51
|
Jou Y, Chiang CP, Jauh GY, Yen HE. Functional characterization of ice plant SKD1, an AAA-type ATPase associated with the endoplasmic reticulum-Golgi network, and its role in adaptation to salt stress. PLANT PHYSIOLOGY 2006; 141:135-46. [PMID: 16581876 PMCID: PMC1459316 DOI: 10.1104/pp.106.076786] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2006] [Revised: 03/22/2006] [Accepted: 03/22/2006] [Indexed: 05/08/2023]
Abstract
A salt-induced gene mcSKD1 (suppressor of K+ transport growth defect) able to facilitate K+ uptake has previously been identified from the halophyte ice plant (Mesembryanthemum crystallinum). The sequence of mcSKD1 is homologous to vacuolar protein sorting 4, an ATPase associated with a variety of cellular activities-type ATPase that participates in the sorting of vacuolar proteins into multivesicular bodies in yeast (Saccharomyces cerevisiae). Recombinant mcSKD1 exhibited ATP hydrolytic activities in vitro with a half-maximal rate at an ATP concentration of 1.25 mm. Point mutations on active site residues abolished its ATPase activity. ADP is both a product and a strong inhibitor of the reaction. ADP-binding form of mcSDK1 greatly reduced its catalytic activity. The mcSKD1 protein accumulated ubiquitously in both vegetative and reproductive parts of plants. Highest accumulation was observed in cells actively engaging in the secretory processes, such as bladder cells of leaf epidermis. Membrane fractionation and double-labeling immunofluorescence showed the predominant localization of mcSKD1 in the endoplasmic reticulum-Golgi network. Immunoelectron microscopy identified the formation of mcSKD1 proteins into small aggregates in the cytosol and associated with membrane continuum within the endomembrane compartments. These results indicated that this ATPase participates in the endoplasmic reticulum-Golgi mediated protein sorting machinery for both housekeeping function and compartmentalization of excess Na+ under high salinity.
Collapse
Affiliation(s)
- Yingtzy Jou
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | | | | | | |
Collapse
|
52
|
Boutté Y, Crosnier MT, Carraro N, Traas J, Satiat-Jeunemaitre B. The plasma membrane recycling pathway and cell polarity in plants: studies on PIN proteins. J Cell Sci 2006; 119:1255-65. [PMID: 16522683 DOI: 10.1242/jcs.02847] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The PIN-FORMED (PIN) proteins are plasma-membrane-associated facilitators of auxin transport. They are often targeted to one side of the cell only through subcellular mechanisms that remain largely unknown. Here, we have studied the potential roles of the cytoskeleton and endomembrane system in the localisation of PIN proteins. Immunocytochemistry and image analysis on root cells from Arabidopsis thaliana and maize showed that 10-30% of the intracellular PIN proteins mapped to the Golgi network, but never to prevacuolar compartments. The remaining 70-90% were associated with yet to be identified structures. The maintenance of PIN proteins at the plasma membrane depends on a BFA-sensitive machinery, but not on microtubules and actin filaments.
The polar localisation of PIN proteins at the plasmamembrane was not reflected by any asymmetric distribution of cytoplasmic organelles. In addition, PIN proteins were inserted in a symmetrical manner at both sides of the cell plate during cytokinesis. Together, the data indicate that the localisation of PIN proteins is a postmitotic event, which depends on local characteristics of the plasma membrane and its direct environment. In this context, we present evidence that microtubule arrays might define essential positional information for PIN localisation. This information seems to require the presence of an intact cell wall.
Collapse
Affiliation(s)
- Yohann Boutté
- Laboratoire de Dynamique de la Compartimentation Cellulaire, Institut des Sciences du Végétal, CNRS UPR2355, 9 Gif-sur-Yvette CEDEX, France
| | | | | | | | | |
Collapse
|
53
|
Hanton SL, Brandizzi F. Protein transport in the plant secretory pathwayThis review is one of a selection of papers published in the Special Issue on Plant Cell Biology. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b05-172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The study of the plant secretory pathway is a relatively new field, developing rapidly over the last 30 years. Many exciting discoveries have already been made in this area, but as old questions are answered new ones become apparent. Our understanding of the functions and mechanisms of the plant secretory pathway is constantly expanding, in part because of the development of new technologies, mainly in bioimaging. The increasing accessibility of these new tools in combination with more established methods provides an ideal way to increase knowledge of the secretory pathway in plants. In this review we discuss recent developments in understanding protein transport between organelles in the plant secretory pathway.
Collapse
Affiliation(s)
- Sally L. Hanton
- Department of Biology, 112 Science Place, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Federica Brandizzi
- Department of Biology, 112 Science Place, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
54
|
Di Sansebastiano GP, Gigante M, De Domenico S, Piro G, Dalessandro G. Sorting of GFP Tagged NtSyr1, an ABA Related Syntaxin. PLANT SIGNALING & BEHAVIOR 2006; 1:77-85. [PMID: 19521480 PMCID: PMC2633883 DOI: 10.4161/psb.1.2.2621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 02/22/2006] [Indexed: 05/02/2023]
Abstract
Exocytosis molecular mechanisms in plant cells are not fully understood. The full characterization of molecular determinants, such as SNAREs, for the specificity in vesicles delivery to the plasma membrane should shed some light on these mechanisms. Nicotiana tabacum Syntaxin 1 (NtSyr1 or SYP121) is a SNARE protein required for ABA control of ion channels and appears involved in the exocytosis of exogenous markers.NtSyr1 is mainly localized on the plasma membrane, but when over expressed the protein also appears on endomembranes. Since NtSyr1 is a tail-anchored protein inserted into the target membrane post-translationally, it is not clear whether its initial anchoring site is the ER or the plasma membrane.In this study, we investigated the sorting events of NtSyr1 in vivo using its full-length cDNA or its C-terminal domain, fused to a GFP tag and transiently expressed in protoplasts or in the leaves of Nicotiana tabacum cv. SR1. Five chimeras were produced of which two were useful to investigate the protein sorting within the endomembrane system. One (GFP-H3M) had a dominant negative effect on exocytosis; the other one (SP1-GFP) resulted in a slow targeting to the same localization of the full-length chimera (GFP-SP1). The insertion of signal peptides on SP1-GFP further characterized the insertion site for this protein. Our data indicates that NtSyr1 is firstly anchored on ER membrane and then sorted to plasma membrane.
Collapse
|
55
|
Abstract
Multivesicular endosomes or prevacuolar compartments (PVCs) are membrane-bound organelles that play an important role in mediating protein traffic in the secretory and endocytic pathways of eukaryotic cells. PVCs function as an intermediate compartment for sorting proteins from the Golgi apparatus to vacuoles, sending missorted proteins back to the Golgi from the PVC, and receiving proteins from plasma membrane in the endocytic pathway. PVCs have been identified as multivesicular bodies in mammalian cells and yeast and more recently in plant cells. Whereas much is known about PVC-mediated protein trafficking and PVC biogenesis in mammalian cells and yeast, relatively little is known about the molecular mechanism of plant PVCs. In this review, we summarize and discuss our understanding of the plant PVC and compare it with its counterparts in yeast and mammalian cells.
Collapse
Affiliation(s)
- Beixin Mo
- Department of Biology and Molecular Biotechnology Program, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | |
Collapse
|
56
|
Lanquar V, Lelièvre F, Bolte S, Hamès C, Alcon C, Neumann D, Vansuyt G, Curie C, Schröder A, Krämer U, Barbier-Brygoo H, Thomine S. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 2005; 24:4041-51. [PMID: 16270029 PMCID: PMC1356305 DOI: 10.1038/sj.emboj.7600864] [Citation(s) in RCA: 408] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 10/11/2005] [Indexed: 11/09/2022] Open
Abstract
Iron (Fe) is necessary for all living cells, but its bioavailability is often limited. Fe deficiency limits agriculture in many areas and affects over a billion human beings worldwide. In mammals, NRAMP2/DMT1/DCT1 was identified as a major pathway for Fe acquisition and recycling. In plants, AtNRAMP3 and AtNRAMP4 are induced under Fe deficiency. The similitude of AtNRAMP3 and AtNRAMP4 expression patterns and their common targeting to the vacuole, together with the lack of obvious phenotype in nramp3-1 and nramp4-1 single knockout mutants, suggested a functional redundancy. Indeed, the germination of nramp3 nramp4 double mutants is arrested under low Fe nutrition and fully rescued by high Fe supply. Mutant seeds have wild type Fe content, but fail to retrieve Fe from the vacuolar globoids. Our work thus identifies for the first time the vacuole as an essential compartment for Fe storage in seeds. Our data indicate that mobilization of vacuolar Fe stores by AtNRAMP3 and AtNRAMP4 is crucial to support Arabidopsis early development until efficient systems for Fe acquisition from the soil take over.
Collapse
Affiliation(s)
- Viviane Lanquar
- Institut des Sciences du Végétal, CNRS, Gif-sur-Yvette, France
| | | | - Susanne Bolte
- Plate-forme d'Imagerie et Biologie Cellulaire, IFR 87 ‘La Plante et son Environnement'/CNRS, Gif-sur-Yvette, France
| | - Cécile Hamès
- Institut des Sciences du Végétal, CNRS, Gif-sur-Yvette, France
| | - Carine Alcon
- Institut des Sciences du Végétal, CNRS, Gif-sur-Yvette, France
| | - Dieter Neumann
- Leibnitz Institute for Plant Biochemistry, Weinberg, Halle/Saale, Germany
| | - Gérard Vansuyt
- Biochimie et Physiologie Moléculaire des Plantes, CNRS (UMR5004)/INRA/AgroM/Université Montpellier 2, Montpellier, France
| | - Catherine Curie
- Biochimie et Physiologie Moléculaire des Plantes, CNRS (UMR5004)/INRA/AgroM/Université Montpellier 2, Montpellier, France
| | - Astrid Schröder
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany
| | - Ute Krämer
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany
| | | | - Sebastien Thomine
- Institut des Sciences du Végétal, CNRS, Gif-sur-Yvette, France
- Institut des Sciences du Végétal, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France. Tel.: +33 1 69 82 37 93; Fax: +33 1 69 82 37 68; E-mail:
| |
Collapse
|
57
|
Latijnhouwers M, Hawes C, Carvalho C, Oparka K, Gillingham AK, Boevink P. An Arabidopsis GRIP domain protein locates to the trans-Golgi and binds the small GTPase ARL1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:459-70. [PMID: 16236155 DOI: 10.1111/j.1365-313x.2005.02542.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
GRIP domain proteins are a class of golgins that have been described in yeast and animals. They locate to the trans-Golgi network and are thought to play a role in endosome-to-Golgi trafficking. The Arabidopsis GRIP domain protein, AtGRIP, fused to the green fluorescent protein (GFP), locates to Golgi stacks but does not exactly co-locate with the Golgi marker sialyl transferase (ST)-mRFP, nor with the t-SNAREs Memb11, SYP31 and BS14a. We conclude that the location of AtGRIP is further to the trans side of the stack than STtmd-mRFP. The 185-aa C-terminus of AtGRIP containing the GRIP domain targeted GFP to the Golgi, although a proportion of the fusion protein was still found in the cytosol. Mutation of a conserved tyrosine (Y717) to alanine in the GRIP domain disrupted Golgi localization. ARL1 is a small GTPase required for Golgi targeting of GRIP domain proteins in other systems. An Arabidopsis ARL1 homologue was isolated and shown to target to Golgi stacks. The GDP-restricted mutant of ARL1, AtARL1-T31N, was observed to locate partially to the cytosol, whereas the GTP-restricted mutant AtARL1-Q71L labelled the Golgi and a population of small structures. Increasing the levels of AtARL1 in epidermal cells increased the proportion of GRIP-GFP fusion protein on Golgi stacks. We show, moreover, that AtARL1 interacted with the GRIP domain in a GTP-dependent manner in vitro in affinity chromatography and in the yeast two-hybrid system. This indicates that AtGRIP and AtARL1 interact directly. We conclude that the pathway involving ARL1 and GRIP domain golgins is conserved in plants.
Collapse
Affiliation(s)
- Maita Latijnhouwers
- Cell-to-Cell Communication Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | | | | | | | | | | |
Collapse
|
58
|
Meckel T, Hurst AC, Thiel G, Homann U. Guard cells undergo constitutive and pressure-driven membrane turnover. PROTOPLASMA 2005; 226:23-9. [PMID: 16231098 DOI: 10.1007/s00709-005-0106-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 03/30/2005] [Indexed: 05/04/2023]
Abstract
During stomatal movement, guard cells undergo large and reversible changes in cell volume and consequently surface area. These alterations in surface area require addition and removal of plasma membrane material. How this is achieved is largely unknown. Here we summarize recent studies of membrane turnover in guard cells using electrophysiology and fluorescent imaging techniques. The results implicate that membrane turnover in guard cells and most likely in plant cells in general is sensitive to changes in membrane tension. We suggest that this provides a mechanism for the adaptation of surface area of guard cells to osmotically driven changes in cell volume. In addition, guard cells also exhibit constitutive membrane turnover. Constitutive and pressure-driven membrane turnover were found to be associated with addition and removal of K+ channels. This implies that some of the exo- and endocytic vesicles carry K+ channels. Together the results demonstrate that exo- and endocytosis is an essential process in guard cell functioning.
Collapse
Affiliation(s)
- T Meckel
- Institute of Botany, Darmstadt University of Technology, Darmstadt, Federal Republic of Germany.
| | | | | | | |
Collapse
|
59
|
Aniento F, Robinson DG. Testing for endocytosis in plants. PROTOPLASMA 2005; 226:3-11. [PMID: 16231096 DOI: 10.1007/s00709-005-0101-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 03/30/2005] [Indexed: 05/04/2023]
Abstract
For many years endocytosis has been regarded with great scepsis by plant physiologists. Although now generally accepted, care must still be taken with experiments designed to demonstrate endocytic uptake at the plasma membrane. We have taken a critical look at the various agents which are in use as markers for plant endocytosis, pointing out pitfalls and precautions which should be taken. We also take this opportunity to introduce the tyrphostins--tyrosine kinase inhibitors--, which also seem to prevent endocytosis in plants.
Collapse
Affiliation(s)
- F Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Valencia, Valencia
| | | |
Collapse
|
60
|
Gallagher MJ, Shen W, Song L, Macdonald RL. Endoplasmic reticulum retention and associated degradation of a GABAA receptor epilepsy mutation that inserts an aspartate in the M3 transmembrane segment of the alpha1 subunit. J Biol Chem 2005; 280:37995-8004. [PMID: 16123039 DOI: 10.1074/jbc.m508305200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A GABA(A) receptor alpha1 subunit epilepsy mutation (alpha1(A322D)) introduces a negatively charged aspartate residue into the hydrophobic M3 transmembrane domain of the alpha1 subunit. We reported previously that heterologous expression of alpha1(A322D)beta2gamma2 receptors in mammalian cells resulted in reduced total and surface alpha1 subunit protein. Here we demonstrate the mechanism of this reduction. Total alpha1(A322D) subunit protein was reduced relative to wild type protein by a similar amount when expressed alone (86 +/- 6%) or when coexpressed with beta2 and gamma2S subunits (78 +/- 6%), indicating an expression reduction prior to subunit oligomerization. In alpha1beta2gamma2S receptors, endoglycosidase H deglycosylated only 26 +/- 5% of alpha1 subunits, consistent with substantial protein maturation, but in alpha1(A322D)beta2gamma2S receptors, endoglycosidase H deglycosylated 91 +/- 4% of alpha1(A322D) subunits, consistent with failure of protein maturation. To determine the cellular localization of wild type and mutant subunits, the alpha1 subunit was tagged with yellow (alpha1-YFP) or cyan (alpha1-CFP) fluorescent protein. Confocal microscopic imaging demonstrated that 36 +/- 4% of alpha1-YFPbeta2gamma2 but only 5 +/- 1% alpha1(A322D)-YFPbeta2gamma2 colocalized with the plasma membrane, whereas the majority of the remaining receptors colocalized with the endoplasmic reticulum (55 +/- 4% alpha1-YFPbeta2gamma2S, 86 +/- 3% alpha1(A322D)-YFP). Heterozygous expression of alpha1-CFPbeta2gamma2S and alpha1(A322D)-YFPbeta2gamma2S or alpha1-YFPbeta2gamma2S and alpha1(A322D)-CFPbeta2gamma2S receptors showed that membrane GABA(A) receptors contained primarily wild type alpha1 subunits. These data demonstrate that the A322D mutation reduces alpha1 subunit expression after translation, but before assembly, resulting in endoplasmic reticulum-associated degradation and membrane alpha1 subunits that are almost exclusively wild type subunits.
Collapse
Affiliation(s)
- Martin J Gallagher
- Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
61
|
Hanton SL, Bortolotti LE, Renna L, Stefano G, Brandizzi F. Crossing the divide--transport between the endoplasmic reticulum and Golgi apparatus in plants. Traffic 2005; 6:267-77. [PMID: 15752133 DOI: 10.1111/j.1600-0854.2005.00278.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The transport of proteins between the endoplasmic reticulum (ER) and the Golgi apparatus in plants is an exciting and constantly expanding topic, which has attracted much attention in recent years. The study of protein transport within the secretory pathway is a relatively new field, dating back to the 1970s for mammalian cells and considerably later for plants. This may explain why COPI- and COPII-mediated transport between the ER and the Golgi in plants is only now becoming clear, while the existence of these pathways in other organisms is relatively well documented. We summarize current knowledge of these protein transport routes, as well as highlighting key differences between those of plant systems and those of mammals and yeast. These differences have necessitated the study of plant-specific aspects of protein transport in the early secretory pathway, and this review discusses recent developments in this area. Advances in live-cell-imaging technology have allowed the observation of protein movement in vivo, giving a new insight into many of the processes involved in vesicle formation and protein trafficking. The use of these new technologies has been combined with more traditional methods, such as protein biochemistry and electron microscopy, to increase our understanding of the transport routes in the cell.
Collapse
Affiliation(s)
- Sally L Hanton
- Department of Biology, 112 Science Place, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada.
| | | | | | | | | |
Collapse
|
62
|
Zheng H, Camacho L, Wee E, Batoko H, Legen J, Leaver CJ, Malhó R, Hussey PJ, Moore I. A Rab-E GTPase mutant acts downstream of the Rab-D subclass in biosynthetic membrane traffic to the plasma membrane in tobacco leaf epidermis. THE PLANT CELL 2005; 17:2020-36. [PMID: 15972698 PMCID: PMC1167549 DOI: 10.1105/tpc.105.031112] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 04/17/2005] [Accepted: 05/09/2005] [Indexed: 05/03/2023]
Abstract
The function of the Rab-E subclass of plant Rab GTPases in membrane traffic was investigated using a dominant-inhibitory mutant (RAB-E1(d)[NI]) of Arabidopsis thaliana RAB-E1(d) and in vivo imaging approaches that have been used to characterize similar mutants in the plant Rab-D2 and Rab-F2 subclasses. RAB-E1(d)[NI] inhibited the transport of a secreted green fluorescent protein marker, secGFP, but in contrast with dominant-inhibitory RAB-D2 or RAB-F2 mutants, it did not affect the transport of Golgi or vacuolar markers. Quantitative imaging revealed that RAB-E1(d)[NI] caused less intracellular secGFP accumulation than RAB-D2(a)[NI], a dominant-inhibitory mutant of a member of the Arabidopsis Rab-D2 subclass. Furthermore, whereas RAB-D2(a)[NI] caused secGFP to accumulate exclusively in the endoplasmic reticulum, RAB-E1(d)[NI] caused secGFP to accumulate additionally in the Golgi apparatus and a prevacuolar compartment that could be labeled by FM4-64 and yellow fluorescent protein (YFP)-tagged Arabidopsis RAB-F2(b). Using the vacuolar protease inhibitor E64-d, it was shown that some secGFP was transported to the vacuole in control cells and in the presence of RAB-E1(d)[NI]. Consistent with the hypothesis that secGFP carries a weak vacuolar-sorting determinant, it was shown that a secreted form of DsRed reaches the apoplast without appearing in the prevacuolar compartment. When fused to RAB-E1(d), YFP was targeted specifically to the Golgi via a saturable nucleotide- and prenylation-dependent mechanism but was never observed on the prevacuolar compartment. We propose that RAB-E1(d)[NI] inhibits the secretory pathway at or after the Golgi, causing an accumulation of secGFP in the upstream compartments and an increase in the quantity of secGFP that enters the vacuolar pathway.
Collapse
Affiliation(s)
- Huanquan Zheng
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Renna L, Hanton SL, Stefano G, Bortolotti L, Misra V, Brandizzi F. Identification and characterization of AtCASP, a plant transmembrane Golgi matrix protein. PLANT MOLECULAR BIOLOGY 2005; 58:109-22. [PMID: 16028120 DOI: 10.1007/s11103-005-4618-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Accepted: 03/28/2005] [Indexed: 05/03/2023]
Abstract
Golgins are a family of coiled-coil proteins that are associated with the Golgi apparatus. They are necessary for tethering events in membrane fusion and may act as structural support for Golgi cisternae. Here we report on the identification of an Arabidopsis golgin which is a homologue of CASP, a known transmembrane mammalian and yeast golgin. Similar to its homologues, the plant CASP contains a long N-terminal coiled-coil region protruding into the cytosol and a C-terminal transmembrane domain with amino acid residues which are highly conserved across species. Through fluorescent protein tagging experiments, we show that plant CASP localizes at the plant Golgi apparatus and that the C-terminus of this protein is sufficient for its localization, as has been shown for its mammalian counterpart. In addition, we demonstrate that the plant CASP is able to localize at the mammalian Golgi apparatus. However, mutagenesis of a conserved tyrosine in the transmembrane domain revealed that it is necessary for ER export and Golgi localization of the Arabidopsis CASP in mammalian cells, but is not required for its correct localization in plant cells. These data suggest that mammalian and plant cells have different mechanisms for concentrating CASP in the Golgi apparatus.
Collapse
Affiliation(s)
- Luciana Renna
- Department of Biology, 112 Science Place, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | | | | | | | | | | |
Collapse
|
64
|
Ait-Mamar B, Cailleret M, Rucker-Martin C, Bouabdallah A, Candiani G, Adamy C, Duvaldestin P, Pecker F, Defer N, Pavoine C. The Cytosolic Phospholipase A2 Pathway, a Safeguard of β2-Adrenergic Cardiac Effects in Rat. J Biol Chem 2005; 280:18881-90. [PMID: 15728587 DOI: 10.1074/jbc.m410305200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have recently demonstrated that in human heart, beta2-adrenergic receptors (beta2-ARs) are biochemically coupled not only to the classical adenylyl cyclase (AC) pathway but also to the cytosolic phospholipase A2 (cPLA2) pathway (Pavoine, C., Behforouz, N., Gauthier, C., Le Gouvello, S., Roudot-Thoraval, F., Martin, C. R., Pawlak, A., Feral, C., Defer, N., Houel, R., Magne, S., Amadou, A., Loisance, D., Duvaldestin, P., and Pecker, F. (2003) Mol. Pharmacol. 64, 1117-1125). In this study, using Fura-2-loaded cardiomyocytes isolated from adult rats, we showed that stimulation of beta2-ARs triggered an increase in the amplitude of electrically stimulated [Ca2+]i transients and contractions. This effect was abolished with the PKA inhibitor, H89, but greatly enhanced upon addition of the selective cPLA2 inhibitor, AACOCF3. The beta2-AR/cPLA2 inhibitory pathway involved G(i) and MSK1. Potentiation of beta2-AR/AC/PKA-induced Ca2+ responses by AACOCF3 did not rely on the enhancement of AC activity but was associated with eNOS phosphorylation (Ser1177) and L-NAME-sensitive NO production. This was correlated with PKA-dependent phosphorylation of PLB (Ser16). The constraint exerted by the beta2-AR/cPLA2 pathway on the beta2-AR/AC/PKA-induced Ca2+ responses required integrity of caveolar structures and was impaired by Filipin III treatment. Immunoblot analyses demonstrated zinterol-induced translocation of cPLA and its cosedimentation with MSK1, eNOS, PLB, and sarcoplasmic reticulum Ca2+ pump (SERCA) 2a in a low density caveolin-3-enriched membrane fraction. This inferred the gathering of beta2-AR signaling effectors around caveolae/sarcoplasmic reticulum (SR) functional platforms. Taken together, these data highlight cPLA as a cardiac beta2-AR signaling pathway that limits beta2-AR/AC/PKA-induced Ca2+ responses in adult rat cardiomyocytes through the impairment of eNOS activation and PLB phosphorylation.
Collapse
Affiliation(s)
- Bouziane Ait-Mamar
- Inserm, U581, University of Paris, XII-Val de Marne, Créteil F-94010, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Hawes C, Satiat-Jeunemaitre B. The plant Golgi apparatus--going with the flow. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:93-107. [PMID: 15922463 DOI: 10.1016/j.bbamcr.2005.03.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 03/17/2005] [Accepted: 03/22/2005] [Indexed: 01/17/2023]
Abstract
The plant Golgi apparatus is composed of many separate stacks of cisternae which are often associated with the endoplasmic reticulum and which in many cell types are motile. In this review, we discuss the latest data on the molecular regulation of Golgi function. The concept of the Golgi as a distinct organelle is challenged and the possibility of a continuum between the endoplasmic reticulum and Golgi is proposed.
Collapse
Affiliation(s)
- Chris Hawes
- Research School of Biological and Molecular Sciences, Oxford Brookes University, UK.
| | | |
Collapse
|
66
|
Abstract
The higher plant Golgi apparatus, comprising many individual stacks of membrane bounded cisternae, is one of the most enigmatic of the cytoplasmic organelles. Not only can the stacks receive material from the endoplasmic reticulum, process it and target it to the correct cellular destination, but they can also synthesise and export complex carbohydrates and lipids and most likely act as one end point of the endocytic pathway. In many cells such processing and sorting can take place while the stacks are moving within the cytoplasm and, remarkably, the organelle manages to retain its structural integrity. This review considers some of the latest data and views on transport both to and from the Golgi and the mechanisms by which such activity is regulated.
Collapse
Affiliation(s)
- Chris Hawes
- Research School of Biological & Molecular Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| |
Collapse
|
67
|
Kotzer AM, Brandizzi F, Neumann U, Paris N, Moore I, Hawes C. AtRabF2b (Ara7) acts on the vacuolar trafficking pathway in tobacco leaf epidermal cells. J Cell Sci 2004; 117:6377-89. [PMID: 15561767 DOI: 10.1242/jcs.01564] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rab GTPases are universal key regulators of intracellular secretory trafficking events. In particular, Rab 5 homologues have been implicated in endocytic events and in the vacuolar pathway. In this study, we investigate the location and function of a member of this family, AtRabF2b (Ara7) in tobacco (Nicotiana tabacum) leaf epidermal cells using a live cell imaging approach. Fluorescent-tagged AtRabF2b[wt] localized to the prevacuolar compartment and Golgi apparatus, as determined by coexpression studies with fluorescent markers for these compartments. Mutations that impair AtRabF2b function also alter the subcellular location of the GTPase. In addition, coexpression studies of the protein with the vacuole-targeted aleurain-green fluorescent protein (GFP) and rescue experiments with wild-type AtRabF2b indicate that the dominant-negative mutant of AtRabF2b causes the vacuolar marker to be secreted to the apoplast. Our results indicate a clear role of AtRabF2b in the vacuolar trafficking pathway.
Collapse
Affiliation(s)
- Amanda M Kotzer
- Research School of Biological and Molecular Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | | | | | | | | | | |
Collapse
|
68
|
Brandizzi F, Hawes C. A long and winding road: symposium on membrane trafficking in plants. EMBO Rep 2004; 5:245-9. [PMID: 14993924 PMCID: PMC1299010 DOI: 10.1038/sj.embor.7400099] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Accepted: 01/16/2004] [Indexed: 11/08/2022] Open
Affiliation(s)
- Federica Brandizzi
- Biology Department, University of Saskatchewan, Saskatoon, Canada S7N 5E2.
| | | |
Collapse
|
69
|
Abstract
Plant membrane trafficking shares many features with other eukaryotic organisms, including the machinery for vesicle formation and fusion. However, the plant endomembrane system lacks an ER-Golgi intermediate compartment, has numerous Golgi stacks and several types of vacuoles, and forms a transient compartment during cell division. ER-Golgi trafficking involves bulk flow and efficient recycling of H/KDEL-bearing proteins. Sorting in the Golgi stacks separates bulk flow to the plasma membrane from receptor-mediated trafficking to the lytic vacuole. Cargo for the protein storage vacuole is delivered from the endoplasmic reticulum (ER), cis-Golgi, and trans-Golgi. Endocytosis includes recycling of plasma membrane proteins from early endosomes. Late endosomes appear identical with the multivesiculate prevacuolar compartment that lies on the Golgi-vacuole trafficking pathway. In dividing cells, homotypic fusion of Golgi-derived vesicles forms the cell plate, which expands laterally by targeted vesicle fusion at its margin, eventually fusing with the plasma membrane.
Collapse
Affiliation(s)
- Gerd Jurgens
- ZMBP, Entwicklungsgenetik, Universitat Tubingen, 72076 Tubingen, Germany.
| |
Collapse
|
70
|
Schiene K, Donath S, Brecht M, Pühler A, Niehaus K. A Rab-related small GTP binding protein is predominantly expressed in root nodules of Medicago sativa. Mol Genet Genomics 2004; 272:57-66. [PMID: 15221459 DOI: 10.1007/s00438-004-1029-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Accepted: 05/14/2004] [Indexed: 11/25/2022]
Abstract
Rab-related small GTP-binding proteins are known to be involved in the regulation of the vesicular transport system in eucaryotic cells. In this paper we report the isolation of the cDNA clone MS- rab11f from Medicago sativa (alfalfa) root nodules using a combination of RT-PCR and SSCP analysis. MS- rab11f shows high homology to the Rab-related cDNA clone LJ- rab11f from Lotus japonicus root nodules. The MS-Rab11F protein expressed in Escherichia coli was found to bind GTP, confirming that the isolated cDNA indeed codes for a small GTP-binding protein. Expression analysis by RT-PCR demonstrated that MS- rab11f is preferentially expressed in root nodules of alfalfa. Using the cDNA-sequence of MS-rab11f, a peptide-specific antibody was generated. Western blot analysis with this antibody revealed that two Rab11F isoforms, designated MS-Rab11FA and MS-Rab11FB, are found in M. sativa root nodules.
Collapse
Affiliation(s)
- K Schiene
- Biologie-Genetik, Universität Bielefeld, Postfach 100 131, 33501 Bielefeld, Germany
| | | | | | | | | |
Collapse
|
71
|
Képès F, Rambourg A, Satiat-Jeunemaître B. Morphodynamics of the secretory pathway. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 242:55-120. [PMID: 15598467 DOI: 10.1016/s0074-7696(04)42002-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A careful scrutiny of the dynamics of secretory compartments in the entire eukaryotic world reveals many common themes. The most fundamental theme is that the Golgi apparatus and related structures appear as compartments formed by the act of transporting cargo. The second common theme is the pivotal importance for endomembrane dynamics of shifting back and forth the equilibrium between full and perforated cisternae along the pathway. The third theme is the role of a continuous membrane flow in anterograde transfer of molecules from the endoplasmic reticulum through the Golgi apparatus. The last common theme is the self-regulatory balance between anatomical continuities and discontinuities of the endomembrane system. As this balance depends on secretory activity, it provides a source of morphological variability among cell types or, for a given cell type, according to environmental conditions. Beyond this first source of variability, it appears that divergent strategies pave the evolutionary routes in different eukaryotic kingdoms. These divergent strategies primarily affect the levels of stacking, of stabilization, and of clustering of the Golgi apparatus. They presumably underscore a trade-off between versatility and stability to adapt the secretory function to the degree of environmental variability. Nonequilibrium secretory structures would provide yeasts, and plants to a lesser extent, with the required versatility to cope with ever changing environments, by contrast to the stabler milieu intérieur of homeothermic animals.
Collapse
Affiliation(s)
- François Képès
- ATelier de Génomique Cognitive, CNRS UMR 8071/Genopole and Epigenomics Project, Genopole, Evry, France
| | | | | |
Collapse
|