51
|
Casad ME, Yu L, Daniels JP, Wolf MJ, Rockman HA. Deletion of Siah-interacting protein gene in Drosophila causes cardiomyopathy. Mol Genet Genomics 2012; 287:351-60. [PMID: 22398840 DOI: 10.1007/s00438-012-0684-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/22/2012] [Indexed: 01/18/2023]
Abstract
Drosophila is a useful model organism in which the genetics of human diseases, including recent advances in identification of the genetics of heart development and disease in the fly, can be studied. To identify novel genes that cause cardiomyopathy, we performed a deficiency screen in adult Drosophila. Using optical coherence tomography to phenotype cardiac function in awake adult Drosophila, we identified Df(1)Exel6240 as having cardiomyopathy. Using a number of strategies including customized smaller deletions, screening of mutant alleles, and transgenic rescue, we identified CG3226 as the causative gene for this deficiency. CG3226 is an uncharacterized gene in Drosophila possessing homology to the mammalian Siah-interacting protein (SIP) gene. Mammalian SIP functions as an adaptor protein involved in one of the β-catenin degradation complexes. To investigate the effects of altering β-catenin/Armadillo signaling in the adult fly, we measured heart function in flies expressing either constitutively active Armadillo or transgenic constructs that block Armadillo signaling, specifically in the heart. While, increasing Armadillo signaling in the heart did not have an effect on adult heart function, decreasing Armadillo signaling in the fly heart caused the significant reduction in heart chamber size. In summary, we show that deletion of CG3226, which has homology to mammalian SIP, causes cardiomyopathy in adult Drosophila. Alterations in Armadillo signaling during development lead to important changes in the size and function of the adult heart.
Collapse
Affiliation(s)
- Michelle E Casad
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
52
|
The role of glypicans in Wnt inhibitory factor-1 activity and the structural basis of Wif1's effects on Wnt and Hedgehog signaling. PLoS Genet 2012; 8:e1002503. [PMID: 22383891 PMCID: PMC3285576 DOI: 10.1371/journal.pgen.1002503] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 12/11/2011] [Indexed: 01/03/2023] Open
Abstract
Proper assignment of cellular fates relies on correct interpretation of Wnt and Hedgehog (Hh) signals. Members of the Wnt Inhibitory Factor-1 (WIF1) family are secreted modulators of these extracellular signaling pathways. Vertebrate WIF1 binds Wnts and inhibits their signaling, but its Drosophila melanogaster ortholog Shifted (Shf) binds Hh and extends the range of Hh activity in the developing D. melanogaster wing. Shf activity is thought to depend on reinforcing interactions between Hh and glypican HSPGs. Using zebrafish embryos and the heterologous system provided by D. melanogaster wing, we report on the contribution of glypican HSPGs to the Wnt-inhibiting activity of zebrafish Wif1 and on the protein domains responsible for the differences in Wif1 and Shf specificity. We show that Wif1 strengthens interactions between Wnt and glypicans, modulating the biphasic action of glypicans towards Wnt inhibition; conversely, glypicans and the glypican-binding “EGF-like” domains of Wif1 are required for Wif1's full Wnt-inhibiting activity. Chimeric constructs between Wif1 and Shf were used to investigate their specificities for Wnt and Hh signaling. Full Wnt inhibition required the “WIF” domain of Wif1, and the HSPG-binding EGF-like domains of either Wif1 or Shf. Full promotion of Hh signaling requires both the EGF-like domains of Shf and the WIF domains of either Wif1 or Shf. That the Wif1 WIF domain can increase the Hh promoting activity of Shf's EGF domains suggests it is capable of interacting with Hh. In fact, full-length Wif1 affected distribution and signaling of Hh in D. melanogaster, albeit weakly, suggesting a possible role for Wif1 as a modulator of vertebrate Hh signaling. In developing organisms, cells choose between alternative fates in order to make appropriately patterned tissues, and misregulation of those choices can underlie both developmental defects and cancers. Cells often make these decisions because of signals received from neighboring cells, such as those mediated by the secreted signaling proteins of the Wnt and Hedgehog (Hh) families. While signaling can be regulated by the levels of signaling or receptor proteins expressed by cells, another level of control is exerted by proteins that bind signaling proteins outside of cells and either inhibit or promote the signaling process. In the fruitfly Drosophilamelanogaster, the secreted Shifted protein has been shown to bind Hh and to increase Hh signaling, likely by reinforcing interactions between Hh and cell surface proteins of the glypican family. We provide evidence that the vertebrate homolog of Shifted, Wnt Inhibitory Factor-1 (Wif1), inhibits Wnt activity by a similar mechanism, reinforcing interactions between Wnts and glypicans in a manner that sequesters Wnts from their receptors. We also examine the structural basis for the specificities of Wif1 and Shifted for Wnt and Hh signaling, respectively, and provide evidence that Wif1, although a potent inhibitor of Wnt activity, influences D. melanogaster Hh signaling.
Collapse
|
53
|
Roberts DM, Pronobis MI, Alexandre KM, Rogers GC, Poulton JS, Schneider DE, Jung KC, McKay DJ, Peifer M. Defining components of the ß-catenin destruction complex and exploring its regulation and mechanisms of action during development. PLoS One 2012; 7:e31284. [PMID: 22359584 PMCID: PMC3281067 DOI: 10.1371/journal.pone.0031284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/05/2012] [Indexed: 11/19/2022] Open
Abstract
Background A subset of signaling pathways play exceptionally important roles in embryonic and post-embryonic development, and mis-regulation of these pathways occurs in most human cancers. One such pathway is the Wnt pathway. The primary mechanism keeping Wnt signaling off in the absence of ligand is regulated proteasomal destruction of the canonical Wnt effector ßcatenin (or its fly homolog Armadillo). A substantial body of evidence indicates that SCFβTrCP mediates βcat destruction, however, an essential role for Roc1 has not been demonstrated in this process, as would be predicted. In addition, other E3 ligases have also been proposed to destroy βcat, suggesting that βcat destruction may be regulated differently in different tissues. Methodology/Principal Findings Here we used cultured Drosophila cells, human colon cancer cells, and Drosophila embryos and larvae to explore the machinery that targets Armadillo for destruction. Using RNAi in Drosophila S2 cells to examine which SCF components are essential for Armadillo destruction, we find that Roc1/Roc1a is essential for regulating Armadillo stability, and that in these cells the only F-box protein playing a detectable role is Slimb. Second, we find that while embryonic and larval Drosophila tissues use the same destruction complex proteins, the response of these tissues to destruction complex inactivation differs, with Armadillo levels more elevated in embryos. We provide evidence consistent with the possibility that this is due to differences in armadillo mRNA levels. Third, we find that there is no correlation between the ability of different APC2 mutant proteins to negatively regulate Armadillo levels, and their recently described function in positively-regulating Wnt signaling. Finally, we demonstrate that APC proteins lacking the N-terminal Armadillo-repeat domain cannot restore Armadillo destruction but retain residual function in negatively-regulating Wnt signaling. Conclusions/Significance We use these data to refine our model for how Wnt signaling is regulated during normal development.
Collapse
Affiliation(s)
- David M. Roberts
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, Franklin and Marshall College, Lancaster, Pennsylvania, United States of America
- * E-mail: (DMR); (MP)
| | - Mira I. Pronobis
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kelly M. Alexandre
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Gregory C. Rogers
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - John S. Poulton
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Daniel E. Schneider
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kuo-Chen Jung
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Daniel J. McKay
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (DMR); (MP)
| |
Collapse
|
54
|
Roles of N-glycosylation and lipidation in Wg secretion and signaling. Dev Biol 2012; 364:32-41. [PMID: 22285813 DOI: 10.1016/j.ydbio.2012.01.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 01/12/2012] [Accepted: 01/12/2012] [Indexed: 12/14/2022]
Abstract
Wnt members act as morphogens essential for embryonic patterning and adult homeostasis. Currently, it is still unclear how Wnt secretion and its gradient formation are regulated. In this study, we examined the roles of N-glycosylation and lipidation/acylation in regulating the activities of Wingless (Wg), the main Drosophila Wnt member. We show that Wg mutant devoid of all the N-glycosylations exhibits no major defects in either secretion or signaling, indicating that N-glycosylation is dispensable for Wg activities. We demonstrate that lipid modification at Serine 239 (S239) rather than that at Cysteine 93 (C93) plays a more important role in regulating Wg signaling in multiple developmental contexts. Wg S239 mutant exhibits a reduced ability to bind its receptor, Drosophila Frizzled 2 (dFz2), suggesting that S239 is involved in the formation of a Wg/receptor complex. Importantly, while single Wg C93 or Wg S239 mutants can be secreted, removal of both acyl groups at C93 and S239 renders Wg incapable of reaching the plasma membrane for secretion. These data argue that lipid modifications at C93 and S239 play major roles in Wg secretion. Further experiments demonstrate that two acyl attachment sites in the Wg protein are required for the interaction of Wg with Wntless (Wls, also known as Evi or Srt), the key cargo receptor involved in Wg secretion. Together, our data demonstrate the in vivo roles of N-glycosylation and lipid modification in Wg secretion and signaling.
Collapse
|
55
|
Bejsovec A, Chao AT. crinkled reveals a new role for Wingless signaling in Drosophila denticle formation. Development 2012; 139:690-8. [PMID: 22219350 DOI: 10.1242/dev.074013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The specification of the body plan in vertebrates and invertebrates is controlled by a variety of cell signaling pathways, but how signaling output is translated into morphogenesis is an ongoing question. Here, we describe genetic interactions between the Wingless (Wg) signaling pathway and a nonmuscle myosin heavy chain, encoded by the crinkled (ck) locus in Drosophila. In a screen for mutations that modify wg loss-of-function phenotypes, we isolated multiple independent alleles of ck. These ck mutations dramatically alter the morphology of the hook-shaped denticles that decorate the ventral surface of the wg mutant larval cuticle. In an otherwise wild-type background, ck mutations do not significantly alter denticle morphology, suggesting a specific interaction with Wg-mediated aspects of epidermal patterning. Here, we show that changing the level of Wg activity changes the structure of actin bundles during denticle formation in ck mutants. We further find that regulation of the Wg target gene, shaven-baby (svb), and of its transcriptional targets, miniature (m) and forked (f), modulates this ck-dependent process. We conclude that Ck acts in concert with Wg targets to orchestrate the proper shaping of denticles in the Drosophila embryonic epidermis.
Collapse
Affiliation(s)
- Amy Bejsovec
- Department of Biology, Duke University, Durham, NC 27708-0338, USA.
| | | |
Collapse
|
56
|
Affiliation(s)
- Hans Bode
- Department of Developmental and Cell Biology, University of California, Irvine, California 92697;
| |
Collapse
|
57
|
Yan, an ETS-domain transcription factor, negatively modulates the Wingless pathway in the Drosophila eye. EMBO Rep 2011; 12:1047-54. [PMID: 21869817 DOI: 10.1038/embor.2011.159] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 01/23/2023] Open
Abstract
We report the identification of yan, an ETS-domain transcription factor belonging to the Drosophila epidermal growth factor receptor (DER) pathway, as an antagonist of the Wingless signalling pathway. We demonstrate that cells lacking yan function in the Drosophila eye show increased Wingless pathway activity, and inhibition of Wingless signalling in yan(-/-) cells rescues the yan mutant phenotype. Biochemical analysis shows that Yan physically associates with Armadillo, a crucial effector of the Wingless pathway, thereby suggesting a direct regulatory mechanism. We conclude that yan represents a new and unsuspected molecular link between the Wingless and DER pathways.
Collapse
|
58
|
Mirkovic I, Gault WJ, Rahnama M, Jenny A, Gaengel K, Bessette D, Gottardi CJ, Verheyen EM, Mlodzik M. Nemo kinase phosphorylates β-catenin to promote ommatidial rotation and connects core PCP factors to E-cadherin-β-catenin. Nat Struct Mol Biol 2011; 18:665-72. [PMID: 21552260 PMCID: PMC3109122 DOI: 10.1038/nsmb.2049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 02/17/2011] [Indexed: 01/13/2023]
Abstract
Frizzled planar cell polarity (PCP) signaling regulates cell motility in several tissues, including ommatidial rotation in Drosophila melanogaster. The Nemo kinase (Nlk in vertebrates) has also been linked to cell-motility regulation and ommatidial rotation but its mechanistic role(s) during rotation remain obscure. We show that nemo functions throughout the entire rotation movement, increasing the rotation rate. Genetic and molecular studies indicate that Nemo binds both the core PCP factor complex of Strabismus-Prickle, as well as the E-cadherin-β-catenin (E-cadherin-Armadillo in Drosophila) complex. These two complexes colocalize and, like Nemo, also promote rotation. Strabismus (also called Vang) binds and stabilizes Nemo asymmetrically within the ommatidial precluster; Nemo and β-catenin then act synergistically to promote rotation, which is mediated in vivo by Nemo's phosphorylation of β-catenin. Our data suggest that Nemo serves as a conserved molecular link between core PCP factors and E-cadherin-β-catenin complexes, promoting cell motility.
Collapse
Affiliation(s)
- Ivana Mirkovic
- Dept. of Developmental & Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - William J. Gault
- Dept. of Developmental & Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Maryam Rahnama
- Dept. of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| | - Andreas Jenny
- Dept. of Developmental & Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Konstantin Gaengel
- Dept. of Developmental & Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Darrell Bessette
- Dept. of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| | - Cara J. Gottardi
- Department of Medicine, Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University, 240 East Huron St., Chicago, IL 60611
| | - Esther M. Verheyen
- Dept. of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| | - Marek Mlodzik
- Dept. of Developmental & Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| |
Collapse
|
59
|
Benchabane H, Xin N, Tian A, Hafler BP, Nguyen K, Ahmed A, Ahmed Y. Jerky/Earthbound facilitates cell-specific Wnt/Wingless signalling by modulating β-catenin-TCF activity. EMBO J 2011; 30:1444-58. [PMID: 21399610 PMCID: PMC3102276 DOI: 10.1038/emboj.2011.67] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 02/10/2011] [Indexed: 12/29/2022] Open
Abstract
Wnt/Wingless signal transduction directs fundamental developmental processes, and upon hyperactivation triggers colorectal adenoma/carcinoma formation. Responses to Wnt stimulation are cell specific and diverse; yet, how cell context modulates Wnt signalling outcome remains obscure. In a Drosophila genetic screen for components that promote Wingless signalling, we identified Earthbound 1 (Ebd1), a novel member in a protein family containing Centromere Binding Protein B (CENPB)-type DNA binding domains. Ebd1 is expressed in only a subset of Wingless responsive cell types, and is required for only a limited number of Wingless-dependent processes. In addition, Ebd1 shares sequence similarity and can be functionally replaced with the human CENPB domain protein Jerky, previously implicated in juvenile myoclonic epilepsy development. Both Jerky and Ebd1 interact directly with the Wnt/Wingless pathway transcriptional co-activators β-catenin/Armadillo and T-cell factor (TCF). In colon carcinoma cells, Jerky facilitates Wnt signalling by promoting association of β-catenin with TCF and recruitment of β-catenin to chromatin. These findings indicate that tissue-restricted transcriptional co-activators facilitate cell-specific Wnt/Wingless signalling responses by modulating β-catenin-TCF activity.
Collapse
Affiliation(s)
- Hassina Benchabane
- Department of Genetics and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH, USA
| | - Nan Xin
- Department of Genetics and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH, USA
| | - Ai Tian
- Department of Genetics and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH, USA
| | - Brian P Hafler
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Kerrie Nguyen
- Department of Genetics and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH, USA
| | - Ayah Ahmed
- Department of Genetics and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH, USA
| | - Yashi Ahmed
- Department of Genetics and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH, USA
| |
Collapse
|
60
|
Giorgianni MW, Mann RS. Establishment of medial fates along the proximodistal axis of the Drosophila leg through direct activation of dachshund by Distalless. Dev Cell 2011; 20:455-68. [PMID: 21497759 PMCID: PMC3087180 DOI: 10.1016/j.devcel.2011.03.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/21/2011] [Accepted: 03/24/2011] [Indexed: 01/28/2023]
Abstract
The proximodistal (PD) axis of the Drosophila leg is thought to be established by the combined gradients of two secreted morphogens, Wingless (Wg) and Decapentaplegic (Dpp). According to this model, high [Wg+Dpp] activates Distalless (Dll) and represses dachshund (dac) in the distal cells of the leg disc, while intermediate [Wg+Dpp] activates dac in medial tissue. To test this model we identified and characterized a dac cis-regulatory element (dac RE) that recapitulates dac's medial expression domain during leg development. Counter to the gradient model, we find that Wg and Dpp do not act in a graded manner to activate RE. Instead, dac RE is activated directly by Dll and repressed distally by a combination of factors, including the homeodomain protein Bar. Thus, medial leg fates are established via a regulatory cascade in which Wg+Dpp activate Dll and then Dll directly activates dac, with Wg+Dpp as less critical, permissive inputs.
Collapse
Affiliation(s)
- Matt W Giorgianni
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
61
|
Crist RC, Roth JJ, Lisanti MP, Siracusa LD, Buchberg AM. Identification of Mom12 and Mom13, two novel modifier loci of Apc (Min) -mediated intestinal tumorigenesis. Cell Cycle 2011; 10:1092-9. [PMID: 21386660 DOI: 10.4161/cc.10.7.15089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer is a heterogeneous disease resulting from a combination of genetic and environmental factors. The C57BL/6J (B6) Apc (Min/+) mouse develops polyps throughout the gastrointestinal tract and has been a valuable model for understanding the genetic basis of intestinal tumorigenesis. Apc (Min/+) mice have been used to study known oncogenes and tumor suppressor genes on a controlled genetic background. These studies often utilize congenic knockout alleles, which can carry an unknown amount of residual donor DNA. The Apc (Min) model has also been used to identify modifer loci, known as Modifier of Min (Mom) loci, which alter Apc (Min) -mediated intestinal tumorigenesis. B6 mice carrying a knockout allele generated in WW6 embryonic stem cells were crossed to B6 Apc (Min/+) mice to determine the effect on polyp multiplicity. The newly generated colony developed significantly more intestinal polyps than Apc (Min/+) controls. Polyp multiplicity did not correlate with inheritance of the knockout allele, suggesting the presence of one or more modifier loci segregating in the colony. Genotyping of simple sequence length polymorphism (SSLP) markers revealed residual 129X1/SvJ genomic DNA within the congenic region of the parental knockout line. An analysis of polyp multiplicity data and SSLP genotyping indicated the presence of two Mom loci in the colony: 1) Mom12, a dominant modifier linked to the congenic region on chromosome 6, and 2) Mom13, which is unlinked to the congenic region and whose effect is masked by Mom12. The identification of Mom12 and Mom13 demonstrates the potential problems resulting from residual heterozygosity present in congenic lines.
Collapse
Affiliation(s)
- Richard C Crist
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA USA
| | | | | | | | | |
Collapse
|
62
|
Muñoz-Descalzo S, Tkocz K, Balayo T, Arias AM. Modulation of the ligand-independent traffic of Notch by Axin and Apc contributes to the activation of Armadillo in Drosophila. Development 2011; 138:1501-6. [PMID: 21389052 DOI: 10.1242/dev.061309] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is increasing evidence for close functional interactions between Wnt and Notch signalling. In many instances, these are mediated by convergence of the signalling events on common transcriptional targets, but there are other instances that cannot be accounted for in this manner. Studies in Drosophila have revealed that an activated form of Armadillo, the effector of Wnt signalling, interacts with, and is modulated by, the Notch receptor. Specifically, the ligand-independent traffic of Notch serves to set up a threshold for the amount of this form of Armadillo and therefore for Wnt signalling. In the current model of Wnt signalling, a complex assembled around Axin and Apc allows GSK3 (Shaggy) to phosphorylate Armadillo and target it for degradation. However, genetic experiments suggest that the loss of function of any of these three elements does not have the same effect as elevating the activity of β-catenin. Here, we show that Axin and Apc, but not GSK3, modulate the ligand-independent traffic of Notch. This finding helps to explain unexpected differences in the phenotypes obtained by different ways of activating Armadillo function and provides further support for the notion that Wnt and Notch signalling form a single functional module.
Collapse
|
63
|
You J, Belenkaya T, Lin X. Sulfated is a negative feedback regulator of wingless in Drosophila. Dev Dyn 2011; 240:640-8. [PMID: 21305649 PMCID: PMC3071797 DOI: 10.1002/dvdy.22562] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2010] [Indexed: 01/21/2023] Open
Abstract
Drosophila Wingless (Wg) acts as a morphogen to control pattern formation in a concentration dependent manner. Previous studies demonstrated important roles of heparan sulfate proteoglycans (HSPGs) in controlling Wg signaling and distribution. Here, we examined the role of Sulfated (Sulf1), a Drosophila homolog of vertebrate heparan sulfate 6-O endosulfatase, in Wg signaling and distribution. We show that sulf1 is specifically up-regulated by Wg signaling in the wing disc. We found that expression of Wg target gene senseless (sens) was elevated in the sulf1 mutant wing discs. Sulf1 also negatively regulate extracellular levels of Wg. Genetic interaction experiments indicate that Wg antagonist Notum may work synergistically with Sulf1 to restrict Wg signaling, and Dally, a member of Drosophila HSPGs, is a potential target of Sulf1. Our results demonstrate that sulf1 is a novel Wg target gene and by a feedback mechanism, it negatively regulated Wg signaling and distribution in vivo.
Collapse
Affiliation(s)
- Jia You
- Division of Developmental Biology, Cincinnati Children;s Hospital Medical Center, and The Graduate Program in Molecular and Developmental Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Tatyana Belenkaya
- Division of Developmental Biology, Cincinnati Children;s Hospital Medical Center, and The Graduate Program in Molecular and Developmental Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Xinhua Lin
- Division of Developmental Biology, Cincinnati Children;s Hospital Medical Center, and The Graduate Program in Molecular and Developmental Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- State key Laboratory of Biomembrane and Membrane Biotechnology, and Key Laboratory of Stem Cell and Developmental Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
64
|
Zhang L, Yang X, Yang S, Zhang J. The Wnt /β-catenin signaling pathway in the adult neurogenesis. Eur J Neurosci 2010; 33:1-8. [PMID: 21073552 DOI: 10.1111/j.1460-9568.2010.7483.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Wnt/β-catenin signaling pathway plays an important role in neural development, β-catenin is a central component of the Wnt/β-catenin signaling pathway, which not only performs the function of transmitting information in the cytoplasm, but also translocates to the nucleus-activating target gene transcription. The target genes in neural tissues have not been fully revealed, but the effects of the Wnt/β-catenin signaling pathway in adult neurogenesis have been demonstrated by ongoing research, which are significative to the basic research and treatment of neuronal degeneration diseases. Here, we review key findings to show the characteristics of β-catenin and its pivotal nature in the Wnt/β-catenin signaling pathway in a number of molecular studies. We also review current literature on the role of β-catenin in adult neurogenesis, which consists of an active process encompassing the proliferation, migration, differentiation and final synaptogenesis.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Key Laboratory of Injuries,Variations and Regeneration of Nervous System, Tianjin, China
| | | | | | | |
Collapse
|
65
|
Kleinschmit A, Koyama T, Dejima K, Hayashi Y, Kamimura K, Nakato H. Drosophila heparan sulfate 6-O endosulfatase regulates Wingless morphogen gradient formation. Dev Biol 2010; 345:204-14. [PMID: 20637191 PMCID: PMC2963650 DOI: 10.1016/j.ydbio.2010.07.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 07/06/2010] [Accepted: 07/07/2010] [Indexed: 01/01/2023]
Abstract
Heparan sulfate proteoglycans (HSPGs) play critical roles in the distribution and signaling of growth factors, but the molecular mechanisms regulating HSPG function are poorly understood. Here, we characterized Sulf1, which is a Drosophila member of the HS 6-O endosulfatase class of HS modifying enzymes. Our genetic and biochemical analyses show that Sulf1 acts as a novel regulator of the Wg morphogen gradient by modulating the sulfation status of HS on the cell surface in the developing wing. Sulf1 affects gradient formation by influencing the stability and distribution of Wg. We also demonstrate that expression of Sulf1 is induced by Wg signaling itself. Thus, Sulf1 participates in a feedback loop, potentially stabilizing the shape of the Wg gradient. Our study shows that the modification of HS fine structure provides a novel mechanism for the regulation of morphogen gradients.
Collapse
Affiliation(s)
- Adam Kleinschmit
- Department of Genetics, Cell Biology and Development, The University of Minnesota, Minneapolis, MN 55455, USA
| | - Takashi Koyama
- Department of Genetics, Cell Biology and Development, The University of Minnesota, Minneapolis, MN 55455, USA
| | - Katsufumi Dejima
- Department of Genetics, Cell Biology and Development, The University of Minnesota, Minneapolis, MN 55455, USA
| | - Yoshiki Hayashi
- Department of Genetics, Cell Biology and Development, The University of Minnesota, Minneapolis, MN 55455, USA
| | - Keisuke Kamimura
- Department of Genetics, Cell Biology and Development, The University of Minnesota, Minneapolis, MN 55455, USA
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology and Development, The University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
66
|
Peng P, Zhao J, Zhu Y, Asami T, Li J. A direct docking mechanism for a plant GSK3-like kinase to phosphorylate its substrates. J Biol Chem 2010; 285:24646-53. [PMID: 20522560 PMCID: PMC2915701 DOI: 10.1074/jbc.m110.142547] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 05/28/2010] [Indexed: 11/06/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) is a highly conserved serine/threonine protein kinase that plays important roles in a variety of physiological and developmental processes in animals. It is well known that the GSK3 kinase-catalyzed protein phosphorylation often requires a stable kinase-substrate docking interaction, which is achieved mainly by two mechanisms as follows: priming phosphorylation of a substrate by a distinct kinase to create a docking phosphate group and scaffold protein-mediated protein complex formation. Brassinosteroid-INsensitive 2 (BIN2) is an Arabidopsis GSK3-like kinase that negatively regulates brassinosteroid (BR) signaling by phosphorylating BES1 (bri1 EMS suppressor 1) and BZR1 (brassinazole-resistant 1), two highly similar transcription factors critical for bringing about characteristic BR responses. However, little is known about the biochemical mechanism by which BIN2 phosphorylates its substrates. Here, we show that BIN2 interacts directly with BZR1 through a 12-amino acid BIN2-docking motif adjacent to the C terminus of BZR1. Interestingly, this 12-amino acid motif is sufficient to allow a Drosophila GSK3 substrate Armadillo to be phosphorylated by BIN2 in vitro. Deletion of this motif inhibits the phosphorylation and subsequent degradation of BZR1 in vivo, resulting in phenotypic suppression of a hypermorphic bin2 mutation and enhanced resistance to a BR biosynthesis inhibitor. We thus concluded that BIN2 utilizes a direct kinase-substrate docking mechanism to phosphorylate BZR1 and regulate its protein stability.
Collapse
Affiliation(s)
- Peng Peng
- From the Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048 and
| | - Jun Zhao
- From the Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048 and
| | - Yongyou Zhu
- From the Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048 and
| | - Tadao Asami
- the Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jianming Li
- From the Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048 and
| |
Collapse
|
67
|
Quijano JC, Stinchfield MJ, Zerlanko B, Gibbens YY, Takaesu NT, Hyman-Walsh C, Wotton D, Newfeld SJ. The Sno oncogene antagonizes Wingless signaling during wing development in Drosophila. PLoS One 2010; 5:e11619. [PMID: 20661280 PMCID: PMC2905394 DOI: 10.1371/journal.pone.0011619] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 06/15/2010] [Indexed: 11/18/2022] Open
Abstract
The Sno oncogene (Snoo or dSno in Drosophila) is a highly conserved protein and a well-established antagonist of Transforming Growth Factor-β signaling in overexpression assays. However, analyses of Sno mutants in flies and mice have proven enigmatic in revealing developmental roles for Sno proteins. Thus, to identify developmental roles for dSno we first reconciled conflicting data on the lethality of dSno mutations. Then we conducted analyses of wing development in dSno loss of function genotypes. These studies revealed ectopic margin bristles and ectopic campaniform sensilla in the anterior compartment of the wing blade suggesting that dSno functions to antagonize Wingless (Wg) signaling. A subsequent series of gain of function analyses yielded the opposite phenotype (loss of bristles and sensilla) and further suggested that dSno antagonizes Wg signal transduction in target cells. To date Sno family proteins have not been reported to influence the Wg pathway during development in any species. Overall our data suggest that dSno functions as a tissue-specific component of the Wg signaling pathway with modest antagonistic activity under normal conditions but capable of blocking significant levels of extraneous Wg, a role that may be conserved in vertebrates.
Collapse
Affiliation(s)
- Janine C. Quijano
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Michael J. Stinchfield
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Brad Zerlanko
- Department of Biochemistry and Molecular Genetics, and Center for Cell Signaling, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ying Y. Gibbens
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Norma T. Takaesu
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Cathy Hyman-Walsh
- Department of Biochemistry and Molecular Genetics, and Center for Cell Signaling, University of Virginia, Charlottesville, Virginia, United States of America
| | - David Wotton
- Department of Biochemistry and Molecular Genetics, and Center for Cell Signaling, University of Virginia, Charlottesville, Virginia, United States of America
| | - Stuart J. Newfeld
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
68
|
Jones WM, Chao AT, Zavortink M, Saint R, Bejsovec A. Cytokinesis proteins Tum and Pav have a nuclear role in Wnt regulation. J Cell Sci 2010; 123:2179-89. [PMID: 20516152 DOI: 10.1242/jcs.067868] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Wg/Wnt signals specify cell fates in both invertebrate and vertebrate embryos and maintain stem-cell populations in many adult tissues. Deregulation of the Wnt pathway can transform cells to a proliferative fate, leading to cancer. We have discovered that two Drosophila proteins that are crucial for cytokinesis have a second, largely independent, role in restricting activity of the Wnt pathway. The fly homolog of RacGAP1, Tumbleweed (Tum)/RacGAP50C, and its binding partner, the kinesin-like protein Pavarotti (Pav), negatively regulate Wnt activity in fly embryos and in cultured mammalian cells. Unlike many known regulators of the Wnt pathway, these molecules do not affect stabilization of Arm/beta-catenin (betacat), the principal effector molecule in Wnt signal transduction. Rather, they appear to act downstream of betacat stabilization to control target-gene transcription. Both Tum and Pav accumulate in the nuclei of interphase cells, a location that is spatially distinct from their cleavage-furrow localization during cytokinesis. We show that this nuclear localization is essential for their role in Wnt regulation. Thus, we have identified two modulators of the Wnt pathway that have shared functions in cell division, which hints at a possible link between cytokinesis and Wnt activity during tumorigenesis.
Collapse
Affiliation(s)
- Whitney M Jones
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | | | | | | | | |
Collapse
|
69
|
Song H, Goetze S, Bischof J, Spichiger-Haeusermann C, Kuster M, Brunner E, Basler K. Coop functions as a corepressor of Pangolin and antagonizes Wingless signaling. Genes Dev 2010; 24:881-6. [PMID: 20439429 DOI: 10.1101/gad.561310] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Wingless (Wg) signaling regulates expression of its target genes via Pangolin and Armadillo, and their interacting cofactors. In the absence of Wg, Pangolin mediates transcriptional repression. In the presence of Wg, Pangolin, Armadillo, and a cohort of coactivators mediate transcriptional activation. Here we uncover Coop (corepressor of Pan) as a Pangolin-interacting protein. Coop and Pangolin form a complex on DNA containing a Pangolin/TCF-binding motif. Overexpression of Coop specifically represses Wg target genes, while loss of Coop function causes derepression. Finally, we show that Coop antagonizes the binding of Armadillo to Pangolin, providing a mechanism for Coop-mediated repression of Wg target gene transcription.
Collapse
Affiliation(s)
- Haiyun Song
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
70
|
Zimmerman SG, Thorpe LM, Medrano VR, Mallozzi CA, McCartney BM. Apical constriction and invagination downstream of the canonical Wnt signaling pathway require Rho1 and Myosin II. Dev Biol 2010; 340:54-66. [PMID: 20102708 DOI: 10.1016/j.ydbio.2010.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/13/2010] [Accepted: 01/18/2010] [Indexed: 12/12/2022]
Abstract
The tumor suppressor Adenomatous polyposis coli (APC) is a negative regulator of Wnt signaling and functions in cytoskeletal organization. Disruption of human APC in colonic epithelia initiates benign polyps that progress to carcinoma following additional mutations. The early events of polyposis are poorly understood, as is the role of canonical Wnt signaling in normal epithelial architecture and morphogenesis. To determine the consequences of complete loss of APC in a model epithelium, we generated APC2 APC1 double null clones in the Drosophila wing imaginal disc. APC loss leads to segregation, apical constriction, and invagination that result from transcriptional activation of canonical Wnt signaling. Further, we show that Wnt-dependent changes in cell fate can be decoupled from Wnt-dependent changes in cell shape. Wnt activation is reported to upregulate DE-cadherin in wing discs, and elevated DE-cadherin is thought to promote apical constriction. We find that apical constriction and invagination of APC null tissue are independent of DE-cadherin elevation, but are dependent on Myosin II activity. Further, we show that disruption of Rho1 suppresses apical constriction and invagination in APC null cells. Our data suggest a novel link between canonical Wnt signaling and epithelial structure that requires activation of the Rho1 pathway and Myosin II.
Collapse
Affiliation(s)
- Sandra G Zimmerman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
71
|
beta-catenin plays a central role in setting up the head organizer in hydra. Dev Biol 2010; 340:116-24. [PMID: 20045682 DOI: 10.1016/j.ydbio.2009.12.036] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/16/2009] [Accepted: 12/21/2009] [Indexed: 11/22/2022]
Abstract
In an adult hydra the head organizer, located in the hypostome, is constantly active in maintaining the structure of the animal in the context of its steady state tissue dynamics. Several Wnt genes, TCF, and elevated levels of beta-catenin are expressed in the hypostome as well as during the formation of a new organizer region in developing buds suggesting they play a role in the organizer. Transgenic hydra were generated in which a modified hydra beta-catenin gene driven by an actin promoter is continuously expressed at a high level throughout the animal. These animals formed heads and secondary axes in multiple locations along the body column. Transplantation experiments indicate they have a high and stable level of head organizer activity throughout the body columns. However, none of the Wnt genes are expressed in the body columns of these transgenic animals. Further, in alsterpaullone-treated animals, which results in a transient rise in head organizer activity throughout the body column, the time of expression of the Wnt genes is much shorter than the time of the elevated level of head inducing activity. These results for the first time provide direct functional evidence that beta-catenin plays a crucial role in the maintenance and activity of the head organizer and suggest that Wnt ligands may be required only for the initiation but not in maintenance of the organizer in Hydra.
Collapse
|
72
|
Baena-Lopez LA, Franch-Marro X, Vincent JP. Wingless promotes proliferative growth in a gradient-independent manner. Sci Signal 2009; 2:ra60. [PMID: 19809090 DOI: 10.1126/scisignal.2000360] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Morphogens form concentration gradients that organize patterns of cells and control growth. It has been suggested that, rather than the intensity of morphogen signaling, it is its gradation that is the relevant modulator of cell proliferation. According to this view, the ability of morphogens to regulate growth during development depends on their graded distributions. Here, we describe an experimental test of this model for Wingless, one of the key organizers of wing development in Drosophila. Maximal Wingless signaling suppresses cellular proliferation. In contrast, we found that moderate and uniform amounts of exogenous Wingless, even in the absence of endogenous Wingless, stimulated proliferative growth. Beyond a few cell diameters from the source, Wingless was relatively constant in abundance and thus provided a homogeneous growth-promoting signal. Although morphogen signaling may act in combination with as yet uncharacterized graded growth-promoting pathways, we suggest that the graded nature of morphogen signaling is not required for proliferation, at least in the developing Drosophila wing, during the main period of growth.
Collapse
Affiliation(s)
- Luis Alberto Baena-Lopez
- Department of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | |
Collapse
|
73
|
Song H, Spichiger-Haeusermann C, Basler K. The ISWI-containing NURF complex regulates the output of the canonical Wingless pathway. EMBO Rep 2009; 10:1140-6. [PMID: 19713963 DOI: 10.1038/embor.2009.157] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 05/22/2009] [Accepted: 06/15/2009] [Indexed: 11/09/2022] Open
Abstract
Wingless (Wg) signalling regulates the expression of its target genes through Pangolin, Armadillo and their interacting co-factors. In a genetic screen for Wg signalling components, we found that imitation switch (ISWI), a chromatin-remodelling ATPase, had a positive role in transducing the canonical Wg signal, promoting the expression of the Wg target senseless. ISWI is found in several chromatin-remodelling complexes, including nucleosome remodelling factor (NURF). The effect of interfering with the function of other components of the NURF complex in vivo mimics that of ISWI. The NURF complex is also required for the efficient expression of other Wg target genes. Armadillo interacts directly with the NURF complex in vitro and recruits it to Wg targets in cultured cells. Together, our results suggest that the ISWI-containing NURF complex functions as a co-activator of Armadillo to promote Wg-mediated transcription.
Collapse
Affiliation(s)
- Haiyun Song
- Institute of Molecular Biology, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
74
|
Sanders PGT, Muñoz-Descalzo S, Balayo T, Wirtz-Peitz F, Hayward P, Arias AM. Ligand-independent traffic of Notch buffers activated Armadillo in Drosophila. PLoS Biol 2009; 7:e1000169. [PMID: 19668359 PMCID: PMC2716527 DOI: 10.1371/journal.pbio.1000169] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 07/02/2009] [Indexed: 12/13/2022] Open
Abstract
Full-length Notch receptor binds to the Wnt pathway effector β-catenin and mediates its endocytosis and degradation, demonstrating a novel mechanism by which Notch may modulate Wnt pathway activity. Notch receptors act as ligand-dependent membrane-tethered transcription factors with a prominent role in binary cell fate decisions during development, which is conserved across species. In addition there is increasing evidence for other functions of Notch, particularly in connection with Wnt signalling: Notch is able to modulate the activity of Armadillo/ß-catenin, the effector of Wnt signalling, in a manner that is independent of its transcriptional activity. Here we explore the mechanism of this interaction in the epithelium of the Drosophila imaginal discs and find that it is mediated by the ligand-independent endocytosis and traffic of the Notch receptor. Our results show that Notch associates with Armadillo near the adherens junctions and that it is rapidly endocytosed promoting the traffic of an activated form of Armadillo into endosomal compartments, where it may be degraded. As Notch has the ability to interact with and downregulate activated forms of Armadillo, it is possible that in vivo Notch regulates the transcriptionally competent pool of Armadillo. These interactions reveal a previously unknown activity of Notch, which serves to buffer the function of activated Armadillo and might underlie some of its transcription-independent effects. Establishment of the correct shape and pattern of tissues within an organism requires the integration of molecular information present in signalling and transcriptional networks and demands delicate exchanges and balances of their activities. A large body of experimental work has revealed close correlations in the activities of two pathways: Notch and Wnt, which suggest the existence of multiple links between them. Notch signalling relies in part upon the activity of the Notch protein, a membrane-bound receptor with a transcription factor domain that can be released from the membrane by proteolytic cleavage. On the other hand Wnt proteins are ligands that trigger changes in the activity of ß-catenin, which is called Armadillo in the fruit fly Drosophila melanogaster. In this study we uncover a previously unknown activity for Notch: endocytosis and trafficking of full length Notch, which targets Armadillo for degradation. This activity of Notch is independent of its ligands, Delta and Serrate, and of its downstream effector, the transcription factor Suppressor of Hairless. We further show that in the absence of Notch, which has been shown to act as a tumor suppressor in mammals, expression of an activated form of Armadillo causes tissue overgrowth and changes in the polarity of cells. Our results suggest that Drosophila Notch can promote the degradation of activated forms of Armadillo and may buffer cells against fluctuations in Wnt signalling activity.
Collapse
Affiliation(s)
- Phil G. T. Sanders
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | | | - Tina Balayo
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | | | - Penelope Hayward
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
75
|
Widmann TJ, Dahmann C. Wingless signaling and the control of cell shape in Drosophila wing imaginal discs. Dev Biol 2009; 334:161-73. [PMID: 19627985 DOI: 10.1016/j.ydbio.2009.07.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/24/2009] [Accepted: 07/13/2009] [Indexed: 01/02/2023]
Abstract
The control of cell morphology is important for shaping animals during development. Here we address the role of the Wnt/Wingless signal transduction pathway and two of its target genes, vestigial and shotgun (encoding E-cadherin), in controlling the columnar shape of Drosophila wing disc cells. We show that clones of cells mutant for arrow (encoding an essential component of the Wingless signal transduction pathway), vestigial or shotgun undergo profound cell shape changes and are extruded towards the basal side of the epithelium. Compartment-wide expression of a dominant-negative form of the Wingless transducer T-cell factor (TCF/Pangolin), or double-stranded RNA targeting vestigial or shotgun, leads to abnormally short cells throughout this region, indicating that these genes act cell autonomously to maintain normal columnar cell shape. Conversely, overexpression of Wingless, a constitutively-active form of the Wingless transducer beta-catenin/Armadillo, or Vestigial, results in precocious cell elongation. Co-expression of Vestigial partially suppresses the abnormal cell shape induced by dominant-negative TCF. We conclude that Wingless signal transduction plays a cell-autonomous role in promoting and maintaining the columnar shape of wing disc cells. Furthermore, our data suggest that Wingless controls cell shape, in part, through maintaining vestigial expression.
Collapse
Affiliation(s)
- Thomas J Widmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | |
Collapse
|
76
|
Firth LC, Baker NE. Retinal determination genes as targets and possible effectors of extracellular signals. Dev Biol 2009; 327:366-75. [PMID: 19135045 PMCID: PMC2650007 DOI: 10.1016/j.ydbio.2008.12.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 12/15/2008] [Accepted: 12/16/2008] [Indexed: 01/01/2023]
Abstract
Retinal determination genes are sufficient to specify eyes in ectopic locations, raising the question of how these master regulatory genes define an eye developmental field. Genetic mosaic studies establish that expression of the retinal determination genes eyeless, teashirt, homothorax, eyes absent, sine oculis, and dachshund are each regulated by combinations of Dpp, Hh, N, Wg, and Ras signals in Drosophila. Dpp and Hh control eyeless, teashirt, sine oculis, and dachshund expression, Dpp and Ras control homothorax, and all the signaling pathways affect eyes absent expression. These results suggest that eye-specific development uses retinal determination gene expression to relay positional information to eye target genes, because the distinct, overlapping patterns of retinal determination gene expression reflect the activities of the extracellular signaling pathways.
Collapse
Affiliation(s)
- Lucy C Firth
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | |
Collapse
|
77
|
Notch and Wnt signals cooperatively control cell proliferation and tumorigenesis in the intestine. Proc Natl Acad Sci U S A 2009; 106:6309-14. [PMID: 19251639 DOI: 10.1073/pnas.0900427106] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Notch and Wnt signals play essential roles in intestinal development and homeostasis, yet how they integrate their action to affect intestinal morphogenesis is not understood. We examined the interplay between these two signaling pathways in vivo, by modulating Notch activity in mice carrying either a loss- or a gain-of-function mutation of Wnt signaling. We find that the dramatic proliferative effect that Notch signals have on early intestinal precursors requires normal Wnt signaling, whereas its influence on intestinal differentiation appears independent of Wnt. Analogous experiments in Drosophila demonstrate that the synergistic effects of Notch and Wnt are valid across species. We also demonstrate a striking synergy between Notch and Wnt signals that results in inducing the formation of intestinal adenomas, particularly in the colon, a region rarely affected in available mouse tumor models, but the primary target organ in human patients. These studies thus reveal a previously unknown oncogenic potential of Notch signaling in colorectal tumorigenesis that, significantly, is supported by the analysis of human tumors. Importantly, our experimental evidence raises the possibility that Notch activation might be an essential initial event triggering colorectal cancer.
Collapse
|
78
|
Kessler T, Müller HAJ. Cleavage of Armadillo/beta-catenin by the caspase DrICE in Drosophila apoptotic epithelial cells. BMC DEVELOPMENTAL BIOLOGY 2009; 9:15. [PMID: 19232093 PMCID: PMC2657781 DOI: 10.1186/1471-213x-9-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 02/20/2009] [Indexed: 11/24/2022]
Abstract
BACKGROUND During apoptosis cells become profoundly restructured through concerted cleavage of cellular proteins by caspases. In epithelial tissues, apoptotic cells loose their apical/basal polarity and are extruded from the epithelium. We used the Drosophila embryo as a system to investigate the regulation of components of the zonula adherens during apoptosis. Since Armadillo/beta-catenin (Arm) is a major regulator of cadherin-mediated adhesion, we analyzed the mechanisms of Arm proteolysis in apoptosis. RESULTS We define early and late apoptotic stages and find that early in apoptosis Dalpha-catenin remains relatively stable, while Arm and DE-cadherin protein levels are strongly reduced. Arm is cleaved by caspases in embryo extracts and we provide evidence that the caspase-3 homolog drICE cleaves Arm in vitro and in vivo. Cleavage by drICE creates a stable protein fragment that remains associated with the plasma membrane early in apoptosis. To further understand the role of caspase-mediated cleavage of Arm, we examined potential caspase cleavage sites and found that drICE cleaves Arm at a unique DQVD motif in the N-terminal domain of the protein. Mutation of the drICE cleavage site in Arm results in a protein that is not cleaved in vitro and in vivo. Furthermore we provide evidence that cleavage of Arm plays a role in the removal of DE-cadherin from the plasma membrane during apoptosis. CONCLUSION This study defines the specificity of caspase cleavage of Arm in Drosophila apoptotic cells. Our data suggest that N-terminal truncation of Arm by caspases is evolutionarily conserved and thus might provide a principal mechanism involved in the disassembly of adherens junctions during apoptosis.
Collapse
Affiliation(s)
- Thomas Kessler
- Institut für Genetik, Heinrich Heine Universität, Düsseldorf, Germany
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - H Arno J Müller
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, Scotland, UK
| |
Collapse
|
79
|
The Drosophila p21-activated kinase Mbt modulates DE-cadherin-mediated cell adhesion by phosphorylation of Armadillo. Biochem J 2008; 416:231-41. [PMID: 18636970 DOI: 10.1042/bj20080465] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phosphorylation by tyrosine and serine/threonine kinases regulate the interactions between components of the cadherin-catenin cell-adhesion complex and thus can influence the dynamic modulation of cell adhesion under normal and disease conditions. Previous mutational analysis and localization experiments suggested an involvement of single members of the family of PAKs (p21-activated kinases) in the regulation of cadherin-mediated cell adhesion, but the molecular mechanism remained elusive. In the present study, we address this question using the Drosophila PAK protein Mbt, which is most similar to vertebrate PAK4. Previous phenotypic analysis showed that Mbt has a function to maintain adherens junctions during eye development and indicated a requirement of the protein in regulation of the actin cytoskeleton and the cadherin-catenin complex. Here we show that activation of Mbt leads to destabilization of the interaction of the Drosophila beta-catenin homologue Armadillo with DE-cadherin resulting in a decrease in DE-cadherin-mediated adhesion. Two conserved phosphorylation sites in Armadillo were identified that mediate this effect. The findings of the present study support the previous observation that activation of the human Mbt homologue PAK4 leads to anchorage-independent growth and provide a functional link between a PAK protein and the cadherin-catenin complex.
Collapse
|
80
|
Zeng YA, Rahnama M, Wang S, Lee W, Verheyen EM. Inhibition of Drosophila Wg signaling involves competition between Mad and Armadillo/beta-catenin for dTcf binding. PLoS One 2008; 3:e3893. [PMID: 19065265 PMCID: PMC2587708 DOI: 10.1371/journal.pone.0003893] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 11/14/2008] [Indexed: 11/26/2022] Open
Abstract
Precisely regulated signal transduction pathways are crucial for the regulation of developmental events and prevention of tumorigenesis. Both the Transforming Growth Factor β (TGFβ)/Bone morphogenetic protein (BMP) and Wnt/Wingless (Wg) pathways play essential roles in organismal patterning and growth, and their deregulation can lead to cancers. We describe a mechanism of interaction between Drosophila Wg and BMP signaling in which Wg target gene expression is antagonized by BMP signaling. In vivo, high levels of both an activated BMP receptor and the BMP effector Mad can inhibit the expression of Wg target genes. Conversely, loss of mad can induce Wg target gene expression. In addition, we find that ectopic expression in vivo of the Wg transcription factor dTcf is able to suppress the inhibitory effect caused by ectopic Mad. In vitro binding studies revealed competition for dTcf binding between Mad and the Wnt effector β-catenin/Armadillo (Arm). Our in vivo genetic analyses and target gene studies support a mechanism consistent with the in vitro binding and competition studies, namely that BMP pathway components can repress Wg target gene expression by influencing the binding of Arm and dTcf.
Collapse
Affiliation(s)
- Yi Arial Zeng
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Maryam Rahnama
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Simon Wang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Wendy Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Esther M. Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|
81
|
Abstract
We have developed an integrated genetic, genomic, and computational approach to identify and characterize genes involved in myoblast fusion in Drosophila. We first used fluorescence-activated cell sorting to purify mesodermal cells both from wild-type embryos and from 12 variant genotypes in which muscle development is perturbed in known ways. Then, we obtained gene expression profiles for the purified cells by hybridizing isolated mesodermal RNA to Affymetrix GeneChip arrays. These data were subsequently compounded into a statistical metaanalysis that predicts myoblast subtype-specific gene expression signatures that were later validated by in situ hybridization experiments. Finally, we analyzed the myogenic functions of a subset of these myoblast genes using a double-stranded RNA interference assay in living embryos expressing green fluorescent protein under control of a muscle-specific promoter. This experimental strategy led to the identification of several previously uncharacterized genes required for myoblast fusion in Drosophila.
Collapse
|
82
|
Lin G, Xu N, Xi R. Paracrine Wingless signalling controls self-renewal of Drosophila intestinal stem cells. Nature 2008; 455:1119-23. [PMID: 18806781 DOI: 10.1038/nature07329] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Accepted: 08/08/2008] [Indexed: 01/05/2023]
Abstract
In the Drosophila midgut, multipotent intestinal stem cells (ISCs) that are scattered along the epithelial basement membrane maintain tissue homeostasis by their ability to steadily produce daughters that differentiate into either enterocytes or enteroendocrine cells, depending on the levels of Notch activity. However, the mechanisms controlling ISC self-renewal remain elusive. Here we show that a canonical Wnt signalling pathway controls ISC self-renewal. The ligand Wingless (Wg) is specifically expressed in the circular muscles next to ISCs, separated by a thin layer of basement membrane. Reduced function of wg causes ISC quiescence and differentiation, whereas wg overexpression produces excessive ISC-like cells that express high levels of the Notch ligand, Delta. Clonal analysis shows that the main downstream components of the Wg pathway, including Frizzled, Dishevelled and Armadillo, are autonomously required for ISC self-renewal. Furthermore, epistatic analysis suggests that Notch acts downstream of the Wg pathway and a hierarchy of Wg/Notch signalling pathways controls the balance between self-renewal and differentiation of ISCs. These data suggest that the underlying circular muscle constitutes the ISC niche, which produce Wg signals that act directly on ISCs to promote ISC self-renewal. This study demonstrates markedly conserved mechanisms regulating ISCs from Drosophila to mammals. The identification of the Drosophila ISC niche and the principal self-renewal signal will facilitate further understanding of intestinal homeostasis control and tumorigenesis.
Collapse
Affiliation(s)
- Guonan Lin
- Graduate program, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | | | | |
Collapse
|
83
|
Larsen C, Bardet PL, Vincent JP, Alexandre C. Specification and positioning of parasegment grooves in Drosophila. Dev Biol 2008; 321:310-8. [PMID: 18692780 DOI: 10.1016/j.ydbio.2008.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 04/09/2008] [Accepted: 04/14/2008] [Indexed: 10/22/2022]
Abstract
Developmental boundaries ensure that cells fated to participate in a particular structure are brought together or maintained at the appropriate locale within developing embryos. Parasegment grooves mark the position of boundaries that separate every segment of the Drosophila embryo into anterior and posterior compartments. Here, we dissect the genetic hierarchy that controls the formation of this morphological landmark. We report that primary segment polarity genes (engrailed, hedgehog and wingless) are not involved in specifying the position of parasegment grooves. Wingless signalling plays only a permissive role by triggering the formation of grooves at cellular interfaces defined by the ON/OFF state of expression of the earlier acting pair-rule genes eve and ftz. We suggest that the transcription factors encoded by these genes activate two programmes in parallel: a cell fate programme mediated by segment polarity genes and a boundary/epithelial integrity programme mediated by unknown target genes.
Collapse
Affiliation(s)
- Camilla Larsen
- National Institute for Medical Research, The Ridgeway Mill Hill, London NW7 1AA, UK
| | | | | | | |
Collapse
|
84
|
Chang JL, Chang MV, Barolo S, Cadigan KM. Regulation of the feedback antagonist naked cuticle by Wingless signaling. Dev Biol 2008; 321:446-54. [PMID: 18585374 PMCID: PMC2892857 DOI: 10.1016/j.ydbio.2008.05.551] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 05/24/2008] [Accepted: 05/27/2008] [Indexed: 11/20/2022]
Abstract
Signaling pathways usually activate transcriptional targets in a cell type-specific manner. Notable exceptions are pathway-specific feedback antagonists, which serve to restrict the range or duration of the signal. These factors are often activated by their respective pathways in a broad array of cell types. For example, the Wnt ligand Wingless (Wg) activates the naked cuticle (nkd) gene in all tissues examined throughout Drosophila development. How does the nkd gene respond in such an unrestricted manner to Wg signaling? Analysis in cell culture revealed regions of the nkd locus that contain Wg response elements (WREs) that are directly activated by the pathway via the transcription factor TCF. In flies, Wg signaling activates these WREs in multiple tissues, in distinct but overlapping patterns. These WREs are necessary and largely sufficient for nkd expression in late stage larval tissues, but only contribute to part of the embryonic expression pattern of nkd. These results demonstrate that nkd responsiveness to Wg signaling is achieved by several WREs which are broadly (but not universally) activated by the pathway. The existence of several WREs in the nkd locus may have been necessary to allow the Wg signaling-Nkd feedback circuit to remain intact as Wg expression diversified during animal evolution.
Collapse
Affiliation(s)
- Jinhee L Chang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Avenue, Ann Arbor, MI 48109-1048, USA
| | | | | | | |
Collapse
|
85
|
Somorjai IML, Martinez-Arias A. Wingless signalling alters the levels, subcellular distribution and dynamics of Armadillo and E-cadherin in third instar larval wing imaginal discs. PLoS One 2008; 3:e2893. [PMID: 18682750 PMCID: PMC2483348 DOI: 10.1371/journal.pone.0002893] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 07/09/2008] [Indexed: 11/18/2022] Open
Abstract
Background Armadillo, the Drosophila orthologue of vertebrate ß-catenin, plays a dual role as the key effector of Wingless/Wnt1 signalling, and as a bridge between E-Cadherin and the actin cytoskeleton. In the absence of ligand, Armadillo is phosphorylated and targeted to the proteasome. Upon binding of Wg to its receptors, the “degradation complex” is inhibited; Armadillo is stabilised and enters the nucleus to transcribe targets. Methodology/Principal Findings Although the relationship between signalling and adhesion has been extensively studied, few in vivo data exist concerning how the “transcriptional” and “adhesive” pools of Armadillo are regulated to orchestrate development. We have therefore addressed how the subcellular distribution of Armadillo and its association with E-Cadherin change in larval wing imaginal discs, under wild type conditions and upon signalling. Using confocal microscopy, we show that Armadillo and E-Cadherin are spatio-temporally regulated during development, and that a punctate species becomes concentrated in a subapical compartment in response to Wingless. In order to further dissect this phenomenon, we overexpressed Armadillo mutants exhibiting different levels of activity and stability, but retaining E-Cadherin binding. ArmS10 displaces endogenous Armadillo from the AJ and the basolateral membrane, while leaving E-Cadherin relatively undisturbed. Surprisingly, ΔNArm1–155 caused displacement of both Armadillo and E-Cadherin, results supported by our novel method of quantification. However, only membrane-targeted Myr-ΔNArm1–155 produced comparable nuclear accumulation of Armadillo and signalling to ArmS10. These experiments also highlighted a row of cells at the A/P boundary depleted of E-Cadherin at the AJ, but containing actin. Conclusions/Significance Taken together, our results provide in vivo evidence for a complex non-linear relationship between Armadillo levels, subcellular distribution and Wingless signalling. Moreover, this study highlights the importance of Armadillo in regulating the subcellular distribution of E-Cadherin
Collapse
|
86
|
Chan CC, Zhang S, Rousset R, Wharton KA. Drosophila Naked cuticle (Nkd) engages the nuclear import adaptor Importin-alpha3 to antagonize Wnt/beta-catenin signaling. Dev Biol 2008; 318:17-28. [PMID: 18423435 PMCID: PMC2585751 DOI: 10.1016/j.ydbio.2008.02.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 02/06/2008] [Accepted: 02/07/2008] [Indexed: 01/08/2023]
Abstract
Precise control of Wnt/beta-catenin signaling is critical for animal development, stem cell renewal, and prevention of disease. In the fruit fly Drosophila melanogaster, the naked cuticle (nkd) gene limits signaling by the Wnt ligand Wingless (Wg) during embryo segmentation. Nkd is an intracellular protein that is composed of separable membrane- and nuclear-localization sequences (NLS) as well as a conserved EF-hand motif that binds the Wnt receptor-associated scaffold protein Dishevelled (Dsh), but the mechanism by which Nkd inhibits Wnt signaling remains a mystery. Here we identify a second NLS in Nkd that is required for full activity and that binds to the canonical nuclear import adaptor Importin-alpha3. The Nkd NLS is similar to the Importin-alpha3-binding NLS in the Drosophila heat-shock transcription factor (dHSF), and each Importin-alpha3-binding NLS required intact basic residues in similar positions for nuclear import and protein function. Our results provide further support for the hypothesis that Nkd inhibits nuclear step(s) in Wnt/beta-catenin signaling and broaden our understanding of signaling pathways that engage the nuclear import machinery.
Collapse
Affiliation(s)
- Chih-Chiang Chan
- Laboratory of Molecular Pathology, Departments of Pathology, UT Southwestern Medical Center, Dallas, TX 75390-9072, USA
| | - Shu Zhang
- Laboratory of Molecular Pathology, Departments of Pathology, UT Southwestern Medical Center, Dallas, TX 75390-9072, USA
| | - Raphaël Rousset
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Keith A. Wharton
- Laboratory of Molecular Pathology, Departments of Pathology, UT Southwestern Medical Center, Dallas, TX 75390-9072, USA
- Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390-9072, USA
| |
Collapse
|
87
|
Novel TCF-binding sites specify transcriptional repression by Wnt signalling. EMBO J 2008; 27:1436-46. [PMID: 18418383 DOI: 10.1038/emboj.2008.80] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2007] [Accepted: 03/26/2008] [Indexed: 12/22/2022] Open
Abstract
Both transcriptional activation and repression have essential functions in maintaining proper spatial and temporal control of gene expression. Although Wnt signalling is often associated with gene activation, we have identified several directly repressed targets of Wnt signalling in Drosophila. Here, we explore how individual Wnt target genes are specified for signal-induced activation or repression. Similar to activation, repression required binding of Armadillo (Arm) to the N terminus of TCF. However, TCF/Arm mediated repression by binding to DNA motifs that are markedly different from typical TCF-binding sites. Conversion of the novel motifs to standard TCF-binding sites reversed the mode of regulation, resulting in Wnt-mediated activation instead of repression. A mutant form of Arm defective in activation was still functional for repression, indicating that distinct domains of the protein are required for each activity. This study suggests that the sequence of TCF-binding sites allosterically regulates the TCF/Arm complex to effect either transcriptional activation or repression.
Collapse
|
88
|
Estella C, McKay DJ, Mann RS. Molecular integration of wingless, decapentaplegic, and autoregulatory inputs into Distalless during Drosophila leg development. Dev Cell 2008; 14:86-96. [PMID: 18194655 PMCID: PMC2709787 DOI: 10.1016/j.devcel.2007.11.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/22/2007] [Accepted: 11/01/2007] [Indexed: 01/19/2023]
Abstract
The development of the Drosophila leg requires both Decapentaplegic (Dpp) and Wingless (Wg), two signals that establish the proximo-distal (PD) axis by activating target genes such as Distalless (Dll). Dll expression in the leg depends on a Dpp- and Wg-dependent phase and a maintenance phase that is independent of these signals. Here, we show that accurate Dll expression in the leg results from the synergistic interaction between two cis-regulatory elements. The Leg Trigger (LT) element directly integrates Wg and Dpp inputs and is only active in cells receiving high levels of both signals. The Maintenance (M) element is able to maintain Wg- and Dpp-independent expression, but only when in cis to LT. M, which includes the native Dll promoter, functions as an autoregulatory element by directly binding Dll. The "trigger-maintenance" model describes a mechanism by which secreted morphogens act combinatorially to induce the stable expression of target genes.
Collapse
Affiliation(s)
- Carlos Estella
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
89
|
Hogan BM, Verkade H, Lieschke GJ, Heath JK. Manipulation of gene expression during zebrafish embryonic development using transient approaches. Methods Mol Biol 2008; 469:273-300. [PMID: 19109716 DOI: 10.1007/978-1-60327-469-2_19] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The rapid embryonic development and high fecundity of zebrafish contribute to the great advantages of this model for the study of developmental genetics. Transient disruption of the normal function of a gene during development can be achieved by microinjecting mRNA, DNA or short chemically stabilized anti-sense oligomers, called morpholinos (MOs), into early zebrafish embryos. The ensuing develop ment of the microinjected embryos is observed over the following hours and days to analyze the impact of the microinjected products on embryogenesis. Compared to stable reverse genetic approaches (sta ble transgenesis, targeted mutants recovered by TILLING), these transient reverse genetic approaches are vastly quicker, relatively affordable, and require little animal facility space. Common applications of these methodologies allow analysis of gain-of-function (gene overexpression or dominant active), loss-of-function (gene knock down or dominant negative), mosaic analysis, lineage-restricted studies and cell tracing experiments. The use of these transient approaches for the manipulation of gene expression has improved our understanding of many key developmental pathways including both the Wnt/beta-catenin and Wnt/PCP pathways, as covered in some detail in Chapter 17 of this book. This chapter describes the most common and versatile approaches: gain of function and loss of function using DNA and mRNA injections and loss of function using MOs.
Collapse
Affiliation(s)
- Benjamin M Hogan
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584, CT Utrecht, The Netherlands
| | | | | | | |
Collapse
|
90
|
Hayden MA, Akong K, Peifer M. Novel roles for APC family members and Wingless/Wnt signaling during Drosophila brain development. Dev Biol 2007; 305:358-76. [PMID: 17367777 PMCID: PMC1924884 DOI: 10.1016/j.ydbio.2007.02.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 02/06/2007] [Accepted: 02/14/2007] [Indexed: 11/17/2022]
Abstract
Construction of the brain is one of the most complex developmental challenges. Wnt signals shape all tissues, including the brain, and the tumor suppressor adenomatous polyposis coli (APC) is a key negative regulator of Wnt/Wingless (Wg) signaling. We carried out the first assessment of the role of APC proteins in brain development, simultaneously inactivating both APC1 and APC2 in clones of cells in the Drosophila larval optic lobe. We focused on the medulla, where epithelial neural progenitors shift from symmetric to asymmetric divisions across the lateral-medial axis. Loss of both APCs triggers dramatic defects in optic lobe development. Double mutant cells segregate from wild-type neighbors, while double mutant neurons form tangled axonal knots, suggesting changes in cell adhesion. Strikingly, phenotypes are graded along the anterior-posterior axis. Activation of Wg signaling downstream of APC mimics these phenotypes, a dominant-negative TCF blocks them, and a known Wg target, decapentaplegic, is activated in double mutant clones, strongly suggesting that the phenotypes result from activated Wg signaling. We also explored the roles of classic cadherins in differential adhesion. Finally, we propose a model suggesting that Wg signaling regulates fine scale cell fates along the anterior-posterior axis, in part by creating an adhesion gradient and consider possible alternate explanations for our observations.
Collapse
Affiliation(s)
- Melissa A. Hayden
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Kathryn Akong
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
91
|
Luo W, Peterson A, Garcia BA, Coombs G, Kofahl B, Heinrich R, Shabanowitz J, Hunt DF, Yost HJ, Virshup DM. Protein phosphatase 1 regulates assembly and function of the beta-catenin degradation complex. EMBO J 2007; 26:1511-21. [PMID: 17318175 PMCID: PMC1829374 DOI: 10.1038/sj.emboj.7601607] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 01/23/2007] [Indexed: 01/03/2023] Open
Abstract
The Wnt/beta-catenin signaling pathway is critical in both cellular proliferation and organismal development. However, how the beta-catenin degradation complex is inhibited upon Wnt activation remains unclear. Using a directed RNAi screen we find that protein phosphatase 1 (PP1), a ubiquitous serine/threonine phosphatase, is a novel potent positive physiologic regulator of the Wnt/beta-catenin signaling pathway. PP1 expression synergistically activates, and inhibition of PP1 inhibits, Wnt/beta-catenin signaling in Drosophila and mammalian cells as well as in Xenopus embryos. The data suggest that PP1 controls Wnt signaling through interaction with, and regulated dephosphorylation of, axin. Inhibition of PP1 leads to enhanced phosphorylation of specific sites on axin by casein kinase I. Axin phosphorylation markedly enhances the binding of glycogen synthase kinase 3, leading to a more active beta-catenin destruction complex. Wnt-regulated changes in axin phosphorylation, mediated by PP1, may therefore determine beta-catenin transcriptional activity. Specific inhibition of PP1 in this pathway may offer therapeutic approaches to disorders with increased beta-catenin signaling.
Collapse
Affiliation(s)
- Wen Luo
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Annita Peterson
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Benjamin A Garcia
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Gary Coombs
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Bente Kofahl
- Department of Theoretical Biophysics, Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | - Reinhart Heinrich
- Department of Theoretical Biophysics, Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | | | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - H Joseph Yost
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
- Center for Children at the Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - David M Virshup
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
- Center for Children at the Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112-5550, USA. Tel.: +1 801 585 3408; Fax: +1 801 587 9415; E-mail:
| |
Collapse
|
92
|
Abstract
The fruitfly, Drosophila melanogaster, has been of central importance in analysing the mechanics of cellular processes. Classic forward genetic screens in the fly have identified many of the genes that define critical cell signaling pathways, for example. Our understanding of the Wnt pathway, in particular, has benefited from the many advantages that the fly offers as a model system. Here, I review the history of these discoveries and highlight the utility of the fly in dissecting the molecular workings of Wnt signal transduction.
Collapse
Affiliation(s)
- A Bejsovec
- Department of Biology, Duke University, Durham, NC 27708-1000, USA.
| |
Collapse
|
93
|
Hoffmans R, Basler K. BCL9-2 binds Arm/beta-catenin in a Tyr142-independent manner and requires Pygopus for its function in Wg/Wnt signaling. Mech Dev 2006; 124:59-67. [PMID: 17113272 DOI: 10.1016/j.mod.2006.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 09/24/2006] [Accepted: 09/26/2006] [Indexed: 11/24/2022]
Abstract
The Wingless (Wg)/Wnt signal transduction pathway controls fundamental processes during animal development. Deregulation of the Wg/Wnt pathway has been causally linked to several forms of cancer, most notably to colorectal cancer. In response to Wg/Wnt signaling, Armadillo/beta-catenin associates in the nucleus with DNA bound TCF and several co-factors, among them Legless/BCL9, which provides a link to Pygopus. Recently, the second vertebrate homologue of Legless, BCL9-2 (or B9L), was characterized and proposed to mediate Wnt signaling in a Pygopus-independent manner, by binding to a Tyrosine-142-phosphorylated form of beta-catenin. Here we examine the role of Tyrosine-142 phosphorylation in several assays and find that it is neither important for the recruitment of BCL9-2, nor for the transcriptional activity of beta-catenin in cultured mammalian cells, nor in Drosophila for Wg signaling activity in vivo. Furthermore, we demonstrate that BCL9-2 can functionally replace Lgs both in cultured cells as well as in vivo and that this rescue activity depends on the ability of BCL9-2 to bind Pygo. Our results do not show a significant functional difference between BCL9-2 and BCL9 but rather suggest that the two proteins represent evolutionary duplicates of Legless, which have acquired distinct expression patterns while acting in a largely redundant manner.
Collapse
Affiliation(s)
- Raymond Hoffmans
- Institut für Molekularbiologie, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | |
Collapse
|
94
|
Waldrop S, Chan CC, Cagatay T, Zhang S, Rousset R, Mack J, Zeng W, Fish M, Zhang M, Amanai M, Wharton KA. An unconventional nuclear localization motif is crucial for function of the Drosophila Wnt/wingless antagonist Naked cuticle. Genetics 2006; 174:331-48. [PMID: 16849595 PMCID: PMC1569797 DOI: 10.1534/genetics.106.061853] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Wnt/beta-catenin signals orchestrate cell fate and behavior throughout the animal kingdom. Aberrant Wnt signaling impacts nearly the entire spectrum of human disease, including birth defects, cancer, and osteoporosis. If Wnt signaling is to be effectively manipulated for therapeutic advantage, we first must understand how Wnt signals are normally controlled. Naked cuticle (Nkd) is a novel and evolutionarily conserved inducible antagonist of Wnt/beta-catenin signaling that is crucial for segmentation in the model genetic organism, the fruit fly Drosophila melanogaster. Nkd can bind and inhibit the Wnt signal transducer Dishevelled (Dsh), but the mechanism by which Nkd limits Wnt signaling in the fly embryo is not understood. Here we show that nkd mutants exhibit elevated levels of the beta-catenin homolog Armadillo but no alteration in Dsh abundance or distribution. In the fly embryo, Nkd and Dsh are predominantly cytoplasmic, although a recent report suggests that vertebrate Dsh requires nuclear localization for activity in gain-of-function assays. While Dsh-binding regions of Nkd contribute to its activity, we identify a conserved 30-amino-acid motif, separable from Dsh-binding regions, that is essential for Nkd function and nuclear localization. Replacement of the 30-aa motif with a conventional nuclear localization sequence rescued a small fraction of nkd mutant animals to adulthood. Our studies suggest that Nkd targets Dsh-dependent signal transduction steps in both cytoplasmic and nuclear compartments of cells receiving the Wnt signal.
Collapse
Affiliation(s)
- Sharon Waldrop
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9072, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Seto ES, Bellen HJ. Internalization is required for proper Wingless signaling in Drosophila melanogaster. ACTA ACUST UNITED AC 2006; 173:95-106. [PMID: 16606693 PMCID: PMC2063794 DOI: 10.1083/jcb.200510123] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Wnt–Wingless (Wg) pathway regulates development through precisely controlled signaling. In this study, we show that intracellular trafficking regulates Wg signaling levels. In Drosophila melanogaster cells stimulated with Wg media, dynamin or Rab5 knockdown causes reduced Super8XTOPflash activity, suggesting that internalization and endosomal transport facilitate Wg signaling. In the wing, impaired dynamin function reduces Wg transcription. However, when Wg production is unaffected, extracellular Wg levels are increased. Despite this, target gene expression is reduced, indicating that internalization is also required for efficient Wg signaling in vivo. When endosomal transport is impaired, Wg signaling is similarly reduced. Conversely, the expression of Wg targets is enhanced by increased transport to endosomes or decreased hepatocyte growth factor–regulated tyrosine kinase substrate– mediated transport from endosomes. This increased signaling correlates with greater colocalized Wg, Arrow, and Dishevelled on endosomes. As these data indicate that endosomal transport promotes Wg signaling, our findings suggest that the regulation of endocytosis is a novel mechanism through which Wg signaling levels are determined.
Collapse
Affiliation(s)
- Elaine S Seto
- Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
96
|
Joshi M, Buchanan KT, Shroff S, Orenic TV. Delta and Hairy establish a periodic prepattern that positions sensory bristles in Drosophila legs. Dev Biol 2006; 293:64-76. [PMID: 16542648 DOI: 10.1016/j.ydbio.2006.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 12/05/2005] [Accepted: 01/04/2006] [Indexed: 10/24/2022]
Abstract
In vertebrates and invertebrates, spatially defined proneural gene expression is an early and essential event in neuronal patterning. In this study, we investigate the mechanisms involved in establishing proneural gene expression in the primordia of a group of small mechanosensory bristles (microchaetae), which on the legs of the Drosophila adult are arranged in a series of longitudinal rows along the leg circumference. In prepupal legs, the proneural gene achaete (ac) is expressed in longitudinal stripes, which comprise the leg microchaete primordia. We have previously shown that periodic ac expression is partially established by the prepattern gene, hairy, which represses ac expression in four of eight interstripe domains. Here, we identify Delta (Dl), which encodes a Notch (N) ligand, as a second leg prepattern gene. We show that Hairy and Dl function concertedly and nonredundantly to define periodic ac expression. We also explore the regulation of periodic hairy expression. In prior studies, we have found that expression of two hairy stripes along the D/V axis is induced in response to the Hedgehog (Hh), Decapentaplegic (Dpp) and Wingless (Wg) morphogens. Here, we show that expression of two other hairy stripes along the orthogonal A/P axis is established through a distinct mechanism which involves uniform activation combined with repressive influences from Dpp and Wg. Our findings allow us to formulate a general model for generation of periodic pattern in the adult leg. This process involves broad and late activation of ac expression combined with refinement in response to a prepattern of repression, established by Hairy and Dl, which unfolds progressively during larval and early prepupal stages.
Collapse
Affiliation(s)
- Meghana Joshi
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
97
|
Pereira PS, Teixeira A, Pinho S, Ferreira P, Fernandes J, Oliveira C, Seruca R, Suriano G, Casares F. E-cadherin missense mutations, associated with hereditary diffuse gastric cancer (HDGC) syndrome, display distinct invasive behaviors and genetic interactions with the Wnt and Notch pathways in Drosophila epithelia. Hum Mol Genet 2006; 15:1704-12. [PMID: 16600987 DOI: 10.1093/hmg/ddl093] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Germline mutations in the human E-cadherin (hEcad) gene, CDH1, are initiating events in cases of human hereditary diffuse gastric cancer (HDGC) indicating that hEcad is a tumor suppressor. Among the hEcad mutations identified so far, some are missense, but the pathological relevance of these missense mutants is still unclear. In vitro assays show that missense mutations result in full-length hEcad molecules that retain some distinct biological activity, but in vivo functional studies in animal models are still lacking. Here we verify the potential of a Drosophila model to in vivo characterize the functional consequences of HDGC-associated germline missense mutations and to identify signaling pathways affected by these mutations. To this end, we have generated transgenic fly strains expressing the wild-type hEcad gene or its missense mutations. Similar to the fly Ecad, expression of wild-type hEcad and missense forms in fly epithelia resulted in their localization to the subapical region. In addition, we verify a genotype-phenotype correlation associated to the specific domain affected by the mutations, because cells expressing normal or missense mutant hEcad display different migratory and invasive behaviors in fly epithelia. We show that some of these effects might be mediated through hEcad interacting with the endogenous fly ss-catenin, Armadillo, thus interfering with the Wnt signaling pathway. Therefore, the use of this simple in vivo system will contribute to characterize the effects that missense hEcad have on cell behavior in a tissue environment, and might help to understand their significance in gastric cancer onset.
Collapse
Affiliation(s)
- Paulo S Pereira
- Instituto de Biologia Molecular e Celular, IBMC, Universidade do Porto, Porto 4150-180, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Langdon T, Hayward P, Brennan K, Wirtz-Peitz F, Sanders P, Zecchini V, Friday A, Balayo T, Martinez Arias A. Notch receptor encodes two structurally separable functions inDrosophila: A genetic analysis. Dev Dyn 2006; 235:998-1013. [PMID: 16534797 DOI: 10.1002/dvdy.20735] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The Notch gene of Drosophila encodes a single transmembrane receptor that plays a central role in the process of lateral inhibition. This process results in the selection of individual mesodermal and neural precursors during the development of the muscular and nervous systems. The activation of Notch during lateral inhibition is mediated by the transmembrane ligand Delta (Dl) and effected by the transcription factor Suppressor of Hairless (Su(H)). The same functional cassette plays a role in other processes, in particular, the development and patterning of the wing. Genetic analysis has suggested that, in addition to the Su(H)-dependent pathway, Notch can signal in an Su(H)-independent manner. This process seems to be tightly associated with signalling by Wingless, a member of the Wnt family of signalling molecules. Here, we have analyzed further the possibility that the Notch protein encodes two different functions. To do so, we have studied the activities and genetic properties of different Notch receptors bearing deletions of specific regions of the intracellular and the extracellular domains in different developmental processes, and have sought to correlate the activity of these mutant proteins with those of existing mutants in Notch. Our results support the existence of at least two different activities of Notch each of which can be associated with specific structural domains.
Collapse
Affiliation(s)
- Tim Langdon
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, U.K
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Estrada B, Choe SE, Gisselbrecht SS, Michaud S, Raj L, Busser BW, Halfon MS, Church GM, Michelson AM. An integrated strategy for analyzing the unique developmental programs of different myoblast subtypes. PLoS Genet 2006; 2:e16. [PMID: 16482229 PMCID: PMC1366495 DOI: 10.1371/journal.pgen.0020016] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 12/28/2005] [Indexed: 11/19/2022] Open
Abstract
An important but largely unmet challenge in understanding the mechanisms that govern the formation of specific organs is to decipher the complex and dynamic genetic programs exhibited by the diversity of cell types within the tissue of interest. Here, we use an integrated genetic, genomic, and computational strategy to comprehensively determine the molecular identities of distinct myoblast subpopulations within the Drosophila embryonic mesoderm at the time that cell fates are initially specified. A compendium of gene expression profiles was generated for primary mesodermal cells purified by flow cytometry from appropriately staged wild-type embryos and from 12 genotypes in which myogenesis was selectively and predictably perturbed. A statistical meta-analysis of these pooled datasets--based on expected trends in gene expression and on the relative contribution of each genotype to the detection of known muscle genes--provisionally assigned hundreds of differentially expressed genes to particular myoblast subtypes. Whole embryo in situ hybridizations were then used to validate the majority of these predictions, thereby enabling true-positive detection rates to be estimated for the microarray data. This combined analysis reveals that myoblasts exhibit much greater gene expression heterogeneity and overall complexity than was previously appreciated. Moreover, it implicates the involvement of large numbers of uncharacterized, differentially expressed genes in myogenic specification and subsequent morphogenesis. These findings also underscore a requirement for considerable regulatory specificity for generating diverse myoblast identities. Finally, to illustrate how the developmental functions of newly identified myoblast genes can be efficiently surveyed, a rapid RNA interference assay that can be scored in living embryos was developed and applied to selected genes. This integrated strategy for examining embryonic gene expression and function provides a substantially expanded framework for further studies of this model developmental system.
Collapse
Affiliation(s)
- Beatriz Estrada
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Sung E Choe
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen S Gisselbrecht
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Sebastien Michaud
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Lakshmi Raj
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Brian W Busser
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Marc S Halfon
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alan M Michelson
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
100
|
Sato M, Umetsu D, Murakami S, Yasugi T, Tabata T. DWnt4 regulates the dorsoventral specificity of retinal projections in the Drosophila melanogaster visual system. Nat Neurosci 2005; 9:67-75. [PMID: 16369482 DOI: 10.1038/nn1604] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 10/26/2005] [Indexed: 11/08/2022]
Abstract
In Drosophila melanogaster, the axons of retinal photoreceptor cells extend to the first optic ganglion, the lamina, forming a topographic representation. Here we show that DWnt4, a secreted protein of the Wnt family, is the ventral cue for the lamina. In DWnt4 mutants, ventral retinal axons misprojected to the dorsal lamina. DWnt4 was normally expressed in the ventral half of the developing lamina and DWnt4 protein was detected along ventral retinal axons. Dfrizzled2 and dishevelled, respectively, encode a receptor and a signaling molecule required for Wnt signaling. Mutations in both genes caused DWnt4-like defects, and both genes were autonomously required in the retina, suggesting a direct role of DWnt4 in retinal axon guidance. In contrast, iroquois homeobox genes are the dorsal cues for the retina. Dorsal axons accumulated DWnt4 and misprojected to the ventral lamina in iroquois mutants; the phenotype was suppressed in iroquois Dfrizzled2 mutants, suggesting that iroquois may attenuate the competence of Dfrizzled2 to respond to DWnt4.
Collapse
Affiliation(s)
- Makoto Sato
- Laboratory of Morphogenesis, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | | | | | | | | |
Collapse
|