51
|
Kraft B, Berger CD, Wallkamm V, Steinbeisser H, Wedlich D. Wnt-11 and Fz7 reduce cell adhesion in convergent extension by sequestration of PAPC and C-cadherin. ACTA ACUST UNITED AC 2012; 198:695-709. [PMID: 22908314 PMCID: PMC3514027 DOI: 10.1083/jcb.201110076] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Wnt-11/frizzled-7 reduces the lateral clustering of C-cadherin by capturing the
protocadherin PAPC and C-cadherin into distinct adhesion-modulating
complexes. Wnt-11/planar cell polarity signaling polarizes mesodermal cells undergoing
convergent extension during Xenopus laevis gastrulation. These
shape changes associated with lateral intercalation behavior require a dynamic
modulation of cell adhesion. In this paper, we report that Wnt-11/frizzled-7
(Fz7) controls cell adhesion by forming separate adhesion-modulating complexes
(AMCs) with the paraxial protocadherin (PAPC; denoted as AMCP) and C-cadherin
(denoted as AMCC) via distinct Fz7 interaction domains. When PAPC was part of a
Wnt-11–Fz7 complex, its Dynamin1- and clathrin-dependent internalization
was blocked. This membrane stabilization of AMCP (Fz7/PAPC) by Wnt-11 prevented
C-cadherin clustering, resulting in reduced cell adhesion and modified cell
sorting activity. Importantly, Wnt-11 did not influence C-cadherin
internalization; instead, it promoted the formation of AMCC (Fz7/Cadherin),
which competed with cis-dimerization of C-cadherin. Because PAPC and C-cadherin
did not directly interact and did not form a joint complex with Fz7, we suggest
that Wnt-11 triggers the formation of two distinct complexes, AMCC and AMCP,
that act in parallel to reduce cell adhesion by hampering lateral clustering of
C-cadherin.
Collapse
Affiliation(s)
- Bianca Kraft
- Cell and Developmental Biology, Zoological Institute, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
52
|
Julier A, Goll C, Korte B, Knöchel W, Wacker SA. Pou-V factor Oct25 regulates early morphogenesis inXenopus laevis. Dev Growth Differ 2012; 54:702-16. [DOI: 10.1111/j.1440-169x.2012.01371.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 07/16/2012] [Accepted: 07/22/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Alexandra Julier
- Institute of Biochemistry; University of Ulm; 89081; Ulm; Germany
| | - Claudio Goll
- Institute of Biochemistry; University of Ulm; 89081; Ulm; Germany
| | - Brigitte Korte
- Institute of Biochemistry; University of Ulm; 89081; Ulm; Germany
| | - Walter Knöchel
- Institute of Biochemistry; University of Ulm; 89081; Ulm; Germany
| | | |
Collapse
|
53
|
Becker SF, Langhe R, Huang C, Wedlich D, Kashef J. Giving the right tug for migration: Cadherins in tissue movements. Arch Biochem Biophys 2012; 524:30-42. [DOI: 10.1016/j.abb.2012.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/16/2012] [Accepted: 02/17/2012] [Indexed: 01/01/2023]
|
54
|
Abstract
Cadherins are Ca(2+)-dependent cell-cell adhesion molecules that play critical roles in animal morphogenesis. Various cadherin-related molecules have also been identified, which show diverse functions, not only for the regulation of cell adhesion but also for that of cell proliferation and planar cell polarity. During the past decade, understanding of the roles of these molecules in the nervous system has significantly progressed. They are important not only for the development of the nervous system but also for its functions and, in turn, for neural disorders. In this review, we discuss the roles of cadherins and related molecules in neural development and function in the vertebrate brain.
Collapse
Affiliation(s)
- Shinji Hirano
- Department of Neurobiology and Anatomy, Kochi Medical School, Okoh-cho Kohasu, Nankoku-City 783–8505, Japan.
| | | |
Collapse
|
55
|
Boggetti B, Jasik J, Takamiya M, Strähle U, Reugels AM, Campos-Ortega JA. NBP, a zebrafish homolog of human Kank3, is a novel Numb interactor essential for epidermal integrity and neurulation. Dev Biol 2012; 365:164-74. [PMID: 22387208 DOI: 10.1016/j.ydbio.2012.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 12/01/2011] [Accepted: 02/14/2012] [Indexed: 01/15/2023]
Abstract
Numb is an adaptor protein implicated in diverse basic cellular processes. Using the yeast-two hybrid system we isolated a novel Numb interactor in zebrafish called NBP which is an ortholog of human renal tumor suppressor Kank. NBP interacts with the PTB domain of Numb through a region well conserved among vertebrate Kanks containing the NGGY sequence. Similar NBP and Numb morphant phenotype such as impaired convergence and extension movements during gastrulation, neurulation and epidermis defects and enhanced phenotypic aberrations in double morphants suggest that the genes interact genetically. We demonstrate that the expression of NBP undergoes quantitative and qualitative changes during embryogenesis and that the protein accumulates at the cell periphery to sites of cell-cell contact during gastrulation and later in development it concentrates at the basal poles of differentiated cells. These findings imply a possible role of NBP in establishing and maintaining cell adhesion and tissue integrity.
Collapse
Affiliation(s)
- Barbara Boggetti
- Institut für Entwicklungsbiologie, University of Cologne, 50923 Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
56
|
Ninomiya H, David R, Damm EW, Fagotto F, Niessen CM, Winklbauer R. Cadherin-dependent differential cell adhesion in Xenopus causes cell sorting in vitro but not in the embryo. J Cell Sci 2012; 125:1877-83. [PMID: 22328523 DOI: 10.1242/jcs.095315] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adhesion differences between cell populations are in principle a source of strong morphogenetic forces promoting cell sorting, boundary formation and tissue positioning, and cadherins are main mediators of cell adhesion. However, a direct link between cadherin expression, differential adhesion and morphogenesis has not yet been determined for a specific process in vivo. To identify such a connection, we modulated the expression of C-cadherin in the Xenopus laevis gastrula, and combined this with direct measurements of cell adhesion-related parameters. Our results show that gastrulation is surprisingly tolerant of overall changes in adhesion. Also, as expected, experimentally generated, cadherin-based adhesion differences promote cell sorting in vitro. Importantly, however, such differences do not lead to the sorting of cells in the embryo, showing that differential adhesion is not sufficient to drive morphogenesis in this system. Compensatory recruitment of cadherin protein to contacts between cadherin-deprived and -overexpressing cells could contribute to the prevention of sorting in vivo.
Collapse
Affiliation(s)
- Hiromasa Ninomiya
- University of Toronto, Department of Cell and Systems Biology, Toronto, M5S 3G5 Canada
| | | | | | | | | | | |
Collapse
|
57
|
Xenopus paraxial protocadherin inhibits Wnt/β-catenin signalling via casein kinase 2β. EMBO Rep 2012; 13:129-34. [PMID: 22193776 DOI: 10.1038/embor.2011.240] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 10/25/2011] [Accepted: 11/16/2011] [Indexed: 11/09/2022] Open
Abstract
Xenopus paraxial protocadherin (PAPC) regulates cadherin-mediated cell adhesion and promotes the planar cell polarity (PCP) pathway. Here we report that PAPC functions in the Xenopus gastrula as an inhibitor of the Wnt/β-catenin pathway. The intracellular domain of PAPC interacts with casein kinase 2 beta (CK2β), which is part of the CK2 holoenzyme. The CK2α/β complex stimulates Wnt/β-catenin signalling, and the physical interaction of CK2β with PAPC antagonizes this activity. By this mechanism, PAPC restricts the expression of Wnt target genes during gastrulation. These experiments identify a novel function of protocadherins as regulators of the Wnt pathway.
Collapse
|
58
|
Abstract
Xenopus gastrulation consists of the orderly deformation of a single, multilayered cell sheet that resembles a multilayered epithelium, and flexible cell-cell adhesion has to provide tissue cohesion while allowing for cell rearrangements that drive gastrulation. A few classic cadherins are expressed in the Xenopus early embryo. The prominent C-cadherin is essential for the cohesion of the animal part of the gastrula including ectoderm and chordamesoderm, and it contributes to the adhesion of endoderm and anterior mesoderm in the vegetal moiety. The cadherin/catenin complex is expressed in a graded pattern which is stable during early development. Regional differences in cell adhesion conform to the graded cadherin/catenin expression pattern. However, although the cadherin/catenin pattern seems to be actively maintained, and cadherin function is modulated to reinforce differential adhesiveness, it is not clear how regional differences in tissue cohesion affect gastrulation. Manipulating cadherin expression or function does not induce cell sorting or boundary formation in the embryo. Moreover, known boundary formation mechanisms in the gastrula are based on active cell repulsion. Cell rearrangement is also compatible with variable tissue cohesion. Thus, identifying roles for differential adhesion in the Xenopus gastrula remains a challenge.
Collapse
Affiliation(s)
- Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada,
| |
Collapse
|
59
|
Rigo-Watermeier T, Kraft B, Ritthaler M, Wallkamm V, Holstein T, Wedlich D. Functional conservation of Nematostella Wnts in canonical and noncanonical Wnt-signaling. Biol Open 2011; 1:43-51. [PMID: 23213367 PMCID: PMC3507168 DOI: 10.1242/bio.2011021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cnidarians surprise by the completeness of Wnt gene subfamilies (11) expressed in an overlapping pattern along the anterior-posterior axis. While the functional conservation of canonical Wnt-signaling components in cnidarian gastrulation and organizer formation is evident, a role of Nematostella Wnts in noncanonical Wnt-signaling has not been shown so far. In Xenopus, noncanonical Wnt-5a/Ror2 and Wnt-11 (PCP) signaling are distinguishable by different morphant phenotypes. They differ in PAPC regulation, cell polarization, cell protrusion formation, and the so far not reported reorientation of the microtubules. Based on these readouts, we investigated the evolutionary conservation of Wnt-11 and Wnt-5a function in rescue experiments with Nematostella orthologs and Xenopus morphants. Our results revealed that NvWnt-5 and -11 exhibited distinct noncanonical Wnt activities by disturbing convergent extension movements. However, NvWnt-5 rescued XWnt-11 and NvWnt-11 specifically XWnt-5a depleted embryos. This unexpected 'inverse' activity suggests that specific structures in Wnt ligands are important for receptor complex recognition in Wnt-signaling. Although we can only speculate on the identity of the underlying recognition motifs, it is likely that these crucial structural features have already been established in the common ancestor of cnidarians and vertebrates and were conserved throughout metazoan evolution.
Collapse
Affiliation(s)
- T Rigo-Watermeier
- Karlsruhe Institute of Technology (KIT), Zoological Institute, Cell and Developmental Biology , Kaiserstr. 12, D-76131 Karlsruhe
| | | | | | | | | | | |
Collapse
|
60
|
Yoder MD, Gumbiner BM. Axial protocadherin (AXPC) regulates cell fate during notochordal morphogenesis. Dev Dyn 2011; 240:2495-504. [PMID: 21960065 DOI: 10.1002/dvdy.22754] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2011] [Indexed: 12/25/2022] Open
Abstract
The separation and specification of mesoderm into the notochord and somites involves members of the non-clustered δ-protocadherins. Axial (AXPC) and paraxial (PAPC) protocadherins are expressed in the early dorsal mesoderm and later become refined to the developing notochordal and somitic mesoderm, respectively. The role of PAPC in this process has been studied extensively, but the role of AXPC is poorly understood. Partial knockdown of AXPC causes a specific bent-axis phenotype, while more severe knockdown results in the loss of notochord formation. The inability of these embryos to develop a notochord is not due to a cell-sorting event via changes in cell adhesion during gastrulation, but rather this defect is manifested through the loss of axial mesoderm specification, but not general mesoderm induction. The results presented here show that AXPC functions in notochord morphogenesis by directing cell-fate decisions rather than cell-cell adhesion.
Collapse
Affiliation(s)
- Michael D Yoder
- Department of Cell Biology, School of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
61
|
Jung B, Köhler A, Schambony A, Wedlich D. PAPC and the Wnt5a/Ror2 pathway control the invagination of the otic placode in Xenopus. BMC DEVELOPMENTAL BIOLOGY 2011; 11:36. [PMID: 21663658 PMCID: PMC3127988 DOI: 10.1186/1471-213x-11-36] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 06/10/2011] [Indexed: 01/16/2023]
Abstract
BACKGROUND Paraxial protocadherin (PAPC) plays a crucial role in morphogenetic movements during gastrulation and somitogenesis in mouse, zebrafish and Xenopus. PAPC influences cell-cell adhesion mediated by C-Cadherin. A putative direct adhesion activity of PAPC is discussed. PAPC also promotes cell elongation, tissue separation and coordinates cell mass movements. In these processes the signaling function of PAPC in activating RhoA/JNK and supporting Wnt-11/PCP by binding to frizzled 7 (fz7) is important. RESULTS Here we demonstrate by loss of function experiments in Xenopus embryos that PAPC regulates another type of morphogenetic movement, the invagination of the ear placode. Knockdown of PAPC by antisense morpholinos results in deformation of the otic vesicle without altering otocyst marker expression. Depletion of PAPC could be rescued by full-length PAPC, constitutive active RhoA and by the closely related PCNS but not by classical cadherins. Also the cytoplasmic deletion mutant M-PAPC, which influences cell adhesion, does not rescue the PAPC knockdown. Interestingly, depletion of Wnt5a or Ror2 which are also expressed in the otocyst phenocopies the PAPC morphant phenotype. CONCLUSIONS PAPC signaling via RhoA and Wnt5a/Ror2 activity are required to keep cells aligned in apical-basal orientation during invagination of the ear placode. Since neither the cytoplasmic deletion mutant M-PAPC nor a classical cadherin is able to rescue loss of PAPC we suggest that the signaling function of the protocadherin rather than its role as modulator of cell-cell adhesion is required during invagination of the ear placode.
Collapse
Affiliation(s)
- Barbara Jung
- Karlsruhe Institute of Technology, Department of Cell and Developmental Biology, Karlsruhe, Germany
| | | | | | | |
Collapse
|
62
|
Peyrot SM, Wallingford JB, Harland RM. A revised model of Xenopus dorsal midline development: differential and separable requirements for Notch and Shh signaling. Dev Biol 2011; 352:254-66. [PMID: 21276789 PMCID: PMC3282588 DOI: 10.1016/j.ydbio.2011.01.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 11/30/2022]
Abstract
The development of the vertebrate dorsal midline (floor plate, notochord, and hypochord) has been an area of classical research and debate. Previous studies in vertebrates have led to contrasting models for the roles of Shh and Notch signaling in specification of the floor plate, by late inductive or early allocation mechanisms, respectively. Here, we show that Notch signaling plays an integral role in cell fate decisions in the dorsal midline of Xenopus laevis, similar to that observed in zebrafish and chick. Notch signaling promotes floor plate and hypochord fates over notochord, but has variable effects on Shh expression in the midline. In contrast to previous reports in frog, we find that Shh signaling is not required for floor plate vs. notochord decisions and plays a minor role in floor plate specification, where it acts in parallel to Notch signaling. As in zebrafish, Shh signaling is required for specification of the lateral floor plate in the frog. We also find that the medial floor plate in Xenopus comprises two distinct populations of cells, each dependent upon different signals for its specification. Using expression analysis of several midline markers, and dissection of functional relationships, we propose a revised allocation mechanism of dorsal midline specification in Xenopus. Our model is distinct from those proposed to date, and may serve as a guide for future studies in frog and other vertebrate organisms.
Collapse
Affiliation(s)
- Sara M. Peyrot
- Dept. of Molecular and Cell Biology and Center for Integrative Genomics, University of California, Berkeley, CA 94720, USA
| | - John B. Wallingford
- Dept. of Molecular and Cell Biology and Center for Integrative Genomics, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute
| | - Richard M. Harland
- Dept. of Molecular and Cell Biology and Center for Integrative Genomics, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
63
|
Abstract
The cadherin family is classified into classical cadherins, desmosomal cadherins and protocadherins (PCDHs). Genomic structures distinguish between PCDHs and other cadherins, and between clustered and non-clustered PCDHs. The phylogenetic analysis with full sequences of non-clustered PCDHs enabled them to be further classified into three subgroups: δ1 (PCDH1, PCDH7, PCDH9, PCDH11 and PCDH20), δ2 (PCDH8, PCDH10, PCDH12, PCDH17, PCDH18 and PCDH19) and ε (PCDH15, PCDH16, PCDH21 and MUCDHL). ε-PCDH members except PCDH21 have either higher or lower numbers of cadherin repeats than those of other PCDHs. Non-clustered PCDHs are expressed predominantly in the nervous system and have spatiotemporally diverse expression patterns. Especially, the region-specific expressions of non-clustered PCDHs have been observed in cortical area of early postnatal stage and in caudate putaman and/or hippocampal formation of mature brains, suggesting that non-clustered PCDHs play roles in the circuit formation and maintenance. The non-clustered PCDHs appear to have homophilic/heterophilc cell-cell adhesion properties, and each member has diverse cell signaling partnership distinct from those of other members (PCDH7/TAF1; PCDH8/TAO2β; PCDH10/Nap1; PCDH11/β-catenin; PCDH18/mDab1). Furthermore, each PCDH has several isoforms with differential cytoplasmic sequences, suggesting that one PCDH isoform could activate intracellular signaling differential from other isoforms. These facts suggest that non-clustered PCDHs play roles as a mediator of a regulator of other molecules as well as cell-cell adhesion. Furthermore, some non-clustered PCDHs have been considered to be involved in neuronal diseases such as autism-spectrum disorders, schizophrenia, and female-limited epilepsy and cognitive impairment, suggesting that they play multiple, tightly regulated roles in normal brain function. In addition, some non-clustered PCDHs have been suggested as candidate tumor suppressor genes in several tissues. Although molecular adhesive and regulatory properties of some PCDHs began to be unveiled, the endeavor to understand the molecular mechanism of non-clustered PCDH is still in its infancy and requires future study.
Collapse
Affiliation(s)
- Soo-Young Kim
- Department of Anatomy and Division of Brain Korea, Korea University College of Medicine; Anam-Dong, Seoul, South Korea
| | | | | | | | | |
Collapse
|
64
|
The involvement of Eph–Ephrin signaling in tissue separation and convergence during Xenopus gastrulation movements. Dev Biol 2011; 350:441-50. [DOI: 10.1016/j.ydbio.2010.12.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 12/03/2010] [Accepted: 12/03/2010] [Indexed: 11/21/2022]
|
65
|
Biswas S, Emond MR, Jontes JD. Protocadherin-19 and N-cadherin interact to control cell movements during anterior neurulation. ACTA ACUST UNITED AC 2011; 191:1029-41. [PMID: 21115806 PMCID: PMC2995167 DOI: 10.1083/jcb.201007008] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The protocadherins comprise the largest subgroup within the cadherin superfamily, yet their cellular and developmental functions are not well understood. In this study, we demonstrate that pcdh 19 (protocadherin 19) acts synergistically with n-cadherin (ncad) during anterior neurulation in zebrafish. In addition, Pcdh 19 and Ncad interact directly, forming a protein-protein complex both in vitro and in vivo. Although both molecules are required for calcium-dependent adhesion in a zebrafish cell line, the extracellular domain of Pcdh 19 does not exhibit adhesive activity, suggesting that the involvement of Pcdh 19 in cell adhesion is indirect. Quantitative analysis of in vivo two-photon time-lapse image sequences reveals that loss of either pcdh 19 or ncad impairs cell movements during neurulation, disrupting both the directedness of cell movements and the coherence of movements among neighboring cells. Our results suggest that Pcdh 19 and Ncad function together to regulate cell adhesion and to mediate morphogenetic movements during brain development.
Collapse
Affiliation(s)
- Sayantanee Biswas
- Center for Molecular Neurobiology, Ohio State University Medical Center, Columbus, OH 43210, USA
| | | | | |
Collapse
|
66
|
Stricker S, Mundlos S. FGF and ROR2 receptor tyrosine kinase signaling in human skeletal development. Curr Top Dev Biol 2011; 97:179-206. [PMID: 22074606 DOI: 10.1016/b978-0-12-385975-4.00013-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skeletal malformations are among the most frequent developmental disturbances in humans. In the past years, progress has been made in unraveling the molecular mechanisms that govern skeletal development by the use of animal models as well as by the identification of numerous mutations that cause human skeletal syndromes. Receptor tyrosine kinases have critical roles in embryonic development. During formation of the skeletal system, the fibroblast growth factor receptor (FGFR) family plays major roles in the formation of cranial, axial, and appendicular bones. Another player of relevance to skeletal development is the unusual receptor tyrosine kinase ROR2, the function of which is as interesting as it is complex. In this chapter, we review the involvement of FGFR signaling in human skeletal disease and provide an update on the growing knowledge of ROR2.
Collapse
Affiliation(s)
- Sigmar Stricker
- Development and Disease Group, Max Planck-Institute for Molecular Genetics, Berlin, Germany
| | | |
Collapse
|
67
|
Abstract
During the development of multicellular organisms, cell fate specification is followed by the sorting of different cell types into distinct domains from where the different tissues and organs are formed. Cell sorting involves both the segregation of a mixed population of cells with different fates and properties into distinct domains, and the active maintenance of their segregated state. Because of its biological importance and apparent resemblance to fluid segregation in physics, cell sorting was extensively studied by both biologists and physicists over the last decades. Different theories were developed that try to explain cell sorting on the basis of the physical properties of the constituent cells. However, only recently the molecular and cellular mechanisms that control the physical properties driving cell sorting, have begun to be unraveled. In this review, we will provide an overview of different cell-sorting processes in development and discuss how these processes can be explained by the different sorting theories, and how these theories in turn can be connected to the molecular and cellular mechanisms driving these processes.
Collapse
Affiliation(s)
- S F Gabby Krens
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | |
Collapse
|
68
|
xGit2 and xRhoGAP 11A regulate convergent extension and tissue separation in Xenopus gastrulation. Dev Biol 2010; 344:26-35. [PMID: 20380829 DOI: 10.1016/j.ydbio.2010.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 03/01/2010] [Accepted: 03/31/2010] [Indexed: 11/22/2022]
Abstract
In a microarray-based screen for genes that are involved in tissue separation downstream of Paraxial Protocadherin (PAPC) and Frizzled-7 (Fz7)-mediated signaling we identified xGit2 and xRhoGAP 11A, two GTPase-activating proteins (GAP) for small GTPases. xGit2 and xRhoGAP 11A are expressed in the dorsal ectoderm, and their transcription is downregulated in the involuting dorsal mesoderm by PAPC and Fz7. Overexpression of xGit2 and xRhoGAP 11A inhibits Rho activity and impairs convergent extension movements as well as tissue separation behaviour. We propose that Rho activity in the involuting mesoderm is enhanced through inhibition of xGit2 and xRhoGAP 11A transcription by PAPC and Fz7. By this mechanism xRhoGAP 11A and xGit2 are restricted to the dorsal ectoderm, while Rho signaling is inhibited.
Collapse
|
69
|
Luxardi G, Marchal L, Thomé V, Kodjabachian L. Distinct Xenopus Nodal ligands sequentially induce mesendoderm and control gastrulation movements in parallel to the Wnt/PCP pathway. Development 2010; 137:417-26. [PMID: 20056679 DOI: 10.1242/dev.039735] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vertebrate body plan is established in two major steps. First, mesendoderm induction singles out prospective endoderm, mesoderm and ectoderm progenitors. Second, these progenitors are spatially rearranged during gastrulation through numerous and complex movements to give rise to an embryo comprising three concentric germ layers, polarised along dorsoventral, anteroposterior and left-right axes. Although much is known about the molecular mechanisms of mesendoderm induction, signals controlling gastrulation movements are only starting to be revealed. In vertebrates, Nodal signalling is required to induce the mesendoderm, which has precluded an analysis of its potential role during the later process of gastrulation. Using time-dependent inhibition, we show that in Xenopus, Nodal signalling plays sequential roles in mesendoderm induction and gastrulation movements. Nodal activity is necessary for convergent extension in axial mesoderm and for head mesoderm migration. Using morpholino-mediated knockdown, we found that the Nodal ligands Xnr5 and Xnr6 are together required for mesendoderm induction, whereas Xnr1 and Xnr2 act later to control gastrulation movements. This control is operated via the direct regulation of key movement-effector genes, such as papc, has2 and pdgfralpha. Interestingly, however, Nodal does not appear to mobilise the Wnt/PCP pathway, which is known to control cell and tissue polarity. This study opens the way to the analysis of the genetic programme and cell behaviours that are controlled by Nodal signalling during vertebrate gastrulation. It also provides a good example of the sub-functionalisation that results from the expansion of gene families in evolution.
Collapse
Affiliation(s)
- Guillaume Luxardi
- Institut de Biologie du Développement de Marseille Luminy, UMR 6216, CNRS-Université de la Méditerranée, Case 907, 13288 Marseille Cedex 09, France
| | | | | | | |
Collapse
|
70
|
|
71
|
Roszko I, Sawada A, Solnica-Krezel L. Regulation of convergence and extension movements during vertebrate gastrulation by the Wnt/PCP pathway. Semin Cell Dev Biol 2009; 20:986-97. [PMID: 19761865 DOI: 10.1016/j.semcdb.2009.09.004] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 09/05/2009] [Accepted: 09/08/2009] [Indexed: 12/18/2022]
Abstract
Vertebrate gastrulation entails massive cell movements that establish and shape the germ layers. During gastrulation, the individual cell behaviors are strictly coordinated in time and space by various signaling pathways. These pathways instruct the cells about proliferation, shape, fate and migration into proper location. Convergence and extension (C&E) movements during vertebrate gastrulation play a major role in the shaping of the embryonic body. In vertebrates, the Wnt/Planar Cell Polarity (Wnt/PCP) pathway is a key regulator of C&E movements, essential for several polarized cell behaviors, including directed cell migration, and mediolateral and radial cell intercalation. However, the molecular mechanisms underlying the acquisition of Planar Cell Polarity by highly dynamic mesenchymal cells engaged in C&E are still not well understood. Here we review new evidence implicating the Wnt/PCP pathway in specific cell behaviors required for C&E during zebrafish gastrulation, in comparison to other vertebrates. We also discuss findings on the molecular regulation and the interaction of the Wnt/PCP pathway with other signaling pathways during gastrulation movements.
Collapse
Affiliation(s)
- Isabelle Roszko
- Vanderbilt University, Department of Biological Sciences, VU Station B #351634, Nashville, TN 37235-1634, USA
| | | | | |
Collapse
|
72
|
Schwarzer W, Witte F, Rajab A, Mundlos S, Stricker S. A gradient of ROR2 protein stability and membrane localization confers brachydactyly type B or Robinow syndrome phenotypes. Hum Mol Genet 2009; 18:4013-21. [PMID: 19640924 DOI: 10.1093/hmg/ddp345] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mutations in ROR2 cause dominant brachydactyly type B (BDB1) or recessive Robinow syndrome (RRS), each characterized by a distinct combination of phenotypic features. We here report a novel nonsense mutation in ROR2 (c.1324C>T; p.R441X) causing intracellular protein truncation in a patient exhibiting features of RRS in conjunction with severe recessive brachydactyly. The mutation is located at the same position as a previously described frame shift mutation causing dominant BDB1. To investigate the apparent discrepancy in phenotypic outcome, we analysed ROR2 protein stability and distribution in stably transfected cell lines expressing exact copies of several human RRS and BDB1 intracellular mutations. RRS mutant proteins were less abundant and retained intracellularly, although BDB1 mutants were stable and predominantly located at the cell membrane. The p.R441X mutation showed an intermediate pattern with membrane localization but also high endoplasmic reticulum retention. Furthermore, we observed a correlation between the severity of BDB1, the location of the mutation, and the amount of membrane-associated ROR2. Membrane protein fraction quantification revealed a gradient of distribution and stability correlating with the clinical phenotypes. This gradual model was confirmed by crossing mouse models for RRS and BDB1, yielding double heterozygous animals that exhibited an intermediate phenotype. We propose a model in which the RRS versus the BDB1 phenotype is determined by the relative degree of protein retention/degradation and the amount of mutant protein reaching the plasma membrane.
Collapse
Affiliation(s)
- Wibke Schwarzer
- Max Planck-Institute for Molecular Genetics, FG Development & Disease, Berlin, Germany
| | | | | | | | | |
Collapse
|
73
|
Emond MR, Biswas S, Jontes JD. Protocadherin-19 is essential for early steps in brain morphogenesis. Dev Biol 2009; 334:72-83. [PMID: 19615992 DOI: 10.1016/j.ydbio.2009.07.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Revised: 07/02/2009] [Accepted: 07/08/2009] [Indexed: 10/20/2022]
Abstract
One of the earliest stages of brain morphogenesis is the establishment of the neural tube during neurulation. While some of the cellular mechanisms responsible for neurulation have been described in a number of vertebrate species, the underlying molecular processes are not fully understood. We have identified the zebrafish homolog of protocadherin-19, a member of the cadherin superfamily, which is expressed in the anterior neural plate and is required for brain morphogenesis. Interference with Protocadherin-19 function with antisense morpholino oligonucleotides leads to a severe disruption in early brain morphogenesis. Despite these pronounced effects on neurulation, axial patterning of the neural tube appears normal, as assessed by in situ hybridization for otx2, pax2.1 and krox20. Characterization of embryos early in development by in vivo 2-photon timelapse microscopy reveals that the observed disruption of morphogenesis results from an arrest of cell convergence in the anterior neural plate. These results provide the first functional data for protocadherin-19, demonstrating an essential role in early brain development.
Collapse
Affiliation(s)
- Michelle R Emond
- Center for Molecular Neurobiology and Department of Neuroscience, 115 Rightmire Hall, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
74
|
Wang Y, Steinbeisser H. Molecular basis of morphogenesis during vertebrate gastrulation. Cell Mol Life Sci 2009; 66:2263-73. [PMID: 19347571 PMCID: PMC11115717 DOI: 10.1007/s00018-009-0018-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 02/23/2009] [Accepted: 03/06/2009] [Indexed: 10/20/2022]
Abstract
Gastrulation is a crucial step in early embryogenesis. During gastrulation, a set of morphogenetic processes takes place leading to the establishment of the basic body plan and formation of primary germ layers. A rich body of knowledge about these morphogenetic processes has been accumulated over decades. The understanding of the molecular mechanism that controls the complex cell movement and inductive processes during gastrulation remains a challenge. Substantial progress has been made recently to identify and characterize pathways and molecules implicated in the modulation of morphogenesis during vertebrate gastrulation. Here, we summarize recent findings in the analysis of signaling pathways implicated in gastrulation movements, with the aim to generalize the basic molecular principles of vertebrate morphogenesis.
Collapse
Affiliation(s)
- Yingqun Wang
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, 421 Curie Blvd., Philadelphia, PA 19104, USA.
| | | |
Collapse
|
75
|
Lam PY, Webb SE, Leclerc C, Moreau M, Miller AL. Inhibition of stored Ca2+ release disrupts convergence-related cell movements in the lateral intermediate mesoderm resulting in abnormal positioning and morphology of the pronephric anlagen in intact zebrafish embryos. Dev Growth Differ 2009; 51:429-42. [PMID: 19382938 DOI: 10.1111/j.1440-169x.2009.01106.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ca(2+) is a highly versatile intra- and intercellular signal that has been reported to regulate a variety of different pattern-forming processes during early development. To investigate the potential role of Ca(2+) signaling in regulating convergence-related cell movements, and the positioning and morphology of the pronephric anlagen, we treated zebrafish embryos from 11.5 h postfertilization (hpf; i.e. just before the pronephric anlagen are morphologically distinguishable in the lateral intermediate mesoderm; LIM) to 16 hpf, with a variety of membrane permeable pharmacological reagents known to modulate [Ca(2+)](i). The effect of these treatments on pronephric anlagen positioning and morphology was determined in both fixed and live embryos via in situ hybridization using the pronephic-specific probes, cdh17, pax2.1 and sim1, and confocal imaging of BODIPY FL C(5)-ceramide-labeled embryos, respectively. We report that Ca(2+) released from intracellular stores via inositol 1,4,5-trisphosphate receptors plays a significant role in the positioning and morphology of the pronephric anlagen, but does not affect the fate determination of the LIM cells that form these primordia. Our data suggest that when Ca(2+) release is inhibited, the resulting effects on the pronephric anlagen are a consequence of the disruption of normal convergence-related movements of LIM cells toward the embryonic midline.
Collapse
Affiliation(s)
- Pui Ying Lam
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | | | |
Collapse
|
76
|
Tonoyama Y, Anzai D, Ikeda A, Kakuda S, Kinoshita M, Kawasaki T, Oka S. Essential role of beta-1,4-galactosyltransferase 2 during medaka (Oryzias latipes) gastrulation. Mech Dev 2009; 126:580-94. [PMID: 19324086 DOI: 10.1016/j.mod.2009.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 03/11/2009] [Accepted: 03/12/2009] [Indexed: 11/29/2022]
Abstract
Glycans are known to play important roles in vertebrate development; however, it is difficult to analyze in mammals because it takes place in utero. Therefore, we used medaka (Oryzias latipes) to clarify the roles of glycans during vertebrate development. beta-1,4-Galactosyltransferase is one of the key enzymes in the biosynthesis of the lactosamine structures that are commonly found on glycoproteins and glycolipids. Here, we show the essential role of beta4GalT2 during medaka development. Depletion of beta4GalT2 by morpholino antisense oligonucleotide injection resulted in significant morphological defects, such as shortening of the anterior-posterior axis, cyclopia, impaired somite segmentation, and head hypoplasia. In situ hybridization analyses revealed that the loss of beta4GalT2 led to defective anterior-posterior axis elongation during gastrulation without affecting organizer formation. Furthermore, a cell tracing experiment demonstrated that beta4GalT2 knockdown mainly affects mediolateral cell intercalation, which contributes to anterior-posterior axis elongation. A cell transplantation experiment indicated that glycans are produced by beta4GalT2 cell-autonomously during gastrulation. beta4GalT2 depletion also led to enhanced apoptosis; however, this does not account for the phenotypic abnormalities, as blockade of apoptosis failed to compensate for the beta4GalT2 depletion. Our data suggest that beta4GalT2 activity is cell-autonomously required in cells undergoing mediolateral cell intercalation, which drives extension movements during medaka gastrulation.
Collapse
Affiliation(s)
- Yasuhiro Tonoyama
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
77
|
Neuner R, Cousin H, McCusker C, Coyne M, Alfandari D. Xenopus ADAM19 is involved in neural, neural crest and muscle development. Mech Dev 2009; 126:240-55. [PMID: 19027850 PMCID: PMC2754070 DOI: 10.1016/j.mod.2008.10.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 10/27/2008] [Accepted: 10/28/2008] [Indexed: 11/25/2022]
Abstract
ADAM19 is a member of the meltrin subfamily of ADAM metalloproteases. In Xenopus, ADAM19 is present as a maternal transcript. Zygotic expression starts during gastrulation and is apparent in the dorsal blastopore lip. ADAM19 expression through neurulation and tailbud formation becomes enriched in dorsal structures such as the neural tube, the notochord and the somites. Using morpholino knock-down, we show that a reduction of ADAM19 protein in gastrula stage embryos results in a decrease of Brachyury expression in the notochord concomitant with an increase in the dorsal markers, Goosecoid and Chordin. These changes in gene expression are accompanied by a decrease in phosphorylated AKT, a downstream target of the EGF signaling pathway, and occur while the blastopore closes at the same rate as the control embryos. During neurulation and tailbud formation, ADAM19 knock-down induces a reduction of the neural markers N-tubulin and NRP1 but not Sox2. In the somitic mesoderm, the expression of MLC is also decreased while MyoD is not. ADAM19 knockdown also reduces neural crest markers prior to cell migration. Neural crest induction is also decreased in embryos treated with an EGF receptor inhibitor suggesting that this pathway is necessary for neural crest cell induction. Using targeted knock-down of ADAM19 we show that the reduction of neural and neural crest markers is cell autonomous and that the migration if the cranial neural crest is perturbed. We further show that ADAM19 protein reduction affects somite organization, reduces 12-101 expression and perturbs fibronectin localization at the intersomitic boundary.
Collapse
Affiliation(s)
| | | | - Catherine McCusker
- Department of Veterinary and Animal Sciences, University of Massachusetts, Paige Laboratory, Room 203, 161 Holdsworth Way, Amherst 01003, USA
| | - Michael Coyne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Paige Laboratory, Room 203, 161 Holdsworth Way, Amherst 01003, USA
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Paige Laboratory, Room 203, 161 Holdsworth Way, Amherst 01003, USA
| |
Collapse
|
78
|
Abstract
Morphogenesis of epithelial tissues involves various forms of reshaping of cell layers, such as invagination or bending, convergent extension, and epithelial-mesenchymal transition. At the cellular level, these processes include changes in the shape, position, and assembly pattern of cells. During such morphogenetic processes, epithelial sheets in general maintain their multicellular architecture, implying that they must engage the mechanisms to change the spatial relationship with their neighbors without disrupting the junctions. A major junctional structure in epithelial tissues is the "adherens junction," which is composed of cadherin adhesion receptors and associated proteins including F-actin. The adherens junctions are required for the firm associations between cells, as disruption of them causes disorganization of the epithelial architecture. The adherens junctions, however, appear to be a dynamic entity, allowing the rearrangement of cells within cell sheets. This dynamic nature of the adherens junctions seems to be supported by various mechanisms, such as the interactions of cadherins with actin cytoskeleton, endocytosis and recycling of cadherins, and the cooperation of cadherins with other adhesion receptors. In this chapter, we provide an overview of these mechanisms analyzed in vitro and in vivo.
Collapse
|
79
|
Winklbauer R. Cell adhesion in amphibian gastrulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:215-75. [PMID: 19815180 DOI: 10.1016/s1937-6448(09)78005-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The amphibian gastrula can be regarded as a single coherent tissue which folds and distorts itself in a reproducible pattern to establish the embryonic germ layers. It is held together by cadherins which provide the flexible adhesion required for the massive cell rearrangements that accompany gastrulation. Cadherin expression and adhesiveness increase as one goes from the vegetal cell mass through the anterior mesendoderm to the chordamesoderm, and then decrease again slightly in the ectoderm. Together with a basic random component of cell motility, this flexible, differentially expressed adhesiveness generates surface and interfacial tension effects which, in principle, can exert strong forces. However, conclusive evidence for an in vivo role of differential adhesion-related effects in gastrula morphogenesis is still lacking. The most important morphogenetic process in the amphibian gastrula seems to be intercellular migration, where cells crawl actively across each other's surface. The crucial aspect of this process is that cell motility is globally oriented, leading for example to mediolateral intercalation of bipolar cells during convergent extension of the chordamesoderm or to the directional migration of unipolar cells during translocation of the anterior mesendoderm on the ectodermal blastocoel roof. During these movements, the boundary between ectoderm and mesoderm is maintained by a tissue separation process.
Collapse
Affiliation(s)
- Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
80
|
Old Wares and New: Five Decades of Investigation of Somitogenesis in Xenopus laevis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 638:73-94. [DOI: 10.1007/978-0-387-09606-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
81
|
Beaster-Jones L, Kaltenbach SL, Koop D, Yuan S, Chastain R, Holland LZ. Expression of somite segmentation genes in amphioxus: a clock without a wavefront? Dev Genes Evol 2008; 218:599-611. [PMID: 18949486 DOI: 10.1007/s00427-008-0257-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2008] [Accepted: 09/26/2008] [Indexed: 12/22/2022]
Abstract
In the basal chordate amphioxus (Branchiostoma), somites extend the full length of the body. The anteriormost somites segment during the gastrula and neurula stages from dorsolateral grooves of the archenteron. The remaining ones pinch off, one at a time, from the tail bud. These posterior somites appear to be homologous to those of vertebrates, even though the latter pinch off from the anterior end of bands of presomitic mesoderm rather than directly from the tail bud. To gain insights into the evolution of mesodermal segmentation in chordates, we determined the expression of ten genes in nascent amphioxus somites. Five (Uncx4.1, NeuroD/atonal-related, IrxA, Pcdhdelta2-17/18, and Hey1) are expressed in stripes in the dorsolateral mesoderm at the gastrula stage and in the tail bud while three (Paraxis, Lcx, and Axin) are expressed in the posterior mesendoderm at the gastrula and neurula stages and in the tail bud at later stages. Expression of two genes (Pbx and OligA) suggests roles in the anterior somites that may be unrelated to initial segmentation. Together with previous data, our results indicate that, with the exception that Engrailed is only segmentally expressed in the anterior somites, the genetic mechanisms controlling formation of both the anterior and posterior somites are probably largely identical. Thus, the fundamental pathways for mesodermal segmentation involving Notch-Delta, Wnt/beta-catenin, and Fgf signaling were already in place in the common ancestor of amphioxus and vertebrates although budding of somites from bands of presomitic mesoderm exhibiting waves of expression of Notch, Wnt, and Fgf target genes was likely a vertebrate novelty. Given the conservation of segmentation gene expression between amphioxus and vertebrate somites, we propose that the clock mechanism may have been established in the basal chordate, while the wavefront evolved later in the vertebrate lineage.
Collapse
Affiliation(s)
- Laura Beaster-Jones
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA
| | | | | | | | | | | |
Collapse
|
82
|
Bononi J, Cole A, Tewson P, Schumacher A, Bradley R. Chicken protocadherin-1 functions to localize neural crest cells to the dorsal root ganglia during PNS formation. Mech Dev 2008; 125:1033-47. [PMID: 18718533 PMCID: PMC2651685 DOI: 10.1016/j.mod.2008.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/24/2008] [Accepted: 07/25/2008] [Indexed: 10/21/2022]
Abstract
In vertebrate embryos, neural crest cells emerge from the dorsal neural tube and migrate along well defined pathways to form a wide diversity of tissues, including the majority of the peripheral nervous system (PNS). Members of the cadherin family of cell adhesion molecules play key roles during the initiation of migration, mediating the delamination of cells from the neural tube. However, a role for cadherins in the sorting and re-aggregation of the neural crest to form the PNS has not been established. We report the requirement for a protocadherin, chicken protocadherin-1 (Pcdh1), in neural crest cell sorting during the formation of the dorsal root ganglia (DRG). In embryos, cPcdh1 is highly expressed in the developing DRG, where it co-localizes with the undifferentiated and mitotically active cells along the perimeter. Pcdh1 can promote cell adhesion in vivo and disrupting Pcdh1 function in embryos results in fewer neural crest cells localizing to the DRG, with a concomitant increase in cells that migrate to the sympathetic ganglia. Furthermore, those cells that still localize to the DRG, when Pcdh1 is inhibited, are no longer found at the perimeter, but are instead dispersed throughout the DRG and are now more likely to differentiate along the sensory neuron pathway. These results demonstrate that Pcdh1-mediated cell adhesion plays an important role as neural crest cells coalesce to form the DRG, where it serves to sort cells to the mitotically active perimeter.
Collapse
Affiliation(s)
- Judy Bononi
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717
| | - Angela Cole
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717
| | - Paul Tewson
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717
| | - Andrew Schumacher
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717
| | - Roger Bradley
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717
| |
Collapse
|
83
|
Hulpiau P, van Roy F. Molecular evolution of the cadherin superfamily. Int J Biochem Cell Biol 2008; 41:349-69. [PMID: 18848899 DOI: 10.1016/j.biocel.2008.09.027] [Citation(s) in RCA: 320] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 09/19/2008] [Accepted: 09/24/2008] [Indexed: 02/02/2023]
Abstract
This review deals with the large and pleiotropic superfamily of cadherins and its molecular evolution. We compiled literature data and an in-depth phylogenetic analysis of more than 350 members of this superfamily from about 30 species, covering several but not all representative branches within metazoan evolution. We analyzed the sequence homology between either ectodomains or cytoplasmic domains, and we reviewed protein structural data and genomic architecture. Cadherins and cadherin-related molecules are defined by having an ectodomain in which at least two consecutive calcium-binding cadherin repeats are present. There are usually 5 or 6 domains, but in some cases as many as 34. Additional protein modules in the ectodomains point at adaptive evolution. Despite the occurrence of several conserved motifs in subsets of cytoplasmic domains, these domains are even more diverse than ectodomains and most likely have evolved separately from the ectodomains. By fine tuning molecular classifications, we reduced the number of solitary superfamily members. We propose a cadherin major branch, subdivided in two families and 8 subfamilies, and a cadherin-related major branch, subdivided in four families and 11 subfamilies. Accordingly, we propose a more appropriate nomenclature. Although still fragmentary, our insight into the molecular evolution of these remarkable proteins is steadily growing. Consequently, we can start to propose testable hypotheses for structure-function relationships with impact on our models of molecular evolution. An emerging concept is that the ever evolving diversity of cadherin structures is serving dual and important functions: specific cell adhesion and intricate cell signaling.
Collapse
Affiliation(s)
- Paco Hulpiau
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | | |
Collapse
|
84
|
Yu JS, Koujak S, Nagase S, Li CM, Su T, Wang X, Keniry M, Memeo L, Rojtman A, Mansukhani M, Hibshoosh H, Tycko B, Parsons R. PCDH8, the human homolog of PAPC, is a candidate tumor suppressor of breast cancer. Oncogene 2008; 27:4657-65. [PMID: 18408767 PMCID: PMC3013056 DOI: 10.1038/onc.2008.101] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 02/12/2008] [Accepted: 03/01/2008] [Indexed: 12/11/2022]
Abstract
Carcinoma is an altered state of tissue differentiation in which epithelial cells no longer respond to cues that keep them in their proper position. A break down in these cues has disastrous consequences not only in cancer but also in embryonic development when cells of various lineages must organize into discrete entities to form a body plan. Paraxial protocadherin (PAPC) is an adhesion protein with six cadherin repeats that organizes the formation and polarity of developing cellular structures in frog, fish and mouse embryos. Here we show that protocadherin-8 (PCDH8), the human ortholog of PAPC, is inactivated through either mutation or epigenetic silencing in a high fraction of breast carcinomas. Loss of PCDH8 expression is associated with loss of heterozygosity, partial promoter methylation, and increased proliferation. Complementation of mutant tumor cell line HCC2218 with wild-type PCDH8 inhibited its growth. Two tumor mutants, E146K and R343H, were defective for inhibition of cell growth and migration. Surprisingly, the E146K mutant transformed the human mammary epithelial cell line MCF10A and sustained the expression of cyclin D1 and MYC without epidermal growth factor. We propose that loss of PCDH8 promotes oncogenesis in epithelial human cancers by disrupting cell-cell communication dedicated to tissue organization and repression of mitogenic signaling.
Collapse
Affiliation(s)
- JS Yu
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - S Koujak
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - S Nagase
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - C-M Li
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - T Su
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - X Wang
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - M Keniry
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - L Memeo
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - A Rojtman
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - M Mansukhani
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - H Hibshoosh
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - B Tycko
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - R Parsons
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
| |
Collapse
|
85
|
Lou X, Li S, Wang J, Ding X. Activin/nodal signaling modulates XPAPC expression during Xenopus gastrulation. Dev Dyn 2008; 237:683-91. [PMID: 18265000 DOI: 10.1002/dvdy.21456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Gastrulation is the first obligatory morphogenesis during vertebrate development, by which the body plan is established. Nodal signaling is a key player in many developmental processes, including gastrulation. XPAPC has been found to exert its biological function through modifying the adhesion property of cells and interacting with other several important molecules in embryos. In this report, we show that nodal signaling is necessary and sufficient for XPAPC expression during Xenopus gastrulation. Furthermore, we isolated 4.8 kb upstream DNA sequence of Xenopus XPAPC, and proved that this 4.8-kb genomic contig is sufficient to recapitulate the expression pattern of XPAPC from gastrula to tail bud stage. Transgene and ChIP assays indicate that Activin/nodal signaling participates in regulation of XPAPC expression through a Smad binding element within the XPAPC promoter. Concomitant investigation suggests that the canonical Wnt pathway-activated XPAPC expression requires nodal signaling.
Collapse
Affiliation(s)
- Xin Lou
- Key Laboratory of Stem Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | |
Collapse
|
86
|
Hertel N, Krishna-K, Nuernberger M, Redies C. A cadherin-based code for the divisions of the mouse basal ganglia. J Comp Neurol 2008; 508:511-28. [DOI: 10.1002/cne.21696] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
87
|
Wang Y, Janicki P, Köster I, Berger CD, Wenzl C, Grosshans J, Steinbeisser H. Xenopus Paraxial Protocadherin regulates morphogenesis by antagonizing Sprouty. Genes Dev 2008; 22:878-83. [PMID: 18381892 DOI: 10.1101/gad.452908] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Xenopus Paraxial Protocadherin (xPAPC) has signaling functions that are essential for convergent extension (CE) movements and tissue separation during gastrulation. PAPC modulates components of the planar cell polarity (PCP) pathway, but it is not clear how PAPC is connected to beta-catenin-independent Wnt-signaling. By yeast two-hybrid screen, we found that the intracellular domain of PAPC interacts with Sprouty (Spry), an inhibitor of CE movements. Upon binding to PAPC, Spry function is inhibited and PCP signaling is enhanced. Our data indicate that PAPC promotes gastrulation movements by sequestration of Spry and reveal a novel mechanism by which protocadherins modulate beta-catenin-independent Wnt-signaling.
Collapse
Affiliation(s)
- Yingqun Wang
- Institute of Human Genetics, University Heidelberg, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
88
|
Protocadherin-18a has a role in cell adhesion, behavior and migration in zebrafish development. Dev Biol 2008; 318:335-46. [PMID: 18468594 DOI: 10.1016/j.ydbio.2008.03.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 03/21/2008] [Accepted: 03/26/2008] [Indexed: 11/20/2022]
Abstract
Protocadherin-18a (Pcdh18a) belongs to the delta 2-protocadherins, which constitute the largest subgroup within the cadherin superfamily. Here we present isolation of a full-length zebrafish cDNA that encodes a protein highly similar to human and mouse Pcdh18. Zebrafish pcdh18a is expressed in a complex and dynamic pattern in the nervous system from gastrula stages onward, with lesser expression in mesodermal derivatives. Pcdh18a-eGFP fusion protein is expressed in a punctate manner on the membranes between cells. Overexpression of pcdh18a in embryos caused cyclopia, mislocalization of hatching gland tissue, and duplication or splitting of the neural tube. Most neural markers tested were expressed in an approximately correct A-P pattern. By cell transplantation we showed that overexpression of pcdh18a causes diminished cell migration and reduced cell protrusions, resulting in a tendency of cells to stay more firmly aggregated, probably due to increased cell adhesion. In contrast, knockdown of pcdh18a by a morpholino oligonucleotide caused defects in epiboly, and led to reduced cell adhesion as shown by cell dissociation, sorting and transplantation experiments. These results suggest a role for Pcdh18a in cell adhesion, migration and behavior but not cell specification during gastrula and segmentation stages of development.
Collapse
|
89
|
Epithelial coating controls mesenchymal shape change through tissue-positioning effects and reduction of surface-minimizing tension. Nat Cell Biol 2007; 10:61-9. [PMID: 18084283 DOI: 10.1038/ncb1669] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 11/26/2007] [Indexed: 01/22/2023]
Abstract
Signalling between mesenchymal and epithelial cells has a profound influence on organ morphogenesis. However, less is known about the mechanical function of epithelial-mesenchymal interactions. Here, we describe two principal effects by which epithelia can regulate shape changes in mesenchymal cell aggregates. We propose that during formation of the embryonic body axis, the epithelial layer relieves surface minimizing tensions that would force cell aggregates into a spherical shape, and controls the serial arrangement of cell populations along the axis. The combined effects permit the tissue to deviate from a spherical form and to elongate.
Collapse
|
90
|
Harrington MJ, Hong E, Fasanmi O, Brewster R. Cadherin-mediated adhesion regulates posterior body formation. BMC DEVELOPMENTAL BIOLOGY 2007; 7:130. [PMID: 18045497 PMCID: PMC2231375 DOI: 10.1186/1471-213x-7-130] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 11/28/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND The anterior-posterior axis of the vertebrate embryo undergoes a dramatic elongation during early development. Convergence and extension of the mesoderm, occurring during gastrulation, initiates the narrowing and lengthening of the embryo. However the lengthening of the axis continues during post-gastrula stages in the tailbud region, and is thought to involve convergent extension movements as well as other cell behaviors specific to posterior regions. RESULTS We demonstrate here, using a semi-dominant N-cadherin allele, that members of the classical cadherin subfamily of cell-cell adhesion molecules are required for tailbud elongation in the zebrafish. In vivo imaging of cell behaviors suggests that the extension of posterior axial mesodermal cells is impaired in embryos that carry the semi-dominant N-cadherin allele. This defect most likely results from a general loss of cell-cell adhesion in the tailbud region. Consistent with these observations, N-cadherin is expressed throughout the tailbud during post-gastrulation stages. In addition, we show that N-cadherin interacts synergistically with vang-like 2, a member of the non-canonical Wnt signaling/planar cell polarity pathway, to mediate tail morphogenesis. CONCLUSION We provide the first evidence here that N-cadherin and other members of the classical cadherin subfamily function in parallel with the planar cell polarity pathway to shape the posterior axis during post-gastrulation stages. These findings further highlight the central role that adhesion molecules play in the cellular rearrangements that drive morphogenesis in vertebrates and identify classical cadherins as major contributors to tail development.
Collapse
Affiliation(s)
- Michael J Harrington
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA.
| | | | | | | |
Collapse
|
91
|
Malikova MA, Van Stry M, Symes K. Apoptosis regulates notochord development in Xenopus. Dev Biol 2007; 311:434-48. [PMID: 17920580 PMCID: PMC2695716 DOI: 10.1016/j.ydbio.2007.08.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 08/22/2007] [Accepted: 08/27/2007] [Indexed: 11/25/2022]
Abstract
The notochord is the defining characteristic of the chordate embryo and plays critical roles as a signaling center and as the primitive skeleton. In this study we show that early notochord development in Xenopus embryos is regulated by apoptosis. We find apoptotic cells in the notochord beginning at the neural groove stage and increasing in number as the embryo develops. These dying cells are distributed in an anterior to posterior pattern that is correlated with notochord extension through vacuolization. In axial mesoderm explants, inhibition of this apoptosis causes the length of the notochord to approximately double compared to controls. In embryos, however, inhibition of apoptosis decreases the length of the notochord and it is severely kinked. This kinking also spreads from the anterior with developmental stage such that, by the tadpole stage, the notochord lacks any recognizable structure, although notochord markers are expressed in a normal temporal pattern. Extension of the somites and neural plate mirrors that of the notochord in these embryos, and the somites are severely disorganized. These data indicate that apoptosis is required for normal notochord development during the formation of the anterior-posterior axis, and its role in this process is discussed.
Collapse
Affiliation(s)
- Marina A Malikova
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | | | | |
Collapse
|
92
|
Yasuda S, Tanaka H, Sugiura H, Okamura K, Sakaguchi T, Tran U, Takemiya T, Mizoguchi A, Yagita Y, Sakurai T, De Robertis E, Yamagata K. Activity-induced protocadherin arcadlin regulates dendritic spine number by triggering N-cadherin endocytosis via TAO2beta and p38 MAP kinases. Neuron 2007; 56:456-71. [PMID: 17988630 PMCID: PMC2424284 DOI: 10.1016/j.neuron.2007.08.020] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 06/15/2007] [Accepted: 08/27/2007] [Indexed: 12/30/2022]
Abstract
Synaptic activity induces changes in the number of dendritic spines. Here, we report a pathway of regulated endocytosis triggered by arcadlin, a protocadherin induced by electroconvulsive and other excitatory stimuli in hippocampal neurons. The homophilic binding of extracellular arcadlin domains activates TAO2beta, a splice variant of the thousand and one amino acid protein kinase 2, cloned here by virtue of its binding to the arcadlin intracellular domain. TAO2beta is a MAPKKK that activates the MEK3 MAPKK, which phosphorylates the p38 MAPK. Activation of p38 feeds-back on TAO2beta, phosphorylating a key serine required for triggering endocytosis of N-cadherin at the synapse. Arcadlin knockout increases the number of dendritic spines, and the phenotype is rescued by siRNA knockdown of N-cadherin. This pathway of regulated endocytosis of N-cadherin via protocadherin/TAO2beta/MEK3/p38 provides a molecular mechanism for transducing neuronal activity into changes in synaptic morphologies.
Collapse
Affiliation(s)
- Shin Yasuda
- Department of Neuropharmacology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo 183-8526, Japan
| | - Hidekazu Tanaka
- Department of Pharmacology, Osaka University Medical School, Suita, Osaka 565-0871, Japan
| | - Hiroko Sugiura
- Department of Neuropharmacology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo 183-8526, Japan
| | - Ko Okamura
- Department of Pharmacology, Osaka University Medical School, Suita, Osaka 565-0871, Japan
| | - Taiki Sakaguchi
- Department of Pharmacology, Osaka University Medical School, Suita, Osaka 565-0871, Japan
| | - Uyen Tran
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA
| | - Takako Takemiya
- Department of Neuropharmacology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo 183-8526, Japan
| | - Akira Mizoguchi
- Department of Anatomy, Mie University School of Medicine, Tsu, Mie 514-8507, Japan
| | - Yoshiki Yagita
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10128, USA
| | - Takeshi Sakurai
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10128, USA
| | - E.M. De Robertis
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA
| | - Kanato Yamagata
- Department of Neuropharmacology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo 183-8526, Japan
| |
Collapse
|
93
|
Protocadherin family: diversity, structure, and function. Curr Opin Cell Biol 2007; 19:584-92. [DOI: 10.1016/j.ceb.2007.09.006] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Accepted: 09/05/2007] [Indexed: 12/13/2022]
|
94
|
Roure A, Rothbächer U, Robin F, Kalmar E, Ferone G, Lamy C, Missero C, Mueller F, Lemaire P. A multicassette Gateway vector set for high throughput and comparative analyses in ciona and vertebrate embryos. PLoS One 2007; 2:e916. [PMID: 17878951 PMCID: PMC1976267 DOI: 10.1371/journal.pone.0000916] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 08/01/2007] [Indexed: 01/26/2023] Open
Abstract
Background The past few years have seen a vast increase in the amount of genomic data available for a growing number of taxa, including sets of full length cDNA clones and cis-regulatory sequences. Large scale cross-species comparisons of protein function and cis-regulatory sequences may help to understand the emergence of specific traits during evolution. Principal Findings To facilitate such comparisons, we developed a Gateway compatible vector set, which can be used to systematically dissect cis-regulatory sequences, and overexpress wild type or tagged proteins in a variety of chordate systems. It was developed and first characterised in the embryos of the ascidian Ciona intestinalis, in which large scale analyses are easier to perform than in vertebrates, owing to the very efficient embryo electroporation protocol available in this organism. Its use was then extended to fish embryos and cultured mammalian cells. Conclusion This versatile vector set opens the way to the mid- to large-scale comparative analyses of protein function and cis-regulatory sequences across chordate evolution. A complete user manual is provided as supplemental material.
Collapse
Affiliation(s)
- Agnès Roure
- Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, Marseille, France
- * To whom correspondence should be addressed. E-mail: (AR); (PL)
| | - Ute Rothbächer
- Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, Marseille, France
| | - François Robin
- Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, Marseille, France
| | - Eva Kalmar
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Karlsruhe, Germany
| | - Giustina Ferone
- CEINGE Biotecnologie Avanzate SCarl (Center for Genetic Engineering), Napoli, Italy
| | - Clément Lamy
- Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, Marseille, France
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate SCarl (Center for Genetic Engineering), Napoli, Italy
| | - Ferenc Mueller
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Karlsruhe, Germany
| | - Patrick Lemaire
- Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, Marseille, France
- * To whom correspondence should be addressed. E-mail: (AR); (PL)
| |
Collapse
|
95
|
Chen X, Molino C, Liu L, Gumbiner BM. Structural elements necessary for oligomerization, trafficking, and cell sorting function of paraxial protocadherin. J Biol Chem 2007; 282:32128-37. [PMID: 17823115 DOI: 10.1074/jbc.m705337200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protocadherins have been shown to regulate cell adhesion, cell migration, cell survival, and tissue morphogenesis in the embryo and the central nervous system, but little is known about the mechanism of protocadherin function. We previously showed that Xenopus paraxial protocadherin (PAPC) mediates cell sorting and morphogenesis by down-regulating the adhesion activity of a classical cadherin, C-cadherin. Classical cadherins function by forming lateral dimers that are necessary for their adhesive function. However, it is not known whether oligomerization also plays a role in protocadherin function. We show here that PAPC forms oligomers that are stabilized by disulfide bonds formed between conserved Cys residues in the extracellular domain. Disruption of these disulfide bonds by dithiothreitol or mutation of the conserved cysteines results in defects in oligomerization, post-translational modification, trafficking to the cell surface and cell sorting function of PAPC. Furthermore, none of the residues in the cytoplasmic domain of PAPC is required for its cell sorting activity, whereas both the transmembrane domain and the extracellular domain are necessary. Therefore, protein oligomerization and/or protein interactions via the extracellular and transmembrane domains of PAPC are required for its cell sorting function.
Collapse
Affiliation(s)
- Xuejun Chen
- Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
96
|
Schambony A, Wedlich D. Wnt-5A/Ror2 regulate expression of XPAPC through an alternative noncanonical signaling pathway. Dev Cell 2007; 12:779-92. [PMID: 17488628 DOI: 10.1016/j.devcel.2007.02.016] [Citation(s) in RCA: 227] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 01/18/2007] [Accepted: 02/20/2007] [Indexed: 02/06/2023]
Abstract
XWnt-5A, a member of the nontransforming Wnt-5A class of Wnt ligands, is required for convergent extension movements in Xenopus embryos. XWnt-5A knockdown phenocopies paraxial protocadherin (XPAPC) loss of function: involuted mesodermal cells fail to align mediolaterally, which results in aberrant movements and a selective inhibition of constriction. XWnt-5A depletion was rescued by coinjection of XPAPC RNA, indicating that XWnt-5A acts upstream of XPAPC. XWnt-5A, but not XWnt-11, stimulates XPAPC expression independent of the canonical Wnt/beta-catenin pathway. We show that transcriptional regulation of XPAPC by XWnt-5A requires the receptor tyrosine kinase Ror2. XWnt-5A/Xror2 signal through PI3 kinase and cdc42 to activate the JNK signaling cascade with the transcription factors ATF2 and c-jun. The Wnt-5A/Ror2 pathway represents an alternative, distinct branch of noncanonical Wnt signaling that controls gene expression and is required in the regulation of convergent extension movements in Xenopus gastrulation.
Collapse
Affiliation(s)
- Alexandra Schambony
- Universitaet Karlsruhe (TH), Zoologisches Institut II, Kaiserstrasse 12, D-76128 Karlsruhe, Germany.
| | | |
Collapse
|
97
|
Chung HA, Yamamoto TS, Ueno N. ANR5, an FGF target gene product, regulates gastrulation in Xenopus. Curr Biol 2007; 17:932-9. [PMID: 17475493 DOI: 10.1016/j.cub.2007.04.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 04/11/2007] [Accepted: 04/12/2007] [Indexed: 11/23/2022]
Abstract
Gastrulation is a morphogenetic process in which tightly coordinated cell and tissue movements establish the three germ layers (ectoderm, mesoderm, and endoderm) to define the anterior-to-posterior embryonic organization [1]. To elicit this movement, cells modulate membrane protrusions and undergo dynamic cell interactions. Here we report that ankyrin repeats domain protein 5 (xANR5), a novel FGF target gene product, regulates cell-protrusion formation and tissue separation, a process that develops the boundary between the ectoderm and mesoderm [2, 3], during Xenopus gastrulation. Loss of xANR5 function by antisense morpholino oligonucleotide (MO) caused a short trunk and spina bifida without affecting mesodermal gene expressions. xANR5-MO also blocked elongation of activin-treated animal caps (ACs) and tissue separation. The dorsal cells of xANR5-MO-injected embryos exhibited markedly reduced membrane protrusions, which could be restored by coinjecting active Rho. Active Rho also rescued the xANR5-MO-inhibited tissue separation. We further demonstrated that xANR5 interacted physically and functionally with paraxial protocadherin (PAPC), which has known functions in cell-sorting behavior, tissue separation, and gastrulation cell movements [4-6], to regulate early morphogenesis. Our findings reveal for the first time that xANR5 acts through Rho to regulate gastrulation and is an important cytoplasmic partner of PAPC, whose cytoplasmic partner was previously unknown.
Collapse
Affiliation(s)
- Hyeyoung A Chung
- Division of Morphogenesis, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
| | | | | |
Collapse
|
98
|
Yamamoto Y, Grubisic K, Oelgeschläger M. Xenopus Tetraspanin-1 regulates gastrulation movements and neural differentiation in the early Xenopus embryo. Differentiation 2007; 75:235-45. [PMID: 17359299 DOI: 10.1111/j.1432-0436.2006.00134.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The tetraspanin family of four-pass transmembrane proteins has been implicated in fundamental biological processes, including cell adhesion, migration, and proliferation. Tetraspanins interact with various transmembrane proteins, establishing a network of large multimolecular complexes that allows specific lateral secondary interactions. Here we report the identification and functional characterization of Xenopus Tetraspanin-1 (xTspan-1). At gastrula and neurula, xTspan-1 is expressed in the dorsal ectoderm and neural plate, respectively, and in the hatching gland, cement gland, and posterior neural tube at tailbud stages. The expression of xTspan-1 in the early embryo is negatively regulated by bone morphogenetic protein (BMP) and stimulated by Notch signals. Microinjection of xTspan-1 mRNA interfered with gastrulation movements and reduced ectodermal cell adhesion in a cadherin-dependent manner. Morpholino knock-down of endogenous xTspan-1 protein revealed a requirement of xTspan-1 for gastrulation movements and primary neurogenesis. Our data suggest that xTspan-1 could act as a molecular link between BMP signalling and the regulation of cellular interactions that are required for gastrulation movements and neural differentiation in the early Xenopus embryo.
Collapse
Affiliation(s)
- Yukiyo Yamamoto
- Max-Planck Institute of Immunobiology, Stübeweg 51, Freiburg D-79108, Germany
| | | | | |
Collapse
|
99
|
Halbleib JM, Nelson WJ. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev 2007; 20:3199-214. [PMID: 17158740 DOI: 10.1101/gad.1486806] [Citation(s) in RCA: 759] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tissue morphogenesis during development is dependent on activities of the cadherin family of cell-cell adhesion proteins that includes classical cadherins, protocadherins, and atypical cadherins (Fat, Dachsous, and Flamingo). The extracellular domain of cadherins contains characteristic repeats that regulate homophilic and heterophilic interactions during adhesion and cell sorting. Although cadherins may have originated to facilitate mechanical cell-cell adhesion, they have evolved to function in many other aspects of morphogenesis. These additional roles rely on cadherin interactions with a wide range of binding partners that modify their expression and adhesion activity by local regulation of the actin cytoskeleton and diverse signaling pathways. Here we examine how different members of the cadherin family act in different developmental contexts, and discuss the mechanisms involved.
Collapse
Affiliation(s)
- Jennifer M Halbleib
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
100
|
Afonin B, Ho M, Gustin JK, Meloty-Kapella C, Domingo CR. Cell behaviors associated with somite segmentation and rotation inXenopus laevis. Dev Dyn 2006; 235:3268-79. [PMID: 17048252 DOI: 10.1002/dvdy.20979] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
During vertebrate development the formation of somites is a critical step, as these structures will give rise to the vertebrae, muscle, and dermis. In Xenopus laevis, somitogenesis consists of the partitioning of the presomitic mesoderm into somites, which undergo a 90-degree rotation to become aligned parallel to the notochord. Using a membrane-targeted green fluorescent protein to visualize cell outlines, we examined the individual cell shape changes occurring during somitogenesis. We show that this process is the result of specific, coordinated cell behaviors beginning with the mediolateral elongation of cells in the anterior presomitic mesoderm and then the subsequent bending of these elongated cells to become oriented parallel with the notochord. By labeling a clonal population of paraxial mesoderm cells, we show that cells bend around their dorsoventral axis. Moreover, this cell bending correlates with an increase in the number of filopodial protrusions, which appear to be posteriorly directed toward the newly formed segmental boundary. By examining the formation of somites at various positions along the anteroposterior axis, we show that the general sequence of cell behaviors is the same; however, somite rotation in anterior somites is slower than in posterior somites. Lastly, this coordinated set of cell behaviors occurs in a dorsal-to-ventral progression within each somite such that cells in the dorsal aspect of the somite become aligned along the anteroposterior axis before cells in other regions of the same somite. Together, our data further define how these cell behaviors are temporally and spatially coordinated during somite segmentation and rotation.
Collapse
Affiliation(s)
- Bonnie Afonin
- Department of Biology, San Francisco State University, San Francisco, California 94132, USA
| | | | | | | | | |
Collapse
|