51
|
Two deltaC splice-variants have distinct signaling abilities during somitogenesis and midline patterning. Dev Biol 2008; 318:126-32. [PMID: 18430417 DOI: 10.1016/j.ydbio.2008.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 02/27/2008] [Accepted: 03/08/2008] [Indexed: 11/22/2022]
Abstract
Notch signaling is required for many developmental processes, yet differences in the signaling abilities of various Notch ligands are poorly understood. Here, we have isolated a splice variant of the zebrafish Notch ligand deltaC in which the inclusion of the last intron leads to a truncation of the C-terminal 39 amino acids (deltaC(tv2)). We show that, unlike deltaC(tv1), deltaC(tv2) cannot function effectively in somitogenesis but has an enhanced ability to signal during midline development. Additionally, over-expression of deltaC(tv2) preferentially affects anterior midline development, while another Notch ligand, deltaD, shows a posterior bias. Using chimeric Deltas we show that the intracellular domain is responsible for the strength of signal in midline development, while the extracellular domain influences the anterior-posterior bias of the effect. Together our data show that different deltas can signal in biologically distinct ways in both midline formation and somitogenesis. Moreover, it illustrates the importance of cell-type-dependent modifiers of Notch signaling in providing ligand specificity.
Collapse
|
52
|
Baldessari D, Mione M. How to create the vascular tree? (Latest) help from the zebrafish. Pharmacol Ther 2008; 118:206-30. [PMID: 18439684 DOI: 10.1016/j.pharmthera.2008.02.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 02/19/2008] [Indexed: 12/22/2022]
Abstract
The cardiovascular system provides oxygen, nutrients and hormones to organs, it directs traffic of metabolites and it maintains tissue homeostasis. It is one of the first organs assembled during vertebrate development and it is essential to life from early stages to adult. For these reasons, the process of vessel formation has being studied for more than a century, but it is only in the late eighties that there has been an explosion of research in the field with the employment of various in vitro and in vivo model systems. The zebrafish (Danio rerio) offers several advantages for in vivo studies; it played a fundamental role in new discoveries and helped to refine our knowledge of the vascular system. This review recapitulates the zebrafish data on vasculogenesis and angiogenesis, including the specification of the haemangioblasts from the mesoderm, their migration to form the vascular cord followed by axial vessels specification, the primary and secondary sprouting of intersomitic vessels, the formation of the lumen, the arterial versus venous specification and patterning. To emphasize the strengths of the zebrafish system in the vascular field, we summarize main tools, such as gene expression and mutagenesis screens, knock down technologies, transgenic lines and imaging, which played a major role in the development of the field and allowed significant discoveries, for instance the recent visualization of the lymphatic system in zebrafish. This information contributes to the prospective of drug discovery to cure human diseases linked to angiogenesis, not last tumours.
Collapse
Affiliation(s)
- Danila Baldessari
- IFOM-IEO Campus (FIRC Institute of Molecular Oncology Foundation-European Institute of Oncology), Via Adamello 16, 20139 Milan, Italy.
| | | |
Collapse
|
53
|
Serluca FC. Development of the proepicardial organ in the zebrafish. Dev Biol 2007; 315:18-27. [PMID: 18206866 DOI: 10.1016/j.ydbio.2007.10.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 09/25/2007] [Accepted: 10/05/2007] [Indexed: 12/25/2022]
Abstract
The epicardium is the last layer of the vertebrate heart to form, surrounding the heart muscle during embryogenesis and providing signaling cues essential to the continued growth and differentiation of the heart. This outer layer of the heart develops from a transient structure, the proepicardial organ (PEO). Despite its essential roles, the early signals required for the formation of the PEO and the epicardium remain poorly understood. The molecular markers wt1 and tcf21 are used to identify the epicardial layer in the zebrafish heart, to trace its development and to determine genes required for its normal development. Disruption of lateral plate mesoderm (LPM) migration through knockdown of miles apart or casanova leads to cardia bifida with each bilateral heart associated with its own PEO, suggesting that the earliest progenitors of the epicardium lie in the LPM. Using a gene knockdown approach, a genetic framework for PEO development is outlined. The pandora/spt6 gene is required for multiple cardiac lineages, the zinc-finger transcription factor wt1 is required for the epicardial lineage only and finally, the cell polarity genes heart and soul and nagie oko are required for proper PEO morphogenesis.
Collapse
Affiliation(s)
- Fabrizio C Serluca
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
54
|
Akanuma T, Koshida S, Kawamura A, Kishimoto Y, Takada S. Paf1 complex homologues are required for Notch-regulated transcription during somite segmentation. EMBO Rep 2007; 8:858-63. [PMID: 17721442 PMCID: PMC1973952 DOI: 10.1038/sj.embor.7401045] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 06/28/2007] [Accepted: 06/29/2007] [Indexed: 01/13/2023] Open
Abstract
Members of the yeast polymerase-associated factor 1 (Paf1) complex, which is composed of at least five components (Paf1, Rtf1, Cdc73, Leo1 and Ctr9), are conserved from yeast to humans. Although these proteins have been implicated in RNA polymerase II-mediated transcription, their roles in vertebrate development have not been explained. Here, we show that a zebrafish mutant with a somite segmentation defect is deficient in rtf1. In addition, embryos deficient in rtf1 or ctr9 show abnormal development of the heart, ears and neural crest cells. rtf1 is required for correct RNA levels of the Notch-regulated genes her1, her7 and deltaC, and also for Notch-induced her1 expression in the presomitic mesoderm. Furthermore, the phenotype observed in rtf1-deficient mutants is enhanced by an additional deficiency in mind bomb, which encodes an effector of Notch signalling. Therefore, zebrafish homologues of the yeast Paf1 complex seem to preferentially affect a subset of genes, including Notch-regulated genes, during embryogenesis.
Collapse
Affiliation(s)
- Takashi Akanuma
- Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Sumito Koshida
- Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan
| | - Akinori Kawamura
- Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | | | - Shinji Takada
- Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan
- Tel: +81 564 59 5241; Fax: +81 564 59 5240; E-mail:
| |
Collapse
|
55
|
Kok FO, Oster E, Mentzer L, Hsieh JC, Henry CA, Sirotkin HI. The role of the SPT6 chromatin remodeling factor in zebrafish embryogenesis. Dev Biol 2007; 307:214-26. [PMID: 17570355 PMCID: PMC2049011 DOI: 10.1016/j.ydbio.2007.04.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 04/06/2007] [Accepted: 04/26/2007] [Indexed: 11/29/2022]
Abstract
Somitogenesis is a highly controlled process that results in segmentation of the paraxial mesoderm. Notch pathway activity in the presomitic mesoderm is fundamental for management of synchronized gene expression which is necessary for regulation of somitogenesis. We have isolated an embryonic lethal mutation, SBU2, that causes somite formation defects very similar to Notch pathway mutants. SBU2 mutants generate only 6-7 asymmetrically arranged somites. However, in contrast to Notch pathway mutants, these mutants do not maintain previously formed somite boundaries and by 24 hpf, almost no somite boundaries remain. Other developmental processes disrupted in SBU2 mutants include tail morphogenesis, muscle fiber elongation, pigmentation, circulatory system development and neural differentiation. We demonstrated that these defects are the result of a nonsense mutation within the spt6 gene. spt6 encodes a transcription elongation factor that genetically interacts with the Paf-1 chromatin remodeling complex. SBU2 mutant phenotypes could be rescued by microinjection of spt6 mRNA and microinjection of spt6 morpholinos phenocopied the mutation. Our real-time PCR analysis revealed that Spt6 is essential for the transcriptional response to activation of the Notch pathway. Analysis of sbu2;mib double mutants indicates that Spt6 deficiency suppresses the neurogenic effects of the mib. Altogether, these results demonstrate that Spt6 is critical for somite formation in zebrafish and suggest that some defects observed in spt6 mutants result from alterations in Notch signaling. However, additional Spt6 mutant phenotypes are likely caused by vital functions of Spt6 in other pathways.
Collapse
Affiliation(s)
- Fatma O. Kok
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York 11794
| | - Emma Oster
- Department of Biological Sciences, University of Maine, Orono, ME 04469-2988
| | - Laura Mentzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
| | - Jen-Chih Hsieh
- Department of Biochemistry, Stony Brook University, Stony Brook, New York 11794
| | - Clarissa A. Henry
- Department of Biological Sciences, University of Maine, Orono, ME 04469-2988
| | - Howard I. Sirotkin
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794
- *Corresponding author: Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794, Phone: 631-632-4818, Fax: 631-632-6661,
| |
Collapse
|
56
|
Smear MC, Tao HW, Staub W, Orger MB, Gosse NJ, Liu Y, Takahashi K, Poo MM, Baier H. Vesicular glutamate transport at a central synapse limits the acuity of visual perception in zebrafish. Neuron 2007; 53:65-77. [PMID: 17196531 PMCID: PMC1828615 DOI: 10.1016/j.neuron.2006.12.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 10/30/2006] [Accepted: 12/13/2006] [Indexed: 10/23/2022]
Abstract
The neural circuitry that constrains visual acuity in the CNS has not been experimentally identified. We show here that zebrafish blumenkohl (blu) mutants are impaired in resolving rapid movements and fine spatial detail. The blu gene encodes a vesicular glutamate transporter expressed by retinal ganglion cells. Mutant retinotectal synapses release less glutamate, per vesicle and per terminal, and fatigue more quickly than wild-type in response to high-frequency stimulation. In addition, mutant axons arborize more extensively, thus increasing the number of synaptic terminals and effectively normalizing the combined input to postsynaptic cells in the tectum. This presumably homeostatic response results in larger receptive fields of tectal cells and a degradation of the retinotopic map. As predicted, mutants have a selective deficit in the capture of small prey objects, a behavior dependent on the tectum. Our studies successfully link the disruption of a synaptic protein to complex changes in neural circuitry and behavior.
Collapse
Affiliation(s)
- Matthew C Smear
- University of California, San Francisco, Department of Physiology, Program in Neuroscience, 1550 4th Street, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Eissenberg JC, Shilatifard A, Dorokhov N, Michener DE. Cdk9 is an essential kinase in Drosophila that is required for heat shock gene expression, histone methylation and elongation factor recruitment. Mol Genet Genomics 2006; 277:101-14. [PMID: 17001490 DOI: 10.1007/s00438-006-0164-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 08/30/2006] [Indexed: 12/11/2022]
Abstract
Phosphorylation of the large RNA Polymerase II subunit C-terminal domain (CTD) is believed to be important in promoter clearance and for recruiting protein factors that function in messenger RNA synthesis and processing. P-TEFb is a protein kinase that targets the (CTD). The goal of this study was to identify chromatin modifications and associations that require P-TEFb activity in vivo. We knocked down the catalytic subunit of P-TEFb, Cdk9, in Drosophila melanogaster using RNA interference. Cdk9 knockdown flies die during metamorphosis. Phosphorylation at serine 2 and serine 5 of the CTD heptad repeat were both dramatically reduced in knockdown larvae. Hsp 70 mRNA induction by heat shock was attenuated in Cdk9 knockdown larvae. Both mono- and trimethylation of histone H3 at lysine 4 were dramatically reduced, suggesting a link between CTD phosphorylation and histone methylation in transcribed chromatin in vivo. Levels of the chromo helicase protein CHD1 were reduced in Cdk9 knockdown chromosomes, suggesting that CHD1 is targeted to chromosomes through P-TEFb-dependent histone methylation. Dimethylation of histone H3 at lysine 36 was significantly reduced in knockdown larvae, implicating CTD phosphorylation in the regulation of this chromatin modification. Binding of the RNA Polymerase II elongation factor ELL was reduced in knockdown chromosomes, suggesting that ELL is recruited to active polymerase via CTD phosphorylation.
Collapse
Affiliation(s)
- Joel C Eissenberg
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA.
| | | | | | | |
Collapse
|
58
|
Saunders A, Core LJ, Lis JT. Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol 2006; 7:557-67. [PMID: 16936696 DOI: 10.1038/nrm1981] [Citation(s) in RCA: 387] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Abbie Saunders
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
59
|
Hayashi T, Asami M, Higuchi S, Shibata N, Agata K. Isolation of planarian X-ray-sensitive stem cells by fluorescence-activated cell sorting. Dev Growth Differ 2006; 48:371-80. [PMID: 16872450 DOI: 10.1111/j.1440-169x.2006.00876.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The remarkable capability of planarian regeneration is mediated by a group of adult stem cells referred to as neoblasts. Although these cells possess many unique cytological characteristics (e.g. they are X-ray sensitive and contain chromatoid bodies), it has been difficult to isolate them after cell dissociation. This is one of the major reasons why planarian regenerative mechanisms have remained elusive for a long time. Here, we describe a new method to isolate the planarian adult stem cells as X-ray-sensitive cell populations by fluorescence-activated cell sorting (FACS). Dissociated cells from whole planarians were labeled with fluorescent dyes prior to fractionation by FACS. We compared the FACS profiles from X-ray-irradiated and non-irradiated planarians, and thereby found two cell fractions which contained X-ray-sensitive cells. These fractions, designated X1 and X2, were subjected to electron microscopic morphological analysis. We concluded that X-ray-sensitive cells in both fractions possessed typical stem cell morphology: an ovoid shape with a large nucleus and scant cytoplasm, and chromatoid bodies in the cytoplasm. This method of isolating X-ray-sensitive cells using FACS may provide a key tool for advancing our understanding of the stem cell system in planarians.
Collapse
Affiliation(s)
- Tetsutaro Hayashi
- RIKEN Center for Developmental Biology, Minatojima-minamimachi, Chuo-ku, Kobe, Japan
| | | | | | | | | |
Collapse
|
60
|
Abstract
The zebrafish is emerging as a system of choice for modeling human disease. In this issue of Cell Metabolism, Mendelsohn et al. (2006) describe a model for Menkes disease, a genetic disorder in copper utilization. Using genetic and chemical screens, the authors highlight the impact of maternal nutrition on embryo development. The work reveals a hierarchy of temporal and dosage-dependent phenotypes for copper nutrition.
Collapse
Affiliation(s)
- Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | |
Collapse
|
61
|
Sawyer SJ, Gerstner KA, Callard GV. Real-time PCR analysis of cytochrome P450 aromatase expression in zebrafish: gene specific tissue distribution, sex differences, developmental programming, and estrogen regulation. Gen Comp Endocrinol 2006; 147:108-17. [PMID: 16458310 DOI: 10.1016/j.ygcen.2005.12.010] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 12/12/2005] [Accepted: 12/13/2005] [Indexed: 11/16/2022]
Abstract
In teleost fish, the predominant brain form of cytochrome P450 aromatase (P450aromB) is a neural marker of estrogen effect, and an entry point for studying the role of hormonal and environmental estrogens on neurodevelopment and neuroplasticity. As part of a project using zebrafish to investigate these issues, we developed and validated a rapid, sensitive, and reproducible real-time polymerase chain reaction (PCR) assay for quantifying and comparing P450aromB and P450aromA expression in unfertilized eggs, embryos/larvae, and dissected tissues of adult fish. Results confirm that P450aromB and -A predominate in brain and ovary, respectively, and further show that the degree of overlapping expression (ratio, B:A) is 100:1 in brain, 1:50 in ovary, 1:1 in eye, and 2:1 in testis. Sex differences were observed in eye only (female>male). When compared to whole ovaries, unfertilized eggs had similar levels of P450aromA but enrichment of P450aromB, which suggests preferential synthesis or accumulation in mature oocytes. Both of the maternally derived aromatase isoforms were rapidly degraded post-fertilization, but the onset of embryonic P450aromB expression (5 hpf) was much earlier than P450aromA (48 hpf), and reached higher maximum levels (e.g., 10-fold at 72 hpf). Consistent with earlier reports, P450aromB but not -A was estrogen-inducible, but the estrogen response system in embryos was far more robust than in adults (>100- vs. <4-fold maximal induction, respectively). Application of this real-time PCR assay to measurement of P450aromB and -A in zebrafish embryos has utility for routine screening of chemicals and environmental samples for estrogen-like bioactivity and neural effects.
Collapse
|
62
|
Cooper KL, Armstrong J, Moens CB. Zebrafish foggy/spt 5 is required for migration of facial branchiomotor neurons but not for their survival. Dev Dyn 2005; 234:651-8. [PMID: 16193504 PMCID: PMC2597073 DOI: 10.1002/dvdy.20584] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Transcript elongation is a critical step in the production of mature messenger RNAs. Many factors have been identified that are required for transcript elongation, including Spt 5. Studies in yeast determined that spt 5 is required for cell viability, and analyses in Drosophila indicate Spt 5 is localized to sites of active transcription, suggesting it is required generally for transcription. However, the requirement for spt 5 for cell viability in a metazoan organism has not been addressed. We determined that zebrafish foggy/spt 5 is required cell-autonomously for the posterior migration of facial branchiomotor neurons from rhombomere 4 (r4) into r6 and r7 of the hindbrain. These genetic mosaics also give us the unique opportunity to determine whether spt 5 is required for mRNA transcription equivalently at all loci by addressing two processes within the same cell-neuronal migration and cell viability. In a wild-type host, spt 5 null facial branchiomotor neurons survive to at least 5 days postfertilization while failing to migrate posteriorly. This finding indicates that spt 5-dependent transcript elongation is required cell-autonomously for a complex cell migration but not for the survival of these same cells. This work provides evidence that transcript elongation is not a global mechanism equivalently required by all loci and may actually be under more strict developmental regulation.
Collapse
Affiliation(s)
- Kimberly L Cooper
- HHMI, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
63
|
Grasser KD. Emerging role for transcript elongation in plant development. TRENDS IN PLANT SCIENCE 2005; 10:484-90. [PMID: 16150628 DOI: 10.1016/j.tplants.2005.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 08/04/2005] [Accepted: 08/24/2005] [Indexed: 05/04/2023]
Abstract
Transcript elongation by RNA polymerase II (RNAPII), once regarded as the simple extension of the initiated mRNA, is a complex and highly regulated phase of the transcription cycle. Many factors have been identified that contribute to the dynamic control of the elongation stage of transcription. There are elongation factors that modulate the activity of RNAPII and other factors that facilitate the transcription through chromatin. Recent studies of mutants defective in elongation factors have revealed the importance of proper transcript elongation for the development of higher eukaryotes. Here, the essentials of transcript elongation are briefly summarized to discuss its role in developmental processes.
Collapse
Affiliation(s)
- Klaus D Grasser
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark.
| |
Collapse
|
64
|
Cejas PJ, Carlson LM, Kolonias D, Zhang J, Lindner I, Billadeau DD, Boise LH, Lee KP. Regulation of RelB expression during the initiation of dendritic cell differentiation. Mol Cell Biol 2005; 25:7900-16. [PMID: 16107733 PMCID: PMC1190284 DOI: 10.1128/mcb.25.17.7900-7916.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The transcription factor RelB is required for proper development and function of dendritic cells (DCs), and its expression is upregulated early during differentiation from a variety of progenitors. We explored this mechanism of upregulation in the KG1 cell line model of a DC progenitor and in the differentiation-resistant KG1a subline. RelB expression is relatively higher in untreated KG1a cells but is upregulated only during differentiation of KG1 by an early enhancement of transcriptional elongation, followed by an increase in transcription initiation. Restoration of protein kinase CbetaII (PKCbetaII) expression in KG1a cells allows them to differentiate into DCs. We show that PKCbetaII also downregulated constitutive expression of NF-kappaB in KG1a-transfected cells and restores the upregulation of RelB during differentiation by increased transcriptional initiation and elongation. The two mechanisms are independent and sensitive to PKC signaling levels. Conversely, RelB upregulation was inhibited in primary human monocytes where PKCbetaII expression was knocked down by small interfering RNA targeting. Altogether, the data show that RelB expression during DC differentiation is controlled by PKCbetaII-mediated regulation of transcriptional initiation and elongation.
Collapse
Affiliation(s)
- Pedro J Cejas
- University of Miami School of Medicine, Department of Microbiology and Immunology, FL 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Yergeau DA, Cornell CN, Parker SK, Zhou Y, Detrich HW. bloodthirsty, an RBCC/TRIM gene required for erythropoiesis in zebrafish. Dev Biol 2005; 283:97-112. [PMID: 15890331 DOI: 10.1016/j.ydbio.2005.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 03/31/2005] [Accepted: 04/01/2005] [Indexed: 12/31/2022]
Abstract
The Antarctic icefishes (family Channichthyidae, suborder Notothenioidei) constitute the only vertebrate taxon that fails to produce red blood cells. These fishes can be paired with closely related, but erythrocyte-producing, notothenioids to discover erythropoietic genes via representational difference analysis. Using a B30.2-domain-encoding DNA probe so derived from the hematopoietic kidney (pronephros) of a red-blooded Antarctic rockcod, Notothenia coriiceps, we discovered a related, novel gene, bloodthirsty (bty), that encoded a 547-residue protein that contains sequential RING finger, B Box, coiled-coil, and B30.2 domains. bty mRNA was expressed by the pronephric kidney of N. coriiceps at a steady-state level 10-fold greater than that found in the kidney of the icefish Chaenocephalus aceratus. To test the function of bty, we cloned the orthologous zebrafish gene from a kidney cDNA library. Whole-mount in situ hybridization of zebrafish embryos showed that bty mRNA was present throughout development and, after the mid-blastula transition, was expressed in the head and in or near the site of primitive erythropoiesis in the tail just prior to red cell production. One- to four-cell embryos injected with two distinct antisense morpholino oligonucleotides (MOs) targeted to the 5'-end of the bty mRNA failed to develop red cells, whereas embryos injected with 4- and 5-bp mismatch control MOs produced wild-type quantities of erythrocytes. The morphant phenotype was rescued by co-injection of synthetic bty mRNA containing an artificial 5'-untranslated region (UTR) with the antisense MO that bound the 5'-UTR of the wild-type bty transcript. Furthermore, the expression of genes that mark terminal erythroid differentiation was greatly reduced in the antisense-MO-treated embryos. We conclude that bty is likely to play a role in differentiation of the committed red cell progenitor.
Collapse
Affiliation(s)
- Donald A Yergeau
- Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
66
|
Kuraku S, Usuda R, Kuratani S. Comprehensive survey of carapacial ridge-specific genes in turtle implies co-option of some regulatory genes in carapace evolution. Evol Dev 2005; 7:3-17. [PMID: 15642085 DOI: 10.1111/j.1525-142x.2005.05002.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The turtle shell is an evolutionary novelty in which the developmental pattern of the ribs is radically modified. In contrast to those of other amniotes, turtle ribs grow laterally into the dorsal dermis to form a carapace. The lateral margin of carapacial primordium is called the carapacial ridge (CR), and is thought to play an essential role in carapace patterning. To reveal the developmental mechanisms underlying this structure, we systematically screened for genes expressed specifically in the CR of the Chinese soft-shelled turtle, Pelodiscus sinensis, using microbead-based differential cDNA analysis and real-time reverse transcription-polymerase chain reaction. We identified orthologs of Sp5, cellular retinoic acid-binding protein-I (CRABP-I), adenomatous polyposis coli down-regulated 1 (APCDD1), and lymphoid enhancer-binding factor-1 (LEF-1). Although these genes are conserved throughout the major vertebrate lineages, comparison of their expression patterns with those in chicken and mouse indicated that these genes have acquired de novo expression in the CR in the turtle lineage. In association with the expression of LEF-1, the nuclear localization of beta-catenin protein was detected in the CR ectoderm, suggesting that the canonical Wnt signaling triggers carapace development. These findings indicate that the acquisition of the turtle shell did not involve the creation of novel genes, but was based on the co-option of pre-existing genes.
Collapse
Affiliation(s)
- Shigehiro Kuraku
- Laboratory for Evolutionary Morphology, Center for Developmental Biology (CDB), RIKEN, Kobe 650-0047, Japan
| | | | | |
Collapse
|
67
|
Maurus D, Héligon C, Bürger-Schwärzler A, Brändli AW, Kühl M. Noncanonical Wnt-4 signaling and EAF2 are required for eye development in Xenopus laevis. EMBO J 2005; 24:1181-91. [PMID: 15775981 PMCID: PMC556406 DOI: 10.1038/sj.emboj.7600603] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Accepted: 02/08/2005] [Indexed: 01/11/2023] Open
Abstract
Wnt-4 is expressed in developing neural and renal tissue and is required for renal tubulogenesis in mouse and Xenopus. The function of Wnt-4 in neural differentiation is unknown so far. Here we demonstrate that Wnt-4 is required for eye development in Xenopus laevis. This effect of Wnt-4 depends on the activation of a beta-catenin-independent, noncanonical Wnt signaling pathway. Furthermore, we report the identification of EAF2, a component of the ELL-mediated RNA polymerase II elongation factor complex, as a target gene of Wnt-4 signaling. EAF2 is specifically expressed in the eye and EAF2 expression was dependent on Wnt-4 function. Loss of EAF2 function results in loss of eyes and loss of Wnt-4 function could be rescued by EAF2. In neuralized animal caps, EAF2 has properties characteristic for an RNA polymerase II elongation factor regulating the expression of the eye-specific transcription factor Rx. These data add a new layer of complexity to our understanding of eye development and give further evidence for the importance of noncanonical Wnt pathways in organ development.
Collapse
Affiliation(s)
- Daniel Maurus
- Department of Biochemistry, University of Ulm, Ulm, Germany
| | - Christophe Héligon
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland
| | | | - André W Brändli
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland
| | - Michael Kühl
- Department of Biochemistry, University of Ulm, Ulm, Germany
| |
Collapse
|
68
|
Jennings BH, Shah S, Yamaguchi Y, Seki M, Phillips RG, Handa H, Ish-Horowicz D. Locus-specific requirements for Spt5 in transcriptional activation and repression in Drosophila. Curr Biol 2005; 14:1680-4. [PMID: 15380072 DOI: 10.1016/j.cub.2004.08.066] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 07/22/2004] [Accepted: 08/10/2004] [Indexed: 11/16/2022]
Abstract
Segmental patterning in Drosophila relies on a cascade of transcription factors that subdivide the embryo into successively more precise domains. We have identified a missense mutation (W049) in the gene encoding the transcriptional elongation factor Spt5 (reviewed in ) which, when homozygous in the maternal germ line, leads to defects in segmental patterning of the embryo. W049 alters the C-terminal domain of Spt5 and affects its activity in vitro, impairing its abilities to confer sensitivity to the transcriptional inhibitor DRB and to stimulate transcription at limiting nucleotide concentrations. In vivo, W049 shows locus-specific effects on transcription: expression of gap genes remains wild-type, but striped patterning of the primary pair-rule genes even-skipped and runt is disrupted. even-skipped stripes are broadened in the mutant embryos indicating that Spt5 is likely to be a direct, negative regulator of this target gene. Our results suggest control of transcriptional elongation by repressors contributes to striped gene expression in the embryo. By contrast, expression of heat shock-induced proteins is reduced in the mutant embryos. These results provide genetic evidence for Spt5 function during heat shock induction and demonstrate that Spt5 acts both positively and negatively on transcription in vivo depending on context.
Collapse
Affiliation(s)
- Barbara H Jennings
- Developmental Genetics Laboratory, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
69
|
Perkins BD, Nicholas CS, Baye LM, Link BA, Dowling JE. dazed gene is necessary for late cell type development and retinal cell maintenance in the zebrafish retina. Dev Dyn 2005; 233:680-94. [PMID: 15844196 DOI: 10.1002/dvdy.20375] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Several molecules, such as growth factors and neurotrophic factors, are required both for the differentiation of specific retinal cell types and the long-term cell survival of all retinal neurons. As diffusible factors, these molecules act non-cell-autonomously. Here, we describe the loss of function phenotype for dazed (dzd), a gene that acts cell-autonomously for retinal cell survival and affects the differentiation of rod photoreceptors and the Muller glia. By 3 days after fertilization, dazed mutant embryos have small eyes and slight heart edema. Acridine orange staining indicated a significant degree of retinal cell death occurring by 48 hr after fertilization, and histological analysis revealed that dying cells were found in the inner and outer nuclear layers and near the marginal zones. Although molecular and morphological differentiation of the inner retina and cone photoreceptors occurred, rod photoreceptors failed to differentiate beyond a small patch in the ventral retina and rod precursors failed to respond to exogenously added retinoic acid, which normally potentiated rod differentiation. Mosaic analysis indicated that the dazed gene acts cell-autonomously for rod production and cell survival, as dazed clones failed to produce rods outside the ventral patch and dazed cells were not maintained in wild-type hosts. Raising mutants under constant light resulted in severe retinal degeneration, whereas raising embryos under constant darkness did not provide any additional protection from cell death. Behavioral analysis showed that a subpopulation of adult fish that were heterozygous for the dazed mutation had elevated visual thresholds and were night blind, suggesting that dazed may also be required for long-term dim-light vision. Taken together, our studies suggest a role for the dazed gene in rod and Muller cell development and overall retinal cell survival and maintenance.
Collapse
Affiliation(s)
- Brian D Perkins
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
70
|
Sims RJ, Belotserkovskaya R, Reinberg D. Elongation by RNA polymerase II: the short and long of it. Genes Dev 2004; 18:2437-68. [PMID: 15489290 DOI: 10.1101/gad.1235904] [Citation(s) in RCA: 533] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Appreciable advances into the process of transcript elongation by RNA polymerase II (RNAP II) have identified this stage as a dynamic and highly regulated step of the transcription cycle. Here, we discuss the many factors that regulate the elongation stage of transcription. Our discussion includes the classical elongation factors that modulate the activity of RNAP II, and the more recently identified factors that facilitate elongation on chromatin templates. Additionally, we discuss the factors that associate with RNAP II, but do not modulate its catalytic activity. Elongation is highlighted as a central process that coordinates multiple stages in mRNA biogenesis and maturation.
Collapse
Affiliation(s)
- Robert J Sims
- Howard Hughes Medical Institute, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
71
|
Gerber M, Eissenberg JC, Kong S, Tenney K, Conaway JW, Conaway RC, Shilatifard A. In vivo requirement of the RNA polymerase II elongation factor elongin A for proper gene expression and development. Mol Cell Biol 2004; 24:9911-9. [PMID: 15509793 PMCID: PMC525478 DOI: 10.1128/mcb.24.22.9911-9919.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of transcription factors that increase the catalytic rate of mRNA synthesis by RNA polymerase II (Pol II) have been purified from higher eukaryotes. Among these are the ELL family, DSIF, and the heterotrimeric elongin complex. Elongin A, the largest subunit of the elongin complex, is the transcriptionally active subunit, while the smaller elongin B and C subunits appear to act as regulatory subunits. While much is known about the in vitro properties of elongin A and other members of this class of elongation factors, the physiological role(s) of these proteins remain largely unclear. To elucidate in vivo functions of elongin A, we have characterized its Drosophila homologue (dEloA). dEloA associates with transcriptionally active puff sites within Drosophila polytene chromosomes and exhibits many of the expected biochemical and cytological properties consistent with a Pol II-associated elongation factor. RNA interference-mediated depletion of dEloA demonstrated that elongin A is an essential factor that is required for proper metamorphosis. Consistent with this observation, dEloA expression peaks during the larval stages of development, suggesting that this factor may be important for proper regulation of developmental events during these stages. The discovery of the role of elongin A in an in vivo model system defines the novel contribution played by RNA polymerase II elongation machinery in regulation of gene expression that is required for proper development.
Collapse
Affiliation(s)
- Mark Gerber
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Health Sciences Center, 1402 South Grand Blvd., St. Louis, MO 63104, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
Zebrafish have emerged as a useful vertebrate model system in which unbiased large-scale screens have revealed hundreds of mutations affecting vertebrate development. Many zebrafish mutants closely resemble known human disorders, thus providing intriguing prospects for uncovering the genetic basis of human diseases and for the development of pharmacologic agents that inhibit or correct the progression of developmental disorders. The rapid pace of advances in genomic sequencing and map construction, in addition to morpholino targeting and transgenic techniques, have facilitated the identification and analysis of genes associated with zebrafish mutants, thus promoting the development of zebrafish as a model for human disorders. This review aims to illustrate how the zebrafish has been used to identify unknown genes, to assign function to known genes, and to delineate genetic pathways, all contributing valuable leads toward understanding human pathophysiology.
Collapse
Affiliation(s)
- Trista E North
- Division of Hematology/Oncology, Department of Medicine, Children's Hospital of Boston, Enders Research Building, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
73
|
Endoh M, Zhu W, Hasegawa J, Watanabe H, Kim DK, Aida M, Inukai N, Narita T, Yamada T, Furuya A, Sato H, Yamaguchi Y, Mandal SS, Reinberg D, Wada T, Handa H. Human Spt6 stimulates transcription elongation by RNA polymerase II in vitro. Mol Cell Biol 2004; 24:3324-36. [PMID: 15060154 PMCID: PMC381665 DOI: 10.1128/mcb.24.8.3324-3336.2004] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies have suggested that Spt6 participates in the regulation of transcription by RNA polymerase II (RNAPII). However, its underlying mechanism remains largely unknown. One possibility, which is supported by genetic and biochemical studies of Saccharomyces cerevisiae, is that Spt6 affects chromatin structure. Alternatively, Spt6 directly controls transcription by binding to the transcription machinery. In this study, we establish that human Spt6 (hSpt6) is a classic transcription elongation factor that enhances the rate of RNAPII elongation. hSpt6 is capable of stimulating transcription elongation both individually and in concert with DRB sensitivity-inducing factor (DSIF), comprising human Spt5 and human Spt4. We also provide evidence showing that hSpt6 interacts with RNAPII and DSIF in human cells. Thus, in vivo, hSpt6 may regulate multiple steps of mRNA synthesis through its interaction with histones, elongating RNAPII, and possibly other components of the transcription machinery.
Collapse
Affiliation(s)
- Masaki Endoh
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Mably JD, Mohideen MAPK, Burns CG, Chen JN, Fishman MC. heart of glass regulates the concentric growth of the heart in zebrafish. Curr Biol 2004; 13:2138-47. [PMID: 14680629 DOI: 10.1016/j.cub.2003.11.055] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Patterned growth of vertebrate organs is essential for normal physiological function, but the underlying pathways that govern organotypic growth are not clearly understood. Heart function is critically dependent upon the concentric thickening of the ventricular wall generated by the addition of cells to the myocardium along the axis from the endocardium (inside) to the outside of the chamber. In heart of glass mutant embryos, the number of cells in the myocardium is normal, but they are not added in the concentric direction. As a consequence, the chambers are huge and dysfunctional, and the myocardium remains a single layer. RESULTS To begin to define the factors controlling the concentric growth of cells in the myocardium, we used positional cloning to identify the heart of glass (heg) gene. heg encodes a protein of previously undescribed function, expressed in the endocardial layer of the heart. By alternative splicing, three distinct isoforms are generated, one of which is predicted to be transmembrane and two other secreted. By selective morpholino perturbation, we demonstrate that the transmembrane form is critical for the normal pattern of growth. CONCLUSIONS heart of glass encodes a previously uncharacterized endocardial signal that is vital for patterning concentric growth of the heart. Growth of the heart requires addition of myocardial cells along the endocardial-to-myocardial axis. This axis of patterning is driven by heg, a novel transmembrane protein expressed in the endocardium.
Collapse
Affiliation(s)
- John D Mably
- Cardiovascular Research Center, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA.
| | | | | | | | | |
Collapse
|
75
|
|
76
|
Abstract
Similar to other vertebrate species, the zebrafish retina is simpler than other regions of the central nervous system (CNS). Relative simplicity, rapid development, and accessibility to genetic analysis make the zebrafish retina an excellent model system for the studies of neurogenesis in the vertebrate CNS. Numerous genetic screens have led to isolation of an impressive collection of mutations affecting the retina and the retinotectal projection in zebrafish. Mutant phenotypes are being studied using a rich variety of markers: antibodies, RNA probes, retrograde and anterograde tracers, as well as transgenic lines. Particularly impressive progress has been made in the characterization of the zebrafish genome. Consequently, positional and candidate cloning of mutant genes are now fairly easy to accomplish in zebrafish. Many mutant genes have, in fact, already been cloned and their analysis has provided important insights into the gene circuitry that regulates retinal neurogenesis. Genetic screens for visual system defects will continue in the future and progressively more sophisticated screening approaches will make it possible to detect a variety of subtle mutant phenotypes in retinal development. The remarkable evolutionary conservation of the vertebrate eye provides the basis for the use of the zebrafish retina as a model of human disorders. Some of the genetic defects of the zebrafish retina indeed resemble human retinopathies. As new techniques are being introduced and improved at a rapid pace, the zebrafish will continue to be an important organism for the studies of the vertebrate visual system.
Collapse
Affiliation(s)
- Andrei Avanesov
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
77
|
Yelon D, Feldman JL, Keegan BR. Genetic regulation of cardiac patterning in zebrafish. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 67:19-25. [PMID: 12858519 DOI: 10.1101/sqb.2002.67.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- D Yelon
- Developmental Genetics Program, Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
78
|
Kwak YT, Guo J, Prajapati S, Park KJ, Surabhi RM, Miller B, Gehrig P, Gaynor RB. Methylation of SPT5 regulates its interaction with RNA polymerase II and transcriptional elongation properties. Mol Cell 2003; 11:1055-66. [PMID: 12718890 DOI: 10.1016/s1097-2765(03)00101-1] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SPT5 and its binding partner SPT4 function in both positively and negatively regulating transcriptional elongation. The demonstration that SPT5 and RNA polymerase II are targets for phosphorylation by CDK9/cyclin T1 indicates that posttranslational modifications of these factors are important in regulating the elongation process. In this study, we utilized a biochemical approach to demonstrate that SPT5 was specifically associated with the protein arginine methyltransferases PRMT1 and PRMT5 and that SPT5 methylation regulated its interaction with RNA polymerase II. Specific arginine residues in SPT5 that are methylated by these enzymes were identified and demonstrated to be important in regulating its promoter association and subsequent effects on transcriptional elongation. These results suggest that methylation of SPT5 is an important posttranslational modification that is involved in regulating its transcriptional elongation properties in response to viral and cellular factors.
Collapse
Affiliation(s)
- Youn Tae Kwak
- Division of Hematology-Oncology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Narita T, Yamaguchi Y, Yano K, Sugimoto S, Chanarat S, Wada T, Kim DK, Hasegawa J, Omori M, Inukai N, Endoh M, Yamada T, Handa H. Human transcription elongation factor NELF: identification of novel subunits and reconstitution of the functionally active complex. Mol Cell Biol 2003; 23:1863-73. [PMID: 12612062 PMCID: PMC149481 DOI: 10.1128/mcb.23.6.1863-1873.2003] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multisubunit transcription elongation factor NELF (for negative elongation factor) acts together with DRB (5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole) sensitivity-inducing factor (DSIF)/human Spt4-Spt5 to cause transcriptional pausing of RNA polymerase II (RNAPII). NELF activity is associated with five polypeptides, A to E. NELF-A has sequence similarity to hepatitis delta antigen (HDAg), the viral protein that binds to and activates RNAPII, whereas NELF-E is an RNA-binding protein whose RNA-binding activity is critical for NELF function. To understand the interactions of DSIF, NELF, and RNAPII at a molecular level, we identified the B, C, and D proteins of human NELF. NELF-B is identical to COBRA1, recently reported to associate with the product of breast cancer susceptibility gene BRCA1. NELF-C and NELF-D are highly related or identical to the protein called TH1, of unknown function. NELF-B and NELF-C or NELF-D are integral subunits that bring NELF-A and NELF-E together, and coexpression of these four proteins in insect cells resulted in the reconstitution of functionally active NELF. Detailed analyses using mutated recombinant complexes indicated that the small region of NELF-A with similarity to HDAg is critical for RNAPII binding and for transcriptional pausing. This study defines several important protein-protein interactions and opens the way for understanding the mechanism of DSIF- and NELF-induced transcriptional pausing.
Collapse
Affiliation(s)
- Takashi Narita
- Graduate School of Bioscience and Biotechnolog, Tokyo Institute of Technology, 4259 Nagatsuka, Yokohama 226-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Cunliffe VT. Memory by modification: the influence of chromatin structure on gene expression during vertebrate development. Gene 2003; 305:141-50. [PMID: 12609734 DOI: 10.1016/s0378-1119(03)00386-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Multicellular development is programmed by regulated interactions between transcription factors and target genes. Target genes function as nucleosomal arrays whose higher order structure, composition and accessibility to transcription machinery are strictly and dynamically controlled. Several classes of chromatin-associated proteins generate or remove localized, covalent chromatin modifications that signify gene expression status, whereas others modulate nucleosome organization and so regulate template availability for transcription. In vertebrates, covalent modification of the DNA template itself also has dramatic impacts on gene expression and development. Here I review recent discoveries that improve our understanding of the influence of chromatin structure on gene expression and I discuss their relevance to mechanisms of vertebrate development.
Collapse
Affiliation(s)
- Vincent T Cunliffe
- Centre for Developmental Genetics, School of Medicine and Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
81
|
Abstract
The zebrafish is an especially attractive model for the study of the development and function of the vertebrate inner ear. It combines rapid and accessible embryogenesis with a host of genetic and genomic tools for systematic gene discovery and analysis. A large collection of mutations affecting development and function of the ear and a related sensory system, the lateral line, have been isolated; several of these have now been cloned, and at least five provide models for human deafness disorders. Disruption of multiple genes, using both forward and reverse genetic approaches, has established key players--both signaling molecules and autonomous factors--responsible for induction and specification of the otic placode. Vestibular and auditory defects have been detected in adult animals, making the zebrafish a useful system in which to tackle the genetic causes of late onset deafness and vestibular disease.
Collapse
Affiliation(s)
- Tanya T Whitfield
- Centre for Developmental Genetics, University of Sheffield School of Medicine and Biomedical Science, Sheffield, S10 2TN, United Kingdom.
| |
Collapse
|
82
|
Shim EY, Walker AK, Shi Y, Blackwell TK. CDK-9/cyclin T (P-TEFb) is required in two postinitiation pathways for transcription in the C. elegans embryo. Genes Dev 2002; 16:2135-46. [PMID: 12183367 PMCID: PMC186450 DOI: 10.1101/gad.999002] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The metazoan transcription elongation factor P-TEFb (CDK-9/cyclin T) is essential for HIV transcription, and is recruited by some cellular activators. P-TEFb promotes elongation in vitro by overcoming pausing that requires the SPT-4/SPT-5 complex, but considerable evidence indicates that SPT-4/SPT-5 facilitates elongation in vivo. Here we used RNA interference to investigate P-TEFb functions in vivo, in the Caenorhabditis elegans embryo. We found that P-TEFb is broadly essential for expression of early embryonic genes. P-TEFb is required for phosphorylation of Ser 2 of the RNA Polymerase II C-terminal domain (CTD) repeat, but not for most CTD Ser 5 phosphorylation, supporting the model that P-TEFb phosphorylates CTD Ser 2 during elongation. Remarkably, although heat shock genes are cdk-9-dependent, they can be activated when spt-4 and spt-5 expression is inhibited along with cdk-9. This observation suggests that SPT-4/SPT-5 has an inhibitory function in vivo, and that mutually opposing influences of P-TEFb and SPT-4/SPT-5 may combine to facilitate elongation, or insure fidelity of mRNA production. Other genes are not expressed when cdk-9, spt-4, and spt-5 are inhibited simultaneously, suggesting that these genes require P-TEFb in an additional mechanism, and that they and heat shock genes are regulated through different P-TEFb-dependent elongation pathways.
Collapse
Affiliation(s)
- Eun Yong Shim
- Center for Blood Research, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
83
|
Eissenberg JC, Ma J, Gerber MA, Christensen A, Kennison JA, Shilatifard A. dELL is an essential RNA polymerase II elongation factor with a general role in development. Proc Natl Acad Sci U S A 2002; 99:9894-9. [PMID: 12096188 PMCID: PMC125055 DOI: 10.1073/pnas.152193699] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several eukaryotic proteins increase RNA polymerase II (Pol II) transcription rates in vitro. The relative contributions of these factors to gene expression in vivo is unknown. The ELL family of proteins promote Pol II elongation in vitro, and the Drosophila ELL homolog (dELL) is associated with Pol II at sites of transcription in vivo. The purpose of this study was to test whether an ELL family protein is required for gene expression in vivo. We show that dELL is encoded by the Suppressor of Triplo-lethal locus [Su(Tpl)]. We have characterized seven distinct mutant alleles of Su(Tpl) and show that a dELL transgene rescues recessive lethality of Su(Tpl). Su(Tpl) mutations cause abnormal embryonic segmentation and dominantly modify expression of diverse genes during development. These data show that an ELL family elongation factor is essential, acts broadly in development, and is not functionally redundant to other elongation factors in vivo.
Collapse
Affiliation(s)
- Joel C Eissenberg
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA.
| | | | | | | | | | | |
Collapse
|