51
|
Tsalik EL, Niacaris T, Wenick AS, Pau K, Avery L, Hobert O. LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system. Dev Biol 2003; 263:81-102. [PMID: 14568548 PMCID: PMC4445141 DOI: 10.1016/s0012-1606(03)00447-0] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Biogenic amines regulate a variety of behaviors. Their functions are predominantly mediated through G-protein-coupled 7-transmembrane domain receptors (GPCR), 16 of which are predicted to exist in the genome sequence of the nematode Caenorhabditis elegans. We describe here the expression pattern of several of these aminergic receptors, including two serotonin receptors (ser-1 and ser-4), one tyramine receptor (ser-2), and two dopamine receptors (dop-1 and dop-2). Moreover, we describe distinct but partially overlapping expression patterns of different splice forms of the ser-2 tyramine receptor locus. We find that each of the aminergic receptor genes is expressed in restricted regions of the nervous system and that many of them reveal significant overlap with the expression of regulatory factors of the LIM homeobox (Lhx) gene family. We demonstrate that the expression of several of the biogenic amine receptors is abrogated in specific cell types in Lhx gene mutants, thus establishing a role for these Lhx genes in regulating aspects of neurotransmission. We extend these findings with other cell fate markers and show that the lim-4 Lhx gene is required for several but not all aspects of RID motor neuron differentiation and that the lim-6 Lhx gene is required for specific aspects of RIS interneuron differentiation. We also use aminergic receptor gfp reporter fusions as tools to visualize the anatomy of specific neurons in Lhx mutant backgrounds and find that the development of the elaborate dendritic branching pattern of the PVD harsh touch sensory neuron requires the mec-3 Lhx gene. Lastly, we analyze a mutant allele of the ser-2 tyramine receptor, a target of the ttx-3 Lhx gene in the AIY interneuron class. ser-2 mutants display none of the defects previously shown to be associated with loss of AIY function.
Collapse
Affiliation(s)
- Ephraim L. Tsalik
- Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Timothy Niacaris
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Adam S. Wenick
- Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Kelvin Pau
- Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Leon Avery
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Oliver Hobert
- Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
- Corresponding author. Fax: +1-212-342-1810. (O. Hobert)
| |
Collapse
|
52
|
Allan DW, St Pierre SE, Miguel-Aliaga I, Thor S. Specification of neuropeptide cell identity by the integration of retrograde BMP signaling and a combinatorial transcription factor code. Cell 2003; 113:73-86. [PMID: 12679036 DOI: 10.1016/s0092-8674(03)00204-6] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Individual neurons express only one or a few of the many identified neurotransmitters and neuropeptides, but the molecular mechanisms controlling their selection are poorly understood. In the Drosophila ventral nerve cord, the six Tv neurons express the neuropeptide gene FMRFamide. Each Tv neuron resides within a neuronal cell group specified by the LIM-homeodomain gene apterous. We find that the zinc-finger gene squeeze acts in Tv cells to promote their unique axon pathfinding to a peripheral target. There, the BMP ligand Glass bottom boat activates the Wishful thinking receptor, initiating a retrograde BMP signal in the Tv neuron. This signal acts together with apterous and squeeze to activate FMRFamide expression. Reconstituting this "code," by combined BMP activation and apterous/squeeze misexpression, triggers ectopic FMRFamide expression in peptidergic neurons. Thus, an intrinsic transcription factor code integrates with an extrinsic retrograde signal to select a specific neuropeptide identity within peptidergic cells.
Collapse
Affiliation(s)
- Douglas W Allan
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
53
|
Herrero P, Magariños M, Torroja L, Canal I. Neurosecretory identity conferred by the apterous gene: lateral horn leucokinin neurons in Drosophila. J Comp Neurol 2003; 457:123-32. [PMID: 12541314 DOI: 10.1002/cne.10555] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The LIM-HD protein Apterous has been shown to regulate expression of the FMRFamide neuropeptide in Drosophila neurons (Benveniste et al. [1998] Development 125:4757-4765). To test whether Apterous has a broader role in controlling neurosecretory identity, we analyzed the expression of several neuropeptides in apterous (ap) mutants. We show that Apterous is necessary for expression of the Leucokinin neuropeptide in a pair of brain neurons located in the lateral horn region of the protocerebrum (LHLK neurons). ap null mutants are depleted of Leucokinin in these cells, whereas hypomorphic mutants show reduced Leucokinin expression. Other Leucokinin-containing neurons are not affected by mutations in ap gene. Co-expression of apterous and Leucokinin is observed exclusively in the LHLK neurons, from larval stages to adulthood. Rescue assays performed in null ap mutants, by expressing Apterous protein under apGAL4 and elavGAL4 drivers, demonstrate the recovery of Leucokinin in the LHLK neurons. These results reinforce the emerging role of the LIM-HD proteins in determining neuronal identity. They also clarify the neuroendocrine phenotype of apterous mutants.
Collapse
Affiliation(s)
- Pilar Herrero
- Departamento de Biología, Fisiología Animal, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
54
|
Abstract
The Drosophila ventral nerve cord has been a central model system for studying the molecular genetic mechanisms that control CNS development. Studies show that the generation of neural diversity is a multistep process initiated by the patterning and segmentation of the neuroectoderm. These events act together with the process of lateral inhibition to generate precursor cells (neuroblasts) with specific identities, distinguished by the expression of unique combinations of regulatory genes. The expression of these genes in a given neuroblast restricts the fate of its progeny, by activating specific combinations of downstream genes. These genes in turn specify the identity of any given postmitotic cell, which is evident by its cellular morphology and choice of neurotransmitter.
Collapse
Affiliation(s)
- James B Skeath
- Department of Genetics, Washington University School of Medicine, 4566 Scott Avenue, St Louis, MO 63110, USA.
| | | |
Collapse
|
55
|
Affiliation(s)
- Paul H Taghert
- Anatomy and Neurobiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | |
Collapse
|
56
|
Nässel DR. Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones. Prog Neurobiol 2002; 68:1-84. [PMID: 12427481 DOI: 10.1016/s0301-0082(02)00057-6] [Citation(s) in RCA: 344] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neuropeptides in insects act as neuromodulators in the central and peripheral nervous system and as regulatory hormones released into the circulation. The functional roles of insect neuropeptides encompass regulation of homeostasis, organization of behaviors, initiation and coordination of developmental processes and modulation of neuronal and muscular activity. With the completion of the sequencing of the Drosophila genome we have obtained a fairly good estimate of the total number of genes encoding neuropeptide precursors and thus the total number of neuropeptides in an insect. At present there are 23 identified genes that encode predicted neuropeptides and an additional seven encoding insulin-like peptides in Drosophila. Since the number of G-protein-coupled neuropeptide receptors in Drosophila is estimated to be around 40, the total number of neuropeptide genes in this insect will probably not exceed three dozen. The neuropeptides can be grouped into families, and it is suggested here that related peptides encoded on a Drosophila gene constitute a family and that peptides from related genes (orthologs) in other species belong to the same family. Some peptides are encoded as multiple related isoforms on a precursor and it is possible that many of these isoforms are functionally redundant. The distribution and possible functions of members of the 23 neuropeptide families and the insulin-like peptides are discussed. It is clear that each of the distinct neuropeptides are present in specific small sets of neurons and/or neurosecretory cells and in some cases in cells of the intestine or certain peripheral sites. The distribution patterns vary extensively between types of neuropeptides. Another feature emerging for many insect neuropeptides is that they appear to be multifunctional. One and the same peptide may act both in the CNS and as a circulating hormone and play different functional roles at different central and peripheral targets. A neuropeptide can, for instance, act as a coreleased signal that modulates the action of a classical transmitter and the peptide action depends on the cotransmitter and the specific circuit where it is released. Some peptides, however, may work as molecular switches and trigger specific global responses at a given time. Drosophila, in spite of its small size, is now emerging as a very favorable organism for the studies of neuropeptide function due to the arsenal of molecular genetics methods available.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
57
|
Bachy I, Failli V, Rétaux S. A LIM-homeodomain code for development and evolution of forebrain connectivity. Neuroreport 2002; 13:A23-7. [PMID: 11893924 DOI: 10.1097/00001756-200202110-00002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Isabelle Bachy
- Développement, Evolution et Plasticité du Système Nerveux UPR2197, Institut Alfred Fessard, CNRS, Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | | | | |
Collapse
|
58
|
Abstract
FMRFamide-related peptides (FaRPs) are expressed throughout the animal kingdom and regulate a multitude of physiological activities. FaRPs have an RFamide C-terminal consensus structure that is important for interaction with the receptor. The ease of genetic manipulation and availability of genomic sequences makes Drosophila melanogaster an important experimental organism. Multiple classes of FaRPs encoded by different genes have been identified within this species. Here, we review FMRFamide-containing peptides encoded by the D. melanogaster FMRFamide gene in order to review the data on the expression, regulation, and activity of these peptides as well as acknowledge further endeavors required to elucidate FaRP signaling.
Collapse
Affiliation(s)
- Janna Merte
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-1048, USA
| | | |
Collapse
|
59
|
Claridge-Chang A, Wijnen H, Naef F, Boothroyd C, Rajewsky N, Young MW. Circadian regulation of gene expression systems in the Drosophila head. Neuron 2001; 32:657-71. [PMID: 11719206 DOI: 10.1016/s0896-6273(01)00515-3] [Citation(s) in RCA: 336] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanisms composing Drosophila's clock are conserved within the animal kingdom. To learn how such clocks influence behavioral and physiological rhythms, we determined the complement of circadian transcripts in adult Drosophila heads. High-density oligonucleotide arrays were used to collect data in the form of three 12-point time course experiments spanning a total of 6 days. Analyses of 24 hr Fourier components of the expression patterns revealed significant oscillations for approximately 400 transcripts. Based on secondary filters and experimental verifications, a subset of 158 genes showed particularly robust cycling and many oscillatory phases. Circadian expression was associated with genes involved in diverse biological processes, including learning and memory/synapse function, vision, olfaction, locomotion, detoxification, and areas of metabolism. Data collected from three different clock mutants (per(0), tim(01), and Clk(Jrk)), are consistent with both known and novel regulatory mechanisms controlling circadian transcription.
Collapse
Affiliation(s)
- A Claridge-Chang
- Laboratories of Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
60
|
Segawa H, Miyashita T, Hirate Y, Higashijima S, Chino N, Uyemura K, Kikuchi Y, Okamoto H. Functional repression of Islet-2 by disruption of complex with Ldb impairs peripheral axonal outgrowth in embryonic zebrafish. Neuron 2001; 30:423-36. [PMID: 11395004 DOI: 10.1016/s0896-6273(01)00283-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Islet-2 is a LIM/homeodomain-type transcription factor of the Islet-1 family expressed in embryonic zebrafish. Two Islet-2 molecules bind to the LIM domain binding protein (Ldb) dimers. Overexpression of the LIM domains of Islet-2 or the LIM-interacting domain of Ldb proteins prevented binding of Islet-2 to Ldb proteins in vitro and caused similar in vivo defects in positioning, peripheral axonal outgrowth, and neurotransmitter expression by the Islet-2-positive primary sensory and motor neurons as the defects induced by injection of Islet-2-specific antisense morpholino oligonucleotide. These and other experiments, i.e., mosaic analysis, coexpression of full-length Islet-2, and overexpression of the chimeric LIM domains derived from two different Islet-1 family members, demonstrated that Islet-2 regulates neuronal differentiation by forming a complex with Ldb dimers and possibly with some other Islet-2-specific cofactors.
Collapse
Affiliation(s)
- H Segawa
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
Neuropeptides form the most diverse class of chemical messenger molecules in metazoan nervous systems. They are usually generated from biosynthetic precursor polypeptides by enzymatic processing and modification. Many different peptides belonging to a number of distinct neuropeptide families have already been characterized from various insect species. The Drosophila Genome Sequencing Project has important implications for the future of neurobiological research. This paper describes the discovery of several new fruitfly neuropeptides by an in silico data mining approach. In addition, the state-of-the-art of Drosophila peptide research is reviewed.
Collapse
Affiliation(s)
- J Vanden Broeck
- Laboratory for Developmental Physiology and Molecular Biology, Zoological Institute, Naamsestraat 59, B-3000 Leuven, Belgium.
| |
Collapse
|
62
|
Gay F, Anglade I, Gong Z, Salbert G. The LIM/homeodomain protein islet-1 modulates estrogen receptor functions. Mol Endocrinol 2000; 14:1627-48. [PMID: 11043578 DOI: 10.1210/mend.14.10.0538] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
LIM/Homeodomain (HD) proteins are classically considered as major transcriptional regulators which, in cooperation with other transcription factors, play critical roles in the developing nervous system. Among LIM/HD proteins, Islet-1 (ISL1) is the earliest known marker of motoneuron differentiation and has been extensively studied in this context. However, ISL1 expression is not restricted to developing motoneurons. In both embryonic and adult central nervous system of rodent and fish, ISL1 is found in discrete brain areas known to express the estrogen receptor (ER). These observations led us to postulate the possible involvement of ISL1 in the control of brain functions by steroid hormones. Dual immunohistochemistry for ISL1 and ER provided evidence for ISL1-ER coexpression by the same neuronal subpopulation within the rat hypothalamic arcuate nucleus. The relationship between ER and ISL1 was further analyzed at the molecular level and we could show that 1) ISL1 directly interacts in vivo and in vitro with the rat ER, as well as with various other nuclear receptors; 2) ISL1-ER interaction is mediated, at least in part, by the ligand binding domain of ER and is significantly strengthened by estradiol; 3) as a consequence, ISL1 prevents ER dimerization in solution, thus leading to a strong and specific inhibition of ER DNA binding activity; 4) ISL1, via its N-terminal LIM domains, specifically inhibits the ER-driven transcriptional activation in some promoter contexts, while ER can serve as a coactivator for ISL1 in other promoter contexts. Taken together, these data suggest that ISL1-ER cross-talk could differentially regulate the expression of ER and ISL1 target genes.
Collapse
Affiliation(s)
- F Gay
- Equipe Information et Programmation Cellulaire, UMR 6026 Centre Nationale de la Recherche Scientifique, Université de Rennes I, France
| | | | | | | |
Collapse
|
63
|
Abstract
FMRFamide and a large family of related peptides (FaRPs) have been identified in every major metazoan phylum examined, including chordates. In the pulmonate snail Lymnaea this family of neuropeptides is encoded by a five-exon locus that is subject to alternative splicing. The two alternative mRNA transcripts are expressed in the CNS in a mutually exclusive manner at the single cell level, resulting in the differential distribution of the distinct sets of FaRPs that they encode in defined neuronal networks. Biochemical peptide purification, single-cell analysis by mass spectroscopy, and immunocytochemistry have led to an understanding of the post-translational processing patterns of the two alternative precursor proteins and identified at least 12 known and novel peptides contained in neuronal networks involved in cardiorespiration, penial control and withdrawal response. The pharmacological actions of single or co-expressed peptides are beginning to emerge for the cardiorespiratory network and its central and peripheral targets. Peptides derived from protein precursor 1 and contained in the heart excitatory central motoneurons E(he) have distinct functions and also act in concert in cardiac regulation, based on their unique effects on heartbeat and their differential stimulatory effects on second messenger pathways. Precursor-2 derived peptides, contained in the Visceral White Interneuron, a key neuron of the cardiorespiratory network, have mostly inhibitory effects on the VWI's central postsynaptic target neurons but with some of the peptides also exhibiting excitatory effects on the same cells.
Collapse
Affiliation(s)
- N Santama
- University of Cyprus and Cyprus Institute of Neurology and Genetics, 1678 Nicosia, Cyprus
| | | |
Collapse
|
64
|
van Meyel DJ, O'Keefe DD, Thor S, Jurata LW, Gill GN, Thomas JB. Chip is an essential cofactor for apterous in the regulation of axon guidance in Drosophila. Development 2000; 127:1823-31. [PMID: 10751171 DOI: 10.1242/dev.127.9.1823] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
LIM-homeodomain transcription factors are expressed in subsets of neurons and are required for correct axon guidance and neurotransmitter identity. The LIM-homeodomain family member Apterous requires the LIM-binding protein Chip to execute patterned outgrowth of the Drosophila wing. To determine whether Chip is a general cofactor for diverse LIM-homeodomain functions in vivo, we studied its role in the embryonic nervous system. Loss-of-function Chip mutations cause defects in neurotransmitter production that mimic apterous and islet mutants. Chip is also required cell-autonomously by Apterous-expressing neurons for proper axon guidance, and requires both a homodimerization domain and a LIM interaction domain to function appropriately. Using a Chip/Apterous chimeric molecule lacking domains normally required for their interaction, we reconstituted the complex and rescued the axon guidance defects of apterous mutants, of Chip mutants and of embryos doubly mutant for both apterous and Chip. Our results indicate that Chip participates in a range of developmental programs controlled by LIM-homeodomain proteins and that a tetrameric complex comprising two Apterous molecules bridged by a Chip homodimer is the functional unit through which Apterous acts during neuronal differentiation.
Collapse
Affiliation(s)
- D J van Meyel
- The Salk Institute for Biological Studies, PO Box 85800, San Diego, CA 92186, USA
| | | | | | | | | | | |
Collapse
|
65
|
Much JW, Slade DJ, Klampert K, Garriga G, Wightman B. The fax-1 nuclear hormone receptor regulates axon pathfinding and neurotransmitter expression. Development 2000; 127:703-12. [PMID: 10648229 DOI: 10.1242/dev.127.4.703] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Specification of neuron identity requires the activation of a number of discrete developmental programs. Among these is pathway selection by growth cones: in order for a neuron's growth cone to respond appropriately to guidance cues presented by other cells or the extracellular matrix, the neuron must express genes to mediate the response. The fax-1 gene of C. elegans is required for pathfinding of axons that extend along the ventral nerve cord. We show that fax-1 is also required for pathfinding of axons in the nerve ring, the largest nerve bundle in the nematode, and for normal expression of FMRFamide-like neurotransmitters in the AVK interneurons. The fax-1 gene encodes a member of the superfamily of nuclear hormone receptors and has a DNA-binding domain related to the human PNR and Drosophila Tailless proteins. We observe fax-1 expression in embryonic neurons, including the AVK interneurons, just prior to axon extension, but after neurogenesis. These data suggest that fax-1 coordinately regulates the transcription of genes that function in the selection of axon pathways, neurotransmitter expression and, perhaps, other aspects of the specification of neuron identity.
Collapse
Affiliation(s)
- J W Much
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA
| | | | | | | | | |
Collapse
|
66
|
Abstract
Homeobox genes play fundamental roles in development. They can be subdivided into several subfamilies, one of which is the LIM-homeobox subfamily. The primary structure of LIM-homeobox genes has been remarkably conserved through evolution. Have their functions similarly been conserved? A host of new data has been derived from mutational analysis in diverse organisms, such as nematodes, flies and vertebrates. These studies have revealed a prominent involvement of LIM-homeodomain proteins in tissue patterning and differentiation, and their function in neural patterning is evident in all organisms studied to date. Here, we summarize the recent findings on LIM-homeobox gene function, compare the function of these genes from different organisms and describe specific co-factor requirements.
Collapse
Affiliation(s)
- O Hobert
- Columbia University, College of Physicians and Surgeons, Department of Biochemistry and Molecular Biophysics, 701 W.168th Street, New York, NY 10032, USA.
| | | |
Collapse
|
67
|
Abstract
Considerable progress has been made in understanding how combinatorially expressed transcription factors control the development of neuronal subtypes in the fly and vertebrate central nervous systems. The mode of action of many of these factors has been conserved from invertebrates to vertebrates throughout evolution, such as the formation and regulation of specific transcriptional complexes, the utilization of repressors for maintaining specificity, and the use of phosphorylation as an important means for transiently altering transcriptional activity.
Collapse
Affiliation(s)
- L W Jurata
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, 92037, USA.
| | | | | |
Collapse
|
68
|
Abstract
To review the histochemistry of neuropeptide transmitters system in insects, this chapter focuses on the biology of FMRFamide-related neuropeptides in Drosophila. dFMRFamide expression is limited to a small number of neurons that present a complex spatial pattern and whose functions appear heterogeneous. The neuropeptide is first expressed by a few neurons in late stage embryos, then dynamically in as many as 44 neurons in the larval CNS. This review describes histochemical procedures to evaluate this neuronal phenotype and its regulation, including descriptions of promoter activity, and RNA and peptide distributions. To evaluate the use of peptidergic transmitters on a broad scale, I also review experiments in Drosophila studying enzymes necessary for neuropeptide biosynthesis, and in particular, histochemical studies of an enzyme responsible for peptide alpha-amidation.
Collapse
Affiliation(s)
- P H Taghert
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| |
Collapse
|
69
|
Hobert O, Tessmar K, Ruvkun G. The Caenorhabditis elegans lim-6 LIM homeobox gene regulates neurite outgrowth and function of particular GABAergic neurons. Development 1999; 126:1547-62. [PMID: 10068647 DOI: 10.1242/dev.126.7.1547] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe here the functional analysis of the C. elegans LIM homeobox gene lim-6, the ortholog of the mammalian Lmx-1a and b genes that regulate limb, CNS, kidney and eye development. lim-6 is expressed in a small number of sensory-, inter- and motorneurons, in epithelial cells of the uterus and in the excretory system. Loss of lim-6 function affects late events in the differentiation of two classes of GABAergic motorneurons which control rhythmic enteric muscle contraction. lim-6 is required to specify the correct axon morphology of these neurons and also regulates expression of glutamic acid decarboxylase, the rate limiting enzyme of GABA synthesis in these neurons. Moreover, lim-6 gene activity and GABA signaling regulate neuroendocrine outputs of the nervous system. In the chemosensory system lim-6 regulates the asymmetric expression of a probable chemosensory receptor. lim-6 is also required in epithelial cells for uterine morphogenesis. We compare the function of lim-6 to those of other LIM homeobox genes in C. elegans and suggest that LIM homeobox genes share the common theme of controlling terminal neural differentiation steps that when disrupted lead to specific neuroanatomical and neural function defects.
Collapse
Affiliation(s)
- O Hobert
- Massachusetts General Hospital, Department of Molecular Biology, Harvard Medical School, Department of Genetics, Boston, MA 02114, USA.
| | | | | |
Collapse
|
70
|
Edlund T, Jessell TM. Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system. Cell 1999; 96:211-24. [PMID: 9988216 DOI: 10.1016/s0092-8674(00)80561-9] [Citation(s) in RCA: 382] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T Edlund
- Department of Microbiology, University of Umea, Sweden.
| | | |
Collapse
|