar de Investigação em Sanidade Animal (CIISA), University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
60
|
Goldstein BJ, Goss GM, Choi R, Saur D, Seidler B, Hare JM, Chaudhari N. Contribution of Polycomb group proteins to olfactory basal stem cell self-renewal in a novel c-KIT+ culture model and in vivo. Development 2016; 143:4394-4404. [PMID: 27789621 DOI: 10.1242/dev.142653] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 10/18/2016] [Indexed: 01/14/2023]
Abstract
Olfactory epithelium (OE) has a lifelong capacity for neurogenesis due to the presence of basal stem cells. Despite the ability to generate short-term cultures, the successful in vitro expansion of purified stem cells from adult OE has not been reported. We sought to establish expansion-competent OE stem cell cultures to facilitate further study of the mechanisms and cell populations important in OE renewal. Successful cultures were prepared using adult mouse basal cells selected for expression of c-KIT. We show that c-KIT signaling regulates self-renewal capacity and prevents neurodifferentiation in culture. Inhibition of TGFβ family signaling, a known negative regulator of embryonic basal cells, is also necessary for maintenance of the proliferative, undifferentiated state in vitro Characterizing successful cultures, we identified expression of BMI1 and other Polycomb proteins not previously identified in olfactory basal cells but known to be essential for self-renewal in other stem cell populations. Inducible fate mapping demonstrates that BMI1 is expressed in vivo by multipotent OE progenitors, validating our culture model. These findings provide mechanistic insights into the renewal and potency of olfactory stem cells.
Collapse
Affiliation(s)
- Bradley J Goldstein
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA .,Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Program in Neurosciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Garrett M Goss
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rhea Choi
- MD, PhD Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Dieter Saur
- Department of Internal Medicine, Technical University of Munich, 80333 Munich, Germany
| | - Barbara Seidler
- Department of Internal Medicine, Technical University of Munich, 80333 Munich, Germany
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Nirupa Chaudhari
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Program in Neurosciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
61
|
Meneses AMC, Schneeberger K, Kruitwagen HS, Penning LC, van Steenbeek FG, Burgener IA, Spee B. Intestinal Organoids-Current and Future Applications. Vet Sci 2016; 3:vetsci3040031. [PMID: 29056739 PMCID: PMC5606586 DOI: 10.3390/vetsci3040031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/19/2016] [Accepted: 10/19/2016] [Indexed: 12/11/2022] Open
Abstract
Recent technical advances in the stem cell field have enabled the in vitro generation of complex structures resembling whole organs termed organoids. Most of these approaches employ culture systems that allow stem cell-derived or tissue progenitor cells to self-organize into three-dimensional (3D)-structures. Since organoids can be grown from different species (human, mouse, cat, dog), organs (intestine, kidney, brain, liver), and from patient-derived induced pluripotent stem cells, they create significant prospects for modelling development and diseases, for toxicology and drug discovery studies, and in the field of regenerative medicine. Here, we report on intestinal stem cells, organoid culture, organoid disease modeling, transplantation, specifically covering the current and future uses of this exciting new insight model to the field of veterinary medicine.
Collapse
Affiliation(s)
- Andre M C Meneses
- Institute of Animal Health and Production, Universidade Federal Rural da Amazônia, Avenida Presidente Tancredo Neves 66077-830, Brazil.
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht 3584 CM, The Netherlands.
| | - Kerstin Schneeberger
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht 3584 CM, The Netherlands.
| | - Hedwig S Kruitwagen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht 3584 CM, The Netherlands.
| | - Louis C Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht 3584 CM, The Netherlands.
| | - Frank G van Steenbeek
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht 3584 CM, The Netherlands.
| | - Iwan A Burgener
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht 3584 CM, The Netherlands.
| | - Bart Spee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht 3584 CM, The Netherlands.
| |
Collapse
|
62
|
|
63
|
Abstract
The highly conserved Notch signalling pathway functions in many different developmental and homeostatic processes, which raises the question of how this pathway can achieve such diverse outcomes. With a direct route from the membrane to the nucleus, the Notch pathway has fewer opportunities for regulation than do many other signalling pathways, yet it generates exquisitely patterned structures, including sensory hair cells and branched arterial networks. More confusingly, its activity promotes tissue growth and cancers in some circumstances but cell death and tumour suppression in others. Many different regulatory mechanisms help to shape the activity of the Notch pathway, generating functional outputs that are appropriate for each context. These mechanisms include the receptor-ligand landscape, the tissue topology, the nuclear environment and the connectivity of the regulatory networks.
Collapse
Affiliation(s)
- Sarah J Bray
- Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
64
|
Xiao X, Li N, Zhang D, Yang B, Guo H, Li Y. Generation of Induced Pluripotent Stem Cells with Substitutes for Yamanaka's Four Transcription Factors. Cell Reprogram 2016; 18:281-297. [PMID: 27696909 DOI: 10.1089/cell.2016.0020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) share many characteristics with embryonic stem cells, but lack ethical controversy. They provide vast opportunities for disease modeling, pathogenesis understanding, therapeutic drug development, toxicology, organ synthesis, and treatment of degenerative disease. However, this procedure also has many potential challenges, including a slow generation time, low efficiency, partially reprogrammed colonies, as well as somatic coding mutations in the genome. Pioneered by Shinya Yamanaka's team in 2006, iPSCs were first generated by introducing four transcription factors: Oct 4, Sox 2, Klf 4, and c-Myc (OSKM). Of those factors, Klf 4 and c-Myc are oncogenes, which are potentially a tumor risk. Therefore, to avoid problems such as tumorigenesis and low throughput, one of the key strategies has been to use other methods, including members of the same subgroup of transcription factors, activators or inhibitors of signaling pathways, microRNAs, epigenetic modifiers, or even differentiation-associated factors, to functionally replace the reprogramming transcription factors. In this study, we will mainly focus on the advances in the generation of iPSCs with substitutes for OSKM. The identification and combination of novel proteins or chemicals, particularly small molecules, to induce pluripotency will provide useful tools to discover the molecular mechanisms governing reprogramming and ultimately lead to the development of new iPSC-based therapeutics for future clinical applications.
Collapse
Affiliation(s)
- Xiong Xiao
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China .,2 Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Nan Li
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China
| | - Dapeng Zhang
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China
| | - Bo Yang
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China
| | - Hongmei Guo
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China
| | - Yuemin Li
- 1 College of Animal Science and Technology, Southwest University , Chongqing, China
| |
Collapse
|
65
|
Smither BR, Pang HYM, Brubaker PL. Glucagon-Like Peptide-2 Requires a Full Complement of Bmi-1 for Its Proliferative Effects in the Murine Small Intestine. Endocrinology 2016; 157:2660-70. [PMID: 27187177 DOI: 10.1210/en.2016-1127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The intestinal hormone, glucagon-like peptide-2 (GLP-2), stimulates growth, survival, and function of the intestinal epithelium through increased crypt cell proliferation, and a long-acting analog has recently been approved to enhance intestinal capacity in patients with short bowel syndrome. The goal of the present study was to determine whether GLP-2-induced crypt cell proliferation requires a full complement of B-cell lymphoma Moloney murine leukemia virus insertion region-1 homolog (Bmi-1), using the Bmi-1(eGFP/+) mouse model in comparison with age- and sex-matched Bmi-1(+/+) littermates. Bmi-1 is a member of the polycomb-repressive complex family that promotes stem cell proliferation and self-renewal and is expressed by both stem cells and transit-amplifying (TA) cells in the crypt. The acute (6 h) and chronic (11 d) proliferative responses to long-acting human (Gly(2))GLP-2 in the crypt TA zone, but not in the active or reserve stem cell zones, were both impaired by Bmi-1 haploinsufficiency. Similarly, GLP-2-induced crypt regeneration after 10-Gy irradiation was reduced in the Bmi-1(eGFP/+) animals. Despite these findings, chronic GLP-2 treatment enhanced overall intestinal growth in the Bmi-1(eGFP/+) mice, as demonstrated by increases in small intestinal weight per body weight and in the length of the crypt-villus axis, in association with decreased apoptosis and an adaptive increase in crypt epithelial cell migration rate. The results of these studies therefore demonstrate that a full complement of Bmi-1 is required for the intestinal proliferative effects of GLP-2 in both the physiological and pathological setting, and mediates, at least in part, the proliferation kinetics of cells in the TA zone.
Collapse
Affiliation(s)
- Bradley R Smither
- Departments of Physiology (B.R.S., H.Y.M.P., P.L.B.) and Medicine (P.L.B.), University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Hilary Y M Pang
- Departments of Physiology (B.R.S., H.Y.M.P., P.L.B.) and Medicine (P.L.B.), University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Patricia L Brubaker
- Departments of Physiology (B.R.S., H.Y.M.P., P.L.B.) and Medicine (P.L.B.), University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
66
|
Demitrack ES, Samuelson LC. Notch regulation of gastrointestinal stem cells. J Physiol 2016; 594:4791-803. [PMID: 26848053 DOI: 10.1113/jp271667] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/19/2016] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) tract epithelium is continuously replenished by actively cycling stem and progenitor cells. These cell compartments are regulated to balance proliferation and stem cell renewal with differentiation into the various mature cell types to maintain tissue homeostasis. In this topical review we focus on the role of the Notch signalling pathway to regulate GI stem cell function in adult small intestine and stomach. We first present the current view of stem and progenitor cell populations in these tissues and then summarize the studies that have established the Notch pathway as a key regulator of gastric and intestinal stem cell function. Notch signalling has been shown to be a niche factor required for maintenance of GI stem cells in both tissues. In addition, Notch has been described to regulate epithelial cell differentiation. Recent studies have revealed key similarities and differences in how Notch regulates stem cell function in the stomach compared to intestine. We summarize the literature regarding Notch regulation of GI stem cell proliferation and differentiation, highlighting tissue-specific functions to compare and contrast Notch in the stomach and intestine.
Collapse
Affiliation(s)
- Elise S Demitrack
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Linda C Samuelson
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
67
|
Aloia L, McKie MA, Huch M. Cellular plasticity in the adult liver and stomach. J Physiol 2016; 594:4815-25. [PMID: 27028579 DOI: 10.1113/jp271769] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/21/2016] [Indexed: 12/21/2022] Open
Abstract
Adult tissues maintain function and architecture through robust homeostatic mechanisms mediated by self-renewing cells capable of generating all resident cell types. However, severe injury can challenge the regeneration potential of such a stem/progenitor compartment. Indeed, upon injury adult tissues can exhibit massive cellular plasticity in order to achieve proper tissue regeneration, circumventing an impaired stem/progenitor compartment. Several examples of such plasticity have been reported in both rapidly and slowly self-renewing organs and follow conserved mechanisms. Upon loss of the cellular compartment responsible for maintaining homeostasis, quiescent or slowly proliferating stem/progenitor cells can acquire high proliferation potential and turn into active stem cells, or, alternatively, mature cells can de-differentiate into stem-like cells or re-enter the cell cycle to compensate for the tissue loss. This extensive cellular plasticity acts as a key mechanism to respond to multiple stimuli in a context-dependent manner, enabling tissue regeneration in a robust fashion. In this review cellular plasticity in the adult liver and stomach will be examined, highlighting the diverse cell populations capable of repairing the damaged tissue.
Collapse
Affiliation(s)
- Luigi Aloia
- Wellcome Trust/Cancer Research UK - Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Mikel Alexander McKie
- Wellcome Trust/Cancer Research UK - Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Meritxell Huch
- Wellcome Trust/Cancer Research UK - Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.,Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| |
Collapse
|
68
|
Gekas C, D'Altri T, Aligué R, González J, Espinosa L, Bigas A. β-Catenin is required for T-cell leukemia initiation and MYC transcription downstream of Notch1. Leukemia 2016; 30:2002-2010. [PMID: 27125305 DOI: 10.1038/leu.2016.106] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 12/30/2022]
Abstract
Notch activation is instrumental in the development of most T-cell acute lymphoblastic leukemia (T-ALL) cases, yet Notch mutations alone are not sufficient to recapitulate the full human disease in animal models. We here found that Notch1 activation at the fetal liver (FL) stage expanded the hematopoietic progenitor population and conferred it transplantable leukemic-initiating capacity. However, leukemogenesis and leukemic-initiating cell capacity induced by Notch1 was critically dependent on the levels of β-Catenin in both FL and adult bone marrow contexts. In addition, inhibition of β-Catenin compromised survival and proliferation of human T-ALL cell lines carrying activated Notch1. By transcriptome analyses, we identified the MYC pathway as a crucial element downstream of β-Catenin in these T-ALL cells and demonstrate that the MYC 3' enhancer required β-Catenin and Notch1 recruitment to induce transcription. Finally, PKF115-584 treatment prevented and partially reverted leukemogenesis induced by active Notch1.
Collapse
Affiliation(s)
- C Gekas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - T D'Altri
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - R Aligué
- Department of Cell Biology, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - J González
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - L Espinosa
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - A Bigas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| |
Collapse
|
69
|
Srinivasan T, Walters J, Bu P, Than EB, Tung KL, Chen KY, Panarelli N, Milsom J, Augenlicht L, Lipkin SM, Shen X. NOTCH Signaling Regulates Asymmetric Cell Fate of Fast- and Slow-Cycling Colon Cancer-Initiating Cells. Cancer Res 2016; 76:3411-21. [PMID: 27197180 DOI: 10.1158/0008-5472.can-15-3198] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/30/2016] [Indexed: 01/01/2023]
Abstract
Colorectal cancer cells with stem-like properties, referred to as colon cancer-initiating cells (CCIC), have high tumorigenic potential. While CCIC can differentiate to promote cellular heterogeneity, it remains unclear whether CCIC within a tumor contain distinct subpopulations. Here, we describe the co-existence of fast- and slow-cycling CCIC, which can undergo asymmetric division to generate each other, highlighting CCIC plasticity and interconvertibility. Fast-cycling CCIC express markers, such as LGR5 and CD133, rely on MYC for their proliferation, whereas slow-cycling CCIC express markers, such as BMI1 and hTERT, are independent of MYC. NOTCH signaling promotes asymmetric cell fate, regulating the balance between these two populations. Overall, our results illuminate the basis for CCIC heterogeneity and plasticity by defining a direct interconversion mechanism between slow- and fast-cycling CCIC. Cancer Res; 76(11); 3411-21. ©2016 AACR.
Collapse
Affiliation(s)
- Tara Srinivasan
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Jewell Walters
- Departments of Medicine, Genetic Medicine Surgery and Pathology, Weill Cornell Medical College, New York, New York
| | - Pengcheng Bu
- Department of Biomedical Engineering, Cornell University, Ithaca, New York. School of Electrical and Computer Engineering, Cornell University, Ithaca, New York
| | - Elaine Bich Than
- Departments of Medicine, Genetic Medicine Surgery and Pathology, Weill Cornell Medical College, New York, New York
| | - Kuei-Ling Tung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York
| | - Kai-Yuan Chen
- School of Electrical and Computer Engineering, Cornell University, Ithaca, New York
| | - Nicole Panarelli
- Departments of Medicine, Genetic Medicine Surgery and Pathology, Weill Cornell Medical College, New York, New York
| | - Jeff Milsom
- Departments of Medicine, Genetic Medicine Surgery and Pathology, Weill Cornell Medical College, New York, New York
| | - Leonard Augenlicht
- Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Steven M Lipkin
- Departments of Medicine, Genetic Medicine Surgery and Pathology, Weill Cornell Medical College, New York, New York.
| | - Xiling Shen
- Department of Biomedical Engineering, Cornell University, Ithaca, New York. School of Electrical and Computer Engineering, Cornell University, Ithaca, New York. Department of Biomedical Engineering, Duke University, Durham, North Carolina.
| |
Collapse
|
70
|
Vascular Endothelial Growth Factor (VEGF) Bioavailability Regulates Angiogenesis and Intestinal Stem and Progenitor Cell Proliferation during Postnatal Small Intestinal Development. PLoS One 2016; 11:e0151396. [PMID: 26978773 PMCID: PMC4792464 DOI: 10.1371/journal.pone.0151396] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 02/26/2016] [Indexed: 02/06/2023] Open
Abstract
Background Vascular endothelial growth factor (VEGF) is a highly conserved, master regulatory molecule required for endothelial cell proliferation, organization, migration and branching morphogenesis. Podocoryne carnea and drosophila, which lack endothelial cells and a vascular system, express VEGF homologs, indicating potential roles beyond angiogenesis and vasculogenesis. The role of VEGF in the development and homeostasis of the postnatal small intestine is unknown. We hypothesized regulating VEGF bioavailability in the postnatal small intestine would exhibit effects beyond the vasculature and influence epithelial cell stem/progenitor populations. Methods VEGF mutant mice were created that overexpressed VEGF in the brush border of epithelium via the villin promotor following doxycycline treatment. To decrease VEGF bioavailability, sFlt-1 mutant mice were generated that overexpressed the soluble VEGF receptor sFlt-1 upon doxycycline administration in the intestinal epithelium. Mice were analyzed after 21 days of doxycycline administration. Results Increased VEGF expression was confirmed by RT-qPCR and ELISA in the intestine of the VEGF mutants compared to littermates. The VEGF mutant duodenum demonstrated increased angiogenesis and vascular leak as compared to littermate controls. The VEGF mutant duodenum revealed taller villi and increased Ki-67-positive cells in the transit-amplifying zone with reduced Lgr5 expression. The duodenum of sFlt-1 mutants revealed shorter villi and longer crypts with reduced proliferation in the transit-amplifying zone, reduced expression of Dll1, Bmp4 and VE-cadherin, and increased expression of Sox9 and EphB2. Conclusions Manipulating VEGF bioavailability leads to profound effects on not only the intestinal vasculature, but epithelial stem and progenitor cells in the intestinal crypt. Elucidation of the crosstalk between VEGF signaling in the vasculature, mesenchyme and epithelial stem/progenitor cell populations may direct future cell therapies for intestinal dysfunction or disease.
Collapse
|
71
|
Chen Y, Tsai YH, Tseng SH. Selenite Stimulates the Proliferation of Intestinal Stem Cells With Elevated Antioxidative Activity. Transplant Proc 2016; 48:507-11. [DOI: 10.1016/j.transproceed.2015.10.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 10/21/2015] [Indexed: 02/07/2023]
|
72
|
Lu X, Sun S, Qi J, Li W, Liu L, Zhang Y, Chen Y, Zhang S, Wang L, Miao D, Chai R, Li H. Bmi1 Regulates the Proliferation of Cochlear Supporting Cells Via the Canonical Wnt Signaling Pathway. Mol Neurobiol 2016; 54:1326-1339. [PMID: 26843109 DOI: 10.1007/s12035-016-9686-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/05/2016] [Indexed: 01/11/2023]
Abstract
Cochlear supporting cells (SCs), which include the cochlear progenitor cells, have been shown to be a promising resource for hair cell (HC) regeneration, but the mechanisms underlying the initiation and regulation of postnatal cochlear SC proliferation are not yet fully understood. Bmi1 is a member of the Polycomb protein family and has been reported to regulate the proliferation of stem cells and progenitor cells in multiple organs. In this study, we investigated the role of Bmi1 in regulating SC and progenitor cell proliferation in neonatal mice cochleae. We first showed that knockout of Bmi1 significantly inhibited the proliferation of SCs and Lgr5-positive progenitor cells after neomycin injury in neonatal mice in vitro, and we then showed that Bmi1 deficiency significantly reduced the sphere-forming ability of the organ of Corti and Lgr5-positive progenitor cells in neonatal mice. These results suggested that Bmi1 is required for the initiation of SC and progenitor cell proliferation in neonatal mice. Next, we found that DKK1 expression was significantly upregulated, while beta-catenin and Lgr5 expression were significantly downregulated in neonatal Bmi1-/- mice compared to wild-type controls. The observation that Bmi1 knockout downregulates Wnt signaling provides compelling evidence that Bmi1 is required for the Wnt signaling pathway. Furthermore, the exogenous Wnt agonist BIO overcame the downregulation of SC proliferation in Bmi1-/- mice, suggesting that Bmi1 knockout might inhibit the proliferation of SCs via downregulation of the canonical Wnt signaling pathway. Our findings demonstrate that Bmi1 plays an important role in regulating the proliferation of cochlear SCs and Lgr5-positive progenitor cells in neonatal mice through the Wnt signaling pathway, and this suggests that Bmi1 might be a new therapeutic target for HC regeneration.
Collapse
Affiliation(s)
- Xiaoling Lu
- Department of Otorhinolaryngology and Hearing Research Institute of Affiliated Eye and ENT Hospital, State Key Laboratory of Medicine Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Shan Sun
- Department of Otorhinolaryngology and Hearing Research Institute of Affiliated Eye and ENT Hospital, State Key Laboratory of Medicine Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Jieyu Qi
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Wenyan Li
- Department of Otorhinolaryngology and Hearing Research Institute of Affiliated Eye and ENT Hospital, State Key Laboratory of Medicine Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Liman Liu
- Department of Otorhinolaryngology and Hearing Research Institute of Affiliated Eye and ENT Hospital, State Key Laboratory of Medicine Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Yanping Zhang
- Department of Otorhinolaryngology and Hearing Research Institute of Affiliated Eye and ENT Hospital, State Key Laboratory of Medicine Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Yan Chen
- Department of Otorhinolaryngology and Hearing Research Institute of Affiliated Eye and ENT Hospital, State Key Laboratory of Medicine Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Shasha Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Lei Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, Research Center for Bone and Stem Cells, Department of Human Anatomy, Nanjing Medical University, Nanjing, 210096, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Huawei Li
- Department of Otorhinolaryngology and Hearing Research Institute of Affiliated Eye and ENT Hospital, State Key Laboratory of Medicine Neurobiology, Fudan University, Room 611, Building 9, No. 83, Fenyang Road, Xuhui District, Shanghai, 200031, China. .,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
73
|
Richmond CA, Shah MS, Carlone DL, Breault DT. Factors regulating quiescent stem cells: insights from the intestine and other self-renewing tissues. J Physiol 2016; 594:4805-13. [PMID: 26670741 DOI: 10.1113/jp271653] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/10/2015] [Indexed: 01/06/2023] Open
Abstract
Long-lived and self-renewing adult stem cells (SCs) are essential for homeostasis in a wide range of tissues and can include both rapidly cycling and quiescent (q)SC populations. Rapidly cycling SCs function principally during normal tissue maintenance and are highly sensitive to stress, whereas qSCs exit from their quiescent state in response to homeostatic imbalance and regenerative pressure. The regulatory mechanisms underlying the quiescent state include factors essential for cell cycle control, stress response and survival pathways, developmental signalling pathways, and post-transcriptional modulation. Here, we review these regulatory mechanisms citing observations from the intestine and other self-renewing tissues.
Collapse
|
74
|
A Novel Aspect of Tumorigenesis-BMI1 Functions in Regulating DNA Damage Response. Biomolecules 2015; 5:3396-415. [PMID: 26633535 PMCID: PMC4693283 DOI: 10.3390/biom5043396] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/23/2015] [Accepted: 11/26/2015] [Indexed: 12/27/2022] Open
Abstract
BMI1 plays critical roles in maintaining the self-renewal of hematopoietic, neural, intestinal stem cells, and cancer stem cells (CSCs) for a variety of cancer types. BMI1 promotes cell proliferative life span and epithelial to mesenchymal transition (EMT). Upregulation of BMI1 occurs in multiple cancer types and is associated with poor prognosis. Mechanistically, BMI1 is a subunit of the Polycomb repressive complex 1 (PRC1), and binds the catalytic RING2/RING1b subunit to form a functional E3 ubiquitin ligase. Through mono-ubiquitination of histone H2A at lysine 119 (H2A-K119Ub), BMI1 represses multiple gene loci; among these, the INK4A/ARF locus has been most thoroughly investigated. The locus encodes the p16INK4A and p14/p19ARF tumor suppressors that function in the pRb and p53 pathways, respectively. Its repression contributes to BMI1-derived tumorigenesis. BMI1 also possesses other oncogenic functions, specifically its regulative role in DNA damage response (DDR). In this process, BMI1 ubiquitinates histone H2A and γH2AX, thereby facilitating the repair of double-stranded DNA breaks (DSBs) through stimulating homologous recombination and non-homologous end joining. Additionally, BMI1 compromises DSB-induced checkpoint activation independent of its-associated E3 ubiquitin ligase activity. We review the emerging role of BMI1 in DDR regulation and discuss its impact on BMI1-derived tumorigenesis.
Collapse
|
75
|
Booth C, Tudor GL, Katz BP, MacVittie TJ. The Delayed Effects of Acute Radiation Syndrome: Evidence of Long-Term Functional Changes in the Clonogenic Cells of the Small Intestine. HEALTH PHYSICS 2015; 109:399-413. [PMID: 26425901 PMCID: PMC4593311 DOI: 10.1097/hp.0000000000000356] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Long term or residual damage post-irradiation has been described for many tissues. In hematopoietic stem cells (HSC), this is only revealed when the HSC are stressed and required to regenerate and repopulate a myeloablated host. Such an assay cannot be used to assess the recovery potential of previously irradiated intestinal stem cells (ISC) due to their incompatibility with transplantation. The best approximation to the HSC assay is the crypt microcolony assay, also based on clonogen survival. In the current study, the regenerative capacity of intestinal clonogenic cells in mice that had survived 13 Gy irradiation (with 5% bone marrow shielding to allow survival through the hematopoietic syndrome) and were then aged for 200 d was compared to previously unirradiated age-matched controls. Interestingly, at 200 d following 13 Gy, there remained a statistically significant reduction in crypts present in the various small intestinal regions (illustrating that the gastrointestinal epithelium had not fully recovered despite the 200-d interval). However, upon re-irradiation on day 196, those mice previously irradiated had improved crypt survival and regeneration compared to the age-matched controls. This was evident in all regions of the small intestine following 11-13 Gy re-exposure. Thus, there were either more clonogens per crypt within those previously irradiated and/or those that were present were more radioresistant (possibly because a subpopulation was more quiescent). This is contrary to the popular belief that previously irradiated animals may have an impaired/delayed regenerative response and be more radiosensitive.
Collapse
Affiliation(s)
- Catherine Booth
- *Epistem Ltd, Manchester, UK; †Indiana University, School of Medicine, Department of Biostatistics, Indianapolis, IN; ‡University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | | | | | | |
Collapse
|
76
|
Notch signaling: an emerging therapeutic target for cancer treatment. Cancer Lett 2015; 369:20-7. [PMID: 26341688 DOI: 10.1016/j.canlet.2015.07.048] [Citation(s) in RCA: 298] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 12/14/2022]
Abstract
The Notch pathway is involved in cell proliferation, differentiation and survival. The Notch signaling pathway is one of the most commonly activated signaling pathways in cancer. Alterations include activating mutations and amplification of the Notch pathway, which play key roles in the progression of cancer. Accumulating evidence suggests that the pharmacological inhibition of this pathway can overcome chemoresistance. Efforts have been taken to develop Notch inhibitors as a single agent or in combination with clinically used chemotherapeutics to treat cancer. Some Notch inhibitors have been demonstrated to have therapeutic efficacy in preclinical studies. This review summarizes the recent studies and clinical evaluations of the Notch inhibitors in cancer.
Collapse
|