51
|
Weijts B, Yvernogeau L, Robin C. Recent Advances in Developmental Hematopoiesis: Diving Deeper With New Technologies. Front Immunol 2021; 12:790379. [PMID: 34899758 PMCID: PMC8652083 DOI: 10.3389/fimmu.2021.790379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
The journey of a hematopoietic stem cell (HSC) involves the passage through successive anatomical sites where HSCs are in direct contact with their surrounding microenvironment, also known as niche. These spatial and temporal cellular interactions throughout development are required for the acquisition of stem cell properties, and for maintaining the HSC pool through balancing self-renewal, quiescence and lineage commitment. Understanding the context and consequences of these interactions will be imperative for our understanding of HSC biology and will lead to the improvement of in vitro production of HSCs for clinical purposes. The aorta-gonad-mesonephros (AGM) region is in this light of particular interest since this is the cradle of HSC emergence during the embryonic development of all vertebrate species. In this review, we will focus on the developmental origin of HSCs and will discuss the novel technological approaches and recent progress made to identify the cellular composition of the HSC supportive niche and the underlying molecular events occurring in the AGM region.
Collapse
Affiliation(s)
- Bart Weijts
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) & University Medical Center Utrecht, Utrecht, Netherlands
| | - Laurent Yvernogeau
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) & University Medical Center Utrecht, Utrecht, Netherlands
| | - Catherine Robin
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) & University Medical Center Utrecht, Utrecht, Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
52
|
Murine AGM single-cell profiling identifies a continuum of hemogenic endothelium differentiation marked by ACE. Blood 2021; 139:343-356. [PMID: 34517413 DOI: 10.1182/blood.2020007885] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/19/2021] [Indexed: 11/20/2022] Open
Abstract
In vitro generation and expansion of hematopoietic stem cells (HSCs) holds great promise for the treatment of any ailment that relies on bone marrow or blood transplantation. To achieve this, it is essential to resolve the molecular and cellular pathways that govern HSC formation in the embryo. HSCs first emerge in the aorta-gonad-mesonephros region (AGM) where a rare subset of endothelial cells, hemogenic endothelium (HE), undergoes an endothelial-to-hematopoietic transition (EHT). Here, we present full-length single-cell-RNA-sequencing of the EHT process with a focus on HE and dorsal aorta niche cells. By using Runx1b and Gfi1/1b transgenic reporter mouse models to isolate HE, we uncovered that the pre-HE to HE continuum is specifically marked by Angiotensin-I converting enzyme (ACE) expression. We established that HE cells begin to enter the cell cycle near the time of EHT initiation when their morphology still resembles endothelial cells. We further demonstrated that RUNX1 AGM niche cells consist of vascular smooth muscle cells and PDGFRa+ mesenchymal cells and can functionally support hematopoiesis. Overall, our study provides new insights into HE differentiation towards HSC and the role of AGM RUNX1+ niche cells in this process. Our expansive scRNA-seq datasets represents a powerful resource to investigate these processes further.
Collapse
|
53
|
Gioacchino E, Koyunlar C, Zink J, de Looper H, de Jong M, Dobrzycki T, Mahony CB, Hoogenboezem R, Bosch D, van Strien PMH, van Royen ME, French PJ, Bindels E, Gussinklo KJ, Monteiro R, Touw IP, de Pater E. Essential role for Gata2 in modulating lineage output from hematopoietic stem cells in zebrafish. Blood Adv 2021; 5:2687-2700. [PMID: 34170285 PMCID: PMC8288679 DOI: 10.1182/bloodadvances.2020002993] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/22/2021] [Indexed: 01/22/2023] Open
Abstract
The differentiation of hematopoietic stem cells (HSCs) is tightly controlled to ensure a proper balance between myeloid and lymphoid cell output. GATA2 is a pivotal hematopoietic transcription factor required for generation and maintenance of HSCs. GATA2 is expressed throughout development, but because of early embryonic lethality in mice, its role during adult hematopoiesis is incompletely understood. Zebrafish contains 2 orthologs of GATA2: Gata2a and Gata2b, which are expressed in different cell types. We show that the mammalian functions of GATA2 are split between these orthologs. Gata2b-deficient zebrafish have a reduction in embryonic definitive hematopoietic stem and progenitor cell (HSPC) numbers, but are viable. This allows us to uniquely study the role of GATA2 in adult hematopoiesis. gata2b mutants have impaired myeloid lineage differentiation. Interestingly, this defect arises not in granulocyte-monocyte progenitors, but in HSPCs. Gata2b-deficient HSPCs showed impaired progression of the myeloid transcriptional program, concomitant with increased coexpression of lymphoid genes. This resulted in a decrease in myeloid-programmed progenitors and a relative increase in lymphoid-programmed progenitors. This shift in the lineage output could function as an escape mechanism to avoid a block in lineage differentiation. Our study helps to deconstruct the functions of GATA2 during hematopoiesis and shows that lineage differentiation flows toward a lymphoid lineage in the absence of Gata2b.
Collapse
Affiliation(s)
| | - Cansu Koyunlar
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | - Joke Zink
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | - Hans de Looper
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
- Cancer Genome Editing Center, Erasmus MC, Rotterdam, The Netherlands
| | - Madelon de Jong
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | - Tomasz Dobrzycki
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Christopher B. Mahony
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom; and
| | | | - Dennis Bosch
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Martin E. van Royen
- Department of Pathology, Cancer Treatment Screening Facility, Erasmus MC Optical Imaging Centre, and
| | - Pim J. French
- Department of Neurology, Cancer Treatment Screening Facility, Erasmus MC, Rotterdam, The Netherlands
| | - Eric Bindels
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Rui Monteiro
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom; and
| | - Ivo P. Touw
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | - Emma de Pater
- Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
- Cancer Genome Editing Center, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
54
|
Correa-Gallegos D, Jiang D, Rinkevich Y. Fibroblasts as confederates of the immune system. Immunol Rev 2021; 302:147-162. [PMID: 34036608 DOI: 10.1111/imr.12972] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022]
Abstract
Fibroblastic stromal cells are as diverse, in origin and function, as the niches they fashion in the mammalian body. This cellular variety impacts the spectrum of responses elicited by the immune system. Fibroblast influence on the immune system keeps evolving our perspective on fibroblast roles and functions beyond just a passive structural part of organs. This review discusses the foundations of fibroblastic stromal-immune crosstalk, under the scope of stromal heterogeneity as a basis for tissue-specific tutoring of the immune system. Focusing on the skin as a relevant immunological organ, we detail the complex interactions between distinct fibroblast populations and immune cells that occur during homeostasis, injury repair, scarring, and disease. We further review the relevance of fibroblastic stromal cell heterogeneity and how this heterogeneity is central to regulate the immune system from its inception during embryonic development into adulthood.
Collapse
Affiliation(s)
- Donovan Correa-Gallegos
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, Munich, Germany
| | - Dongsheng Jiang
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
55
|
Lange L, Morgan M, Schambach A. The hemogenic endothelium: a critical source for the generation of PSC-derived hematopoietic stem and progenitor cells. Cell Mol Life Sci 2021; 78:4143-4160. [PMID: 33559689 PMCID: PMC8164610 DOI: 10.1007/s00018-021-03777-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/16/2020] [Accepted: 01/15/2021] [Indexed: 12/02/2022]
Abstract
In vitro generation of hematopoietic cells and especially hematopoietic stem cells (HSCs) from human pluripotent stem cells (PSCs) are subject to intensive research in recent decades, as these cells hold great potential for regenerative medicine and autologous cell replacement therapies. Despite many attempts, in vitro, de novo generation of bona fide HSCs remains challenging, and we are still far away from their clinical use, due to insufficient functionality and quantity of the produced HSCs. The challenges of generating PSC-derived HSCs are already apparent in early stages of hemato-endothelial specification with the limitation of recapitulating complex, dynamic processes of embryonic hematopoietic ontogeny in vitro. Further, these current shortcomings imply the incompleteness of our understanding of human ontogenetic processes from embryonic mesoderm over an intermediate, specialized hemogenic endothelium (HE) to their immediate progeny, the HSCs. In this review, we examine the recent investigations of hemato-endothelial ontogeny and recently reported progress for the conversion of PSCs and other promising somatic cell types towards HSCs with the focus on the crucial and inevitable role of the HE to achieve the long-standing goal—to generate therapeutically applicable PSC-derived HSCs in vitro.
Collapse
Affiliation(s)
- Lucas Lange
- Institute of Experimental Hematology, Hannover Medical School, 30625, Hannover, Germany.,REBIRTH, Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625, Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625, Hannover, Germany.,REBIRTH, Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625, Hannover, Germany. .,REBIRTH, Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625, Hannover, Germany. .,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
56
|
Julien E, Biasch K, El Omar R, Freund JN, Gachet C, Lanza F, Tavian M. Renin-angiotensin system is involved in embryonic emergence of hematopoietic stem/progenitor cells. Stem Cells 2021; 39:636-649. [PMID: 33480126 DOI: 10.1002/stem.3339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/08/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Angiotensin-converting enzyme (ACE), a key element of the renin-angiotensin system (RAS), has recently been identified as a new marker of both adult and embryonic human hematopoietic stem/progenitor cells (HSPCs). However, whether a full renin-angiotensin pathway is locally present during the hematopoietic emergence is still an open question. In the present study, we show that this enzyme is expressed by hematopoietic progenitors in the developing mouse embryo. Furthermore, ACE and the other elements of RAS-namely angiotensinogen, renin, and angiotensin II type 1 (AT1) and type 2 (AT2) receptors-are expressed in the paraaortic splanchnopleura (P-Sp) and in its derivative, the aorta-gonad-mesonephros region, both in human and mouse embryos. Their localization is compatible with the existence of a local autocrine and/or paracrine RAS in these hemogenic sites. in vitro perturbation of the RAS by administration of a specific AT1 receptor antagonist inhibits almost totally the generation of blood CD45-positive cells from dissected P-Sp, implying that angiotensin II signaling is necessary for the emergence of hematopoietic cells. Conversely, addition of exogenous angiotensin II peptide stimulates hematopoiesis in culture, with an increase in the number of immature c-Kit+ CD41+ CD31+ CD45+ hematopoietic progenitors, compared to the control. These results highlight a novel role of local-RAS during embryogenesis, suggesting that angiotensin II, via activation of AT1 receptor, promotes the emergence of undifferentiated hematopoietic progenitors.
Collapse
Affiliation(s)
- Emmanuelle Julien
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France
| | - Katia Biasch
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France.,University of Strasbourg, INSERM, IRFAC/UMR-S1113, ITI InnoVec, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Reine El Omar
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France.,IMoPA, UMR7365 CNRS-University of Lorraine, Vandœuvre Les Nancy, France
| | - Jean-Noël Freund
- University of Strasbourg, INSERM, IRFAC/UMR-S1113, ITI InnoVec, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Christian Gachet
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France
| | - François Lanza
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France
| | - Manuela Tavian
- University of Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, Strasbourg, France.,University of Strasbourg, INSERM, IRFAC/UMR-S1113, ITI InnoVec, FHU ARRIMAGE, FMTS, Strasbourg, France
| |
Collapse
|
57
|
Ganuza M, Hall T, Obeng EA, McKinney-Freeman S. Clones assemble! The clonal complexity of blood during ontogeny and disease. Exp Hematol 2020; 83:35-47. [PMID: 32006606 PMCID: PMC8343955 DOI: 10.1016/j.exphem.2020.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 01/30/2023]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) govern the daily expansion and turnover of billions of specialized blood cells. Given their clinical utility, much effort has been made toward understanding the dynamics of hematopoietic production from this pool of stem cells. An understanding of hematopoietic stem cell clonal dynamics during blood ontogeny could yield important insights into hematopoietic regulation, especially during aging and repeated exposure to hematopoietic stress-insults that may predispose individuals to the development of hematopoietic disease. Here, we review the current state of research regarding the clonal complexity of the hematopoietic system during embryogenesis, adulthood, and hematologic disease.
Collapse
Affiliation(s)
- Miguel Ganuza
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Trent Hall
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Esther A Obeng
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | | |
Collapse
|
58
|
Vascular Wall as Source of Stem Cells Able to Differentiate into Endothelial Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31797283 DOI: 10.1007/5584_2019_421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
The traditional view of the vascular biology is changed by the discovery of vascular progenitor cells in bone marrow or peripheral blood Further complexity is due to the findings that the vessel walls harbor progenitor and stem cells, called vascular wall-resident vascular stem cells (VW-VSCs), able to differentiate to mature vascular wall cells. These immature stem/progenitor cell populations and multipotent mesenchymal lineage participate in postnatal neovascularization and vascular wall remodeling. Further studies are necessary to deepen the knowledge on characterization and biology of VW-VSCs, in particular of endothelial progenitor cells (EPCs) in order to improve their use in clinical settings for regenerative approaches.
Collapse
|
59
|
Menegatti S, de Kruijf M, Garcia‐Alegria E, Lacaud G, Kouskoff V. Transcriptional control of blood cell emergence. FEBS Lett 2019; 593:3304-3315. [PMID: 31432499 PMCID: PMC6916194 DOI: 10.1002/1873-3468.13585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 01/06/2023]
Abstract
The haematopoietic system is established during embryonic life through a series of developmental steps that culminates with the generation of haematopoietic stem cells. Characterisation of the transcriptional network that regulates blood cell emergence has led to the identification of transcription factors essential for this process. Among the many factors wired within this complex regulatory network, ETV2, SCL and RUNX1 are the central components. All three factors are absolutely required for blood cell generation, each one controlling a precise step of specification from the mesoderm germ layer to fully functional blood progenitors. Insight into the transcriptional control of blood cell emergence has been used for devising protocols to generate blood cells de novo, either through reprogramming of somatic cells or through forward programming of pluripotent stem cells. Interestingly, the physiological process of blood cell generation and its laboratory-engineered counterpart have very little in common.
Collapse
Affiliation(s)
- Sara Menegatti
- Developmental Haematopoiesis GroupFaculty of Biology, Medicine and Healththe University of ManchesterUK
| | - Marcel de Kruijf
- Developmental Haematopoiesis GroupFaculty of Biology, Medicine and Healththe University of ManchesterUK
| | - Eva Garcia‐Alegria
- Developmental Haematopoiesis GroupFaculty of Biology, Medicine and Healththe University of ManchesterUK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology GroupCancer Research UK Manchester InstituteThe University of ManchesterMacclesfieldUK
| | - Valerie Kouskoff
- Developmental Haematopoiesis GroupFaculty of Biology, Medicine and Healththe University of ManchesterUK
| |
Collapse
|
60
|
In vivo generation of haematopoietic stem/progenitor cells from bone marrow-derived haemogenic endothelium. Nat Cell Biol 2019; 21:1334-1345. [PMID: 31685991 DOI: 10.1038/s41556-019-0410-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 09/23/2019] [Indexed: 01/22/2023]
Abstract
It is well established that haematopoietic stem and progenitor cells (HSPCs) are generated from a transient subset of specialized endothelial cells termed haemogenic, present in the yolk sac, placenta and aorta, through an endothelial-to-haematopoietic transition (EHT). HSPC generation via EHT is thought to be restricted to the early stages of development. By using experimental embryology and genetic approaches in birds and mice, respectively, we document here the discovery of a bone marrow haemogenic endothelium in the late fetus/young adult. These cells are capable of de novo producing a cohort of HSPCs in situ that harbour a very specific molecular signature close to that of aortic endothelial cells undergoing EHT or their immediate progenies, i.e., recently emerged HSPCs. Taken together, our results reveal that HSPCs can be generated de novo past embryonic stages. Understanding the molecular events controlling this production will be critical for devising innovative therapies.
Collapse
|
61
|
Mevel R, Draper JE, Lie-A-Ling M, Kouskoff V, Lacaud G. RUNX transcription factors: orchestrators of development. Development 2019; 146:dev148296. [PMID: 31488508 DOI: 10.1242/dev.148296] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RUNX transcription factors orchestrate many different aspects of biology, including basic cellular and developmental processes, stem cell biology and tumorigenesis. In this Primer, we introduce the molecular hallmarks of the three mammalian RUNX genes, RUNX1, RUNX2 and RUNX3, and discuss the regulation of their activities and their mechanisms of action. We then review their crucial roles in the specification and maintenance of a wide array of tissues during embryonic development and adult homeostasis.
Collapse
Affiliation(s)
- Renaud Mevel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Julia E Draper
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Michael Lie-A-Ling
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield SK10 4TG, UK
| |
Collapse
|
62
|
Abstract
Evidence of the diversity and multi-layered organization of the hematopoietic system is leading to new insights that may inform ex vivo production of blood cells. Interestingly, not all long-lived hematopoietic cells derive from hematopoietic stem cells (HSCs). Here we review the current knowledge on HSC-dependent cell lineages and HSC-independent tissue-resident hematopoietic cells and how they arise during embryonic development. Classical embryological and genetic experiments, cell fate tracing data, single-cell imaging, and transcriptomics studies provide information on the molecular/cell trajectories that form the complete hematopoietic system. We also discuss the current developmentally informed efforts toward generating engraftable and multilineage blood cells.
Collapse
Affiliation(s)
- Elaine Dzierzak
- MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | - Anna Bigas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques, CIBERONC, Dr. Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
63
|
Mariani SA, Li Z, Rice S, Krieg C, Fragkogianni S, Robinson M, Vink CS, Pollard JW, Dzierzak E. Pro-inflammatory Aorta-Associated Macrophages Are Involved in Embryonic Development of Hematopoietic Stem Cells. Immunity 2019; 50:1439-1452.e5. [PMID: 31178352 PMCID: PMC6591003 DOI: 10.1016/j.immuni.2019.05.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 03/04/2019] [Accepted: 05/11/2019] [Indexed: 02/04/2023]
Abstract
Hematopoietic stem cells (HSCs) are generated from specialized endothelial cells of the embryonic aorta. Inflammatory factors are implicated in regulating mouse HSC development, but which cells in the aorta-gonad-mesonephros (AGM) microenvironment produce these factors is unknown. In the adult, macrophages play both pro- and anti-inflammatory roles. We sought to examine whether macrophages or other hematopoietic cells found in the embryo prior to HSC generation were involved in the AGM HSC-generative microenvironment. CyTOF analysis of CD45+ AGM cells revealed predominance of two hematopoietic cell types, mannose-receptor positive macrophages and mannose-receptor negative myeloid cells. We show here that macrophage appearance in the AGM was dependent on the chemokine receptor Cx3cr1. These macrophages expressed a pro-inflammatory signature, localized to the aorta, and dynamically interacted with nascent and emerging intra-aortic hematopoietic cells (IAHCs). Importantly, upon macrophage depletion, no adult-repopulating HSCs were detected, thus implicating a role for pro-inflammatory AGM-associated macrophages in regulating the development of HSCs. Yolk-sac-derived macrophages are the most abundant hematopoietic cells in the AGM Cx3cr1 mediates yolk-sac macrophage progenitor recruitment to the AGM niche AGM macrophages dynamically interact with emerging intra-aortic hematopoietic cells Pro-inflammatory AGM macrophages are positive regulators of HSC generation
Collapse
Affiliation(s)
| | - Zhuan Li
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | - Siobhan Rice
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | - Carsten Krieg
- Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | | - Elaine Dzierzak
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
64
|
Roy IM, Biswas A, Verfaillie C, Khurana S. Energy Producing Metabolic Pathways in Functional Regulation of the Hematopoietic Stem Cells. IUBMB Life 2019; 70:612-624. [PMID: 29999238 DOI: 10.1002/iub.1870] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/20/2018] [Indexed: 02/06/2023]
Abstract
The hematopoietic system has a very well-studied hierarchy with the long-term (LT) hematopoietic stem cells (HSCs) taking the top position. The pool of quiescent adult LT-HSCs generated during the fetal and early postnatal life acts as a reservoir to supply all the blood cells. Therefore, the maintenance of this stem cell pool is pivotal to maintaining homeostasis in hematopoietic system. It has long been known that external cues, along with the internal genetic factors influence the status of HSCs in the bone marrow (BM). Hypoxia is one such factor that regulates the vascular as well as hematopoietic ontogeny from a very early time point in development. The metabolic outcomes of a hypoxic microenvironment play important roles in functional regulation of HSCs, especially in case of adult BM HSCs. Anaerobic metabolic pathways therefore perform prominent role in meeting energy demands. Increased oxidative pathways on the other hand result in loss of stemness. Recent studies have attributed the functional differences in HSCs across different life stages to their metabolic phenotypes regulated by respective niches. Indicating thus, that various energy production pathways could play distinct role in regulating HSC function at different developmental/physiological states. Here, we review the current status of our understanding over the role that energy production pathways play in regulating HSC stemness. © 2018 IUBMB Life, 70(7):612-624, 2018.
Collapse
Affiliation(s)
- Irene M Roy
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India
| | - Atreyi Biswas
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India
| | | | - Satish Khurana
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India
| |
Collapse
|
65
|
Ottersbach K. Endothelial-to-haematopoietic transition: an update on the process of making blood. Biochem Soc Trans 2019; 47:591-601. [PMID: 30902922 PMCID: PMC6490701 DOI: 10.1042/bst20180320] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 01/30/2023]
Abstract
The first definitive blood cells during embryogenesis are derived from endothelial cells in a highly conserved process known as endothelial-to-haematopoietic transition (EHT). This conversion involves activation of a haematopoietic transcriptional programme in a subset of endothelial cells in the major vasculature of the embryo, followed by major morphological changes that result in transitioning cells rounding up, breaking the tight junctions to neighbouring endothelial cells and adopting a haematopoietic fate. The whole process is co-ordinated by a complex interplay of key transcription factors and signalling pathways, with additional input from surrounding tissues. Diverse model systems, including mouse, chick and zebrafish embryos as well as differentiation of pluripotent cells in vitro, have contributed to the elucidation of the details of the EHT, which was greatly accelerated in recent years by sophisticated live imaging techniques and advances in transcriptional profiling, such as single-cell RNA-Seq. A detailed knowledge of these developmental events is required in order to be able to apply it to the generation of haematopoietic stem cells from pluripotent stem cells in vitro - an achievement which is of obvious clinical importance. The aim of this review is to summarise the latest findings and describe how these may have contributed towards achieving this goal.
Collapse
Affiliation(s)
- Katrin Ottersbach
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, U.K.
| |
Collapse
|
66
|
Zhang Y, Clay D, Mitjavila-Garcia MT, Alama A, Mennesson B, Berseneff H, Louache F, Bennaceur-Griscelli A, Oberlin E. VE-Cadherin and ACE Co-Expression Marks Highly Proliferative Hematopoietic Stem Cells in Human Embryonic Liver. Stem Cells Dev 2019; 28:165-185. [PMID: 30426841 DOI: 10.1089/scd.2018.0154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Despite advances to engineer transplantable hematopoietic stem and progenitor cells (HSPCs) for research and therapy, an in-depth characterization of the developing human hematopoietic system is still lacking. The human embryonic liver is at the crossroad of several hematopoietic sites and harbors a complex hematopoietic hierarchy, including the first actively dividing HSPCs that will further seed the definitive hematopoietic organs. However, few are known about the phenotypic and functional HSPC organization operating at these stages of development. In this study, using a combination of four endothelial and hematopoietic surface markers, that is, the endothelial-specific marker vascular endothelial-cadherin (Cdh5, CD144), the pan-leukocyte antigen CD45, the hemato-endothelial marker CD34, and the angiotensin-converting enzyme (ACE, CD143), we identified distinct HSPC subsets, and among them, a population co-expressing the four markers that uniquely harbored an outstanding proliferation potential both ex vivo and in vivo. Moreover, we traced back this population to the yolk sac (YS) and aorta-gonad-mesonephros (AGM) sites of hematopoietic emergence. Taken together, our data will help to identify human HSPC self-renewal and amplification mechanisms for future cell therapies.
Collapse
Affiliation(s)
- Yanyan Zhang
- 1 Inserm, UMR 1170, Villejuif, France.,2 Paris-Saclay University, Villejuif, France.,3 Gustave Roussy, Villejuif, France
| | - Denis Clay
- 4 Inserm UMS 33, Villejuif, France.,5 André Lwoff Institute (IFR89), Villejuif, France.,6 Paris-Saclay University, Villejuif, France
| | - Maria Teresa Mitjavila-Garcia
- 5 André Lwoff Institute (IFR89), Villejuif, France.,6 Paris-Saclay University, Villejuif, France.,7 Inserm UMR 935, Villejuif, France
| | - Aurélie Alama
- 5 André Lwoff Institute (IFR89), Villejuif, France.,6 Paris-Saclay University, Villejuif, France.,7 Inserm UMR 935, Villejuif, France
| | - Benoit Mennesson
- 8 Obstetrics and Gynecology Department, René-Dubos Hospital, Pontoise, France
| | - Helene Berseneff
- 8 Obstetrics and Gynecology Department, René-Dubos Hospital, Pontoise, France
| | - Fawzia Louache
- 1 Inserm, UMR 1170, Villejuif, France.,2 Paris-Saclay University, Villejuif, France.,3 Gustave Roussy, Villejuif, France
| | - Annelise Bennaceur-Griscelli
- 5 André Lwoff Institute (IFR89), Villejuif, France.,6 Paris-Saclay University, Villejuif, France.,7 Inserm UMR 935, Villejuif, France
| | - Estelle Oberlin
- 5 André Lwoff Institute (IFR89), Villejuif, France.,6 Paris-Saclay University, Villejuif, France.,7 Inserm UMR 935, Villejuif, France
| |
Collapse
|
67
|
Chagraoui H, Kristiansen MS, Ruiz JP, Serra-Barros A, Richter J, Hall-Ponselé E, Gray N, Waithe D, Clark K, Hublitz P, Repapi E, Otto G, Sopp P, Taylor S, Thongjuea S, Vyas P, Porcher C. SCL/TAL1 cooperates with Polycomb RYBP-PRC1 to suppress alternative lineages in blood-fated cells. Nat Commun 2018; 9:5375. [PMID: 30560907 PMCID: PMC6299140 DOI: 10.1038/s41467-018-07787-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 11/23/2018] [Indexed: 01/03/2023] Open
Abstract
During development, it is unclear if lineage-fated cells derive from multilineage-primed progenitors and whether active mechanisms operate to restrict cell fate. Here we investigate how mesoderm specifies into blood-fated cells. We document temporally restricted co-expression of blood (Scl/Tal1), cardiac (Mesp1) and paraxial (Tbx6) lineage-affiliated transcription factors in single cells, at the onset of blood specification, supporting the existence of common progenitors. At the same time-restricted stage, absence of SCL results in expansion of cardiac/paraxial cell populations and increased cardiac/paraxial gene expression, suggesting active suppression of alternative fates. Indeed, SCL normally activates expression of co-repressor ETO2 and Polycomb-PRC1 subunits (RYBP, PCGF5) and maintains levels of Polycomb-associated histone marks (H2AK119ub/H3K27me3). Genome-wide analyses reveal ETO2 and RYBP co-occupy most SCL target genes, including cardiac/paraxial loci. Reduction of Eto2 or Rybp expression mimics Scl-null cardiac phenotype. Therefore, SCL-mediated transcriptional repression prevents mis-specification of blood-fated cells, establishing active repression as central to fate determination processes.
Collapse
Affiliation(s)
- Hedia Chagraoui
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Maiken S Kristiansen
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Medimmune, Granta Park, CB21 6GH, Cambridge, UK
| | - Juan Pablo Ruiz
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Haematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ana Serra-Barros
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Johanna Richter
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Elisa Hall-Ponselé
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Centre for Regenerative Medicine, SCRM Building, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Nicki Gray
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Dominic Waithe
- Wolfson Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Kevin Clark
- FACS Facility, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Philip Hublitz
- Genome Engineering Facility, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Emmanouela Repapi
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Georg Otto
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Oxford National Institute for Health Research, Biomedical Research Centre, Haematology Theme, Oxford University Hospital, Oxford, OX3 9DU, UK
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Paul Sopp
- FACS Facility, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Stephen Taylor
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Supat Thongjuea
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Oxford National Institute for Health Research, Biomedical Research Centre, Haematology Theme, Oxford University Hospital, Oxford, OX3 9DU, UK
| | - Paresh Vyas
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Oxford National Institute for Health Research, Biomedical Research Centre, Haematology Theme, Oxford University Hospital, Oxford, OX3 9DU, UK
| | - Catherine Porcher
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.
| |
Collapse
|
68
|
Gao L, Tober J, Gao P, Chen C, Tan K, Speck NA. RUNX1 and the endothelial origin of blood. Exp Hematol 2018; 68:2-9. [PMID: 30391350 PMCID: PMC6494457 DOI: 10.1016/j.exphem.2018.10.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 10/28/2022]
Abstract
The transcription factor RUNX1 is required in the embryo for formation of the adult hematopoietic system. Here, we describe the seminal findings that led to the discovery of RUNX1 and of its critical role in blood cell formation in the embryo from hemogenic endothelium (HE). We also present RNA-sequencing data demonstrating that HE cells in different anatomic sites, which produce hematopoietic progenitors with dissimilar differentiation potentials, are molecularly distinct. Hemogenic and non-HE cells in the yolk sac are more closely related to each other than either is to hemogenic or non-HE cells in the major arteries. Therefore, a major driver of the different lineage potentials of the committed erythro-myeloid progenitors that emerge in the yolk sac versus hematopoietic stem cells that originate in the major arteries is likely to be the distinct molecular properties of the HE cells from which they are derived. We used bioinformatics analyses to predict signaling pathways active in arterial HE, which include the functionally validated pathways Notch, Wnt, and Hedgehog. We also used a novel bioinformatics approach to assemble transcriptional regulatory networks and predict transcription factors that may be specifically involved in hematopoietic cell formation from arterial HE, which is the origin of the adult hematopoietic system.
Collapse
Affiliation(s)
- Long Gao
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joanna Tober
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peng Gao
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Changya Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kai Tan
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Nancy A Speck
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
69
|
Slukvin II, Uenishi GI. Arterial identity of hemogenic endothelium: a key to unlock definitive hematopoietic commitment in human pluripotent stem cell cultures. Exp Hematol 2018; 71:3-12. [PMID: 30500414 DOI: 10.1016/j.exphem.2018.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Human pluripotent stem cells (hPSCs) have been suggested as a potential source for the de novo production of blood cells for transfusion, immunotherapies, and transplantation. However, even with advanced hematopoietic differentiation methods, the primitive and myeloid-restricted waves of hematopoiesis dominate in hPSC differentiation cultures, whereas cell surface markers to distinguish these waves of hematopoiesis from lympho-myeloid hematopoiesis remain unknown. In the embryo, hematopoietic stem cells (HSCs) arise from hemogenic endothelium (HE) lining arteries, but not veins. This observation led to a long-standing hypothesis that arterial specification is an essential prerequisite to initiate the HSC program. It has also been established that lymphoid potential in the yolk sac and extraembryonic vasculature is mostly confined to arteries, whereas myeloid-restricted hematopoiesis is not specific to arterial vessels. Here, we review how the link between arterialization and the subsequent definitive multilineage hematopoietic program can be exploited to identify HE enriched in lymphoid progenitors and aid in in vitro approaches to enhance the production of lymphoid cells and potentially HSCs from hPSCs. We also discuss alternative models of hematopoietic specification at arterial sites and recent advances in our understanding of hematopoietic development and the production of engraftable hematopoietic cells from hPSCs.
Collapse
Affiliation(s)
- Igor I Slukvin
- National Primate Research Center, University of Wisconsin Graduate School, Madison, WI, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, Madison, WI, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Gene I Uenishi
- National Primate Research Center, University of Wisconsin Graduate School, Madison, WI, USA
| |
Collapse
|
70
|
Li P, Wu M, Lin Q, Wang S, Chen T, Jiang H. Key genes and integrated modules in hematopoietic differentiation of human embryonic stem cells: a comprehensive bioinformatic analysis. Stem Cell Res Ther 2018; 9:301. [PMID: 30409225 PMCID: PMC6225692 DOI: 10.1186/s13287-018-1050-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/07/2018] [Accepted: 10/16/2018] [Indexed: 12/30/2022] Open
Abstract
Background The generation of hematopoietic stem cells (HSCs) and blood cells from human embryonic stem cells (hESCs) is a major goal for regenerative medicine; however, the differentiation mechanisms are largely undefined. Here, we aimed to identify the regulated genes and functional modules related to the early differentiation of the endothelial-to-hematopoietic transition (EHT) using comprehensive bioinformatics analyses. Methods Undifferentiated hESCs (hESC-H9), CD34+ cells from 10-day differentiated hESC-H9 cells, and CD34+ cells from umbilical cord cells were isolated and collected. Cells from these three groups were subjected to RNA extraction and microarray analysis by which differentially expressed genes (DEGs) and time-series profiles were analyzed by significance analysis of microarray (SAM) and short time-series expression miner (STEM) algorithms. Gene enrichment analysis was performed by ClusterProfiler Package in Rstudio, while a protein-protein interaction (PPI) network was constructed by search tool for the retrieval of interacting genes (STRING) and visualized in Cytoscape. Hub genes were further identified with the MCODE algorithm in Cytoscape. Results In the present study, we identified 11,262 DEGs and 16 time-series profiles that were enriched in biological processes of chromosome segregation, cell cycle, and leukocyte activation and differentiation, as well as hematopoiesis. Analysis using the MCODE algorithm further identified six integrated modules that might play an important role in the EHT process, including mitosis/cell cycle, mitochondrial process, splicing, ubiquitination, ribosome, and apoptosis. Conclusions The study identified potential genes and integrated functional modules associated with the hematopoietic and endothelial differentiation of human ESCs. Electronic supplementary material The online version of this article (10.1186/s13287-018-1050-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Mengyao Wu
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qiwang Lin
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Shu Wang
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Tong Chen
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Hua Jiang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
71
|
Bickers C, Española SD, Grainger S, Pouget C, Traver D. Zebrafish snai2 mutants fail to phenocopy morphant phenotypes. PLoS One 2018; 13:e0202747. [PMID: 30208064 PMCID: PMC6135377 DOI: 10.1371/journal.pone.0202747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/07/2018] [Indexed: 11/24/2022] Open
Abstract
Snail2 is a zinc-finger transcription factor best known to repress expression of genes encoding cell adherence proteins to facilitate induction of the epithelial-to-mesenchymal transition. While this role has been best documented in the developmental migration of the neural crest and mesoderm, here we expand on previously reported preliminary findings that morpholino knock-down of snai2 impairs the generation of hematopoietic stem cells (HSCs) during zebrafish development. We demonstrate that snai2 morphants fail to initiate HSC specification and show defects in the somitic niche of migrating HSC precursors. These defects include a reduction in sclerotome markers as well as in the Notch ligands dlc and dld, which are known to be essential components of HSC specification. Accordingly, enforced expression of the Notch1-intracellular domain was capable of rescuing HSC specification in snai2 morphants. To parallel our approach, we obtained two mutant alleles of snai2. In contrast to the morphants, homozygous mutant embryos displayed no defects in HSC specification or in sclerotome development, and mutant fish survive into adulthood. However, when these homozygous mutants were injected with snai2 morpholino, HSCs were improperly specified. In summary, our morpholino data support a role for Snai2 in HSC development, whereas our mutant data suggest that Snai2 is dispensable for this process. Together, these findings further support the need for careful consideration of both morpholino and mutant phenotypes in studies of gene function.
Collapse
Affiliation(s)
- Cara Bickers
- Department of Cellular and Molecular Medicine and Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Sophia D. Española
- Department of Cellular and Molecular Medicine and Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Stephanie Grainger
- Department of Cellular and Molecular Medicine and Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - Claire Pouget
- Department of Cellular and Molecular Medicine and Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| | - David Traver
- Department of Cellular and Molecular Medicine and Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States of America
| |
Collapse
|
72
|
Mechanism of hematopoiesis and vasculogenesis in mouse placenta. Placenta 2018; 69:140-145. [DOI: 10.1016/j.placenta.2018.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/20/2022]
|
73
|
Mokhtari S, Colletti E, Yin W, Sanada C, Lamar Z, Simmons PJ, Walker S, Bishop C, Atala A, Zanjani ED, Porada CD, Almeida-Porada G. A human bone marrow mesodermal-derived cell population with hemogenic potential. Leukemia 2018; 32:1575-1586. [PMID: 29467489 PMCID: PMC6035774 DOI: 10.1038/s41375-018-0016-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/17/2017] [Accepted: 12/18/2017] [Indexed: 01/08/2023]
Abstract
The presence, within the human bone marrow, of cells with both endothelial and hemogenic potential has been controversial. Herein, we identify, within the human fetal bone marrow, prior to establishment of hematopoiesis, a unique APLNR+, Stro-1+ cell population, co-expressing markers of early mesodermal precursors and/or hemogenic endothelium. In adult marrow, cells expressing similar markers are also found, but at very low frequency. These adult-derived cells can be extensively culture expanded in vitro without loss of potential, they preserve a biased hemogenic transcriptional profile, and, upon in vitro induction with OCT4, assume a hematopoietic phenotype. In vivo, these cells, upon transplantation into a fetal microenvironment, contribute to the vasculature, and generate hematopoietic cells that provide multilineage repopulation upon serial transplantation. The identification of this human somatic cell population provides novel insights into human ontogenetic hematovascular potential, which could lead to a better understanding of, and new target therapies for, malignant and nonmalignant hematologic disorders.
Collapse
Affiliation(s)
- Saloomeh Mokhtari
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27157, USA
| | - Evan Colletti
- Animal Biotechnology, University of Nevada Reno, Reno NV 89557, USA
| | - Weihong Yin
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27157, USA
| | - Chad Sanada
- CORRESPONDING AUTHOR: Graça Almeida-Porada, M.D., Ph.D., Professor of Regenerative Medicine, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083 USA., Phone: (336) 713-1630; FAX: (336) 713-7290,
| | - Zanetta Lamar
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27157, USA
| | - Paul J. Simmons
- Institute of Molecular Medicine, University of Texas at Houston, Houston, Texas 77030, USA
| | - Steven Walker
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27157, USA
| | - Colin Bishop
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
74
|
Baron CS, Kester L, Klaus A, Boisset JC, Thambyrajah R, Yvernogeau L, Kouskoff V, Lacaud G, van Oudenaarden A, Robin C. Single-cell transcriptomics reveal the dynamic of haematopoietic stem cell production in the aorta. Nat Commun 2018; 9:2517. [PMID: 29955049 PMCID: PMC6023921 DOI: 10.1038/s41467-018-04893-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 05/25/2018] [Indexed: 11/09/2022] Open
Abstract
Haematopoietic stem cells (HSCs) are generated from haemogenic endothelial (HE) cells via the formation of intra-aortic haematopoietic clusters (IAHCs) in vertebrate embryos. The molecular events controlling endothelial specification, endothelial-to-haematopoietic transition (EHT) and IAHC formation, as it occurs in vivo inside the aorta, are still poorly understood. To gain insight in these processes, we performed single-cell RNA-sequencing of non-HE cells, HE cells, cells undergoing EHT, IAHC cells, and whole IAHCs isolated from mouse embryo aortas. Our analysis identified the genes and transcription factor networks activated during the endothelial-to-haematopoietic switch and IAHC cell maturation toward an HSC fate. Our study provides an unprecedented complete resource to study in depth HSC generation in vivo. It will pave the way for improving HSC production in vitro to address the growing need for tailor-made HSCs to treat patients with blood-related disorders.
Collapse
Affiliation(s)
- Chloé S Baron
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Lennart Kester
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Anna Klaus
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Jean-Charles Boisset
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Roshana Thambyrajah
- CRUK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Aderley Park, Aderley Edge, Macclesfield, SK10 4TG, UK
| | - Laurent Yvernogeau
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Valérie Kouskoff
- Division of Developmental Biology and Medicine, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Georges Lacaud
- CRUK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Aderley Park, Aderley Edge, Macclesfield, SK10 4TG, UK
| | - Alexander van Oudenaarden
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Catherine Robin
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
- Regenerative Medicine Center, University Medical Center Utrecht, 3584 EA, Utrecht, The Netherlands.
| |
Collapse
|
75
|
Koyano-Nakagawa N, Garry DJ. Etv2 as an essential regulator of mesodermal lineage development. Cardiovasc Res 2018; 113:1294-1306. [PMID: 28859300 DOI: 10.1093/cvr/cvx133] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/24/2017] [Indexed: 11/14/2022] Open
Abstract
The 'master regulatory factors' that position at the top of the genetic hierarchy of lineage determination have been a focus of intense interest, and have been investigated in various systems. Etv2/Etsrp71/ER71 is such a factor that is both necessary and sufficient for the development of haematopoietic and endothelial lineages. As such, genetic ablation of Etv2 leads to complete loss of blood and vessels, and overexpression can convert non-endothelial cells to the endothelial lineage. Understanding such master regulatory role of a lineage is not only a fundamental quest in developmental biology, but also holds immense possibilities in regenerative medicine. To harness its activity and utility for therapeutic interventions, it is essential to understand the regulatory mechanisms, molecular function, and networks that surround Etv2. In this review, we provide a comprehensive overview of Etv2 biology focused on mouse and human systems.
Collapse
Affiliation(s)
- Naoko Koyano-Nakagawa
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 2231 6th st. SE, Minneapolis, MN 55455, USA
| | - Daniel J Garry
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 2231 6th st. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
76
|
Jankowska-Steifer E, Niderla-Bielińska J, Ciszek B, Kujawa M, Bartkowiak M, Flaht-Zabost A, Klosinska D, Ratajska A. Cells with hematopoietic potential reside within mouse proepicardium. Histochem Cell Biol 2018; 149:577-591. [PMID: 29549430 PMCID: PMC5999137 DOI: 10.1007/s00418-018-1661-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2018] [Indexed: 02/07/2023]
Abstract
During embryonic development, hematopoietic cells are present in areas of blood-vessel differentiation. These hematopoietic cells emerge from a specific subpopulation of endothelial cells called the hemogenic endothelium. We have previously found that mouse proepicardium contained its own population of endothelial cells forming a network of vascular tubules. We hypothesize that this EC population contains cells of hematopoietic potential. Therefore, we investigated an in vitro hematopoietic potential of proepicardial cell populations. The CD31+/CD45-/CD71- cell population cultured for 10 days in MethocultTM gave numerous colonies of CFU-GEMM, CFU-GM, and CFU-E type. These colonies consisted of various cell types. Flk-1+/CD31-/CD45-/CD71-, and CD45+ and/or CD71+ cell populations produced CFU-GEMM and CFU-GM, or CFU-GM and CFU-E colonies, respectively. Immunohistochemical evaluations of smears prepared from colonies revealed the presence of cells of different hematopoietic lineages. These cells were characterized by labeling with various combinations of antibodies directed against CD31, CD41, CD71, c-kit, Mpl, Fli1, Gata-2, and Zeb1 markers. Furthermore, we found that proepicardium-specific marker WT1 co-localized with Runx1 and Zeb1 and that single endothelial cells bearing CD31 molecule expressed Runx1 in the proepicardial area of embryonic tissue sections. We have shown that cells of endothelial and/or hematopoietic phenotypes isolated from mouse proepicardium possess hematopoietic potential in vitro and in situ. These results are supported by RT-PCR analyses of proepicardial extract, which revealed the expression of mRNA for crucial regulatory factors for hemogenic endothelium specification, i.e., Runx1, Notch1, Gata2, and Sox17. Our data are in line with previous observation on hemangioblast derivation from the quail PE.
Collapse
Affiliation(s)
- Ewa Jankowska-Steifer
- Department of Histology and Embryology, Center for Biostructure, Medical University of Warsaw, Chalubińskiego 5, 02-004, Warsaw, Poland
| | - Justyna Niderla-Bielińska
- Department of Histology and Embryology, Center for Biostructure, Medical University of Warsaw, Chalubińskiego 5, 02-004, Warsaw, Poland.
| | - Bogdan Ciszek
- Department of Anatomy, Medical University of Warsaw, Warsaw, Poland
| | - Marek Kujawa
- Department of Histology and Embryology, Center for Biostructure, Medical University of Warsaw, Chalubińskiego 5, 02-004, Warsaw, Poland
| | - Mateusz Bartkowiak
- Department of Histology and Embryology, Center for Biostructure, Medical University of Warsaw, Chalubińskiego 5, 02-004, Warsaw, Poland
| | | | - Daria Klosinska
- Department of Histology and Embryology, Warsaw University of Life Sciences, WULS, SGGW Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Anna Ratajska
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
77
|
In focus in HCB. Histochem Cell Biol 2018; 149:545-546. [PMID: 29777307 DOI: 10.1007/s00418-018-1679-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2018] [Indexed: 10/16/2022]
|
78
|
Berrun A, Harris E, Stachura DL. Isthmin 1 (ism1) is required for normal hematopoiesis in developing zebrafish. PLoS One 2018; 13:e0196872. [PMID: 29758043 PMCID: PMC5951578 DOI: 10.1371/journal.pone.0196872] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/20/2018] [Indexed: 02/06/2023] Open
Abstract
Hematopoiesis is an essential and highly regulated biological process that begins with hematopoietic stem cells (HSCs). In healthy organisms, HSCs are responsible for generating a multitude of mature blood cells every day, yet the molecular pathways that instruct HSCs to self-renew and differentiate into post-mitotic blood cells are not fully known. To understand these molecular pathways, we investigated novel genes expressed in hematopoietic-supportive cell lines from the zebrafish (Danio rerio), a model system increasingly utilized to uncover molecular pathways important in the development of other vertebrate species. We performed RNA sequencing of the transcriptome of three stromal cell lines derived from different stages of embryonic and adult zebrafish and identified hundreds of highly expressed transcripts. For our studies, we focused on isthmin 1 (ism1) due to its shared synteny with its human gene ortholog and because it is a secreted protein. To characterize ism1, we performed loss-of-function experiments to identify if mature blood cell production was disrupted. Myeloid and erythroid lineages were visualized and scored with transgenic zebrafish expressing lineage-specific markers. ism1 knockdown led to reduced numbers of neutrophils, macrophages, and erythrocytes. Analysis of clonal methylcellulose assays from ism1 morphants also showed a reduction in total hematopoietic stem and progenitor cells (HSPCs). Overall, we demonstrate that ism1 is required for normal generation of HSPCs and their downstream progeny during zebrafish hematopoiesis. Further investigation into ism1 and its importance in hematopoiesis may elucidate evolutionarily conserved processes in blood formation that can be further investigated for potential clinical utility.
Collapse
Affiliation(s)
- Arturo Berrun
- Department of Biological Sciences, California State University Chico, Chico, CA, United States of America
| | - Elena Harris
- Department of Computer Sciences, California State University Chico, Chico, CA, United States of America
| | - David L Stachura
- Department of Biological Sciences, California State University Chico, Chico, CA, United States of America
| |
Collapse
|
79
|
Teichweyde N, Kasperidus L, Carotta S, Kouskoff V, Lacaud G, Horn PA, Heinrichs S, Klump H. HOXB4 Promotes Hemogenic Endothelium Formation without Perturbing Endothelial Cell Development. Stem Cell Reports 2018; 10:875-889. [PMID: 29456178 PMCID: PMC5919293 DOI: 10.1016/j.stemcr.2018.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/25/2022] Open
Abstract
Generation of hematopoietic stem cells (HSCs) from pluripotent stem cells, in vitro, holds great promise for regenerative therapies. Primarily, this has been achieved in mouse cells by overexpression of the homeotic selector protein HOXB4. The exact cellular stage at which HOXB4 promotes hematopoietic development, in vitro, is not yet known. However, its identification is a prerequisite to unambiguously identify the molecular circuits controlling hematopoiesis, since the activity of HOX proteins is highly cell and context dependent. To identify that stage, we retrovirally expressed HOXB4 in differentiating mouse embryonic stem cells (ESCs). Through the use of Runx1(-/-) ESCs containing a doxycycline-inducible Runx1 coding sequence, we uncovered that HOXB4 promoted the formation of hemogenic endothelium cells without altering endothelial cell development. Whole-transcriptome analysis revealed that its expression mediated the upregulation of transcription of core transcription factors necessary for hematopoiesis, culminating in the formation of blood progenitors upon initiation of Runx1 expression.
Collapse
Affiliation(s)
- Nadine Teichweyde
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
| | - Lara Kasperidus
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany; Department of Bone Marrow Transplantation, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Sebastian Carotta
- Cancer Cell Signaling, Boehringer Ingelheim RCV, Dr Boehringer-Gasse, 1120 Vienna, Austria
| | - Valerie Kouskoff
- Cancer Research UK Stem Cell Haematopoiesis Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
| | - Stefan Heinrichs
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
| | - Hannes Klump
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany.
| |
Collapse
|
80
|
Lie-A-Ling M, Marinopoulou E, Lilly AJ, Challinor M, Patel R, Lancrin C, Kouskoff V, Lacaud G. Regulation of RUNX1 dosage is crucial for efficient blood formation from hemogenic endothelium. Development 2018; 145:dev149419. [PMID: 29530939 PMCID: PMC5868988 DOI: 10.1242/dev.149419] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 01/30/2018] [Indexed: 12/20/2022]
Abstract
During ontogeny, hematopoietic stem and progenitor cells arise from hemogenic endothelium through an endothelial-to-hematopoietic transition that is strictly dependent on the transcription factor RUNX1. Although it is well established that RUNX1 is essential for the onset of hematopoiesis, little is known about the role of RUNX1 dosage specifically in hemogenic endothelium and during the endothelial-to-hematopoietic transition. Here, we used the mouse embryonic stem cell differentiation system to determine if and how RUNX1 dosage affects hemogenic endothelium differentiation. The use of inducible Runx1 expression combined with alterations in the expression of the RUNX1 co-factor CBFβ allowed us to evaluate a wide range of RUNX1 levels. We demonstrate that low RUNX1 levels are sufficient and necessary to initiate an effective endothelial-to-hematopoietic transition. Subsequently, RUNX1 is also required to complete the endothelial-to-hematopoietic transition and to generate functional hematopoietic precursors. In contrast, elevated levels of RUNX1 are able to drive an accelerated endothelial-to-hematopoietic transition, but the resulting cells are unable to generate mature hematopoietic cells. Together, our results suggest that RUNX1 dosage plays a pivotal role in hemogenic endothelium maturation and the establishment of the hematopoietic system.
Collapse
Affiliation(s)
- Michael Lie-A-Ling
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Elli Marinopoulou
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Andrew J Lilly
- Stem Cell Hematopoiesis, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Mairi Challinor
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Rahima Patel
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Christophe Lancrin
- EMBL Rome, Epigenetics and Neurobiology Unit, Campus Adriano Buzzati-Traverso Via Ramarini 32, 00015 Monterotondo, Italy
| | - Valerie Kouskoff
- Stem Cell Hematopoiesis, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Georges Lacaud
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
81
|
Kasper DM, Nicoli S. Epigenetic and Epitranscriptomic Factors Make a Mark on Hematopoietic Stem Cell Development. CURRENT STEM CELL REPORTS 2018. [DOI: 10.1007/s40778-018-0113-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
82
|
Itescu S, Schuster M, Kocher A. Myocardial Neovascularization by Adult Bone Marrow-Derived Angioblasts: Strategies for Improvement of Cardiomyocyte Function. Int J Artif Organs 2018. [DOI: 10.1177/039139880202500724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the pre-natal period hemangioblasts, derived from the human ventral aorta give rise to cellular elements involved in both hematopoiesis and vasculogenesis, resulting in formation of the primitive capillary network. Endothelial precursors with phenotypic and functional characteristics of embryonic hemangioblasts are also present in human adult bone marrow, and can be used to induce infarct bed vasculogenesis and angiogenesis after experimental myocardial infarction. The neovascularization results in decreased apoptosis of hypertrophied myocytes in the peri-infarct region, long-term salvage and survival of viable myocardium, reduction in collagen deposition, and sustained improvement in cardiac function. Autologous angioblasts may also be useful in cellular therapy strategies aiming to regenerate myocardial tissue after established heart failure. It is likely that protocols using cardiomyocyte/mesenchymal stem cells will require balanced co-administration of angioblasts to provide vascular structures for supply of oxygen and nutrients to both the chronically ischemic, endogenous myocardium and to the newly-implanted cardiomyocytes. Future studies will need to address the timing, relative concentrations, source and route of delivery of each of these cellular populations in animal models of acute and chronic myocardial ischemia.
Collapse
Affiliation(s)
- S. Itescu
- Departments of Medicine and Surgery, Columbia University, New York, NY - USA
| | - M.D. Schuster
- Departments of Medicine and Surgery, Columbia University, New York, NY - USA
| | - A.A. Kocher
- Departments of Medicine and Surgery, Columbia University, New York, NY - USA
| |
Collapse
|
83
|
Gao X, Xu C, Asada N, Frenette PS. The hematopoietic stem cell niche: from embryo to adult. Development 2018; 145:145/2/dev139691. [PMID: 29358215 DOI: 10.1242/dev.139691] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem cells (HSCs) develop in discrete anatomical niches, migrating during embryogenesis from the aorta-gonad-mesonephros (AGM) region to the fetal liver, and finally to the bone marrow, where most HSCs reside throughout adult life. These niches provide supportive microenvironments that specify, expand and maintain HSCs. Understanding the constituents and molecular regulation of HSC niches is of considerable importance as it could shed new light on the mechanistic principles of HSC emergence and maintenance, and provide novel strategies for regenerative medicine. However, controversy exists concerning the cellular complexity of the bone marrow niche, and our understanding of the different HSC niches during development remains limited. In this Review, we summarize and discuss what is known about the heterogeneity of the HSC niches at distinct stages of their ontogeny, from the embryo to the adult bone marrow, drawing predominantly on data from mouse studies.
Collapse
Affiliation(s)
- Xin Gao
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.,Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Chunliang Xu
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.,Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Noboru Asada
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.,Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA .,Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
84
|
Rossmann MP, Orkin SH, Chute JP. Hematopoietic Stem Cell Biology. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
85
|
Lempereur A, Canto PY, Richard C, Martin S, Thalgott J, Raymond K, Lebrin F, Drevon C, Jaffredo T. The TGFβ pathway is a key player for the endothelial-to-hematopoietic transition in the embryonic aorta. Dev Biol 2017; 434:292-303. [PMID: 29253505 DOI: 10.1016/j.ydbio.2017.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/30/2022]
Abstract
The embryonic aorta produces hematopoietic stem and progenitor cells from a hemogenic endothelium localized in the aortic floor through an endothelial to hematopoietic transition. It has been long proposed that the Bone Morphogenetic Protein (BMP)/Transforming Growth Factor ß (TGFß) signaling pathway was implicated in aortic hematopoiesis but the very nature of the signal was unknown. Here, using thorough expression analysis of the BMP/TGFß signaling pathway members in the endothelial and hematopoietic compartments of the aorta at pre-hematopoietic and hematopoietic stages, we show that the TGFß pathway is preferentially balanced with a prominent role of Alk1/TgfßR2/Smad1 and 5 on both chicken and mouse species. Functional analysis using embryonic stem cells mutated for Acvrl1 revealed an enhanced propensity to produce hematopoietic cells. Collectively, we reveal that TGFß through the Alk1/TgfßR2 receptor axis is acting on endothelial cells to produce hematopoiesis.
Collapse
Affiliation(s)
- A Lempereur
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, CNRS UMR7622, Inserm U 1156, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - P Y Canto
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, CNRS UMR7622, Inserm U 1156, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - C Richard
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, CNRS UMR7622, Inserm U 1156, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - S Martin
- CNRS UMR 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris CEDEX 05, France; MEMOLIFE Laboratory of Excellence and Paris Sciences et Lettres Research University, France
| | - J Thalgott
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
| | - K Raymond
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
| | - F Lebrin
- CNRS UMR 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris CEDEX 05, France; Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands; MEMOLIFE Laboratory of Excellence and Paris Sciences et Lettres Research University, France
| | - C Drevon
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, CNRS UMR7622, Inserm U 1156, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - T Jaffredo
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, CNRS UMR7622, Inserm U 1156, Laboratoire de Biologie du Développement, 75005 Paris, France.
| |
Collapse
|
86
|
McGarvey AC, Rybtsov S, Souilhol C, Tamagno S, Rice R, Hills D, Godwin D, Rice D, Tomlinson SR, Medvinsky A. A molecular roadmap of the AGM region reveals BMPER as a novel regulator of HSC maturation. J Exp Med 2017; 214:3731-3751. [PMID: 29093060 PMCID: PMC5716029 DOI: 10.1084/jem.20162012] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/16/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022] Open
Abstract
Through transcriptional profiling of the mouse AGM region, McGarvey et al. identify potential niche regulators of HSC development. They show a new function of BMPER in regulating HSC maturation, likely via its modulation of BMP signalling. In the developing embryo, hematopoietic stem cells (HSCs) emerge from the aorta-gonad-mesonephros (AGM) region, but the molecular regulation of this process is poorly understood. Recently, the progression from E9.5 to E10.5 and polarity along the dorso-ventral axis have been identified as clear demarcations of the supportive HSC niche. To identify novel secreted regulators of HSC maturation, we performed RNA sequencing over these spatiotemporal transitions in the AGM region and supportive OP9 cell line. Screening several proteins through an ex vivo reaggregate culture system, we identify BMPER as a novel positive regulator of HSC development. We demonstrate that BMPER is associated with BMP signaling inhibition, but is transcriptionally induced by BMP4, suggesting that BMPER contributes to the precise control of BMP activity within the AGM region, enabling the maturation of HSCs within a BMP-negative environment. These findings and the availability of our transcriptional data through an accessible interface should provide insight into the maintenance and potential derivation of HSCs in culture.
Collapse
Affiliation(s)
- Alison C McGarvey
- Stem Cell Bioinformatics Group, Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Stanislav Rybtsov
- Ontogeny of Haematopoietic Stem Cells Group, Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Céline Souilhol
- Ontogeny of Haematopoietic Stem Cells Group, Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Sara Tamagno
- Ontogeny of Haematopoietic Stem Cells Group, Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Ritva Rice
- University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - David Hills
- Ontogeny of Haematopoietic Stem Cells Group, Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Duncan Godwin
- Stem Cell Bioinformatics Group, Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - David Rice
- University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Simon R Tomlinson
- Stem Cell Bioinformatics Group, Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Alexander Medvinsky
- Ontogeny of Haematopoietic Stem Cells Group, Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
87
|
Sanghez V, Luzzi A, Clarke D, Kee D, Beuder S, Rux D, Osawa M, Madrenas J, Chou TF, Kyba M, Iacovino M. Notch activation is required for downregulation of HoxA3-dependent endothelial cell phenotype during blood formation. PLoS One 2017; 12:e0186818. [PMID: 29073173 PMCID: PMC5658089 DOI: 10.1371/journal.pone.0186818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/09/2017] [Indexed: 01/02/2023] Open
Abstract
Hemogenic endothelium (HE) undergoes endothelial-to-hematopoietic transition (EHT) to generate blood, a process that requires progressive down-regulation of endothelial genes and induction of hematopoietic ones. Previously, we have shown that the transcription factor HoxA3 prevents blood formation by inhibiting Runx1 expression, maintaining endothelial gene expression and thus blocking EHT. In the present study, we show that HoxA3 also prevents blood formation by inhibiting Notch pathway. HoxA3 induced upregulation of Jag1 ligand in endothelial cells, which led to cis-inhibition of the Notch pathway, rendering the HE nonresponsive to Notch signals. While Notch activation alone was insufficient to promote blood formation in the presence of HoxA3, activation of Notch or downregulation of Jag1 resulted in a loss of the endothelial phenotype which is a prerequisite for EHT. Taken together, these results demonstrate that Notch pathway activation is necessary to downregulate endothelial markers during EHT.
Collapse
Affiliation(s)
- Valentina Sanghez
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, United States of America.,Los Angeles Biomedical Research Institute, Torrance, CA, United States of America
| | - Anna Luzzi
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, United States of America.,Los Angeles Biomedical Research Institute, Torrance, CA, United States of America
| | - Don Clarke
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, United States of America.,Los Angeles Biomedical Research Institute, Torrance, CA, United States of America
| | - Dustin Kee
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, United States of America.,Los Angeles Biomedical Research Institute, Torrance, CA, United States of America
| | - Steven Beuder
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, United States of America.,Los Angeles Biomedical Research Institute, Torrance, CA, United States of America
| | - Danielle Rux
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States of America
| | - Mitsujiro Osawa
- CiRA
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Joaquín Madrenas
- Los Angeles Biomedical Research Institute, Torrance, CA, United States of America.,Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Tsui-Fen Chou
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, United States of America.,Los Angeles Biomedical Research Institute, Torrance, CA, United States of America
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States of America
| | - Michelina Iacovino
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, United States of America.,Los Angeles Biomedical Research Institute, Torrance, CA, United States of America
| |
Collapse
|
88
|
Perlin JR, Robertson AL, Zon LI. Efforts to enhance blood stem cell engraftment: Recent insights from zebrafish hematopoiesis. J Exp Med 2017; 214:2817-2827. [PMID: 28830909 PMCID: PMC5626407 DOI: 10.1084/jem.20171069] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/24/2017] [Accepted: 08/02/2017] [Indexed: 12/17/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is an important therapy for patients with a variety of hematological malignancies. HSCT would be greatly improved if patient-specific hematopoietic stem cells (HSCs) could be generated from induced pluripotent stem cells in vitro. There is an incomplete understanding of the genes and signals involved in HSC induction, migration, maintenance, and niche engraftment. Recent studies in zebrafish have revealed novel genes that are required for HSC induction and niche regulation of HSC homeostasis. Manipulation of these signaling pathways and cell types may improve HSC bioengineering, which could significantly advance critical, lifesaving HSCT therapies.
Collapse
Affiliation(s)
- Julie R Perlin
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - Anne L Robertson
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
89
|
Ivanovs A, Rybtsov S, Ng ES, Stanley EG, Elefanty AG, Medvinsky A. Human haematopoietic stem cell development: from the embryo to the dish. Development 2017; 144:2323-2337. [PMID: 28676567 DOI: 10.1242/dev.134866] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Haematopoietic stem cells (HSCs) emerge during embryogenesis and give rise to the adult haematopoietic system. Understanding how early haematopoietic development occurs is of fundamental importance for basic biology and medical sciences, but our knowledge is still limited compared with what we know of adult HSCs and their microenvironment. This is particularly true for human haematopoiesis, and is reflected in our current inability to recapitulate the development of HSCs from pluripotent stem cells in vitro In this Review, we discuss what is known of human haematopoietic development: the anatomical sites at which it occurs, the different temporal waves of haematopoiesis, the emergence of the first HSCs and the signalling landscape of the haematopoietic niche. We also discuss the extent to which in vitro differentiation of human pluripotent stem cells recapitulates bona fide human developmental haematopoiesis, and outline some future directions in the field.
Collapse
Affiliation(s)
- Andrejs Ivanovs
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK.,Institute of Anatomy and Anthropology, Riga Stradiņš University, Riga LV-1007, Latvia
| | - Stanislav Rybtsov
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Elizabeth S Ng
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria 3052, Australia.,Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Edouard G Stanley
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria 3052, Australia.,Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Andrew G Elefanty
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria 3052, Australia .,Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Alexander Medvinsky
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
90
|
Zape JP, Lizama CO, Cautivo KM, Zovein AC. Cell cycle dynamics and complement expression distinguishes mature haematopoietic subsets arising from hemogenic endothelium. Cell Cycle 2017; 16:1835-1847. [PMID: 28820341 PMCID: PMC5628647 DOI: 10.1080/15384101.2017.1361569] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The emergence of haematopoietic stem and progenitor cells (HSPCs) from hemogenic endothelium results in the formation of sizeable HSPC clusters attached to the vascular wall. We evaluate the cell cycle and proliferation of HSPCs involved in cluster formation, as well as the molecular signatures from their initial appearance to the point when cluster cells are capable of adult engraftment (definitive HSCs). We uncover a non-clonal origin of HSPC clusters with differing cell cycle, migration, and cell signaling attributes. In addition, we find that the complement cascade is highly enriched in mature HSPC clusters, possibly delineating a new role for this pathway in engraftment.
Collapse
Affiliation(s)
- Joan P Zape
- a Cardiovascular Research Institute , University of California San Francisco , San Francisco , CA , USA
| | - Carlos O Lizama
- a Cardiovascular Research Institute , University of California San Francisco , San Francisco , CA , USA
| | - Kelly M Cautivo
- c Department of Laboratory of Medicine , University of California San Francisco, School of Medicine , San Francisco , CA , USA
| | - Ann C Zovein
- a Cardiovascular Research Institute , University of California San Francisco , San Francisco , CA , USA.,b Department of Pediatrics, Division of Neonatology , University of California San Francisco School of Medicine , San Francisco , CA , USA
| |
Collapse
|
91
|
Klaus A, Robin C. Embryonic hematopoiesis under microscopic observation. Dev Biol 2017; 428:318-327. [DOI: 10.1016/j.ydbio.2017.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 12/21/2022]
|
92
|
Stefanska M, Batta K, Patel R, Florkowska M, Kouskoff V, Lacaud G. Primitive erythrocytes are generated from hemogenic endothelial cells. Sci Rep 2017; 7:6401. [PMID: 28743905 PMCID: PMC5526883 DOI: 10.1038/s41598-017-06627-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 06/15/2017] [Indexed: 12/22/2022] Open
Abstract
Primitive erythroblasts are the first blood cells generated during embryonic hematopoiesis. Tracking their emergence both in vivo and in vitro has remained challenging due to the lack of specific cell surface markers. To selectively investigate primitive erythropoiesis, we have engineered a new transgenic embryonic stem (ES) cell line, where eGFP expression is driven by the regulatory sequences of the embryonic βH1 hemoglobin gene expressed specifically in primitive erythroid cells. Using this ES cell line, we observed that the first primitive erythroblasts are detected in vitro around day 1.5 of blast colony differentiation, within the cell population positive for the early hematopoietic progenitor marker CD41. Moreover, we establish that these eGFP+ cells emerge from a hemogenic endothelial cell population similarly to their definitive hematopoietic counterparts. We further generated a corresponding βH1-eGFP transgenic mouse model and demonstrated the presence of a primitive erythroid primed hemogenic endothelial cell population in the developing embryo. Taken together, our findings demonstrate that both in vivo and in vitro primitive erythrocytes are generated from hemogenic endothelial cells.
Collapse
Affiliation(s)
- Monika Stefanska
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow road, Manchester, M20 4BX, UK
| | - Kiran Batta
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow road, Manchester, M20 4BX, UK
| | - Rahima Patel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow road, Manchester, M20 4BX, UK
| | - Magdalena Florkowska
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow road, Manchester, M20 4BX, UK
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow road, Manchester, M20 4BX, UK.
| |
Collapse
|
93
|
Yvernogeau L, Robin C. Restricted intra-embryonic origin of bona fide hematopoietic stem cells in the chicken. Development 2017; 144:2352-2363. [PMID: 28526756 PMCID: PMC5536871 DOI: 10.1242/dev.151613] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/16/2017] [Indexed: 01/07/2023]
Abstract
Hematopoietic stem cells (HSCs), which are responsible for blood cell production, are generated during embryonic development. Human and chicken embryos share features that position the chicken as a reliable and accessible alternative model to study developmental hematopoiesis. However, the existence of HSCs has never been formally proven in chicken embryos. Here, we have established a complete cartography and quantification of hematopoietic cells in the aorta during development. We demonstrate the existence of bona fide HSCs, originating from the chicken embryo aorta (and not the yolk sac, allantois or head), through an in vivo transplantation assay. Embryos transplanted in ovo with GFP embryonic tissues on the chorio-allantoic membrane provided multilineage reconstitution in adulthood. Historically, most breakthrough discoveries in the field of developmental hematopoiesis were first made in birds and later extended to mammals. Our study sheds new light on the avian model as a valuable system to study HSC production and regulation in vivo.
Collapse
Affiliation(s)
- Laurent Yvernogeau
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Catherine Robin
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
- Department of Cell Biology, University Medical Center Utrecht, Utrecht 3584 EA, The Netherlands
| |
Collapse
|
94
|
Ramalingam P, Poulos MG, Butler JM. Regulation of the hematopoietic stem cell lifecycle by the endothelial niche. Curr Opin Hematol 2017; 24:289-299. [PMID: 28594660 PMCID: PMC5554937 DOI: 10.1097/moh.0000000000000350] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells (HSCs) predominantly reside either in direct contact or in close proximity to the vascular endothelium throughout their lifespan. From the moment of HSC embryonic specification from hemogenic endothelium, endothelial cells (ECs) act as a critical cellular-hub that regulates a vast repertoire of biological processes crucial for HSC maintenance throughout its lifespan. In this review, we will discuss recent findings in endothelial niche-mediated regulation of HSC function during development, aging and regenerative conditions. RECENT FINDINGS Studies employing genetic vascular models have unequivocally confirmed that ECs provide the essential instructive cues for HSC emergence during embryonic development as well as adult HSC maintenance during homeostasis and regeneration. Aging of ECs may impair their ability to maintain HSC function contributing to the development of aging-associated hematopoietic deficiencies. These findings have opened up new avenues to explore the therapeutic application of ECs. ECs can be adapted to serve as an instructive platform to expand bona fide HSCs and also utilized as a cellular therapy to promote regeneration of the hematopoietic system following myelosuppressive and myeloablative injuries. SUMMARY ECs provide a fertile niche for maintenance of functional HSCs throughout their lifecycle. An improved understanding of the EC-HSC cross-talk will pave the way for development of EC-directed strategies for improving HSC function during aging.
Collapse
Affiliation(s)
- Pradeep Ramalingam
- Department of Medicine, Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medical College, New York, USA
| | | | | |
Collapse
|
95
|
Lacaud G, Kouskoff V. Hemangioblast, hemogenic endothelium, and primitive versus definitive hematopoiesis. Exp Hematol 2017; 49:19-24. [PMID: 28043822 DOI: 10.1016/j.exphem.2016.12.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 01/27/2023]
Abstract
The types of progenitors generated during the successive stages of embryonic blood development are now fairly well characterized. The terminology used to describe these waves, however, can still be confusing. What is truly primitive? What is uniquely definitive? These questions become even more challenging to answer when blood progenitors are derived in vitro upon the differentiation of embryonic stem cells or induced pluripotent stem cells. Similarly, the cellular origin of these blood progenitors can be controversial. Are all blood cells, including the primitive wave, derived from hemogenic endothelium? Is the hemangioblast an in vitro artifact or is this mesoderm entity also present in the developing embryo? Here, we discuss the latest findings and propose some consensus relating to these controversial issues.
Collapse
Affiliation(s)
- Georges Lacaud
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, United Kingdom.
| | - Valerie Kouskoff
- Division of Developmental Biology and Medicine, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
96
|
Ganuza M, Hadland B, Chabot A, Li C, Kang G, Bernstein I, McKinney-Freeman S. Murine hemogenic endothelial precursors display heterogeneous hematopoietic potential ex vivo. Exp Hematol 2017; 51:25-35.e6. [PMID: 28450163 DOI: 10.1016/j.exphem.2017.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/27/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) sustain life-long hematopoiesis and are first detected in the embryo by transplantation at embryonic day 10.5 (E10.5). HSPCs are mesodermal in origin and ultimately emerge from a subset of arterial endothelium (i.e., hemogenic endothelium [HE]), which is highly concentrated in the aorta-gonad-mesonephros region of the midgestation embryo. Here, we used clonal ex vivo assays, in which endothelial cells isolated from the midgestation aorta and vitelline and umbilical arteries are co-cultured on supportive stroma, to show that only about 0.1%, 1.3%, and 0.29% of E9.5, E10.5, and E11.5 endothelium are functional HE, respectively. We further show high phenotypic and functional variability in the hematopoietic potential of individual hemogenic endothelial precursors. Using unique niche stroma capable of providing the signals necessary for definitive hematopoietic stem cell (dHSC) induction, we demonstrate that this variability in HE includes their potential to support phenotypic dHSCs. These data suggest the presence of a continuum of maturing HE with distinct hematopoietic potential or HE representative of a heterogeneous pool of precursors that give rise to HSPCs with disparate hematopoietic potential.
Collapse
Affiliation(s)
- Miguel Ganuza
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Brandon Hadland
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - Ashley Chabot
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Chen Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Guolian Kang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Irwin Bernstein
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | | |
Collapse
|
97
|
Jung KM, Kim YM, Ono T, Han JY. Size-dependent isolation of primordial germ cells from avian species. Mol Reprod Dev 2017; 84:508-516. [DOI: 10.1002/mrd.22802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/28/2017] [Accepted: 03/20/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Kyung M. Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences; College of Agriculture and Life Sciences; Seoul National University; Seoul Korea
| | - Young M. Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences; College of Agriculture and Life Sciences; Seoul National University; Seoul Korea
| | - Tamao Ono
- Division of Animal Science; Faculty of Agriculture; Shinshu University; Minamiminowa Nagano Japan
| | - Jae Y. Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences; College of Agriculture and Life Sciences; Seoul National University; Seoul Korea
- Institute for Biomedical Sciences; Shinshu University; Minamiminowa Nagano Japan
| |
Collapse
|
98
|
Guibentif C, Rönn RE, Böiers C, Lang S, Saxena S, Soneji S, Enver T, Karlsson G, Woods NB. Single-Cell Analysis Identifies Distinct Stages of Human Endothelial-to-Hematopoietic Transition. Cell Rep 2017; 19:10-19. [PMID: 28380349 DOI: 10.1016/j.celrep.2017.03.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/06/2016] [Accepted: 01/17/2017] [Indexed: 10/19/2022] Open
Abstract
During development, hematopoietic cells originate from endothelium in a process known as endothelial-to-hematopoietic transition (EHT). To study human EHT, we coupled flow cytometry and single-cell transcriptional analyses of human pluripotent stem cell-derived CD34+ cells. The resulting transcriptional hierarchy showed a continuum of endothelial and hematopoietic signatures. At the interface of these two signatures, a unique group of cells displayed both an endothelial signature and high levels of key hematopoietic stem cell-associated genes. This interphase group was validated via sort and subculture as an immediate precursor to hematopoietic cells. Differential expression analyses further divided this population into subgroups, which, upon subculture, showed distinct hematopoietic lineage differentiation potentials. We therefore propose that immediate precursors to hematopoietic cells already have their hematopoietic lineage restrictions defined prior to complete downregulation of the endothelial signature. These findings increase our understanding of the processes of de novo hematopoietic cell generation in the human developmental context.
Collapse
Affiliation(s)
- Carolina Guibentif
- Section of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Roger Emanuel Rönn
- Section of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Charlotta Böiers
- Section of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Stefan Lang
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 221 84 Lund, Sweden
| | - Shobhit Saxena
- Section of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Shamit Soneji
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 221 84 Lund, Sweden
| | - Tariq Enver
- Section of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden; Stem Cell Laboratory, UCL Cancer Institute, University College London, London W1CE 6BT, UK
| | - Göran Karlsson
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, BMC B12, 221 84 Lund, Sweden.
| | - Niels-Bjarne Woods
- Section of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden.
| |
Collapse
|
99
|
Dóra D, Fejszák N, Goldstein AM, Minkó K, Nagy N. Ontogeny of ramified CD45 cells in chicken embryo and their contribution to bursal secretory dendritic cells. Cell Tissue Res 2017; 368:353-370. [DOI: 10.1007/s00441-017-2595-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/23/2017] [Indexed: 12/15/2022]
|
100
|
Kasaai B, Caolo V, Peacock HM, Lehoux S, Gomez-Perdiguero E, Luttun A, Jones EAV. Erythro-myeloid progenitors can differentiate from endothelial cells and modulate embryonic vascular remodeling. Sci Rep 2017; 7:43817. [PMID: 28272478 PMCID: PMC5341067 DOI: 10.1038/srep43817] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 01/31/2017] [Indexed: 12/20/2022] Open
Abstract
Erythro-myeloid progenitors (EMPs) were recently described to arise from the yolk sac endothelium, just prior to vascular remodeling, and are the source of adult/post-natal tissue resident macrophages. Questions remain, however, concerning whether EMPs differentiate directly from the endothelium or merely pass through. We provide the first evidence in vivo that EMPs can emerge directly from endothelial cells (ECs) and demonstrate a role for these cells in vascular development. We find that EMPs express most EC markers but late EMPs and EMP-derived cells do not take up acetylated low-density lipoprotein (AcLDL), as ECs do. When the endothelium is labelled with AcLDL before EMPs differentiate, EMPs and EMP-derived cells arise that are AcLDL+. If AcLDL is injected after the onset of EMP differentiation, however, the majority of EMP-derived cells are not double labelled. We find that cell division precedes entry of EMPs into circulation, and that blood flow facilitates the transition of EMPs from the endothelium into circulation in a nitric oxide-dependent manner. In gain-of-function studies, we inject the CSF1-Fc ligand in embryos and found that this increases the number of CSF1R+ cells, which localize to the venous plexus and significantly disrupt venous remodeling. This is the first study to definitively establish that EMPs arise from the endothelium in vivo and show a role for early myeloid cells in vascular development.
Collapse
Affiliation(s)
- Bahar Kasaai
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49 - box 911, 3000 Leuven, Belgium.,Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396, Montpellier, France
| | - Vincenza Caolo
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49 - box 911, 3000 Leuven, Belgium
| | - Hanna M Peacock
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49 - box 911, 3000 Leuven, Belgium
| | - Stephanie Lehoux
- Lady Davis Institute, Department of Experimental Medicine, McGill University, 3755 Ch. Côte-Ste-Catherine, Montréal, QC, H3T 1E2, Canada
| | | | - Aernout Luttun
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49 - box 911, 3000 Leuven, Belgium
| | - Elizabeth A V Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49 - box 911, 3000 Leuven, Belgium
| |
Collapse
|