51
|
Hadrys T, Prince V, Hunter M, Baker R, Rinkwitz S. Comparative genomic analysis of vertebrate Hox3 and Hox4 genes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2004; 302:147-64. [PMID: 15054858 DOI: 10.1002/jez.b.20012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We used a comparative genomic approach to identify putative cis-acting regulatory sequences of the zebrafish hoxb3a and hoxb4a genes. We aligned genomic sequences spanning the clustered Hoxb1 to Hoxb5 genes from pufferfish, mice, and humans with the zebrafish hoxba and hoxbb cluster sequences. We identified multiple blocks of conserved sequences in non-coding regions within and surrounding the Hoxb3/b4 gene locus; a subset of these blocks are conserved in the zebrafish hoxbb cluster, despite loss of hoxb3/b4 genes. Overall, we find that the architecture of the Hoxb3/b4 loci and of the conserved sequence elements is very similar in teleosts and mammals. Our analyses also revealed two alternative transcripts of the zebrafish hoxb3a gene and an exon sequence unusually located 10 kb upstream of adjacent hoxb4a; an equivalent murine Hoxb3 exon has not yet been confirmed. We show that many of the Hoxb3/b4 conserved non-coding sequences correlate with functional neural enhancers previously described in the mouse. Further, within the conserved non-coding sequences we have identified binding sites for transcription factors, including Kreisler/Valentino, Krox20, Hox, and Pbx, some of which had not been previously described for the mouse. Finally, we demonstrate that the regulatory sequences of zebrafish hoxa3a are divergent with respect to the mouse ortholog Hoxa3, or the paralog hoxb3a. Despite limited conservation of regulatory sequences, zebrafish hoxa3a and hoxb3a genes share very similar expression profiles.
Collapse
Affiliation(s)
- Thorsten Hadrys
- Department of Physiology and Neuroscience, NYU Medical School, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
52
|
Borday C, Wrobel L, Fortin G, Champagnat J, Thaëron-Antôno C, Thoby-Brisson M. Developmental gene control of brainstem function: views from the embryo. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 84:89-106. [PMID: 14769431 DOI: 10.1016/j.pbiomolbio.2003.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The respiratory rhythm is generated within the hindbrain reticular formation, rostrally in the vicinity of the facial nucleus and caudally within the vagal/glossopharyngeal domain. This is probably one of the best models to understand how genes have been selected and conserved to control adaptive behaviour in vertebrates. The para-facial region is well understood with respect to the transcription factors that underlie antero-posterior specification of neural progenitors in the embryo. Hox paralogs and Hox-regulating genes kreisler and Krox-20 govern transient formation of developmental compartments, the rhombomeres, in which rhythmic neuronal networks develop. Hox are master genes selecting and coordinating the developmental fate of reticular and motor neurons thereby specifying patterns of motor activities operating throughout life. Neuronal function and development are also tightly linked in the vagal/glossopharyngeal domain. At this level, bdnf acts as a neurotrophin of peripheral chemoafferent neural populations and as a neuromodulator of the central rhythmogenic respiratory circuits. A general view is now emerging on the role of developmental transcription and trophic factors allowing the coordinated integration of different neuronal types to produce, and eventually refine, respiratory rhythmic pattern in a use-dependent manner.
Collapse
Affiliation(s)
- Caroline Borday
- UPR 2216 Neurobiologie Génétique et Intégrative, Institut de Neurobiologie Alfred Fessard, CNRS, 1, av de la Terrasse, Gif-sur-Yvette 91198, France
| | | | | | | | | | | |
Collapse
|
53
|
Wang CC. Development of the Rhombencephalon: Molecular Evolution and Genetic Regulation. Neuroembryology Aging 2004. [DOI: 10.1159/000088208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
54
|
Powles N, Marshall H, Economou A, Chiang C, Murakami A, Dickson C, Krumlauf R, Maconochie M. Regulatory analysis of the mouseFgf3 gene: Control of embryonic expression patterns and dependence upon sonic hedgehog (Shh) signalling. Dev Dyn 2004; 230:44-56. [PMID: 15108308 DOI: 10.1002/dvdy.20028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Fgf3 displays a dynamic and complex expression pattern during mouse embryogenesis. To address the molecular mechanisms underlying Fgf3 expression, we used a transgenic approach to assay genomic regions from the mouse Fgf3 gene for regulatory activity. We identified an enhancer that mediates major components of embryonic expression, governing expression in the midbrain, hindbrain, surface ectoderm, dorsal roots and dorsal root ganglia (DRG), proximal sensory ganglia, and the developing central nervous system (CNS). Deletional analysis of the enhancer further delimited this regulatory activity to a 5.7-kb fragment. We have also revealed sonic hedgehog (Shh) -dependent and Shh-independent aspects of Fgf3 expression through breeding the Fgf3 reporter transgene into Shh mutants. In the absence of Shh signalling, Fgf3 reporter expression is lost in the ventral CNS, DRG, and superior cervical nerves, whereas activation of reporter expression in cranial ganglion cells is Shh independent. Moreover, detailed re-examination of the Shh phenotype revealed that Shh signalling is required for the correct development/maturation of the DRG.
Collapse
Affiliation(s)
- Nicola Powles
- Mammalian Genetics Unit, Medical Research Council, Harwell, Oxon, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Runko AP, Sagerström CG. Nlz belongs to a family of zinc-finger-containing repressors and controls segmental gene expression in the zebrafish hindbrain. Dev Biol 2003; 262:254-67. [PMID: 14550789 DOI: 10.1016/s0012-1606(03)00388-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The zebrafish nlz gene has a rostral expression limit at the presumptive rhombomere (r) 3/r4 boundary during gastrula stages, and its expression progressively expands rostrally to encompass both r3 and r2 by segmentation stages, suggesting a role for nlz in hindbrain development. We find that Nlz is a nuclear protein that associates with the corepressor Groucho, suggesting that Nlz acts to repress transcription. Consistent with a role as a repressor, misexpression of nlz causes a loss of gene expression in the rostral hindbrain, likely due to ectopic nlz acting prematurely in this domain, and this repression is accompanied by a partial expansion in the expression domains of r4-specific genes. To interfere with endogenous nlz function, we generated a form of nlz that lacks the Groucho binding site and demonstrate that this construct has a dominant negative effect. We find that interfering with endogenous Nlz function promotes the expansion of r5 and, to a lesser extent, r3 gene expression into r4, leading to a reduction in the size of r4. We conclude that Nlz is a transcriptional repressor that controls segmental gene expression in the hindbrain. Lastly, we identify additional nlz-related genes, suggesting that Nlz belongs to a family of zinc-finger proteins.
Collapse
Affiliation(s)
- Alexander P Runko
- Department of Biochemistry and Molecular Pharmacology, and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
56
|
Nardelli J, Catala M, Charnay P. Establishment of embryonic neuroepithelial cell lines exhibiting an epiplastic expression pattern of region specific markers. J Neurosci Res 2003; 73:737-52. [PMID: 12949900 DOI: 10.1002/jnr.10716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuroepithelial b2T cells were derived from the hindbrain and the spinal cord of mouse transgenic embryos, which expressed SV40 T antigen under the control of a Hoxb2 enhancer. Strikingly, b2T cell lines of either origin exhibit a very similar gene expression pattern, including markers of the hindbrain and the spinal cord, such as Hox genes, but not of more anterior cephalic regions. In addition, the broad expression pattern of b2T cells, probably linked to culture conditions, appeared to be appropriately modulated when the cells were reimplanted at different longitudinal levels into chick host embryos, suggesting that these cells are responsive to exogenous signalling mechanisms. Further support for these allegations was obtained by culturing b2T cells in defined medium and by assessing the expression of Krox20, an odd-numbered rhombomere marker, which appeared to be modulated by a complex interplay between FGF, retinoic acid (RA), and noggin. With respect to these as yet unique properties, b2T cells constitute an original alternative tool to in vivo models for the analysis of molecular pathways involved in the patterning of the neural tube.
Collapse
|
57
|
Matsuoka TA, Zhao L, Artner I, Jarrett HW, Friedman D, Means A, Stein R. Members of the large Maf transcription family regulate insulin gene transcription in islet beta cells. Mol Cell Biol 2003; 23:6049-62. [PMID: 12917329 PMCID: PMC180917 DOI: 10.1128/mcb.23.17.6049-6062.2003] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The C1/RIPE3b1 (-118/-107 bp) binding factor regulates pancreatic-beta-cell-specific and glucose-regulated transcription of the insulin gene. In the present study, the C1/RIPE3b1 activator from mouse beta TC-3 cell nuclear extracts was purified by DNA affinity chromatography and two-dimensional gel electrophoresis. C1/RIPE3b1 binding activity was found in the roughly 46-kDa fraction at pH 7.0 and pH 4.5, and each contained N- and C-terminal peptides to mouse MafA as determined by peptide mass mapping and tandem spectrometry. MafA was detected in the C1/RIPE3b1 binding complex by using MafA peptide-specific antisera. In addition, MafA was shown to bind within the enhancer region (-340/-91 bp) of the endogenous insulin gene in beta TC-3 cells in the chromatin immunoprecipitation assay. These results strongly suggested that MafA was the beta-cell-enriched component of the RIPE3b1 activator. However, reverse transcription-PCR analysis demonstrated that mouse islets express not only MafA but also other members of the large Maf family, specifically c-Maf and MafB. Furthermore, immunohistochemical studies revealed that at least MafA and MafB were present within the nuclei of islet beta cells and not within pancreas acinar cells. Because MafA, MafB, and c-Maf were each capable of specifically binding to and activating insulin C1 element-mediated expression, our results suggest that all of these factors play a role in islet beta-cell function.
Collapse
Affiliation(s)
- Taka-aki Matsuoka
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
Mechta-Grigoriou F, Giudicelli F, Pujades C, Charnay P, Yaniv M. c-jun regulation and function in the developing hindbrain. Dev Biol 2003; 258:419-31. [PMID: 12798298 DOI: 10.1016/s0012-1606(03)00135-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hindbrain development is a well-characterised segmentation process in vertebrates. The bZip transcription factor MafB/kreisler is specifically expressed in rhombomeres (r) 5 and 6 of the developing vertebrate hindbrain and is required for proper caudal hindbrain segmentation. Here, we provide evidence that the mouse protooncogene c-jun, which encodes a member of the bZip family, is coexpressed with MafB in prospective r5 and r6. Analysis of mouse mutants suggests that c-jun expression in these territories is dependent on MafB but independent of the zinc-finger transcription factor Krox20, another essential determinant of r5 development. Loss- and gain-of-function studies, performed in mouse and chick embryos, respectively, demonstrate that c-Jun participates, together with MafB and Krox20, in the transcriptional activation of the Hoxb3 gene in r5. The action of c-Jun is likely to be direct, since c-Jun homodimers and c-Jun/MafB heterodimers can bind to essential regulatory elements within the transcriptional enhancer responsible for Hoxb3 expression in r5. These data indicate that c-Jun acts both as a downstream effector and a cofactor of MafB and belongs to the complex network of factors governing hindbrain patterning.
Collapse
Affiliation(s)
- Fatima Mechta-Grigoriou
- Unité Expression génétique et maladies, CNRS URA 1644, Institut Pasteur 25, rue du Docteur Roux, 75724 15, Paris Cedex, France.
| | | | | | | | | |
Collapse
|
59
|
Sadl VS, Sing A, Mar L, Jin F, Cordes SP. Analysis of hindbrain patterning defects caused by the kreisler(enu) mutation reveals multiple roles of Kreisler in hindbrain segmentation. Dev Dyn 2003; 227:134-42. [PMID: 12701106 DOI: 10.1002/dvdy.10279] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The embryonic hindbrain is subdivided into eight subunits, termed rhombomeres (r1-r8). The Kreisler (Krml1/MafB/val) transcription factor is expressed in and essential for patterning rhombomeres 5 and 6. Here, we have shown that in the chemically induced kreisler(enu) (kr(enu)) allele, a point mutation in the DNA binding domain abolishes or severely reduces Kreisler-dependent transcription. Comparison of kr(enu)/kr(enu) embryos with those homozygous for the classic kreisler (kr) mutation has reconciled past discrepancies and revealed multiple roles of Kreisler in hindbrain segmentation. These analyses demonstrate that Kreisler is required for maintenance and expansion but not initiation of the Krox20 expressing r5 domain. The differences in the "r5-like" phenotype of kr(enu)/kr(enu) and kr/kr mouse embryos, and zebrafish carrying mutations in the Kreisler orthologue valentino (val) suggest that Kreisler performs many of its r5-specific functions by associating with other proteins. By contrast, kr/kr and kr(enu)/kr(enu) mouse and val-/- zebrafish embryos all exhibit indistinguishable defects in r6 specification. Thus, transcriptionally active Kreisler is required for r6 specification. Unlike mouse kr(enu)/kr(enu) and zebrafish val-/- embryos, kr/kr embryos exhibited anterior defects. We determined that the kr chromosomal inversion caused ectopic Kreisler expression in r3 of kr/kr and kr/+ embryos. Hence, Kreisler regulates maintenance and expansion of r5 and specification of r6 but is not required for r3 development.
Collapse
Affiliation(s)
- Virginia S Sadl
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
60
|
Brunelli S, Silva Casey E, Bell D, Harland R, Lovell-Badge R. Expression of Sox3 throughout the developing central nervous system is dependent on the combined action of discrete, evolutionarily conserved regulatory elements. Genesis 2003; 36:12-24. [PMID: 12748963 DOI: 10.1002/gene.10193] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SOX3 is one of the earliest neural markers in vertebrates and is thought to play a role in specifying neuronal fate. To investigate the regulation of Sox3 expression we identified cis-regulatory regions in the Sox3 promoter that direct tissue-specific heterologous marker gene expression in transgenic mice. Our results show that an 8.3 kb fragment, comprising 3 kb upstream and 3 kb downstream of the Sox3 transcriptional unit, is sufficient in a lacZ reporter construct to reproduce most aspects of Sox3 expression during CNS development from headfold to midgestation stages. The apparently uniform expression of Sox3 in the neural tube depends, however, on the combined action of distinct regulatory modules within this 8.3 kb region. Each of these gives expression in a subdomain of the complete expression pattern. These are restricted along both the rostral-caudal and dorso-ventral axes and can be quite specific, one element giving expression largely confined to V2 interneuron precursors. We also find that at least some of the regulatory sequences are able to drive expression of the transgene in the CNS Xenopus laevis embryos in a manner that reflects the endogenous Sox3 expression pattern. These results imply that the underlying mechanism regulating early CNS patterning is conserved, despite several substantial differences in neurogenesis between mammals and amphibians.
Collapse
|
61
|
Hashizume H, Hamalainen H, Sun Q, Sucharczuk A, Lahesmaa R. Downregulation of mafB expression in T-helper cells during early differentiation in vitro. Scand J Immunol 2003; 57:28-34. [PMID: 12542795 DOI: 10.1046/j.1365-3083.2003.01181.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have studied the expression of a human homologue of mafB (maf-1), a member of the family of large maf transcription factors. In support of the suggested key role that mafB expression plays in differentiating macrophages, we found mafB to be expressed at a very high level in monocytic U937 and THP-1 cell lines. However, we show here that mafB transcription is not restricted to myeloid cells but can also be detected in lymphoid cells, indicating transcriptional plasticity during haematopoiesis. In conclusion, strong proliferative signals mediated by T-cell activation and interleukins (IL-4 and IL-12) downregulate the mafB messenger RNA transcript level when resting naïve CD4+ T-helper cells enter the differentiation pathway in vitro.
Collapse
Affiliation(s)
- H Hashizume
- Inflammatory Disease Unit, Roche Bioscience, Palo Alto, CA, USA
| | | | | | | | | |
Collapse
|
62
|
Giudicelli F, Gilardi-Hebenstreit P, Mechta-Grigoriou F, Poquet C, Charnay P. Novel activities of Mafb underlie its dual role in hindbrain segmentation and regional specification. Dev Biol 2003; 253:150-62. [PMID: 12490204 DOI: 10.1006/dbio.2002.0864] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The bZip transcription factor Mafb is expressed in two segments of the developing vertebrate hindbrain: the rhombomeres 5 and 6. Loss of Mafb expression in the mouse mutant kreisler leads to elimination of r5 and to alterations of r6 regional identity. Here, we further investigated the role of Mafb in hindbrain patterning using gain-of-function experiments in the chick embryo. Our work has revealed novel functions for Mafb, including a positive autoregulatory activity, the capacity to repress Hoxb1 expression, and the capacity to synergise with or antagonise Krox20 activity. These different activities appear to be spatially restricted in the hindbrain, presumably due to interactions with other factors. Reinvestigation of the kreisler mutation indicated that it also results in an ectopic activation of Mafb in rhombomere 3, accounting for the previously described molecular alterations of this rhombomere in the mutant. Together, these data allow us to refine our view of the dual function of Mafb in both segmentation and specification of anteroposterior identity in the hindbrain.
Collapse
Affiliation(s)
- François Giudicelli
- Unité 368 de l'Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, 46 rue d'Ulm, 75230, Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
63
|
Yau TO, Kwan CT, Jakt LM, Stallwood N, Cordes S, Sham MH. Auto/cross-regulation of Hoxb3 expression in posterior hindbrain and spinal cord. Dev Biol 2002; 252:287-300. [PMID: 12482716 DOI: 10.1006/dbio.2002.0849] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The complex and dynamic pattern of Hoxb3 expression in the developing hindbrain and the associated neural crest of mouse embryos is controlled by three separate cis-regulatory elements: element I (region A), element IIIa, and the r5 enhancer (element IVa). We have examined the cis-regulatory element IIIa by transgenic and mutational analysis to determine the upstream trans-acting factors and mechanisms that are involved in controlling the expression of the mouse Hoxb3 gene in the anterior spinal cord and hindbrain up to the r5/r6 boundary, as well as the associated neural crest which migrate to the third and posterior branchial arches and to the gut. By deletion analysis, we have identified the sequence requirements within a 482-bp element III482. Two Hox binding sites are identified in element III482 and we have shown that in vitro both Hoxb3 and Hoxb4 proteins can interact with these Hox binding sites, suggesting that auto/cross-regulation is required for establishing the expression of Hoxb3 in the neural tube domain. Interestingly, we have identified a novel GCCAGGC sequence motif within element III482, which is also required to direct gene expression to a subset of the expression domains except for rhombomere 6 and the associated neural crest migrating to the third and posterior branchial arches. Element III482 can direct a higher level of reporter gene expression in r6, which led us to investigate whether kreisler is involved in regulating Hoxb3 expression in r6 through this element. However, our transgenic and mutational analysis has demonstrated that, although kreisler binding sites are present, they are not required for the establishment or maintenance of reporter gene expression in r6. Our results have provided evidence that the expression of Hoxb3 in the neural tube up to the r5/r6 boundary is auto/cross-regulated by Hox genes and expression of Hoxb3 in r6 does not require kreisler.
Collapse
Affiliation(s)
- Tai On Yau
- Department of Biochemistry, The University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
64
|
Sadl V, Jin F, Yu J, Cui S, Holmyard D, Quaggin S, Barsh G, Cordes S. The mouse Kreisler (Krml1/MafB) segmentation gene is required for differentiation of glomerular visceral epithelial cells. Dev Biol 2002; 249:16-29. [PMID: 12217315 DOI: 10.1006/dbio.2002.0751] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular components of the glomerular filtration mechanism play critical roles in renal diseases. Many of these components are produced during the final stages of differentiation of glomerular visceral epithelial cells, also known as podocytes. While basic domain leucine zipper (bZip) transcription factors of the Maf subfamily have been implicated in cellular differentiation processes, Kreisler (Krml1/MafB), the gene affected in the mouse kreisler (kr) mutation, is known for its role in hindbrain patterning. Here we show that mice homozygous for the kr(enu) mutation develop renal disease and that Kreisler is essential for cellular differentiation of podocytes. Consistent with abnormal podocyte differentiation, kr(enu) homozygotes show proteinuria, and fusion and effacement of podocyte foot processes, which are also observed in the nephrotic syndrome. Kreisler acts during the final stages of glomerular development-the transition between the capillary loop and mature stages-and downstream of the Pod1 basic domain helix-loop-helix transcription factor. The levels of Podocin, the gene mutated in autosomal recessive steroid-resistant nephrotic syndrome (NPHS2), and Nephrin, the gene mutated in congenital nephrotic syndrome of the Finnish type (NPHS1), are slightly reduced in kr(enu)/kr(enu) podocytes. However, these observations alone are unlikely to account for the aberrant podocyte foot process formation. Thus, Kreisler must regulate other unknown genes required for podocyte function and with possible roles in kidney disease.
Collapse
Affiliation(s)
- Virginia Sadl
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, University of Toronto, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Tümpel S, Maconochie M, Wiedemann LM, Krumlauf R. Conservation and diversity in the cis-regulatory networks that integrate information controlling expression of Hoxa2 in hindbrain and cranial neural crest cells in vertebrates. Dev Biol 2002; 246:45-56. [PMID: 12027433 DOI: 10.1006/dbio.2002.0665] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Hoxa2 and Hoxb2 genes are members of paralogy group II and display segmental patterns of expression in the developing vertebrate hindbrain and cranial neural crest cells. Functional analyses have demonstrated that these genes play critical roles in regulating morphogenetic pathways that direct the regional identity and anteroposterior character of hindbrain rhombomeres and neural crest-derived structures. Transgenic regulatory studies have also begun to characterize enhancers and cis-elements for those mouse and chicken genes that direct restricted patterns of expression in the hindbrain and neural crest. In light of the conserved role of Hoxa2 in neural crest patterning in vertebrates and the similarities between paralogs, it is important to understand the extent to which common regulatory networks and elements have been preserved between species and between paralogs. To investigate this problem, we have cloned and sequenced the intergenic region between Hoxa2 and Hoxa3 in the chick HoxA complex and used it for making comparative analyses with the respective human, mouse, and horn shark regions. We have also used transgenic assays in mouse and chick embryos to test the functional activity of Hoxa2 enhancers in heterologous species. Our analysis reveals that three of the critical individual components of the Hoxa2 enhancer region from mouse necessary for hindbrain expression (Krox20, BoxA, and TCT motifs) have been partially conserved. However, their number and organization are highly varied for the same gene in different species and between paralogs within a species. Other essential mouse elements appear to have diverged or are absent in chick and shark. We find the mouse r3/r5 enhancer fails to work in chick embryos and the chick enhancer works poorly in mice. This implies that new motifs have been recruited or utilized to mediate restricted activity of the enhancer in other species. With respect to neural crest regulation, cis-components are embedded among the hindbrain control elements and are highly diverged between species. Hence, there has been no widespread conservation of sequence identity over the entire enhancer domain from shark to humans, despite the common function of these genes in head patterning. This provides insight into how apparently equivalent regulatory regions from the same gene in different species have evolved different components to potentiate their activity in combination with a selection of core components.
Collapse
Affiliation(s)
- Stefan Tümpel
- Stowers Institute, 1000 East 50th, Kansas City, Missouri 64110, USA
| | | | | | | |
Collapse
|
66
|
Abstract
The hindbrain is responsible for controlling essential functions such as respiration and heart beat that we literally do not think about most of the time. In addition, cranial nerves projecting from the hindbrain control muscles in the jaw, eye, and face, and receive sensory input from these same areas. In all vertebrates that have been studied, the hindbrain passes through a segmented phase shortly after the neural tube has formed, with a series of seven bulges--the rhombomeres--forming along the anterior-posterior extent of the neural tube. Our current understanding of vertebrate hindbrain development comes from integrating data from several model systems. Work on the chick has helped us to understand the cell biology of the rhombomeres, whereas the power of mouse molecular genetics has allowed investigation of the molecular mechanisms underlying their development. This review focuses on the special insights that the zebrafish system has provided to our understanding of hindbrain development. As we will discuss, work in the zebrafish has elucidated inductive events that specify the presumptive hindbrain domain and has identified genes required for hindbrain segmentation and the specification of segment identities.
Collapse
Affiliation(s)
- Cecilia B Moens
- HHMI, Division of Basic Science, Fred Hutchinson Cancer Research Center B2-152, 1100 Fairview Avenue North, Seattle, WEA 98109, USA.
| | | |
Collapse
|
67
|
Theil T, Ariza-McNaughton L, Manzanares M, Brodie J, Krumlauf R, Wilkinson DG. Requirement for downregulation of kreisler during late patterning of the hindbrain. Development 2002; 129:1477-85. [PMID: 11880356 DOI: 10.1242/dev.129.6.1477] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pattern formation in the hindbrain is governed by a segmentation process that provides the basis for the organisation of cranial motor nerves. A cascade of transcriptional activators, including the bZIP transcription factor encoded by the kreisler gene controls this segmentation process. In kreisler mutants, r5 fails to form and this correlates with abnormalities in the neuroanatomical organisation of the hindbrain. Studies of Hox gene regulation suggest that kreisler may regulate the identity as well as the formation of r5, but such a role cannot be detected in kreisler mutants since r5 is absent. To gain further insights into the function of kreisler we have generated transgenic mice in which kreisler is ectopically expressed in r3 and for an extended period in r5. In these transgenic mice, the Fgf3, Krox20, Hoxa3 and Hoxb3 genes have ectopic or prolonged expression domains in r3, indicating that it acquires molecular characteristics of r5. Prolonged kreisler expression subsequently causes morphological alterations of r3/r5 that are due to an inhibition of neuronal differentiation and migration from the ventricular zone to form the mantle layer. We find that these alterations in r5 correlate with an arrest of facial branchiomotor neurone migration from r4 into the caudal hindbrain, which is possibly due to the deficiency in the mantle layer through which they normally migrate. We propose that the requirement for the downregulation of segmental kreisler expression prior to neuronal differentiation reflects the stage-specific roles of this gene and its targets.
Collapse
Affiliation(s)
- Thomas Theil
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | | | | | | | | | | |
Collapse
|
68
|
Manzanares M, Nardelli J, Gilardi-Hebenstreit P, Marshall H, Giudicelli F, Martínez-Pastor MT, Krumlauf R, Charnay P. Krox20 and kreisler co-operate in the transcriptional control of segmental expression of Hoxb3 in the developing hindbrain. EMBO J 2002; 21:365-76. [PMID: 11823429 PMCID: PMC125344 DOI: 10.1093/emboj/21.3.365] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the segmented vertebrate hindbrain, the Hoxa3 and Hoxb3 genes are expressed at high relative levels in the rhombomeres (r) 5 and 6, and 5, respectively. The single enhancer elements responsible for these activities have been identified previously and shown to constitute direct targets of the transcription factor kreisler, which is expressed in r5 and r6. Here, we have analysed the contribution of the transcription factor Krox20, present in r3 and r5. Genetic analyses demonstrated that Krox20 is required for activity of the Hoxb3 r5 enhancer, but not of the Hoxa3 r5/6 enhancer. Mutational analysis of the Hoxb3 r5 enhancer, together with ectopic expression experiments, revealed that Krox20 binds to the enhancer and synergizes with kreisler to promote Hoxb3 transcription, restricting enhancer activity to their domain of overlap, r5. These analyses also suggested contributions from an Ets-related factor and from putative factors likely to heterodimerize with kreisler. The integration of multiple independent inputs present in overlapping domains by a single enhancer is likely to constitute a general mechanism for the patterning of subterritories during vertebrate development.
Collapse
Affiliation(s)
- Miguel Manzanares
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Unité 368 de I’Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, 46 rue d’Ulm, F-75230 Paris Cedex 05, France Present address: Department of Developmental Neurobiology, Insituto Cajal, CSIC, Av. Doctor Arce 37, E-28002 Madrid, Spain Present address: UMR 7000 du Centre National de la Recherche Scientifique, CHU Pitié-Salpêtrière, 105 bd de l’Hôpital, 75013 Paris, France Present address: Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA Corresponding author e-mail: M.Manzanares and J.Nardelli contributed equally to this work
| | - Jeannette Nardelli
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Unité 368 de I’Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, 46 rue d’Ulm, F-75230 Paris Cedex 05, France Present address: Department of Developmental Neurobiology, Insituto Cajal, CSIC, Av. Doctor Arce 37, E-28002 Madrid, Spain Present address: UMR 7000 du Centre National de la Recherche Scientifique, CHU Pitié-Salpêtrière, 105 bd de l’Hôpital, 75013 Paris, France Present address: Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA Corresponding author e-mail: M.Manzanares and J.Nardelli contributed equally to this work
| | - Pascale Gilardi-Hebenstreit
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Unité 368 de I’Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, 46 rue d’Ulm, F-75230 Paris Cedex 05, France Present address: Department of Developmental Neurobiology, Insituto Cajal, CSIC, Av. Doctor Arce 37, E-28002 Madrid, Spain Present address: UMR 7000 du Centre National de la Recherche Scientifique, CHU Pitié-Salpêtrière, 105 bd de l’Hôpital, 75013 Paris, France Present address: Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA Corresponding author e-mail: M.Manzanares and J.Nardelli contributed equally to this work
| | - Heather Marshall
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Unité 368 de I’Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, 46 rue d’Ulm, F-75230 Paris Cedex 05, France Present address: Department of Developmental Neurobiology, Insituto Cajal, CSIC, Av. Doctor Arce 37, E-28002 Madrid, Spain Present address: UMR 7000 du Centre National de la Recherche Scientifique, CHU Pitié-Salpêtrière, 105 bd de l’Hôpital, 75013 Paris, France Present address: Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA Corresponding author e-mail: M.Manzanares and J.Nardelli contributed equally to this work
| | - François Giudicelli
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Unité 368 de I’Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, 46 rue d’Ulm, F-75230 Paris Cedex 05, France Present address: Department of Developmental Neurobiology, Insituto Cajal, CSIC, Av. Doctor Arce 37, E-28002 Madrid, Spain Present address: UMR 7000 du Centre National de la Recherche Scientifique, CHU Pitié-Salpêtrière, 105 bd de l’Hôpital, 75013 Paris, France Present address: Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA Corresponding author e-mail: M.Manzanares and J.Nardelli contributed equally to this work
| | - María Teresa Martínez-Pastor
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Unité 368 de I’Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, 46 rue d’Ulm, F-75230 Paris Cedex 05, France Present address: Department of Developmental Neurobiology, Insituto Cajal, CSIC, Av. Doctor Arce 37, E-28002 Madrid, Spain Present address: UMR 7000 du Centre National de la Recherche Scientifique, CHU Pitié-Salpêtrière, 105 bd de l’Hôpital, 75013 Paris, France Present address: Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA Corresponding author e-mail: M.Manzanares and J.Nardelli contributed equally to this work
| | - Robb Krumlauf
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Unité 368 de I’Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, 46 rue d’Ulm, F-75230 Paris Cedex 05, France Present address: Department of Developmental Neurobiology, Insituto Cajal, CSIC, Av. Doctor Arce 37, E-28002 Madrid, Spain Present address: UMR 7000 du Centre National de la Recherche Scientifique, CHU Pitié-Salpêtrière, 105 bd de l’Hôpital, 75013 Paris, France Present address: Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA Corresponding author e-mail: M.Manzanares and J.Nardelli contributed equally to this work
| | - Patrick Charnay
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Unité 368 de I’Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, 46 rue d’Ulm, F-75230 Paris Cedex 05, France Present address: Department of Developmental Neurobiology, Insituto Cajal, CSIC, Av. Doctor Arce 37, E-28002 Madrid, Spain Present address: UMR 7000 du Centre National de la Recherche Scientifique, CHU Pitié-Salpêtrière, 105 bd de l’Hôpital, 75013 Paris, France Present address: Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA Corresponding author e-mail: M.Manzanares and J.Nardelli contributed equally to this work
| |
Collapse
|
69
|
Chatonnet F, del Toro ED, Voiculescu O, Charnay P, Champagnat J. Different respiratory control systems are affected in homozygous and heterozygous kreisler mutant mice. Eur J Neurosci 2002; 15:684-92. [PMID: 11886449 DOI: 10.1046/j.1460-9568.2002.01909.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During embryonic development, restricted expression of the regulatory genes Krox20 and kreisler are involved in segmentation and antero-posterior patterning of the hindbrain neural tube. The analysis of transgenic mice in which specific rhombomeres (r) are eliminated points to an important role of segmentation in the generation of neuronal networks controlling vital rhythmic behaviours such as respiration. Thus, elimination of r3 and r5 in Krox20-/- mice suppresses a pontine antiapneic system (Jacquin et al., 1996). We now compare Krox20-/- to kreisler heterozygous (+/kr) and homozygous (kr/kr) mutant neonates. In +/kr mutant mice, we describe hyperactivity of the antiapneic system: analysis of rhythm generation in vitro revealed a pontine modification in keeping with abnormal cell specifications previously reported in r3 (Manzanares et al., 1999b). In kr/kr mice, elimination of r5 abolished all +/kr respiratory traits, suggesting that +/kr hyperactivity of the antiapneic system is mediated through r5-derived territories. Furthermore, collateral chemosensory pathways that normally mediate delayed responses to hypoxia and hyperoxia were not functional in kr/kr mice. We conclude that the pontine antiapneic system originates from r3r4, but not r5. A different rhythm-promoting system originates in r5 and kreisler controls the development of antiapneic and chemosensory signal transmission at this level.
Collapse
Affiliation(s)
- Fabrice Chatonnet
- Neurobiologie Génétique et Intégrative, UPR2216, Centre National de la Recherche Scientifique, Institut de Neurobiologie Alfred Fessard UFR 2218, 91198 Gif-sur-Yvette Cedex, France.
| | | | | | | | | |
Collapse
|
70
|
Manzanares M, Bel-Vialar S, Ariza-McNaughton L, Ferretti E, Marshall H, Maconochie MM, Blasi F, Krumlauf R. Independent regulation of initiation and maintenance phases ofHoxa3expression in the vertebrate hindbrain involve auto- and cross-regulatory mechanisms. Development 2001; 128:3595-607. [PMID: 11566863 DOI: 10.1242/dev.128.18.3595] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During development of the vertebrate hindbrain, Hox genes play multiples roles in the segmental processes that regulate anteroposterior (AP) patterning. Paralogous Hox genes, such as Hoxa3, Hoxb3 and Hoxd3, generally have very similar patterns of expression, and gene targeting experiments have shown that members of paralogy group 3 can functionally compensate for each other. Hence, distinct functions for individual members of this family may primarily depend upon differences in their expression domains. The earliest domains of expression of the Hoxa3 and Hoxb3 genes in hindbrain rhombomeric (r) segments are transiently regulated by kreisler, a conserved Maf b-Zip protein, but the mechanisms that maintain expression in later stages are unknown. In this study, we have compared the segmental expression and regulation of Hoxa3 and Hoxb3 in mouse and chick embryos to investigate how they are controlled after initial activation. We found that the patterns of Hoxa3 and Hoxb3 expression in r5 and r6 in later stages during mouse and chick hindbrain development were differentially regulated. Hoxa3 expression was maintained in r5 and r6, while Hoxb3 was downregulated. Regulatory comparisons of cis-elements from the chick and mouse Hoxa3 locus in both transgenic mouse and chick embryos have identified a conserved enhancer that mediates the late phase of Hoxa3 expression through a conserved auto/cross-regulatory loop. This block of similarity is also present in the human and horn shark loci, and contains two bipartite Hox/Pbx-binding sites that are necessary for its in vivo activity in the hindbrain. These HOX/PBC sites are positioned near a conserved kreisler-binding site (KrA) that is involved in activating early expression in r5 and r6, but their activity is independent of kreisler. This work demonstrates that separate elements are involved in initiating and maintaining Hoxa3 expression during hindbrain segmentation, and that it is regulated in a manner different from Hoxb3 in later stages. Together, these findings add further strength to the emerging importance of positive auto- and cross-regulatory interactions between Hox genes as a general mechanism for maintaining their correct spatial patterns in the vertebrate nervous system.
Collapse
Affiliation(s)
- M Manzanares
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Benkhelifa S, Provot S, Nabais E, Eychène A, Calothy G, Felder-Schmittbuhl MP. Phosphorylation of MafA is essential for its transcriptional and biological properties. Mol Cell Biol 2001; 21:4441-52. [PMID: 11416124 PMCID: PMC87104 DOI: 10.1128/mcb.21.14.4441-4452.2001] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We previously described the identification of quail MafA, a novel transcription factor of the Maf bZIP (basic region leucine zipper) family, expressed in the differentiating neuroretina (NR). In the present study, we provide the first evidence that MafA is phosphorylated and that its biological properties strongly rely upon phosphorylation of serines 14 and 65, two residues located in the transcriptional activating domain within a consensus for phosphorylation by mitogen-activated protein kinases and which are conserved among Maf proteins. These residues are phosphorylated by ERK2 but not by p38, JNK, and ERK5 in vitro. However, the contribution of the MEK/ERK pathway to MafA phosphorylation in vivo appears to be moderate, implicating another kinase. The integrity of serine 14 and serine 65 residues is required for transcriptional activity, since their mutation into alanine severely impairs MafA capacity to activate transcription. Furthermore, we show that the MafA S14A/S65A mutant displays reduced capacity to induce expression of QR1, an NR-specific target of Maf proteins. Likewise, the integrity of serines 14 and 65 is essential for the MafA ability to stimulate expression of crystallin genes in NR cells and to induce NR-to-lens transdifferentiation. Thus, the MafA capacity to induce differentiation programs is dependent on its phosphorylation.
Collapse
Affiliation(s)
- S Benkhelifa
- UMR 146 CNRS-Institut Curie, Centre Universitaire, 91405 Orsay cedex, France
| | | | | | | | | | | |
Collapse
|
72
|
Kimmel CB, Miller CT, Moens CB. Specification and morphogenesis of the zebrafish larval head skeleton. Dev Biol 2001; 233:239-57. [PMID: 11336493 DOI: 10.1006/dbio.2001.0201] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Forward genetic analyses can reveal important developmental regulatory genes and how they function to pattern morphology. This is because a mutated gene can produce a novel, sometimes beautiful, phenotype that, like the normal phenotype, immediately seems worth understanding. Generally the loss-of-function mutant phenotype is simplified from the wild-type one, and often the nature of the pattern simplification allows one to deduce how the wild-type gene contributes to patterning the normal, more complex, morphology. This truism seems no less valid for the vertebrate head skeleton than for other and simpler cases of patterning in multicellular plants and animals. To show this, we review selected zebrafish craniofacial mutants. "Midline group" mutations, in genes functioning in one of at least three signal transduction pathways, lead to neurocranial pattern truncations that are primarily along the mediolateral axis. Mutation of lazarus/pbx4, encoding a hox gene partner, and mutation of valentino/kreisler, a hox gene regulator, produce anterior-posterior axis disruptions of pharyngeal cartilages. Dorsoventral axis patterning of the same cartilages is disrupted in sucker/endothelin-1 mutants. We infer that different signal transduction pathways pattern cartilage development along these three separate axes. Patterning of at least the anterior-posterior and dorsoventral axes have been broadly conserved, e.g., reduced Endothelin-1 signaling similarly perturbs cartilage specification in chick, mouse, and zebrafish. We hypothesize that Endothelin-1 also is an upstream organizer of the patterns of cellular interactions during cartilage morphogenesis.
Collapse
Affiliation(s)
- C B Kimmel
- Institute of Neuroscience, 1254 University of Oregon, Eugene, Oregon 97403-1254, USA.
| | | | | |
Collapse
|
73
|
Maconochie MK, Nonchev S, Manzanares M, Marshall H, Krumlauf R. Differences in Krox20-dependent regulation of Hoxa2 and Hoxb2 during hindbrain development. Dev Biol 2001; 233:468-81. [PMID: 11336508 DOI: 10.1006/dbio.2001.0197] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During hindbrain development, segmental regulation of the paralogous Hoxa2 and Hoxb2 genes in rhombomeres (r) 3 and 5 involves Krox20-dependent enhancers that have been conserved during the duplication of the vertebrate Hox clusters from a common ancestor. Examining these evolutionarily related control regions could provide important insight into the degree to which the basic Krox20-dependent mechanisms, cis-regulatory components, and their organization have been conserved. Toward this goal we have performed a detailed functional analysis of a mouse Hoxa2 enhancer capable of directing reporter expression in r3 and r5. The combined activities of five separate cis-regions, in addition to the conserved Krox20 binding sites, are involved in mediating enhancer function. A CTTT (BoxA) motif adjacent to the Krox20 binding sites is important for r3/r5 activity. The BoxA motif is similar to one (Box1) found in the Hoxb2 enhancer and indicates that the close proximity of these Box motifs to Krox20 sites is a common feature of Krox20 targets in vivo. Two other rhombomeric elements (RE1 and RE3) are essential for r3/r5 activity and share common TCT motifs, indicating that they interact with a similar cofactor(s). TCT motifs are also found in the Hoxb2 enhancer, suggesting that they may be another common feature of Krox20-dependent control regions. The two remaining Hoxa2 cis-elements, RE2 and RE4, are not conserved in the Hoxb2 enhancer and define differences in some of components that can contribute to the Krox20-dependent activities of these enhancers. Furthermore, analysis of regulatory activities of these enhancers in a Krox20 mutant background has uncovered differences in their degree of dependence upon Krox20 for segmental expression. Together, this work has revealed a surprising degree of complexity in the number of cis-elements and regulatory components that contribute to segmental expression mediated by Krox20 and sheds light on the diversity and evolution of Krox20 target sites and Hox regulatory elements in vertebrates.
Collapse
Affiliation(s)
- M K Maconochie
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | | | | | | | | |
Collapse
|
74
|
Kwan CT, Tsang SL, Krumlauf R, Sham MH. Regulatory analysis of the mouse Hoxb3 gene: multiple elements work in concert to direct temporal and spatial patterns of expression. Dev Biol 2001; 232:176-90. [PMID: 11254356 DOI: 10.1006/dbio.2001.0157] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expression pattern of the mouse Hoxb3 gene is exceptionally complex and dynamic compared with that of other members of the Hoxb cluster. There are multiple types of transcripts for Hoxb3 gene, and the anterior boundaries of its expression vary at different stages of development. Two enhancers flanking Hoxb3 on the 3' and 5' sides regulate Hoxb2 and Hoxb4, respectively, and these control regions define the two ends of a 28-kb interval in and around the Hoxb3 locus. To assay the regulatory potential of DNA fragments in this interval we have used transgenic analysis with a lacZ reporter gene to locate cis-elements for directing the dynamic patterns of Hoxb3 expression. Our detailed analysis has identified four new and widely spaced cis-acting regulatory regions that can together account for major aspects of the Hoxb3 expression pattern. Elements Ib, IIIa, and IVb control gene expression in neural and mesodermal tissues; element Va controls mesoderm-specific gene expression. The most anterior neural expression domain of Hoxb3 is controlled by an r5 enhancer (element IVa); element IIIa directs reporter expression in the anterior spinal cord and hindbrain up to r6, and the region A enhancer (in element I) mediates posterior neural expression. Hence, the regulation of segmental expression of Hoxb3 in the hindbrain is different from that of Hoxa3, as two separate enhancer elements contribute to expression in r5 and r6. The mesoderm-specific element (Va) directs reporter expression to prevertebra C1 at 12.5 dpc, which is the anterior limit of paraxial mesoderm expression for Hoxb3. When tested in combinations, these cis-elements appear to work as modules in an additive manner to recapitulate the major endogenous expression patterns of Hoxb3 during embryogenesis. Together our study shows that multiple control elements direct reporter gene expression in diverse tissue-, temporal-, and spatially restricted subset of the endogenous Hoxb3 expression domains and work in concert to control the neural and mesodermal patterns of expression.
Collapse
Affiliation(s)
- C T Kwan
- Department of Biochemistry, The University of Hong Kong, 5 Sassoon Road, Hong Kong, Pokfulam, China
| | | | | | | |
Collapse
|
75
|
Manzanares M, Wada H, Itasaki N, Trainor PA, Krumlauf R, Holland PW. Conservation and elaboration of Hox gene regulation during evolution of the vertebrate head. Nature 2000; 408:854-7. [PMID: 11130723 DOI: 10.1038/35048570] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The comparison of Hox genes between vertebrates and their closest invertebrate relatives (amphioxus and ascidia) highlights two derived features of Hox genes in vertebrates: duplication of the Hox gene cluster, and an elaboration of Hox expression patterns and roles compared with non-vertebrate chordates. We have investigated how new expression domains and their associated developmental functions evolved, by testing the cis-regulatory activity of genomic DNA fragments from the cephalochordate amphioxus Hox cluster in transgenic mouse and chick embryos. Here we present evidence for the conservation of cis-regulatory mechanisms controlling gene expression in the neural tube for half a billion years of evolution, including a dependence on retinoic acid signalling. We also identify amphioxus Hox gene regulatory elements that drive spatially localized expression in vertebrate neural crest cells, in derivatives of neurogenic placodes and in branchial arches, despite the fact that cephalochordates lack both neural crest and neurogenic placodes. This implies an elaboration of cis-regulatory elements in the Hox gene cluster of vertebrate ancestors during the evolution of craniofacial patterning.
Collapse
Affiliation(s)
- M Manzanares
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, Mill Hill, London, UK
| | | | | | | | | | | |
Collapse
|
76
|
Tomotsune D, Shirai M, Takihara Y, Shimada K. Regulation of Hoxb3 expression in the hindbrain and pharyngeal arches by rae28, a member of the mammalian Polycomb group of genes. Mech Dev 2000; 98:165-9. [PMID: 11044623 DOI: 10.1016/s0925-4773(00)00457-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During animal development, Hox genes are expressed in characteristic, spatially restricted patterns and specify regional identities along the anterior-posterior (A-P) axis. Polycomb group (PcG) proteins in Drosophila repress Hox expression and maintain the expression patterns during development. Mice deficient for homologues of the Drosophila PcG genes, such as M33, bmi1, mel18, rae28 and eed, show altered Hox expression patterns. In this study, we examined the time course of Hoxb3 expression during late gastrulation and early segmentation of rae28-deficient mice. Hoxb3 was expressed ectopically in pharyngeal arch and hindbrain from embryonic day (E) 9.5 and 10.5, respectively. The anterior boundary of ectopic expression in the hindbrain extended gradually in the rostral direction as development proceeded from E10.5 to E12.5. Expression of kreisler and Krox20, which function as positive regulators of Hoxb3 expression, was not affected in rae28-deficient embryos. Analysis of a neural crest marker, p75, in rae28-deficient mice revealed that the neural crest cells begin to ectopically express Hoxb3 after leaving the hindbrain. Our results suggest that rae28 is not required for the establishment but maintenance of Hoxb3 expression.
Collapse
Affiliation(s)
- D Tomotsune
- Department of Medical Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, 565-0871, Osaka, Japan.
| | | | | | | |
Collapse
|
77
|
Trainor PA, Krumlauf R. Patterning the cranial neural crest: hindbrain segmentation and Hox gene plasticity. Nat Rev Neurosci 2000; 1:116-24. [PMID: 11252774 DOI: 10.1038/35039056] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding the patterning mechanisms that control head development--particularly the neural crest and its contribution to bones, nerves and connective tissue--is an important problem, as craniofacial anomalies account for one-third of all human congenital defects. Classical models for craniofacial patterning argue that the morphogenic program and Hox gene identity of the neural crest is pre-patterned, carrying positional information acquired in the hindbrain to the peripheral nervous system and the branchial arches. Recently, however, plasticity of Hox gene expression has been observed in the hindbrain and cranial neural crest of chick, mouse and zebrafish embryos. Hence, craniofacial development is not dependent on neural crest prepatterning, but is regulated by a more complex integration of cell and tissue interactions.
Collapse
Affiliation(s)
- P A Trainor
- Division of Developmental Neurobiology, NIMR, The Ridgeway, Mill Hill, London, NW7 1AA, UK.
| | | |
Collapse
|
78
|
Trainor PA, Manzanares M, Krumlauf R. Genetic interactions during hindbrain segmentation in the mouse embryo. Results Probl Cell Differ 2000; 30:51-89. [PMID: 10857185 DOI: 10.1007/978-3-540-48002-0_3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- P A Trainor
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, Mill Hill, London, UK
| | | | | |
Collapse
|
79
|
Zhang F, Nagy Kovács E, Featherstone MS. Murine hoxd4 expression in the CNS requires multiple elements including a retinoic acid response element. Mech Dev 2000; 96:79-89. [PMID: 10940626 DOI: 10.1016/s0925-4773(00)00377-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have identified a retinoic acid response element (RARE) within a neural enhancer located 3' to the Hoxd4 gene. This RARE is required for the initiation and maintenance of Hoxd4 transgene expression in neurectoderm, and for full anteriorized expression upon retinoic acid (RA) treatment. Mutations within the sequence TTTTCTG, located 2 bp downstream of the RARE, posteriorized transgene activity. However, the onset of transgene expression and its response to RA were indistinguishable from wild type. While the TTTTCTG motif resembles a CDX binding site, human CDX1 protein did not interact with this element in vitro. Three additional regions were also shown to control transgene expression in neurectoderm, establishing that multiple elements constitute the Hoxd4 neural enhancer.
Collapse
Affiliation(s)
- F Zhang
- McGill Cancer Centre, McGill University, 3655 Promenade Sir William Osler, Québec H3G 1Y6, Montréal, Canada
| | | | | |
Collapse
|
80
|
Abstract
Retinoid signalling has been implicated in regulating a wide variety of processes in vertebrate development. Recent advances from analyses on the synthesis, degradation and distribution of retinoids in combination with functional analysis of signalling components have provided important insights into the regulation of patterning the nervous system and the hindbrain in particular.
Collapse
Affiliation(s)
- A Gavalas
- Division of Developmental Neurobiology, National Institute for Medical research, Mill Hill, UK.
| | | |
Collapse
|
81
|
Helms AW, Abney AL, Ben-Arie N, Zoghbi HY, Johnson JE. Autoregulation and multiple enhancers control Math1 expression in the developing nervous system. Development 2000; 127:1185-96. [PMID: 10683172 DOI: 10.1242/dev.127.6.1185] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Development of the vertebrate nervous system requires the actions of transcription factors that establish regional domains of gene expression, which results in the generation of diverse neuronal cell types. MATH1, a transcription factor of the bHLH class, is expressed during development of the nervous system in multiple neuronal domains, including the dorsal neural tube, the EGL of the cerebellum and the hair cells of the vestibular and auditory systems. MATH1 is essential for proper development of the granular layer of the cerebellum and the hair cells of the cochlear and vestibular systems, as shown in mice carrying a targeted disruption of Math1. Previously, we showed that 21 kb of sequence flanking the Math1-coding region is sufficient for Math1 expression in transgenic mice. Here we identify two discrete sequences within the 21 kb region that are conserved between mouse and human, and are sufficient for driving a lacZ reporter gene in these domains of Math1 expression in transgenic mice. The two identified enhancers, while dissimilar in sequence, appear to have redundant activities in the different Math1 expression domains except the spinal neural tube. The regulatory mechanisms for each of the diverse Math1 expression domains are tightly linked, as separable regulatory elements for any given domain of Math1 expression were not found, suggesting that a common regulatory mechanism controls these apparently unrelated domains of expression. In addition, we demonstrate a role for autoregulation in controlling the activity of the Math1 enhancer, through an essential E-box consensus binding site.
Collapse
Affiliation(s)
- A W Helms
- Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | | | | | | | | |
Collapse
|
82
|
Niederreither K, Vermot J, Schuhbaur B, Chambon P, Dollé P. Retinoic acid synthesis and hindbrain patterning in the mouse embryo. Development 2000; 127:75-85. [PMID: 10654602 DOI: 10.1242/dev.127.1.75] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Targeted disruption of the murine retinaldehyde dehydrogenase 2 (Raldh2) gene precludes embryonic retinoic acid (RA) synthesis, leading to midgestational lethality (Niederreither, K., Subbarayan, V., Dolle, P. and Chambon, P. (1999). Nature Genet. 21, 444–448). We describe here the effects of this RA deficiency on the development of the hindbrain and associated neural crest. Morphological segmentation is impaired throughout the hindbrain of Raldh2−/− embryos, but its caudal portion becomes preferentially reduced in size during development. Specification of the midbrain region and of the rostralmost rhombomeres is apparently normal in the absence of RA synthesis. In contrast, marked alterations are seen throughout the caudal hindbrain of mutant embryos. Instead of being expressed in two alternate rhombomeres (r3 and r5), Krox20 is expressed in a single broad domain, correlating with an abnormal expansion of the r2-r3 marker Meis2. Instead of forming a defined r4, Hoxb1- and Wnt8A-expressing cells are scattered throughout the caudal hindbrain, whereas r5/r8 markers such as kreisler or group 3/4 Hox genes are undetectable or markedly downregulated. Lack of alternate Eph receptor gene expression could explain the failure to establish rhombomere boundaries. Increased apoptosis and altered migratory pathways of the posterior rhombencephalic neural crest cells are associated with impaired branchial arch morphogenesis in mutant embryos. We conclude that RA produced by the embryo is required to generate posterior cell fates in the developing mouse hindbrain, its absence leading to an abnormal r3 (and, to a lesser extent, r4) identity of the caudal hindbrain cells.
Collapse
Affiliation(s)
- K Niederreither
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP/Collège de France, CU de Strasbourg
| | | | | | | | | |
Collapse
|
83
|
Itasaki N, Bel-Vialar S, Krumlauf R. 'Shocking' developments in chick embryology: electroporation and in ovo gene expression. Nat Cell Biol 1999; 1:E203-7. [PMID: 10587659 DOI: 10.1038/70231] [Citation(s) in RCA: 245] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Efficient gene transfer by electroporation of chick embryos in ovo has allowed the development of new approaches to the analysis of gene regulation, function and expression, creating an exciting opportunity to build upon the classical manipulative advantages of the chick embryonic system. This method is applicable to other vertebrate embryos and is an important tool with which to address cell and developmental biology questions. Here we describe the technical aspects of in ovo electroporation, its different applications and future perspectives.
Collapse
Affiliation(s)
- N Itasaki
- Laboratory of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | |
Collapse
|
84
|
Dupé V, Ghyselinck NB, Wendling O, Chambon P, Mark M. Key roles of retinoic acid receptors alpha and beta in the patterning of the caudal hindbrain, pharyngeal arches and otocyst in the mouse. Development 1999; 126:5051-9. [PMID: 10529422 DOI: 10.1242/dev.126.22.5051] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mouse fetuses carrying targeted inactivations of both the RAR(α) and the RARbeta genes display a variety of malformations in structures known to be partially derived from the mesenchymal neural crest originating from post-otic rhombomeres (e.g. thymus and great cephalic arteries) (Ghyselinck, N., Dupe, V., Dierich, A., Messaddeq, N., Garnier, J.M., Rochette-Egly, C., Chambon, P. and Mark M. (1997). Int. J. Dev. Biol. 41, 425–447). In a search for neural crest defects, we have analysed the rhombomeres, cranial nerves and pharyngeal arches of these double null mutants at early embryonic stages. The mutant post-otic cranial nerves are disorganized, indicating that RARs are involved in the patterning of structures derived from neurogenic neural crest, even though the lack of RARalpha and RARbeta has no detectable effect on the number and migration path of neural crest cells. Interestingly, the double null mutation impairs early developmental processes known to be independent of the neural crest e.g., the initial formation of the 3rd and 4th branchial pouches and of the 3rd, 4th and 6th arch arteries. The double mutation also results in an enlargement of rhombomere 5, which is likely to be responsible for the induction of supernumerary otic vesicles, in a disappearance of the rhombomere 5/6 boundary, and in profound alterations of rhombomere identities. In the mutant hindbrain, the expression domain of kreisler is twice its normal size and the caudal stripe of Krox-20 extends into the presumptive rhombomeres 6 and 7 region. In this region, Hoxb-1 is ectopically expressed, Hoxb-3 is ectopically up-regulated and Hoxd-4 expression is abolished. These data, which indicate that retinoic acid signaling through RARalpha and/or RARbeta is essential for the specification of rhombomere identities and for the control of caudal hindbrain segmentation by restricting the expression domains of kreisler and of Krox-20, also strongly suggest that this signaling plays a crucial role in the posteriorization of the hindbrain neurectoderm.
Collapse
Affiliation(s)
- V Dupé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP/ Collège de France, B.P. 163, CU de STRASBOURG, France.
| | | | | | | | | |
Collapse
|
85
|
Locascio A, Aniello F, Amoroso A, Manzanares M, Krumlauf R, Branno M. Patterning the ascidian nervous system: structure, expression and transgenic analysis of the CiHox3 gene. Development 1999; 126:4737-48. [PMID: 10518491 DOI: 10.1242/dev.126.21.4737] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Hox genes play a fundamental role in the establishment of chordate body plan, especially in the anteroposterior patterning of the nervous system. Particularly interesting are the anterior groups of Hox genes (Hox1-Hox4) since their expression is coupled to the control of regional identity in the anterior regions of the nervous system, where the highest structural diversity is observed. Ascidians, among chordates, are considered a good model to investigate evolution of Hox gene, organisation, regulation and function. We report here the cloning and the expression pattern of CiHox3, a Ciona intestinalis anterior Hox gene homologous to the paralogy group 3 genes. In situ hybridization at the larva stage revealed that CiHox3 expression was restricted to the visceral ganglion of the central nervous system. The presence of a sharp posterior boundary and the absence of transcript in mesodermal tissues are distinctive features of CiHox3 expression when compared to the paralogy group 3 in other chordates. We have investigated the regulatory elements underlying CiHox3 neural-specific expression and, using transgenic analysis, we were able to isolate an 80 bp enhancer responsible of CiHox3 activation in the central nervous system (CNS). A comparative study between mouse and Ciona Hox3 promoters demonstrated that divergent mechanisms are involved in the regulation of these genes in vertebrates and ascidians.
Collapse
Affiliation(s)
- A Locascio
- Department of Biochemistry and Molecular Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, Italy.
| | | | | | | | | | | |
Collapse
|
86
|
Wang PW, Eisenbart JD, Cordes SP, Barsh GS, Stoffel M, Le Beau MM. Human KRML (MAFB): cDNA cloning, genomic structure, and evaluation as a candidate tumor suppressor gene in myeloid leukemias. Genomics 1999; 59:275-81. [PMID: 10444328 DOI: 10.1006/geno.1999.5884] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Members of the MAF family of basic region/leucine zipper transcription factors can affect transcription in either a positive or a negative fashion, depending on their partner protein(s) and the context of the target promoter. The KRML (MAFB) transcriptional regulator plays a pivotal role in regulating lineage-specific hematopoiesis by repressing ETS1-mediated transcription of erythroid-specific genes in myeloid cells. In previous studies, we mapped the human KRML gene within a genomic contig on human chromosome 20, bands q11.2-q13.1. We have isolated the human cDNA containing the full-length predicted open reading frame (ORF). Multiple KRML transcripts of approximately 1.8 and approximately 3 kb, which differ in the length of the 3' untranslated region, are ubiquitously expressed in hematopoietic tissues and encode a protein with 323 amino acids (MW 35,832). The protein has 84% identity and 92% similarity to the murine protein. The ORF of the human KRML gene contains no introns, and the gene spans approximately 3 kb. KRML maps within the smallest commonly deleted segment in malignant myeloid disorders characterized by a deletion of 20q; however, we detected no mutations of KRML in leukemia cells with loss of 20q. Thus, KRML is unlikely to be involved in the pathogenesis of malignant myeloid disorders characterized by abnormalities of chromosome 20.
Collapse
Affiliation(s)
- P W Wang
- Department of Medicine, The Cancer Research Center, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
87
|
Manzanares M, Trainor PA, Nonchev S, Ariza-McNaughton L, Brodie J, Gould A, Marshall H, Morrison A, Kwan CT, Sham MH, Wilkinson DG, Krumlauf R. The role of kreisler in segmentation during hindbrain development. Dev Biol 1999; 211:220-37. [PMID: 10395784 DOI: 10.1006/dbio.1999.9318] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mouse kreisler gene is expressed in rhombomeres (r) 5 and 6 during neural development and kreisler mutants have patterning defects in the hindbrain that are not fully understood. Here we analyzed this phenotype with a combination of genetic, molecular, and cellular marking techniques. Using Hox/lacZ transgenic mice as reporter lines and by analyzing Eph/ephrin expression, we have found that while r5 fails to form in these mice, r6 is present. This shows that kreisler has an early role in the formation of r5. We also observed patterning defects in r3 and r4 that are outside the normal domain of kreisler expression. In both heterozygous and homozygous kreisler embryos some r5 markers are induced in r3, suggesting that there is a partial change in r3 identity that is not dependent upon the loss of r5. To investigate the cellular character of r6 in kreisler embryos we performed heterotopic grafting experiments in the mouse hindbrain to monitor its mixing properties. Control experiments revealed that cells from even- or odd-numbered segments only mixed freely with themselves, but not with cells of opposite character. Transposition of cells from the r6 territory of kreisler mutants reveals that they adopt mature r6 characteristics, as they freely mix only with cells from even-numbered rhombomeres. Analysis of Phox2b expression shows that some aspects of later neurogenesis in r6 are altered, which may be associated with the additional roles of kreisler in regulating segmental identity. Together these results suggest that the formation of r6 has not been affected in kreisler mutants. This analysis has revealed phenotypic and mechanistic differences between kreisler and its zebrafish equivalent valentino. While valentino is believed to subdivide preexisting segmental units, in the mouse kreisler specifies a particular segment. The formation of r6 independent of r5 argues against a role of kreisler in prorhombomeric segmentation of the mouse hindbrain. We conclude that the mouse kreisler gene regulates multiple steps in segmental patterning involving both the formation of segments and their A-P identity.
Collapse
Affiliation(s)
- M Manzanares
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|