51
|
Goetz R, Mohammadi M. Exploring mechanisms of FGF signalling through the lens of structural biology. Nat Rev Mol Cell Biol 2013; 14:166-80. [PMID: 23403721 DOI: 10.1038/nrm3528] [Citation(s) in RCA: 426] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fibroblast growth factors (FGFs) mediate a broad range of functions in both the developing and adult organism. The accumulated wealth of structural information on the FGF signalling pathway has begun to unveil the underlying molecular mechanisms that modulate this system to generate a myriad of distinct biological outputs in development, tissue homeostasis and metabolism. At the ligand and receptor level, these mechanisms include alternative splicing of the ligand (FGF8 subfamily) and the receptor (FGFR1-FGFR3), ligand homodimerization (FGF9 subfamily), site-specific proteolytic cleavage of the ligand (FGF23), and interaction of the ligand and the receptor with heparan sulphate cofactor and Klotho co-receptor.
Collapse
Affiliation(s)
- Regina Goetz
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA.
| | | |
Collapse
|
52
|
Takase HM, Itoh T, Ino S, Wang T, Koji T, Akira S, Takikawa Y, Miyajima A. FGF7 is a functional niche signal required for stimulation of adult liver progenitor cells that support liver regeneration. Genes Dev 2013; 27:169-81. [PMID: 23322300 DOI: 10.1101/gad.204776.112] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The liver is a unique organ with a remarkably high potential to regenerate upon injuries. In severely damaged livers where hepatocyte proliferation is impaired, facultative liver progenitor cells (LPCs) proliferate and are assumed to contribute to regeneration. An expansion of LPCs is often observed in patients with various types of liver diseases. However, the underlying mechanism of LPC activation still remains largely unknown. Here we show that a member of the fibroblast growth factor (FGF) family, FGF7, is a critical regulator of LPCs. Its expression was induced concomitantly with LPC response in the liver of mouse models as well as in the serum of patients with acute liver failure. Fgf7-deficient mice exhibited markedly depressed LPC expansion and higher mortality upon toxin-induced hepatic injury. Transgenic expression of FGF7 in vivo led to the induction of cells with characteristics of LPCs and ameliorated hepatic dysfunction. We revealed that Thy1(+) mesenchymal cells produced FGF7 and appeared in close proximity to LPCs, implicating a role for those cells as the functional LPC niche in the regenerating liver. These findings provide new insights into the cellular and molecular basis for LPC regulation and identify FGF7 as a potential therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Hinako M Takase
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
53
|
A family-based association study after genome-wide linkage analysis identified two genetic loci for renal function in a Mongolian population. Kidney Int 2012; 83:285-92. [PMID: 23254893 DOI: 10.1038/ki.2012.389] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The estimated glomerular filtration rate is a well-known measure of renal function and is widely used to follow the course of disease. Although there have been several investigations establishing the genetic background contributing to renal function, Asian populations have rarely been used in these genome-wide studies. Here, we aimed to find candidate genetic determinants of renal function in 1007 individuals from 73 extended families of Mongolian origin. Linkage analysis found two suggestive regions near 9q21 (logarithm of odds (LOD) 2.82) and 15q15 (LOD 2.70). The subsequent family-based association study found 2 and 10 significant single-nucleotide polymorphisms (SNPs) in each region, respectively. The strongest SNPs on chromosome 9 and 15 were rs17400257 and rs1153831 with P-values of 7.21 × 10(-9) and 2.47 × 10(-11), respectively. Genes located near these SNPs are considered candidates for determining renal function and include FRMD3, GATM, and SPATA5L1. Thus, we identified possible loci that determine renal function in an isolated Asian population. Consistent with previous reports, our study found genes linked and associated with renal function in other populations.
Collapse
|
54
|
Yosypiv IV. Hypothesis: a new role for the Renin-Angiotensin system in ureteric bud branching. Organogenesis 2012; 1:26-32. [PMID: 19521557 DOI: 10.4161/org.1.1.1071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 04/12/2004] [Indexed: 11/19/2022] Open
Abstract
Branching morphogenesis in the developing mammalian kidney involves growth and branching of the ureteric bud (UB), leading to formation of its daughter collecting ducts, calyces, pelvis and ureters. Even subtle defects in the efficiency and/or accuracy of this process have profound effects on the ultimate development of the kidney and result in congenital abnormalities of the kidney and urinary tract. This review summarizes current knowledge regarding a number of genes known to regulate UB development and emphasizes an emerging role for the renin-angiotensin system (RAS) in renal branching morphogenesis. Mutations in the genes encoding components of the RAS in mice cause renal papillary hypoplasia, hydronephrosis, and urinary concentrating defect. These findings imply that UB-derived epithelia are targets for angiotensin (ANG) II actions during metanephric kidney development. Here, it is proposed that papillary hypoplasia in RAS-deficient mice is secondary to an intrinsic defect in the development of the renal medulla. This hypothesis is based on the following observations: (a) UB and surrounding stroma express angiotensinogen (AGT) and ANG II AT(1) receptors in vivo; (b) ANG II stimulates UB cell process extension, branching and cord formation in collagen gel cultures in vitro; and (c) AT(1) blockade inhibits ANG II-induced UB cell branching. It is further postulated that ANG II is a novel stroma-derived factor involved in stroma/UB cross-talk which regulates UB branching morphogenesis.
Collapse
|
55
|
Qiu L, Hyink DP, Gans WH, Amsler K, Wilson PD, Burrow CR. Midkine promotes selective expansion of the nephrogenic mesenchyme during kidney organogenesis. Organogenesis 2012; 1:14-21. [PMID: 19521555 DOI: 10.4161/org.1.1.979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Accepted: 05/25/2004] [Indexed: 11/19/2022] Open
Abstract
During kidney development, the growth and development of the stromal and nephrogenic mesenchyme cell populations and the ureteric bud epithelium is tightly coupled through intricate reciprocal signaling mechanisms between these three tissue compartments. Midkine, a target gene activated by retinoid signaling in the metanephros, encodes a secreted polypeptide with mitogenic and anti-apoptotic activities in a wide variety of cell types. Using immmunohistochemical methods we demonstrated that Midkine is found in the uninduced mesenchyme at the earliest stages of metanephric kidney development and only subsequently concentrated in the ureteric bud epithelium and basement membrane. The biological effects of purified recombinant Midkine were analyzed in metanephric organ culture experiments carried out in serum-free defined media. These studies revealed that Midkine selectively promoted the overgrowth of the Pax-2 and N-CAM positive nephrogenic mesenchymal cells, failed to stimulate expansion of the stromal compartment and suppressed branching morphogenesis of the ureteric bud. Midkine suppressed apoptosis and stimulated cellular proliferation of the nephrogenic mesenchymal cells, and was capable of maintaining the viability of isolated mesenchymes cultured in the absence of the ureteric bud. These results suggest that Midkine may regulate the balance of epithelial and stromal progenitor cell populations of the metanephric mesenchyme during renal organogenesis.
Collapse
Affiliation(s)
- Libo Qiu
- Division of Nephrology, Department of Medicine; New York, New York USA
| | | | | | | | | | | |
Collapse
|
56
|
Rak-Raszewska A, Wilm B, Edgar D, Kenny S, Woolf AS, Murray P. Development of embryonic stem cells in recombinant kidneys. Organogenesis 2012; 8:125-36. [PMID: 23086378 PMCID: PMC3562253 DOI: 10.4161/org.22597] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Embryonic stem cells (ESC) are self-renewing and can generate all cell types during normal development. Previous studies have begun to explore fates of ESCs and their mesodermal derivatives after injection into explanted intact metanephric kidneys and neonatal kidneys maturing in vivo. Here, we exploited a recently described recombinant organ culture model, mixing fluorescent quantum dot labeled mouse exogenous cells with host metanephric cells. We compared abilities of undifferentiated ESCs with ESC-derived mesodermal or non-mesodermal cells to contribute to tissue compartments within recombinant, chimeric metanephroi. ESC-derived mesodermal cells downregulated Oct4, a marker of undifferentiated cells, and, as assessed by locations of quantum dots, contributed to Wilms’ tumor 1-expressing forming nephrons, synaptopodin-expressing glomeruli, and organic ion-transporting tubular epithelia. Similar results were observed when labeled native metanephric cells were recombined with host cells. In striking contrast, non-mesodermal ESC-derived cells strongly inhibited growth of embryonic kidneys, while undifferentiated ESCs predominantly formed Oct4 expressing colonies between forming nephrons and glomeruli. These findings clarify the conclusion that ESC-derived mesodermal cells have functional nephrogenic potential, supporting the idea that they could potentially replace damaged epithelia in diseased kidneys. On the other hand, undifferentiated ESCs and non-mesodermal precursors derived from ESCs would appear to be less suitable materials for use in kidney cell therapies.
Collapse
|
57
|
Barak H, Huh SH, Chen S, Jeanpierre C, Martinovic J, Parisot M, Bole-Feysot C, Nitschké P, Salomon R, Antignac C, Ornitz DM, Kopan R. FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man. Dev Cell 2012; 22:1191-207. [PMID: 22698282 PMCID: PMC3376351 DOI: 10.1016/j.devcel.2012.04.018] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 03/03/2012] [Accepted: 04/28/2012] [Indexed: 01/07/2023]
Abstract
The identity of niche signals necessary to maintain embryonic nephron progenitors is unclear. Here we provide evidence that Fgf20 and Fgf9, expressed in the niche, and Fgf9, secreted from the adjacent ureteric bud, are necessary and sufficient to maintain progenitor stemness. Reduction in the level of these redundant ligands in the mouse led to premature progenitor differentiation within the niche. Loss of FGF20 in humans, or of both ligands in mice, resulted in kidney agenesis. Sufficiency was shown in vitro where Fgf20 or Fgf9 (alone or together with Bmp7) maintained isolated metanephric mesenchyme or sorted nephron progenitors that remained competent to differentiate in response to Wnt signals after 5 or 2 days in culture, respectively. These findings identify a long-sought-after critical component of the nephron stem cell niche and hold promise for long-term culture and utilization of these progenitors in vitro.
Collapse
Affiliation(s)
- Hila Barak
- Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Ave., Campus Box 8103, St. Louis, MO 63110, USA
| | - Sung-Ho Huh
- Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Ave., Campus Box 8103, St. Louis, MO 63110, USA
| | - Shuang Chen
- Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Ave., Campus Box 8103, St. Louis, MO 63110, USA
| | - Cécile Jeanpierre
- Inserm, U983, Hôpital Necker, 75015 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Jelena Martinovic
- Department of Fetopathology, Laboratoire Cerba, St Ouen-l’Aumône and AP-HP, Hôpital Antoine Beclere, Clamart, France
| | | | | | - Patrick Nitschké
- Bioinformatic Plateform, Université Paris Descartes, Hôpital Necker-Enfants Malades, Paris, France
| | - Rémi Salomon
- Inserm, U983, Hôpital Necker, 75015 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France
- AP-HP, Department of Pediatric Nephrology, Hôpital Necker-Enfants Malades, Paris France
| | - Corinne Antignac
- Inserm, U983, Hôpital Necker, 75015 Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Paris, France
- AP-HP, Department of Genetics, Hôpital Necker-Enfants Malades, Paris, France
| | - David M. Ornitz
- Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Ave., Campus Box 8103, St. Louis, MO 63110, USA
| | - Raphael Kopan
- Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Ave., Campus Box 8103, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Ave., Campus Box 8103, St. Louis, MO 63110, USA
| |
Collapse
|
58
|
Stelloh C, Allen KP, Mattson DL, Lerch-Gaggl A, Reddy S, El-Meanawy A. Prematurity in mice leads to reduction in nephron number, hypertension, and proteinuria. Transl Res 2012; 159:80-9. [PMID: 22243792 PMCID: PMC3896045 DOI: 10.1016/j.trsl.2011.10.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 10/15/2022]
Abstract
The nephron number at birth is a quantitative trait that correlates inversely with the risk of hypertension and chronic kidney disease later in life. During kidney development, the nephron number is controlled by multiple factors including genetic, epigenetic, and environmental modifiers. Premature birth, which represents more than 12% of annual live births in the United States, has been linked to low nephron number and the development of hypertension later in life. In this report, we describe the development of a mouse model of prematurity-induced reduction of nephron number. Premature mice, delivered 1 and 2 days early, have 17.4 ± 2.3% (n = 6) and 23.6 ± 2% (n = 10) fewer nephrons, respectively, when compared with full-term animals (12,252 ± 571 nephrons/kidney, n = 10). After 5 weeks of age, the mice delivered 2 days premature show lower real-time glomerular filtration rate (GFR, 283 ± 13 vs 389 ± 26 μL/min). The premature mice also develop hypertension (mean arterial pressure [MAP], 134 ± 18 vs 120 ± 14 mm Hg) and albuminuria (286 ± 83 vs 176 ± 59 μg albumin/mg creatinine). This mouse model provides a proof of concept that prematurity leads to reduced nephron number and hypertension, and this model will be useful in studying the pathophysiology of prematurity-induced nephron number reductions and hypertension.
Collapse
Affiliation(s)
- Cary Stelloh
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
59
|
Song R, Preston G, Khalili A, El-Dahr SS, Yosypiv IV. Angiotensin II regulates growth of the developing papillas ex vivo. Am J Physiol Renal Physiol 2012; 302:F1112-20. [PMID: 22301625 DOI: 10.1152/ajprenal.00435.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We tested the hypothesis that lack of angiotensin (ANG) II production in angiotensinogen (AGT)-deficient mice or pharmacologic antagonism of ANG II AT(1) receptor (AT(1)R) impairs growth of the developing papillas ex vivo, thus contributing to the hypoplastic renal medulla phenotype observed in AGT- or AT(1)R-null mice. Papillas were dissected from Hoxb7(GFP+) or AGT(+/+), (+/-), (-/-) mouse metanephroi on postnatal day P3 and grown in three-dimentional collagen matrix gels in the presence of media (control), ANG II (10(-5) M), or the specific AT(1)R antagonist candesartan (10(-6) M) for 24 h. Percent reduction in papillary length was attenuated in AGT(+/+) and in AGT(+/-) compared with AGT(-/-) (-18.4 ± 1.3 vs. -32.2 ± 1.6%, P < 0.05, -22.8 ± 1.3 vs. -32.2 ± 1.6%, P < 0.05, respectively). ANG II blunted the decrease in papilla length observed in respective media-treated controls in Hoxb7(GFP+) (-1.5 ± 0.3 vs. -10.0 ± 1.4%, P < 0.05) or AGT(+/+), (+/-), and (-/-) papillas (-12.8 ± 0.7 vs. -18.4 ± 1.3%, P < 0.05, -16.8 ± 1.1 vs. -23 ± 1.2%, P < 0.05; -26.2 ± 1.6 vs. -32.2 ± 1.6%, P < 0.05, respectively). In contrast, percent decrease in the length of Hoxb7(GFP+) papillas in the presence of the AT(1)R antagonist candesartan was higher compared with control (-24.3 ± 2.1 vs. -10.5 ± 1.8%, P < 0.05). The number of proliferating phospho-histone H3 (pH3)-positive collecting duct cells was lower, whereas the number of caspase 3-positive cells undergoing apoptosis was higher in candesartan- vs. media-treated papillas (pH3: 12 ± 1.4 vs. 21 ± 2.1, P < 0.01; caspase 3: 3.8 ± 0.5 vs. 1.7 ± 0.2, P < 0.01). Using quantitative RT-PCR, we demonstrate that AT(1)R signaling regulates the expression of genes implicated in morphogenesis of the renal medulla. We conclude that AT(1)R prevents shrinkage of the developing papillas observed ex vivo via control of Wnt7b, FGF7, β-catenin, calcineurin B1, and α3 integrin gene expression, collecting duct cell proliferation, and survival.
Collapse
Affiliation(s)
- Renfang Song
- Division of Pediatric Nephrology, Department of Pediatrics, Hypertension, and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
60
|
Sims-Lucas S, Di Giovanni V, Schaefer C, Cusack B, Eswarakumar VP, Bates CM. Ureteric morphogenesis requires Fgfr1 and Fgfr2/Frs2α signaling in the metanephric mesenchyme. J Am Soc Nephrol 2012; 23:607-17. [PMID: 22282599 DOI: 10.1681/asn.2011020165] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Conditional deletion of fibroblast growth factor receptors (Fgfrs) 1 and 2 in the metanephric mesenchyme (MM) of mice leads to a virtual absence of MM and unbranched ureteric buds that are occasionally duplex. Deletion of Fgfr2 in the MM leads to kidneys with cranially displaced ureteric buds along the Wolffian duct or duplex ureters. Mice with point mutations in Fgfr2's binding site for the docking protein Frs2α (Fgfr2(LR/LR)), however, have normal kidneys; the roles of the Fgfr2/Frs2α signaling axis in MM development and regulating the ureteric bud induction site are incompletely understood. Here, we generated mice with both Fgfr1 deleted in the MM and Fgfr2(LR/LR) point mutations (Fgfr1(Mes-/-)Fgfrf2(LR/LR)). Unlike mice lacking both Fgfr1 and Fgfr2 in the MM, these mice had no obvious MM defects but had cranially displaced or duplex ureteric buds, probably as a result of decreased Bmp4 expression. Fgfr1(Mes-/-)Fgfr2(LR/LR) mice also had subsequent defects in ureteric morphogenesis, including dilated, hyperproliferative tips and decreased branching. Ultimately, they developed progressive renal cystic dysplasia associated with abnormally oriented cell division. Furthermore, mutants had increased and ectopic expression of Ret and its downstream targets in ureteric trunks, and exhibited upregulation of Ret/Etv4/5 signaling effectors, including Met, Myb, Cxcr4, and Crlf1. These defects were associated with reduced expression of Bmp4 in mesenchymal cells near mutant ureteric bud tips. Taken together, these results demonstrate that Fgfr2/Frs2α signaling in the MM promotes Bmp4 expression, which represses Ret levels and signaling in the ureteric bud to ensure normal ureteric morphogenesis.
Collapse
Affiliation(s)
- Sunder Sims-Lucas
- Rangos Research Center, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15201, USA
| | | | | | | | | | | |
Collapse
|
61
|
Abstract
The mature renal medulla, the inner part of the kidney, consists of the medullary collecting ducts, loops of Henle, vasa recta and the interstitium. The unique spatial arrangement of these components is essential for the regulation of urine concentration and other specialized kidney functions. Thus, the proper and timely assembly of medulla constituents is a crucial morphogenetic event leading to the formation of a functioning metanephric kidney. Mechanisms that direct renal medulla formation are poorly understood. This review describes the current understanding of the key molecular and cellular mechanisms underlying morphological aspects of medulla formation. Given that hypoplasia of the renal medulla is a common manifestation of congenital obstructive nephropathy and other types of congenital anomalies of the kidney and urinary tract (CAKUT), better understanding of how disruptions in medulla formation are linked to CAKUT will enable improved diagnosis, treatment and prevention of CAKUT and their associated morbidity.
Collapse
Affiliation(s)
- Renfang Song
- Section of Pediatric Nephrology, Department of Pediatrics, Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, USA
| | | |
Collapse
|
62
|
Willecke R, Heuberger J, Grossmann K, Michos O, Schmidt-Ott K, Walentin K, Costantini F, Birchmeier W. The tyrosine phosphatase Shp2 acts downstream of GDNF/Ret in branching morphogenesis of the developing mouse kidney. Dev Biol 2011; 360:310-7. [DOI: 10.1016/j.ydbio.2011.09.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 09/24/2011] [Accepted: 09/26/2011] [Indexed: 10/16/2022]
|
63
|
Brown AC, Adams D, de Caestecker M, Yang X, Friesel R, Oxburgh L. FGF/EGF signaling regulates the renewal of early nephron progenitors during embryonic development. Development 2011; 138:5099-112. [PMID: 22031548 DOI: 10.1242/dev.065995] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recent studies indicate that nephron progenitor cells of the embryonic kidney are arranged in a series of compartments of an increasing state of differentiation. The earliest progenitor compartment, distinguished by expression of CITED1, possesses greater capacity for renewal and differentiation than later compartments. Signaling events governing progression of nephron progenitor cells through stages of increasing differentiation are poorly understood, and their elucidation will provide key insights into normal and dysregulated nephrogenesis, as well as into regenerative processes that follow kidney injury. In this study, we found that the mouse CITED1(+) progenitor compartment is maintained in response to receptor tyrosine kinase (RTK) ligands that activate both FGF and EGF receptors. This RTK signaling function is dependent on RAS and PI3K signaling but not ERK. In vivo, RAS inactivation by expression of sprouty 1 (Spry1) in CITED1(+) nephron progenitors results in loss of characteristic molecular marker expression and in increased death of progenitor cells. Lineage tracing shows that surviving Spry1-expressing progenitor cells are impaired in their subsequent epithelial differentiation, infrequently contributing to epithelial structures. These findings demonstrate that the survival and developmental potential of cells in the earliest embryonic nephron progenitor cell compartment are dependent on FGF/EGF signaling through RAS.
Collapse
Affiliation(s)
- Aaron C Brown
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | | | | | | | | | | |
Collapse
|
64
|
Perälä N, Sariola H, Immonen T. More than nervous: the emerging roles of plexins. Differentiation 2011; 83:77-91. [PMID: 22099179 DOI: 10.1016/j.diff.2011.08.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/27/2011] [Accepted: 08/04/2011] [Indexed: 12/30/2022]
Abstract
Plexins are the receptors for semaphorins, a large family of axon guidance cues. Accordingly, the role of plexins in the development of the nervous system was the first to be acknowledged. However, the expression of plexins is not restricted to neuronal cells, and recent research has been increasingly focused on the roles of plexin-semaphorin signalling outside of the nervous system. During embryogenesis, plexins regulate the development of many organs, including the cardiovascular system, skeleton and kidney. They have also been shown to be involved in immune system functions and tumour progression. Analyses of the plexin signalling in different tissues and cell types have provided new insight to the versatility of plexin interactions with semaphorins and other cell-surface receptors. In this review we try to summarise the current understanding of the roles of plexins in non-neural development and immunity.
Collapse
Affiliation(s)
- Nina Perälä
- Institute of Biomedicine/Biochemistry and Developmental Biology, Biomedicum Helsinki, University of Helsinki, Finland
| | | | | |
Collapse
|
65
|
Yang DH, McKee KK, Chen ZL, Mernaugh G, Strickland S, Zent R, Yurchenco PD. Renal collecting system growth and function depend upon embryonic γ1 laminin expression. Development 2011; 138:4535-44. [PMID: 21903675 DOI: 10.1242/dev.071266] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In order to understand the functions of laminins in the renal collecting system, the Lamc1 gene was inactivated in the developing mouse ureteric bud (UB). Embryos bearing null alleles exhibited laminin deficiency prior to mesenchymal tubular induction and either failed to develop a UB with involution of the mesenchyme, or developed small kidneys with decreased proliferation and branching, delayed renal vesicle formation and postnatal emergence of a water transport deficit. Embryonic day 12.5 kidneys revealed an almost complete absence of basement membrane proteins and reduced levels of α6 integrin and FGF2. mRNA levels for fibroblast growth factor 2 (FGF2) and mediators of the GDNF/RET and WNT11 signaling pathway were also decreased. Furthermore, collecting duct cells derived from laminin-deficient kidneys and grown in collagen gels were found to proliferate and branch slowly. The laminin-deficient cells exhibited decreased activation of growth factor- and integrin-dependent pathways, whereas heparin lyase-treated and β1 integrin-null cells exhibited more selective decreases. Collectively, these data support a requirement of γ1 laminins for assembly of the collecting duct system basement membrane, in which immobilized ligands act as solid-phase agonists to promote branching morphogenesis, growth and water transport functions.
Collapse
Affiliation(s)
- Dong-Hua Yang
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
Bates CM. Role of fibroblast growth factor receptor signaling in kidney development. Pediatr Nephrol 2011; 26:1373-9. [PMID: 21222001 PMCID: PMC4007488 DOI: 10.1007/s00467-010-1747-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/10/2010] [Accepted: 12/13/2010] [Indexed: 10/18/2022]
Abstract
Fibroblast growth factor receptors (Fgfrs) are expressed throughout the developing kidney. Several early studies have shown that exogenous fibroblast growth factors (Fgfs) affect growth and maturation of the metanephric mesenchyme (MM) and ureteric bud (UB). Transgenic mice that over-express a dominant negative receptor isoform develop renal aplasia/severe dysplasia, confirming the importance of Fgfrs in renal development. Furthermore, global deletion of Fgf7, Fgf10, and Fgfr2IIIb (isoform that binds Fgf7 and Fgf10) in mice leads to small kidneys with fewer collecting ducts and nephrons. Deletion of Fgfrl1, a receptor lacking intracellular signaling domains, causes severe renal dysgenesis. Conditional targeting of Fgf8 from the MM interrupts nephron formation. Deletion of Fgfr2 from the UB results in severe ureteric branching and stromal mesenchymal defects, although loss of Frs2α (major signaling adapter for Fgfrs) in the UB causes only mild renal hypoplasia. Deletion of both Fgfr1 and Fgfr2 in the MM results in renal aplasia with defects in MM formation and initial UB elongation and branching. Loss of Fgfr2 in the MM leads to many renal and urinary tract anomalies as well as vesicoureteral reflux. Thus, Fgfr signaling is critical for patterning of virtually all renal lineages at early and later stages of development.
Collapse
Affiliation(s)
- Carlton M Bates
- Rangos Research Center, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA.
| |
Collapse
|
67
|
Abstract
PURPOSE OF REVIEW This review discusses current understandings of variability in glomerular number and size, and the implications for renal health. RECENT FINDINGS The quantitative microanatomy of the normal human kidney varies widely. Of greatest significance, total nephron number varies at least 13-fold, and several genes and environmental factors that regulate human nephron endowment have been identified. Full or partial deletion of more than 25 genes in mice has been shown to result in renal hypoplasia and, when measured, reduced nephron endowment. Many more will likely be identified. As would be expected, some gene abnormalities increase nephron endowment above that found in control mice. Glomerular volume also varies widely, both between and within kidneys, and increased heterogeneity of glomerular volume within kidneys is associated with risk factors for kidney disease, including birth weight, age, race, body size and hypertension. SUMMARY Data from several human populations indicate that the quantitative microanatomy of the human kidney varies considerably: total glomerular number varies at least 13-fold, mean glomerular volume varies up to seven-fold and the volumes of individual glomeruli within single kidneys can vary as much as eight-fold. Human glomerular number, size and size distribution are being found to correlate with risk factors for kidney disease. The genetic and fetal environmental regulators of nephrogenesis, and thereby nephron endowment, are being rapidly identified and will provide the bases for future clinical interventions. In contrast, the molecular regulation of glomerular size remains unclear.
Collapse
|
68
|
Bates CM. Role of fibroblast growth factor receptor signaling in kidney development. Am J Physiol Renal Physiol 2011; 301:F245-51. [PMID: 21613421 DOI: 10.1152/ajprenal.00186.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Fibroblast growth factor receptors (Fgfrs) consist of four signaling family members and one nonsignaling "decoy" receptor, Fgfr-like 1 (Fgfrl1), all of which are expressed in the developing kidney. Several studies have shown that exogenous fibroblast growth factors (Fgfs) affect growth and maturation of the metanephric mesenchyme (MM) and ureteric bud (UB) in cultured tissues. Transgenic and conditional knockout approaches in whole animals have shown that Fgfr1 and Fgfr2 (predominantly the IIIc isoform) in kidney mesenchyme are critical for early MM and UB formation. Conditional deletion of the ligand, Fgf8, in nephron precursors or global deletion of Fgfrl1 interrupts nephron formation. Fgfr2 (likely the IIIb isoform signaling downstream of Fgf7 and Fgf10) is critical for ureteric morphogenesis. Moreover, Fgfr2 appears to act independently of Frs2α (the major signaling adapter for Fgfrs) in regulating UB branching. Loss of Fgfr2 in the MM leads to many kidney and urinary tract anomalies, including vesicoureteral reflux. Thus Fgfr signaling is critical for patterning of virtually all renal lineages at early and later stages of development.
Collapse
Affiliation(s)
- Carlton M Bates
- Rangos Research Center, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
69
|
Shah MM, Sakurai H, Gallegos TF, Sweeney DE, Bush KT, Esko JD, Nigam SK. Growth factor-dependent branching of the ureteric bud is modulated by selective 6-O sulfation of heparan sulfate. Dev Biol 2011; 356:19-27. [PMID: 21600196 DOI: 10.1016/j.ydbio.2011.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 05/02/2011] [Accepted: 05/03/2011] [Indexed: 11/24/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) are found in the basement membrane and at the cell-surface where they modulate the binding and activity of a variety of growth factors and other molecules. Most of the functions of HSPGs are mediated by the variable sulfated glycosaminoglycan (GAG) chains attached to a core protein. Sulfation of the GAG chain is key as evidenced by the renal agenesis phenotype in mice deficient in the HS biosynthetic enzyme, heparan sulfate 2-O sulfotransferase (Hs2st; an enzyme which catalyzes the 2-O-sulfation of uronic acids in heparan sulfate). We have recently demonstrated that this phenotype is likely due to a defect in induction of the metanephric mesenchyme (MM), which along with the ureteric bud (UB), is responsible for the mutually inductive interactions in the developing kidney (Shah et al., 2010). Here, we sought to elucidate the role of variable HS sulfation in UB branching morphogenesis, particularly the role of 6-O sulfation. Endogenous HS was localized along the length of the UB suggesting a role in limiting growth factors and other molecules to specific regions of the UB. Treatment of cultures of whole embryonic kidney with variably desulfated heparin compounds indicated a requirement of 6O-sulfation in the growth and branching of the UB. In support of this notion, branching morphogenesis of the isolated UB was found to be more sensitive to the HS 6-O sulfation modification when compared to the 2-O sulfation modification. In addition, a variety of known UB branching morphogens (i.e., pleiotrophin, heregulin, FGF1 and GDNF) were found to have a higher affinity for 6-O sulfated heparin providing additional support for the notion that this HS modification is important for robust UB branching morphogenesis. Taken together with earlier studies, these findings suggest a general mechanism for spatio-temporal HS regulation of growth factor activity along the branching UB and in the developing MM and support the view that specific growth factor-HSPG interactions establish morphogen gradients and function as developmental switches during the stages of epithelial organogenesis (Shah et al., 2004).
Collapse
Affiliation(s)
- Mita M Shah
- Department of Medicine (Division of Nephrology and Hypertension), University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Costantini F, Watanabe T, Lu B, Chi X, Srinivas S. Imaging kidney development. Cold Spring Harb Protoc 2011; 2011:pdb.top109. [PMID: 21536773 DOI: 10.1101/pdb.top109] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Development of the kidney involves interactions between several cell lineages and complex morphogenetic processes, such as branching of the ureteric bud (UB) to form the collecting duct system and condensation and differentiation of the mesenchymal progenitors to form the nephron epithelia. One of the advantages of the mouse kidney as an experimental system is that it can develop in culture, from the stage of initial branching of the UB (E11.5) for up to a week (although it achieves the size and degree of development of only an E13.5-E14.5 kidney in vivo). The availability of fluorescent proteins (FPs) has provided powerful tools for visualizing the morphogenesis of specific renal structures in organ cultures. Two categories of genetically modified mice that express FPs are useful for visualizing different cell lineages and developmental processes in these organ cultures: (1) transgenic mice that express a fluorescent reporter in the pattern of a specific gene; and (2) Cre reporter mice, which turn on an FP in cells with Cre recombinase activity (and their daughter cells), used in conjunction with cell type-specific Cre transgenic mice. Here, we describe some of the currently available Cre and FP transgenic lines that are useful for the study of kidney development.
Collapse
|
71
|
Murakami S. Periodontal tissue regeneration by signaling molecule(s): what role does basic fibroblast growth factor (FGF-2) have in periodontal therapy? Periodontol 2000 2011; 56:188-208. [DOI: 10.1111/j.1600-0757.2010.00365.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
72
|
Ola R, Jakobson M, Kvist J, Perälä N, Kuure S, Braunewell KH, Bridgewater D, Rosenblum ND, Chilov D, Immonen T, Sainio K, Sariola H. The GDNF target Vsnl1 marks the ureteric tip. J Am Soc Nephrol 2011; 22:274-84. [PMID: 21289216 DOI: 10.1681/asn.2010030316] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is indispensable for ureteric budding and branching. If applied exogenously, GDNF promotes ectopic ureteric buds from the Wolffian duct. Although several downstream effectors of GDNF are known, the identification of early response genes is incomplete. Here, microarray screening detected several GDNF-regulated genes in the Wolffian duct, including Visinin like 1 (Vsnl1), which encodes a neuronal calcium-sensor protein. We observed renal Vsnl1 expression exclusively in the ureteric epithelium, but not in Gdnf-null kidneys. In the tissue culture of Gdnf-deficient kidney primordium, exogenous GDNF and alternative bud inducers (FGF7 and follistatin) restored Vsnl1 expression. Hence, Vsnl1 characterizes the tip of the ureteric bud epithelium regardless of the inducer. In the tips, Vsnl1 showed a mosaic expression pattern that was mutually exclusive with β-catenin transcriptional activation. Vsnl1 was downregulated in both β-catenin-stabilized and β-catenin-deficient kidneys. Moreover, in a mouse collecting duct cell line, Vsnl1 compromised β-catenin stability, suggesting a counteracting relationship between Vsnl1 and β-catenin. In summary, Vsnl1 marks ureteric bud tips in embryonic kidneys, and its mosaic pattern demonstrates a heterogeneity of cell types that may be critical for normal ureteric branching.
Collapse
Affiliation(s)
- Roxana Ola
- Biochemistry and Developmental Biology, Institute of Biomedicine, P.O. Box 63, Haartmaninkatu 8, University of Helsinki, FIN-00014, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Receptor tyrosine kinases in kidney development. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:869281. [PMID: 21637383 PMCID: PMC3100575 DOI: 10.1155/2011/869281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/08/2011] [Accepted: 01/15/2011] [Indexed: 11/18/2022]
Abstract
The kidney plays a fundamental role in the regulation of arterial blood pressure and fluid/electrolyte homeostasis. As congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most common human birth defects, improved understanding of the cellular and molecular mechanisms that lead to CAKUT is critical. Accumulating evidence indicates that aberrant signaling via receptor tyrosine kinases (RTKs) is causally linked to CAKUT. Upon activation by their ligands, RTKs dimerize, undergo autophosphorylation on specific tyrosine residues, and interact with adaptor proteins to activate intracellular signal transduction pathways that regulate diverse cell behaviours such as cell proliferation, survival, and movement. Here, we review the current understanding of role of RTKs and their downstream signaling pathways in the pathogenesis of CAKUT.
Collapse
|
74
|
Sims-Lucas S, Cusack B, Eswarakumar VP, Zhang J, Wang F, Bates CM. Independent roles of Fgfr2 and Frs2alpha in ureteric epithelium. Development 2011; 138:1275-80. [PMID: 21350013 DOI: 10.1242/dev.062158] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mice with conditional deletion of fibroblast growth factor receptor 2 (Fgfr2) in the ureteric bud using a Hoxb7cre line (Fgfr2(UB-/-)) develop severe ureteric branching defects; however, ureteric deletion of fibroblast growth factor receptor substrate 2α (Frs2α), a key docking protein that transmits fibroblast growth factor receptor intracellular signaling (Frs2α(UB-/-)) leads to mild ureteric defects. Mice with point mutations in the Frs2α binding site of Fgfr2 (Fgfr2(LR/LR)) have normal kidneys. The aim of this study was to determine the relationship between Fgfr2 and Frs2α in the ureteric lineage. Mice with ureteric deletion of both Fgfr2 and Frs2α (Fgfr2/Frs2α(UB-/)) were compared with Frs2α(UB-/-) and Fgfr2(UB-/-) mice. To avoid potential rescue of Fgfr1 forming heterodimers with Fgfr2(LR) alleles to recruit Frs2α, compound mutant mice were generated with ureteric deletion of Fgfr1 and with Fgfr2(LR/LR) point mutations (Fgfr1(UB-/-)Fgfr2(LR/LR)). At E13.5, three-dimensional reconstructions and histological assessment showed that, whereas Fgfr2(UB-/-) kidneys had more severe ureteric branching defects than Frs2α(UB-/-), Fgfr2(UB-/-) kidneys were indistinguishable from Fgfr2/Frs2α(UB-/-). At later stages, however, Fgfr2/Frs2α(UB-/-) kidneys were more severely affected than either Fgfr2(UB-/-) or Frs2α(UB-/-) kidneys. Taken together, although Fgfr2 and Frs2α have crucial roles in the ureteric lineage, they appear to act separately and additively.
Collapse
Affiliation(s)
- Sunder Sims-Lucas
- Rangos Research Center, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15201, USA
| | | | | | | | | | | |
Collapse
|
75
|
Itoh N, Ornitz DM. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J Biochem 2010; 149:121-30. [PMID: 20940169 DOI: 10.1093/jb/mvq121] [Citation(s) in RCA: 521] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Fibroblast growth factors (FGFs) are a family of structurally related polypeptides that are essential for embryonic development and that function postnatally as homoeostatic factors, in the response to injury, in the regulation of electrical excitability of cells and as hormones that regulate metabolism. In humans, FGF signalling is involved in developmental, neoplastic, metabolic and neurological diseases. Fgfs have been identified in metazoans but not in unicellular organisms. In vertebrates, FGFs can be classified as having intracrine, paracrine and endocrine functions. Paracrine and endocrine FGFs act via cell-surface FGF receptors (FGFRs); while, intracrine FGFs act independent of FGFRs. The evolutionary history of the Fgf family indicates that an intracrine Fgf is the likely ancestor of the Fgf family. During metazoan evolution, the Fgf family expanded in two phases, after the separation of protostomes and deuterostomes and in the evolution of early vertebrates. These expansions enabled FGFs to acquire diverse actions and functions.
Collapse
Affiliation(s)
- Nobuyuki Itoh
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan.
| | | |
Collapse
|
76
|
Gray SP, Denton KM, Cullen-McEwen L, Bertram JF, Moritz KM. Prenatal exposure to alcohol reduces nephron number and raises blood pressure in progeny. J Am Soc Nephrol 2010; 21:1891-902. [PMID: 20829403 DOI: 10.1681/asn.2010040368] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Prenatal ethanol exposure is teratogenic, but the effects of ethanol on kidney development and the health of offspring are incompletely understood. Our objective was to investigate the effects of acute ethanol exposure during pregnancy on nephron endowment, mean arterial pressure, and renal function in offspring. We administered ethanol or saline by gavage to pregnant Sprague-Dawley rats on embryonic days 13.5 and 14.5. At 1 month of age, the nephron number was 15% lower and 10% lower in ethanol-exposed males and females, respectively, compared with controls. Mean arterial pressure, measured in conscious animals via indwelling tail-artery catheter, was 10% higher in both ethanol-exposed males and females compared with controls. GFR was 20% higher in ethanol-exposed males but 15% lower in ethanol-exposed females; moreover, males had increased proteinuria compared with controls. Furthermore, embryonic kidneys cultured in the presence of ethanol for 48 hours had 15% fewer ureteric branch points and tips than kidneys cultured in control media. Taken together, these data demonstrate that acute prenatal ethanol exposure reduces the number of nephrons, possibly as a result of inhibited ureteric branching morphogenesis, and that these changes affect adult cardiovascular and renal function.
Collapse
Affiliation(s)
- Stephen P Gray
- Department of Anatomy, Monash University, Clayton, Victoria, Australia
| | | | | | | | | |
Collapse
|
77
|
Cain JE, Di Giovanni V, Smeeton J, Rosenblum ND. Genetics of renal hypoplasia: insights into the mechanisms controlling nephron endowment. Pediatr Res 2010; 68:91-8. [PMID: 20421843 DOI: 10.1203/pdr.0b013e3181e35a88] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Renal hypoplasia, defined as abnormally small kidneys with normal morphology and reduced nephron number, is a common cause of pediatric renal failure and adult-onset disease. Genetic studies performed in humans and mutant mice have implicated a number of critical genes, in utero environmental factors and molecular mechanisms that regulate nephron endowment and kidney size. Here, we review current knowledge regarding the genetic contributions to renal hypoplasia with particular emphasis on the mechanisms that control nephron endowment in humans and mice.
Collapse
Affiliation(s)
- Jason E Cain
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | | | | | | |
Collapse
|
78
|
Hains DS, Sims-Lucas S, Carpenter A, Saha M, Murawski I, Kish K, Gupta I, McHugh K, Bates CM. High incidence of vesicoureteral reflux in mice with Fgfr2 deletion in kidney mesenchyma. J Urol 2010; 183:2077-84. [PMID: 20303521 DOI: 10.1016/j.juro.2009.12.095] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Indexed: 11/28/2022]
Abstract
PURPOSE Mice with Fgfr2 conditional deletion in metanephric mesenchyma (Fgfr2(Mes-/-)) have ureteral bud induction abnormalities. We determined whether Fgfr2(Mes-/-) mutants developed abnormally positioned ureters predisposing to vesicoureteral reflux. MATERIALS AND METHODS We measured common nephric duct length and assayed for apoptosis in embryonic day 11.5 mice. We performed 3-dimensional reconstruction of, and real-time polymerase chain reaction and whole mount in situ hybridization for Fgfr2 in urinary tracts in embryonic day 15.5 embryos. We also performed cystograms followed by 3-dimensional reconstruction in postnatal animals. RESULTS Compared with controls Fgfr2(Mes-/-) embryos had increased common nephric duct length with no difference in apoptosis, indicating cranially displaced ureteral buds. Three-dimensional reconstruction at embryonic day 15.5 showed low ureteral insertion into the bladder near the bladder neck in Fgfr2(Mes-/-) mice. Postnatal Fgfr2(Mes-/-) mutants had a high rate of vesicoureteral reflux compared with controls (47.4% vs 4.0%, p = 0.00006). In postnatal mutants with unilateral reflux the refluxing ureters inserted closer to the bladder neck than nonrefluxing ureters. External ureteral insertional angles at the outer bladder wall formed by the ureteral insertion points and the bladder neck were greater in mutant refluxing ureters than in contralateral nonrefluxing ureters or control ureters. At embryonic day 15.5 Fgfr2 was decreased in Fgfr2(Mes-/-) kidneys compared with that in controls but not statistically different in ureters or bladders. CONCLUSIONS Fgfr2(Mes-/-) mice have ureteral induction abnormalities associated with abnormal ureteral insertion in the bladder and subsequent vesicoureteral reflux, consistent with the Mackie and Stephens hypothesis.
Collapse
Affiliation(s)
- David S Hains
- Division of Nephrology, Department of Pediatrics, Ohio State University College of Medicine, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Kidney development in the absence of Gdnf and Spry1 requires Fgf10. PLoS Genet 2010; 6:e1000809. [PMID: 20084103 PMCID: PMC2797609 DOI: 10.1371/journal.pgen.1000809] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 12/10/2009] [Indexed: 11/19/2022] Open
Abstract
GDNF signaling through the Ret receptor tyrosine kinase (RTK) is required for ureteric bud (UB) branching morphogenesis during kidney development in mice and humans. Furthermore, many other mutant genes that cause renal agenesis exert their effects via the GDNF/RET pathway. Therefore, RET signaling is believed to play a central role in renal organogenesis. Here, we re-examine the extent to which the functions of Gdnf and Ret are unique, by seeking conditions in which a kidney can develop in their absence. We find that in the absence of the negative regulator Spry1, Gdnf, and Ret are no longer required for extensive kidney development. Gdnf−/−;Spry1−/− or Ret−/−;Spry1−/− double mutants develop large kidneys with normal ureters, highly branched collecting ducts, extensive nephrogenesis, and normal histoarchitecture. However, despite extensive branching, the UB displays alterations in branch spacing, angle, and frequency. UB branching in the absence of Gdnf and Spry1 requires Fgf10 (which normally plays a minor role), as removal of even one copy of Fgf10 in Gdnf−/−;Spry1−/− mutants causes a complete failure of ureter and kidney development. In contrast to Gdnf or Ret mutations, renal agenesis caused by concomitant lack of the transcription factors ETV4 and ETV5 is not rescued by removing Spry1, consistent with their role downstream of both RET and FGFRs. This shows that, for many aspects of renal development, the balance between positive signaling by RTKs and negative regulation of this signaling by SPRY1 is more critical than the specific role of GDNF. Other signals, including FGF10, can perform many of the functions of GDNF, when SPRY1 is absent. But GDNF/RET signaling has an apparently unique function in determining normal branching pattern. In contrast to GDNF or FGF10, Etv4 and Etv5 represent a critical node in the RTK signaling network that cannot by bypassed by reducing the negative regulation of upstream signals. Kidney development requires the secreted protein GDNF, which signals via its cellular receptor RET to promote growth and branching of the ureteric bud, the progenitor of the collecting duct system. The transcription factors ETV4 and ETV5 regulate gene expression in response to GDNF. We report that deleting Spry1, a feedback inhibitor downstream of RET, largely rescues kidney development in mice lacking GDNF or RET, although not in those lacking ETV4 and ETV5. Thus, GDNF and RET become dispensable in the absence of SPRY1, when their roles can be largely assumed by other signals and receptors, while ETV4 and ETV5 remain indispensible. We identify FGF10 as the signal responsible for kidney development in the combined absence of GDNF/RET signaling and SPRY1 negative regulation. But while the ureteric bud branches extensively in Gdnf−/−;Spry1−/− and Ret−/−;Spry1−/− kidneys, its pattern of branching is severely perturbed. This points to a unique function of GDNF in ureteric bud patterning.
Collapse
|
80
|
|
81
|
|
82
|
Gerber SD, Steinberg F, Beyeler M, Villiger PM, Trueb B. The murine Fgfrl1 receptor is essential for the development of the metanephric kidney. Dev Biol 2009; 335:106-19. [DOI: 10.1016/j.ydbio.2009.08.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 08/18/2009] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
|
83
|
Kidney development: from ureteric bud formation to branching morphogenesis. Curr Opin Genet Dev 2009; 19:484-90. [PMID: 19828308 DOI: 10.1016/j.gde.2009.09.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 09/15/2009] [Indexed: 11/21/2022]
Abstract
Epithelial branching morphogenesis is critical to the formation of various organs such as the vasculature, mammary glands, lungs, and kidneys in vertebrate embryos. One fascinating aspect of branching morphogenesis is to understand how a simple epithelial tube grows by reiterative branching to form a complex epithelial tree structure. Recent studies combining mouse genetics and chimeric analysis with live imaging have uncovered the molecular networks and interactions that govern kidney branching morphogenesis. This review focuses on ureteric bud (UB) formation and epithelial branching during kidney development. The invasion of the metanephric mesenchyme by the UB is a fundamental step toward establishing the cyto-architecture of the kidney and determining the number of nephrons, which form the filtration units of the adult kidney.
Collapse
|
84
|
Makarenkova HP, Hoffman MP, Beenken A, Eliseenkova AV, Meech R, Tsau C, Patel VN, Lang RA, Mohammadi M. Differential interactions of FGFs with heparan sulfate control gradient formation and branching morphogenesis. Sci Signal 2009; 2:ra55. [PMID: 19755711 DOI: 10.1126/scisignal.2000304] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The developmental activities of morphogens depend on the gradients that they form in the extracellular matrix. Here, we show that differences in the binding of fibroblast growth factor 7 (FGF7) and FGF10 to heparan sulfate (HS) underlie the formation of different gradients that dictate distinct activities during branching morphogenesis. Reducing the binding affinity of FGF10 for HS by mutating a single residue in its HS-binding pocket converted FGF10 into a functional mimic of FGF7 with respect to gradient formation and regulation of branching morphogenesis. In particular, the mutant form of FGF10 caused lacrimal and salivary gland epithelium buds to branch rather than to elongate. In contrast, mutations that reduced the affinity of the FGF10 for its receptor affected the extent, but not the nature, of the response. Our data may provide a general model for understanding how binding to HS regulates other morphogenetic gradients.
Collapse
Affiliation(s)
- Helen P Makarenkova
- The Neurobiology Department, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Yosypiv IV. Renin-angiotensin system-growth factor cross-talk: a novel mechanism for ureteric bud morphogenesis. Pediatr Nephrol 2009; 24:1113-20. [PMID: 18958502 PMCID: PMC2716751 DOI: 10.1007/s00467-008-1021-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 09/17/2008] [Accepted: 09/17/2008] [Indexed: 12/11/2022]
Abstract
The renin-angiotensin system (RAS) plays a critical role in kidney development. Mutations in the genes encoding components of the RAS cause a spectrum of congenital abnormalities of the kidney and renal collecting system, ranging from hypoplasia of the renal medulla and hydronephrosis in mice to renal tubular dysgenesis in humans. However, the mechanisms by which an intact RAS controls proper renal system development and how aberrations in the RAS result in abnormal kidney and renal collecting system development are poorly understood. The renal collecting system originates from the ureteric bud (UB). A number of transcription and growth factors regulate UB branching morphogenesis to ultimately form the ureter, pelvis, calyces, medullary, and cortical collecting ducts. Importantly, UB morphogenesis is a key developmental process that controls organogenesis of the entire metanephros. This review emphasizes emerging insights into the role for the RAS in UB morphogenesis and explores the mechanisms whereby RAS regulates this important process. A conceptual framework derived from recent work indicates that cooperation between the angiotensin II AT(1) receptor and receptor tyrosine kinase signaling performs essential functions during renal collecting system development via control of UB branching morphogenesis.
Collapse
Affiliation(s)
- Ihor V. Yosypiv
- Section of Pediatric Nephrology, Department of Pediatrics, Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112
| |
Collapse
|
86
|
Sparrow DB, Boyle SC, Sams RS, Mazuruk B, Zhang L, Moeckel GW, Dunwoodie SL, de Caestecker MP. Placental insufficiency associated with loss of Cited1 causes renal medullary dysplasia. J Am Soc Nephrol 2009; 20:777-86. [PMID: 19297558 DOI: 10.1681/asn.2008050547] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A number of studies have shown that placental insufficiency affects embryonic patterning of the kidney and leads to a decreased number of functioning nephrons in adulthood; however, there is circumstantial evidence that placental insufficiency may also affect renal medullary growth, which could account for cases of unexplained renal medullary dysplasia and for abnormalities in renal function among infants who had experienced intrauterine growth retardation. We observed that mice with late gestational placental insufficiency associated with genetic loss of Cited1 expression in the placenta had renal medullary dysplasia. This was not caused by lower urinary tract obstruction or by defects in branching of the ureteric bud during early nephrogenesis but was associated with decreased tissue oxygenation and increased apoptosis in the expanding renal medulla. Loss of placental Cited1 was required for Cited1 mutants to develop renal dysplasia, and this was not dependent on alterations in embryonic Cited1 expression. Taken together, these findings suggest that renal medullary dysplasia in Cited1 mutant mice is a direct consequence of decreased tissue oxygenation resulting from placental insufficiency.
Collapse
Affiliation(s)
- Duncan B Sparrow
- Developmental Biology Division, Victor Chang Cardiac Research Institute, University of New South Wales, Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 2009; 8:235-53. [PMID: 19247306 DOI: 10.1038/nrd2792] [Citation(s) in RCA: 1450] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The family of fibroblast growth factors (FGFs) regulates a plethora of developmental processes, including brain patterning, branching morphogenesis and limb development. Several mitogenic, cytoprotective and angiogenic therapeutic applications of FGFs are already being explored, and the recent discovery of the crucial roles of the endocrine-acting FGF19 subfamily in bile acid, glucose and phosphate homeostasis has sparked renewed interest in the pharmacological potential of this family. This Review discusses traditional applications of recombinant FGFs and small-molecule FGF receptor kinase inhibitors in the treatment of cancer and cardiovascular disease and their emerging potential in the treatment of metabolic syndrome and hypophosphataemic diseases.
Collapse
Affiliation(s)
- Andrew Beenken
- Department of Pharmacology, New York University School of Medicine, New York, New York 10016, USA.
| | | |
Collapse
|
88
|
Abstract
Conditional deletion of murine fibroblast growth factor receptors (Fgfrs) 1 and 2 in metanephric mesenchyme leads to renal agenesis with unbranched ureteric buds; however, there are occasionally two buds per nephric duct. Our goal was to determine whether conditional deletion of Fgfr1 or Fgfr2 alone resulted in multiple ureteric bud induction sites. Although deletion of Fgfr1 alone results in no abnormalities, loss of Fgfr2 often leads to multiple ureteric buds and anomalies including renal aplasia, misshaped kidneys, partially duplicated kidneys, duplicated ureters, and obstructed hydroureter. Deletion of Fgfr2 did not change expression domains of glial cell line-derived neurotrophic factor (GDNF), Robo2, bone morphogenetic protein 4, or Sprouty1, all of which regulate ureteric bud induction. Cultured Fgfr2 mutant nephric ducts were also not more sensitive to exogenous GDNF than controls. Whole mount in situ hybridization revealed that in mutant embryos, Fgfr2 was deleted from stromal cells around the nephric duct and ureteric bud base, which correlates well with the ureteric bud induction abnormalities. Thus, Fgfr2 is critical in ensuring that there is a single ureteric bud from the nephric duct. The plethora of later stage defects in Fgfr2 conditional knockouts is reminiscent of many human cases of genetic urogenital anomalies.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Bone Morphogenetic Protein 4/genetics
- Bone Morphogenetic Protein 4/metabolism
- Glial Cell Line-Derived Neurotrophic Factor/genetics
- Glial Cell Line-Derived Neurotrophic Factor/metabolism
- Humans
- Kidney/abnormalities
- Kidney/anatomy & histology
- Kidney/embryology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mesoderm/anatomy & histology
- Mesoderm/metabolism
- Mice
- Mice, Knockout
- Phenotype
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Ureter/abnormalities
- Ureter/anatomy & histology
- Ureter/embryology
Collapse
Affiliation(s)
- David Hains
- Center for Cell and Developmental Biology, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | | | | | | | | | | |
Collapse
|
89
|
Abstract
Tubular structures are a fundamental anatomic theme recurring in a wide range of animal species. In mammals, tubulogenesis underscores the development of several systems and organs, including the vascular system, the lungs, and the kidneys. All tubular systems are hierarchical, branching into segments of gradually diminishing diameter. There are only 2 cell types that form the lumen of tubular systems: either endothelial cells in the vascular system or epithelial cells in all other organs. The most important feature in determining the morphology of the tubular systems is the frequency and geometry of branching. Hence, deciphering the molecular mechanisms underlying the sprouting of new branches from preexisting ones is the key to understanding the formation of tubular systems. The morphological similarity between the various tubular systems is underscored by similarities between the signaling pathways which control their branching. A prominent feature common to these pathways is their duality--an agonist counterbalanced by an inhibitor. The formation of the tracheal system in Drosophila melanogaster is driven by fibroblast growth factor and inhibited by Sprouty/Notch. In vertebrates, the analogous pathways are fibroblast growth factor and transforming growth factor-beta in epithelial tubular systems or vascular endothelial growth factor and Notch in the vascular system.
Collapse
Affiliation(s)
- Arie Horowitz
- Angiogenesis Research Center and Section of Cardiology, Dartmouth Medical School, Lebanon, NH 03756, USA.
| | | |
Collapse
|
90
|
Sims-Lucas S, Caruana G, Dowling J, Kett MM, Bertram JF. Augmented and accelerated nephrogenesis in TGF-beta2 heterozygous mutant mice. Pediatr Res 2008; 63:607-12. [PMID: 18317401 DOI: 10.1203/pdr.0b013e31816d9130] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Several members of the transforming growth factor-beta (TGF-beta) superfamily play key roles in kidney development, either directly or indirectly regulating nephron number. Although low nephron number is a risk factor for cardiovascular and renal disease, the implications of increased nephron number has not been examined due to the absence of appropriate animal models. Here, using unbiased stereology we demonstrated that kidneys from TGF-beta2 heterozygous (TGF-beta2(+/-)) mice have approximately 60% more nephrons than wild-type mice at postnatal day 30. To determine whether augmented nephron number involved accelerated ureteric branching morphogenesis, embryonic day 11.5 metanephroi were analyzed via confocal microscopy. A 40% increase in total ureteric branch length was observed in TGF-beta2(+/-) kidneys, together with an extra generation of branching. In embryonic day 12.5 metanephroi cultured for 48 h the numbers of both ureteric tree tips and glomeruli were significantly greater in TGF-beta2(+/-) kidneys. These findings suggest that augmented nephron number in TGF-beta2(+/-) kidneys results from accelerated ureteric branching morphogenesis and nephron formation. Manipulation of TGF-beta2 signaling in vivo may provide avenues for protection or rescue of nephron endowment in fetuses at risk.
Collapse
Affiliation(s)
- Sunder Sims-Lucas
- Department of Anatomy and Developmental Biology, Monash University, Melbourne 3800, Australia
| | | | | | | | | |
Collapse
|
91
|
Abstract
The mammalian kidney consists of highly specialised cells that function in an integrated manner to maintain homeostasis of body fluids, electrolytes and nutrients. Formation of multicellular structures and differentiation of kidney cells are tightly regulated processes that begin during the fifth week and end by approximately 34 weeks of human gestation. This review focuses on the morphological, cellular and molecular steps required for kidney formation. Although some of this information is derived from studies of the human kidney, much has arisen from the study of genetic models of mammalian kidney morphogenesis. These models reveal mechanisms by which cell lineages are established in the embryonic kidney and the genetic pathways that are involved in their establishment and maintenance.
Collapse
Affiliation(s)
- Norman D Rosenblum
- The Hospital for Sick Children, Division of Nephrology and Program in Developmental and Stem Cell Biology, 555 University Avenue, Toronto, Ontario, Canada.
| |
Collapse
|
92
|
Bonventre JV. Molecular and Genetic Aspects of Ischemic Acute Kidney Injury. MOLECULAR AND GENETIC BASIS OF RENAL DISEASE 2008:531-555. [DOI: 10.1016/b978-1-4160-0252-9.50034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
93
|
Maeshima A, Sakurai H, Choi Y, Kitamura S, Vaughn DA, Tee JB, Nigam SK. Glial cell-derived neurotrophic factor independent ureteric bud outgrowth from the Wolffian duct. J Am Soc Nephrol 2007; 18:3147-55. [PMID: 18003772 DOI: 10.1681/asn.2007060642] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Akito Maeshima
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0693, USA
| | | | | | | | | | | | | |
Collapse
|
94
|
Hartman HA, Lai HL, Patterson LT. Cessation of renal morphogenesis in mice. Dev Biol 2007; 310:379-87. [PMID: 17826763 PMCID: PMC2075093 DOI: 10.1016/j.ydbio.2007.08.021] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 08/07/2007] [Accepted: 08/07/2007] [Indexed: 12/11/2022]
Abstract
The kidney develops by cycles of ureteric bud branching and nephron formation. The cycles begin and are sustained by reciprocal inductive interactions and feedback between ureteric bud tips and the surrounding mesenchyme. Understanding how the cycles end is important because it controls nephron number. During the period when nephrogenesis ends in mice, we examined the morphology, gene expression, and function of the domains that control branching and nephrogenesis. We found that the nephrogenic mesenchyme, which is required for continued branching, was gone by the third postnatal day. This was associated with an accelerated rate of new nephron formation in the absence of apoptosis. At the same time, the tips of the ureteric bud branches lost the typical appearance of an ampulla and lost Wnt11 expression, consistent with the absence of the capping mesenchyme. Surprisingly, expression of Wnt9b, a gene necessary for mesenchyme induction, continued. We then tested the postnatal day three bud branch tip and showed that it maintained its ability both to promote survival of metanephric mesenchyme and to induce nephrogenesis in culture. These results suggest that the sequence of events leading to disruption of the cycle of branching morphogenesis and nephrogenesis began with the loss of mesenchyme that resulted from its conversion into nephrons.
Collapse
Affiliation(s)
- Heather A Hartman
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | | | | |
Collapse
|
95
|
Chaffer CL, Thompson EW, Williams ED. Mesenchymal to epithelial transition in development and disease. Cells Tissues Organs 2007; 185:7-19. [PMID: 17587803 DOI: 10.1159/000101298] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cellular plasticity is fundamental to embryonic development. The importance of cellular transitions in development is first apparent during gastrulation when the process of epithelial to mesenchymal transition transforms polarized epithelial cells into migratory mesenchymal cells that constitute the embryonic and extraembryonic mesoderm. It is now widely accepted that this developmental pathway is exploited in various disease states, including cancer progression. The loss of epithelial characteristics and the acquisition of a mesenchymal-like migratory phenotype are crucial to the development of invasive carcinoma and metastasis. However, given the morphological similarities between primary tumour and metastatic lesions, it is likely that tumour cells re-activate certain epithelial properties through a mesenchymal to epithelial transition (MET) at the secondary site, although this is yet to be proven. MET is also an essential developmental process and has been extensively studied in kidney organogenesis and somitogenesis. In this review we describe the process of MET, highlight important mediators, and discuss their implication in the context of cancer progression.
Collapse
|
96
|
Bates CM. Role of fibroblast growth factor receptor signaling in kidney development. Pediatr Nephrol 2007; 22:343-9. [PMID: 16932896 DOI: 10.1007/s00467-006-0239-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 06/07/2006] [Indexed: 11/28/2022]
Abstract
Fibroblast growth factor receptors (Fgfrs) are expressed in the ureteric bud and metanephric mesenchyme of the developing kidney. Furthermore, in vitro and in vivo studies have shown that exogenous fibroblast growth factors (Fgfs) increase growth and maturation of the metanephric mesenchyme and ureteric bud. Deletion of fgf7, fgf10, and fgfr2IIIb (the receptor isoform that binds Fgf7 and Fgf10) in mice lead to smaller kidneys with fewer collecting ducts and nephrons. Overexpression of a dominant negative receptor isoform in transgenic mice has revealed more striking defects including renal aplasia or severe dysplasia. Moreover, deletion of many fgf ligands and receptors in mice results in early embryonic lethality, making it difficult to determine their roles in kidney development. Recently, conditional targeting approaches revealed that deletion of fgf8 from the metanephric mesenchyme interrupts nephron formation. Furthermore, deletion of fgfr2 from the ureteric bud resulted in both ureteric bud branching and stromal mesenchymal patterning defects. Deletion of both fgfr1 and fgfr2 in the metanephric mesenchyme resulted in renal aplasia, characterized by defects in metanephric mesenchyme formation and initial ureteric bud elongation and branching. Thus, Fgfr signaling is critical for growth and patterning of all renal lineages at early and later stages of kidney development.
Collapse
MESH Headings
- Animals
- Fibroblast Growth Factors/pharmacology
- Kidney/abnormalities
- Kidney/embryology
- Kidney/metabolism
- Mice
- Mice, Knockout
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/physiology
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/physiology
- Receptors, Fibroblast Growth Factor/drug effects
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Receptors, Fibroblast Growth Factor/physiology
- Signal Transduction
Collapse
Affiliation(s)
- Carlton M Bates
- Center for Cell and Developmental Biology, Columbus Children's Research Institute, 700 Children's Drive, Columbus, OH 43205, USA.
| |
Collapse
|
97
|
Meyer TN, Schwesinger C, Sampogna RV, Vaughn DA, Stuart RO, Steer DL, Bush KT, Nigam SK. Rho kinase acts at separate steps in ureteric bud and metanephric mesenchyme morphogenesis during kidney development. Differentiation 2007; 74:638-47. [PMID: 17177859 DOI: 10.1111/j.1432-0436.2006.00102.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, five different in vitro assays, which together recapitulate much of kidney development, were used to examine the role of the Rho-associated protein serine/threonine kinase (ROCK) in events central to ureteric bud (UB) and metanephric mesenchyme (MM) morphogenensis, in isolation and together. ROCK activity was found to be critical for (1) cell proliferation, growth, and development of the whole embryonic kidney in organ culture, (2) tip and stalk formation in cultures of isolated UBs, and (3) migration of MM cells (in a novel MM migration assay) during their condensation at UB tips (in a UB/MM recombination assay). Together, the data indicate selective involvement of Rho/ROCK in distinct morphogenetic processes necessary for kidney development and that the coordination of these events by Rho/ROCK provides a potential mechanism to regulate overall branching patterns, nephron formation, and thus, kidney architecture.
Collapse
Affiliation(s)
- Tobias N Meyer
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0693, USA
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Abstract
Mammalian kidney development has helped elucidate the general concepts of mesenchymal-epithelial interactions, inductive signaling, epithelial cell polarization, and branching morphogenesis. Through the use of genetically engineered mouse models, the manipulation of Xenopus and chick embryos, and the identification of human renal disease genes, the molecular bases for many of the early events in the developing kidney are becoming increasingly clear. Early patterning of the kidney region depends on interactions between Pax/Eya/Six genes, with essential roles for lim1 and Odd1. Ureteric bud outgrowth and branching morphogenesis are controlled by the Ret/Gdnf pathway, which is subject to positive and negative regulation by a variety of factors. A clear role for Wnt proteins in induction of the kidney mesenchyme is now well established and complements the classic literature nicely. Patterning along the proximal distal axis as the nephron develops is now being investigated and must involve aspects of Notch signaling. The development of a glomerulus requires interactions between epithelial cells and infiltrating endothelial cells to generate a unique basement membrane. The integrity of the glomerular filter depends in large part on the proteins of the nephrin complex, localized to the slit diaphragm. Despite the kidney's architectural complexity, with the advent of genomics and expression arrays, it is becoming one of the best-characterized organ systems in developmental biology.
Collapse
Affiliation(s)
- Gregory R Dressler
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
99
|
Chaffer CL, Brennan JP, Slavin JL, Blick T, Thompson EW, Williams ED. Mesenchymal-to-Epithelial Transition Facilitates Bladder Cancer Metastasis: Role of Fibroblast Growth Factor Receptor-2. Cancer Res 2006; 66:11271-8. [PMID: 17145872 DOI: 10.1158/0008-5472.can-06-2044] [Citation(s) in RCA: 353] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) increases cell migration and invasion, and facilitates metastasis in multiple carcinoma types, but belies epithelial similarities between primary and secondary tumors. This study addresses the importance of mesenchymal-to-epithelial transition (MET) in the formation of clinically significant metastasis. The previously described bladder carcinoma TSU-Pr1 (T24) progression series of cell lines selected in vivo for increasing metastatic ability following systemic seeding was used in this study. It was found that the more metastatic sublines had acquired epithelial characteristics. Epithelial and mesenchymal phenotypes were confirmed in the TSU-Pr1 series by cytoskeletal and morphologic analysis, and by performance in a panel of in vitro assays. Metastatic ability was examined following inoculation at various sites. Epithelial characteristics associated with dramatically increased bone and soft tissue colonization after intracardiac or intratibial injection. In contrast, the more epithelial sublines showed decreased lung metastases following orthotopic inoculation, supporting the concept that EMT is important for the escape of tumor cells from the primary tumor. We confirmed the overexpression of the IIIc subtype of multiple fibroblast growth factor receptors (FGFR) through the TSU-Pr1 series, and targeted abrogation of FGFR2IIIc reversed the MET and associated functionality in this system and increased survival following in vivo inoculation in severe combined immunodeficient mice. This model is the first to specifically model steps of the latter part of the metastatic cascade in isogenic cell lines, and confirms the suspected role of MET in secondary tumor growth.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Carcinoma, Transitional Cell/genetics
- Carcinoma, Transitional Cell/metabolism
- Carcinoma, Transitional Cell/pathology
- Cell Differentiation
- Cell Line, Tumor
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Gene Expression Regulation, Neoplastic
- Humans
- Keratins/metabolism
- Mesoderm/metabolism
- Mesoderm/pathology
- Mice
- Neoplasm Metastasis
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Analysis
- Time Factors
- Transplantation, Heterologous
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/metabolism
- Urinary Bladder Neoplasms/pathology
- Vimentin/metabolism
Collapse
Affiliation(s)
- Christine L Chaffer
- Bernard O'Brien Institute of Microsurgery, The University of Melbourne, St. Vincent's Hospital, Australia
| | | | | | | | | | | |
Collapse
|
100
|
Basson MA, Watson-Johnson J, Shakya R, Akbulut S, Hyink D, Costantini FD, Wilson PD, Mason IJ, Licht JD. Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1. Dev Biol 2006; 299:466-77. [PMID: 17022962 DOI: 10.1016/j.ydbio.2006.08.051] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 05/23/2006] [Accepted: 08/15/2006] [Indexed: 11/26/2022]
Abstract
Branching of ureteric bud-derived epithelial tubes is a key morphogenetic process that shapes development of the kidney. Glial cell line-derived neurotrophic factor (GDNF) initiates ureteric bud formation and promotes subsequent branching morphogenesis. Exactly how GDNF coordinates branching morphogenesis is unclear. Here we show that the absence of the receptor tyrosine kinase antagonist Sprouty1 (Spry1) results in irregular branching morphogenesis characterized by both increased number and size of ureteric bud tips. Deletion of Spry1 specifically in the epithelium is associated with increased epithelial Wnt11 expression as well as increased mesenchymal Gdnf expression. We propose that Spry1 regulates a Gdnf/Ret/Wnt11-positive feedback loop that coordinates mesenchymal-epithelial dialogue during branching morphogenesis. Genetic experiments indicate that the positive (GDNF) and inhibitory (Sprouty1) signals have to be finely balanced throughout renal development to prevent hypoplasia or cystic hyperplasia. Epithelial cysts develop in Spry1-deficient kidneys that share several molecular characteristics with those observed in human disease, suggesting that Spry1 null mice may be useful animal models for cystic hyperplasia.
Collapse
Affiliation(s)
- M Albert Basson
- Division of Hematology/Oncology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|