51
|
Ramalho JS, Lopes VS, Tarafder AK, Seabra MC, Hume AN. Myrip uses distinct domains in the cellular activation of myosin VA and myosin VIIA in melanosome transport. Pigment Cell Melanoma Res 2009; 22:461-73. [PMID: 19317802 DOI: 10.1111/j.1755-148x.2009.00567.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Myrip is a Rab27a and MyosinVIIa (MyoVIIa) linking protein that may regulate melanosome transport in the retinal pigment epithelium (RPE). Myrip also binds MyosinVa (MyoVa) in vitro however it is unclear whether this interaction is of sufficient affinity to be physiologically relevant. Here, we addressed the questions of whether Myrip interacts with MyoVa in cells and the molecular basis of cellular activation of MyoVa and MyoVIIa by Myrip. To answer these questions we used melanosome transport in skin melanocytes and RPE cells as read-outs of MyoVa and MyoVIIa activity. We found that Myrip recruits and activates MyoVa on skin melanosomes with similar efficiency to the established MyoVa activator Melanophilin (Mlph). Mutagenesis showed that a Myrip-Mlph conserved amphipathic helix (MMAH) is essential for MyoVa interaction while other Myrip regions, including the MyoVa exon F binding domain equivalent, play non-essential roles in this interaction. This suggests that, in contrast to Mlph, Myrip interacts with MyoVa lacking melanocyte-specific exon F. Parallel studies of RPE melanosome transport reveal that Myrip-specific inserts, but not the MMAH, are essential for MyoVIIa activation. We conclude that Myrip is a versatile Rab27a-associated myosin-activating protein that mediates cellular activation of MyoVa and MyoVIIa via non-overlapping domains.
Collapse
Affiliation(s)
- José S Ramalho
- Centre of Ophthalmology, Biomedical Institute for Research in Light and Image, University of Coimbra, Coimbra, Portugal
| | | | | | | | | |
Collapse
|
52
|
Williams JA, Chen X, Sabbatini ME. Small G proteins as key regulators of pancreatic digestive enzyme secretion. Am J Physiol Endocrinol Metab 2009; 296:E405-14. [PMID: 19088252 PMCID: PMC2660147 DOI: 10.1152/ajpendo.90874.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Small GTP-binding (G) proteins act as molecular switches to regulate a number of cellular processes, including vesicular transport. Emerging evidence indicates that small G proteins regulate a number of steps in the secretion of pancreatic acinar cells. Diverse small G proteins have been localized at discrete compartments along the secretory pathway and particularly on the secretory granule. Rab3D, Rab27B, and Rap1 are present on the granule membrane and play a role in the steps leading up to exocytosis. Whether the function of these G proteins is simply to ensure appropriate targeting or if they are involved as regulatory molecules is discussed. Most evidence suggests that Rab3D and Rab27B play a role in tethering the secretory granule to its target membrane. Other Rabs have been identified on the secretory granule that are associated with different steps in the secretory pathway. The Rho family small G proteins RhoA and Rac1 also regulate secretion through remodeling of the actin cytoskeleton. Possible mechanisms for regulation of these G proteins and their effector molecules are considered.
Collapse
Affiliation(s)
- John A Williams
- Dept. of Molecular and Integrative Physiology, Univ. of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
53
|
Imai A, Fukuda M, Yoshie S, Nashida T, Shimomura H. Redistribution of Rab27-specific effector Slac2-c, but not Slp4-a, after isoproterenol-stimulation in rat parotid acinar cells. Arch Oral Biol 2009; 54:361-8. [PMID: 19185850 DOI: 10.1016/j.archoralbio.2008.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 12/02/2008] [Accepted: 12/31/2008] [Indexed: 12/16/2022]
Abstract
Small GTPase Rab27 has been implicated in the regulation of different types of membrane trafficking, including melanosome transport and various regulated secretion events. We have previously shown that Rab27 and its effectors, Slac2-c/MyRIP and Slp4-a/granuphilin-a, are involved in the control of isoproterenol (IPR)-induced amylase release from rat parotid acinar cells. The ability of Rab to interact with the specific effectors is important. However, little is known about the fate of these effectors after beta-adrenergic stimulation in parotid acinar cells. The present study investigated changes in intracellular redistribution of Slac2-c and Slp4-a in parotid acinar cells after IPR treatment. Subcellular fractionation studies detected Slac2-c and Slp4-a in the apical plasma membrane (APM) and secretory granules under resting conditions. After 5min of IPR treatment, Slac2-c was rapidly recruited to the luminal site, but after 30 min, the amount of Slac2-c in the APM fraction was reduced by approximately 80% compared to the increased level after 5 min of IPR treatment. Such reductions in Slac2-c are likely caused by the translocation of Slac2-c from the APM to the cytosol. In addition, we found that Slac2-c in the cytosolic fraction, but not other fractions, disappeared in the presence of Ca(2+). Since Slac2-c contains multiple PEST-like sequences (i.e., potential signals for rapid protein degradation), we suggest that Slac2-c is Ca(2+)-dependently proteolyzed in the cytosol after exocytosis. In contrast, intracellular localization and expression levels of Slp4-a in parotid acinar cells were unaltered even after beta-stimulation, indicating completely different fates for the two Rab27 effectors after beta-stimulation.
Collapse
Affiliation(s)
- Akane Imai
- Department of Biochemistry, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8, Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan.
| | | | | | | | | |
Collapse
|
54
|
Herrero-Turrión MJ, Calafat J, Janssen H, Fukuda M, Mollinedo F. Rab27a regulates exocytosis of tertiary and specific granules in human neutrophils. THE JOURNAL OF IMMUNOLOGY 2008; 181:3793-803. [PMID: 18768832 DOI: 10.4049/jimmunol.181.6.3793] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The correct mobilization of cytoplasmic granules is essential for the proper functioning of human neutrophils in host defense and inflammation. In this study, we have found that human peripheral blood neutrophils expressed high levels of Rab27a, whereas Rab27b expression was much lower. This indicates that Rab27a is the predominant Rab27 isoform present in human neutrophils. Rab27a was up-regulated during neutrophil differentiation of HL-60 cells. Subcellular fractionation and immunoelectron microscopy studies of resting human neutrophils showed that Rab27a was mainly located in the membranes of specific and gelatinase-enriched tertiary granules, with a minor localization in azurophil granules. Rab27a was largely absent from CD35-enriched secretory vesicles. Tertiary and specific granule-located Rab27a population was translocated to the cell surface upon neutrophil activation with PMA that induced exocytosis of both tertiary and specific granules. Specific Abs against Rab27a inhibited Ca(2+) and GTP-gamma-S activation and PMA-induced exocytosis of CD66b-enriched tertiary and specific granules in electropermeabilized neutrophils, whereas secretion of CD63-enriched azurophil granules was scarcely affected. Human neutrophils lacked or expressed low levels of most Slp/Slac2 proteins, putative Rab27 effectors, suggesting that additional proteins should act as Rab27a effectors in human neutrophils. Our data indicate that Rab27a is a major component of the exocytic machinery of human neutrophils, modulating the secretion of tertiary and specific granules that are readily mobilized upon neutrophil activation.
Collapse
Affiliation(s)
- M Javier Herrero-Turrión
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Cientificas-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | | | | | | | | |
Collapse
|
55
|
Brzezinska AA, Johnson JL, Munafo DB, Crozat K, Beutler B, Kiosses WB, Ellis BA, Catz SD. The Rab27a effectors JFC1/Slp1 and Munc13-4 regulate exocytosis of neutrophil granules. Traffic 2008; 9:2151-64. [PMID: 18939952 DOI: 10.1111/j.1600-0854.2008.00838.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neutrophil granules contain secretory molecules that contribute to the implementation of all neutrophil functions. The molecular components that regulate the exocytosis of neutrophil granules have not been characterized. In this study, using small interfering RNA gene-targeting approaches and granulocytes from genetically modified mice, we characterized the Rab27a effectors JFC1/Slp1 and Munc13-4 as components of the exocytic machinery of granulocytes. Using total internal reflection fluorescence microscopy analysis, we show that Rab27a and JFC1 colocalize in predocked and docked vesicles in granulocytes. Next, we demonstrate that JFC1-downregulated granulocytes have impaired myeloperoxidase secretion. Using immunological interference, we confirm that JFC1 plays an important role in azurophilic granule exocytosis in human neutrophils. Interference with Rab27a but not with JFC1 impaired gelatinase B secretion in neutrophils, suggesting that a different Rab27a effector modulates this process. In similar studies, we confirmed that Munc13-4 regulates gelatinase secretion. Immunofluorescence analysis indicates that Munc13-4 localizes at secretory organelles in neutrophils. Using neutrophils from a Munc13-4-deficient mouse model (Jinx), we demonstrate that Munc13-4 plays a central role in the regulation of exocytosis of various sets of secretory organelles. However, mobilization of CD11b was not affected in Munc13-4-deficient neutrophils, indicating that secretory defects in these cells are limited to a selective group of exocytosable organelles.
Collapse
Affiliation(s)
- Agnieszka A Brzezinska
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
Small GTPase Rab is a member of a large family of Ras-related proteins, highly conserved in eukaryotic cells, and thought to regulate specific type(s) and/or specific step(s) in intracellular membrane trafficking. Given our interest in synaptic transmission, we addressed the possibility that Rab27 (a close isoform of Rab3) could be involved in cytosolic synaptic vesicle mobilization. Indeed, preterminal injection of a specific antibody against squid Rab27 (anti-sqRab27 antibody) combined with confocal microscopy demonstrated that Rab27 is present on squid synaptic vesicles. Electrophysiological study of injected synapses showed that the anti-sqRab27 antibody inhibited synaptic release in a stimulation-dependent manner without affecting presynaptic action potentials or inward Ca(2+) current. This result was confirmed in in vitro synaptosomes by using total internal reflection fluorescence microscopy. Thus, synaptosomal Ca(2+)-stimulated release of FM1-43 dye was greatly impaired by intraterminal anti-sqRab27 antibody. Ultrastructural analysis of the injected giant preterminal further showed a reduced number of docked synaptic vesicles and an increase in nondocked vesicular profiles distant from the active zone. These results, taken together, indicate that Rab27 is primarily involved in the maturation of recycled vesicles and/or their transport to the presynaptic active zone in the squid giant synapse.
Collapse
|
57
|
Wang JS, Wang FB, Zhang QG, Shen ZZ, Shao ZM. Enhanced expression of Rab27A gene by breast cancer cells promoting invasiveness and the metastasis potential by secretion of insulin-like growth factor-II. Mol Cancer Res 2008; 6:372-82. [PMID: 18337447 DOI: 10.1158/1541-7786.mcr-07-0162] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In addition to the functions of transporting melanosome in melanocytes and releasing contents of lytic granules in CTLs, Rab27A was recently shown to be involved in exocytosis of insulin and chromaffin granules in endocrine cells; it was also reported to be expressed in an exceptionally broad range of specialized secretory cells. As autocrine and paracrine cytokines are essential for invasion and metastasis in some solid tumors, blocking them may be an effective strategy to prevent tumor dissemination. In the present study, we show that Rab27A is associated with invasive and metastatic potentials of human breast cancer cells. The overexpression of Rab27A protein redistributed the cell cycle and increased the invasive and metastatic abilities in breast cancer cells both in vitro and in vivo. We also certified that Rab27A conferred the invasive and metastatic phenotypes on breast cancer cells by promoting the secretion of insulin-like growth factor-II (IGF-II), which regulates the expression of p16, vascular endothelial growth factor, matrix metalloproteinase-9, cathepsin D, cyclin D1, and urokinase-type plasminogen activator. These data provide functional evidence that Rab27A acts as a novel mediator of invasion and metastasis promotion in human breast cancer cells, at least in part, through regulating the secretion of IGF-II, suggesting that synergistic suppression of Rab27A and IGF-II activities holds a promise for preventing breast cancer invasion and metastasis.
Collapse
Affiliation(s)
- Jin-Song Wang
- Department of Oncology, Breast Cancer Institute, Cancer Hospital, Fudan University, Shanghai 200032, PR China
| | | | | | | | | |
Collapse
|
58
|
Saegusa C, Kanno E, Itohara S, Fukuda M. Expression of Rab27B-binding protein Slp1 in pancreatic acinar cells and its involvement in amylase secretion. Arch Biochem Biophys 2008; 475:87-92. [PMID: 18477466 DOI: 10.1016/j.abb.2008.04.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 04/18/2008] [Indexed: 12/16/2022]
Abstract
Slp1 is a putative Rab27 effector protein and implicated in intracellular membrane transport; however, the precise tissue distribution and function of Slp1 protein remain largely unknown. In this study we investigated the tissue distribution of Slp1 in mice and found that Slp1 is abundantly expressed in the pancreas, especially in the apical region of pancreatic acinar cells. Slp1 interacted with Rab27B in vivo and both proteins were co-localized on zymogen granules. Morphological analysis of fasted Slp1 knockout mice showed an increased number of zymogen granules in the pancreatic acinar cells, indicating that Slp1 is part of the machinery of amylase secretion by the exocrine pancreas.
Collapse
Affiliation(s)
- Chika Saegusa
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
59
|
Marchelletta RR, Jacobs DT, Schechter JE, Cheney RE, Hamm-Alvarez SF. The class V myosin motor, myosin 5c, localizes to mature secretory vesicles and facilitates exocytosis in lacrimal acini. Am J Physiol Cell Physiol 2008; 295:C13-28. [PMID: 18434623 DOI: 10.1152/ajpcell.00330.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We investigated the role of the actin-based myosin motor, myosin 5c (Myo5c) in vesicle transport in exocrine secretion. Lacrimal gland acinar cells (LGAC) are the major source for the regulated secretion of proteins from the lacrimal gland into the tear film. Confocal fluorescence and immunogold electron microscopy revealed that Myo5c was associated with secretory vesicles in primary rabbit LGAC. Upon stimulation of secretion with the muscarinic agonist, carbachol, Myo5c was also detected in association with actin-coated fusion intermediates. Adenovirus-mediated expression of green fluorescent protein (GFP) fused to the tail domain of Myo5c (Ad-GFP-Myo5c-tail) showed that this protein was localized to secretory vesicles. Furthermore, its expression induced a significant (P < or = 0.05) decrease in carbachol-stimulated release of two secretory vesicle content markers, secretory component and syncollin-GFP. Adenovirus-mediated expression of GFP appended to the full-length Myo5c (Ad-GFP-Myo5c-full) was used in parallel with adenovirus-mediated expression of GFP-Myo5c-tail in LGAC to compare various parameters of secretory vesicles labeled with either GFP-labeled protein in resting and stimulated LGAC. These studies revealed that the carbachol-stimulated increase in secretory vesicle diameter associated with compound fusion of secretory vesicles that was also exhibited by vesicles labeled with GFP-Myo5c-full was impaired in vesicles labeled with GFP-Myo5c-tail. A significant decrease in GFP labeling of actin-coated fusion intermediates was also seen in carbachol-stimulated LGAC transduced with GFP-Myo5c-tail relative to LGAC transduced with GFP-Myo5c-full. These results suggest that Myo5c participates in apical exocytosis of secretory vesicles.
Collapse
Affiliation(s)
- Ronald R Marchelletta
- Department Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
60
|
Holt O, Kanno E, Bossi G, Booth S, Daniele T, Santoro A, Arico M, Saegusa C, Fukuda M, Griffiths GM. Slp1 and Slp2-a localize to the plasma membrane of CTL and contribute to secretion from the immunological synapse. Traffic 2008; 9:446-57. [PMID: 18266782 PMCID: PMC2329822 DOI: 10.1111/j.1600-0854.2008.00714.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Rab27a is required for polarized secretion of lysosomes from cytotoxic T lymphocytes (CTLs) at the immunological synapse. A series of Rab27a-interacting proteins have been identified; however, only Munc13-4 has been found to be expressed in CTL. In this study, we screened for expression of the synaptotagmin-like proteins (Slps): Slp1/JFC1, Slp2-a/exophilin4, Slp3-a, Slp4/granuphilin, Slp5 and rabphilin in CTL. We found that both Slp1 and Slp2-a are expressed in CTL. Isoforms of Slp2-a in CTL showed variation of the linker region but conserved the C2A and C2B and Slp homology (SHD) domains. Both Slp1 and Slp2-a interact with Rab27a in CTL, and Slp2-a, but not Slp1, is rapidly degraded when Rab27a is absent. Slp2-a contains PEST-like sequences within its linker region, which render it susceptible to degradation. Both Slp1 and Slp2-a localize predominantly to the plasma membrane of both human and mouse CTLs, and we show that Slp2-a can focus tightly at the immunological synapse formed with a target cell. Individual knockouts of either Slp2-a or Slp1 fail to impair CTL-mediated killing of targets; however, overexpression of a dominant-negative construct consisting of the SHD of Slp2-a, which is 56% identical to that of Slp1, reduces target cell death, suggesting that both Slp1 and Slp2-a contribute to secretory lysosome exocytosis from CTL. These results suggest that both Slp1 and Slp2-a may form part of a docking complex, capturing secretory lysosomes at the immunological synapse.
Collapse
Affiliation(s)
- Oliver Holt
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford, OX1 3RE, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Origins of the regulated secretory pathway. THE GOLGI APPARATUS 2008. [PMCID: PMC7121582 DOI: 10.1007/978-3-211-76310-0_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modes of transport of soluble (or luminal) secretory proteins synthesized in the endoplasmic reticulum (ER) could be divided into two groups. The socalled constitutive secretory pathway (CSP) is common to all eukaryotic cells, constantly delivering constitutive soluble secretory proteins (CSSPs) linked to the rate of protein synthesis but largely independent of external stimuli. In regulated secretion, protein is sorted from the Golgi into storage/secretory granules (SGs) whose contents are released when stimuli trigger their final fusion with the plasma membrane (Hannah et al. 1999).
Collapse
|
62
|
Unstimulated amylase secretion is proteoglycan-dependent in rat parotid acinar cells. Arch Biochem Biophys 2008; 469:165-73. [DOI: 10.1016/j.abb.2007.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 10/09/2007] [Accepted: 10/13/2007] [Indexed: 11/22/2022]
|
63
|
Catz SD. Characterization of Rab27a and JFC1 as constituents of the secretory machinery of prostate-specific antigen in prostate carcinoma cells. Methods Enzymol 2008; 438:25-40. [PMID: 18413239 PMCID: PMC11960417 DOI: 10.1016/s0076-6879(07)38003-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Prostate-specific antigen (PSA) and prostate-specific acid phosphatase (PSAP) are produced by prostate carcinoma cells. Their secretion has implications in both prostate cancer diagnosis and progression. The mechanisms involved in PSA and PSAP secretion in response to androgens have remained relatively unknown. The small GTPase Rab27a regulates exocytosis in several tissues. Here, we present methods for the characterization of Rab27a and its effector JFC1/Slp1 as key components of the secretory machinery that regulates exocytosis in prostate carcinoma cells.
Collapse
Affiliation(s)
- Sergio D Catz
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
64
|
Abstract
Recent discoveries that Rab27a/b and their multiple effectors are involved in the regulated exocytosis of lysosome-related organelles and secretory granules have generated numerous related studies. However, not all of these studies have yielded physiologically relevant data because they were not all performed under physiological conditions. For example, "in vivo interactions" have been claimed without examination of the endogenous complex. In some studies, the only proof of interaction was between exogenously expressed proteins in cultured cells where these proteins are not normally expressed. Because regulated exocytic pathways contain highly differentiated secretory organelles, it is important to analyze the molecular interaction in cells harboring these organelles and the associated molecules. Furthermore, previous overexpression experiments to examine the effect on secretion often failed to compare the level of the exogenous protein with that of the endogenous one. Similarly, some knockdown experiments using small-interfering RNAs have only shown downregulation of the exogenously expressed protein, and not of the endogenous one. Many of the conflicting findings in previous studies may be attributable to these shortcomings. The present study summarizes our knowledge about the roles of Rab27 effectors in regulated exocytic pathways based on physiologically relevant data.
Collapse
Affiliation(s)
- Tetsuro Izumi
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University
| |
Collapse
|
65
|
Gomi H, Mori K, Itohara S, Izumi T. Rab27b is expressed in a wide range of exocytic cells and involved in the delivery of secretory granules near the plasma membrane. Mol Biol Cell 2007; 18:4377-86. [PMID: 17761531 PMCID: PMC2043558 DOI: 10.1091/mbc.e07-05-0409] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rab proteins regulate multiple, complex processes of membrane traffic. Among these proteins, Rab27a has been shown to function specifically in regulated exocytic pathways. However, the roles of Rab27b, another Rab27 subfamily member, have not been well characterized. We disrupted the Rab27b gene in mice. The targeting vector was designed to insert LacZ downstream of the initiation codon of the Rab27b gene so that the authentic promoter should drive this reporter gene. A comprehensive analysis of Rab27b expression using this mouse strain indicated that it is widely expressed not only in canonical secretory cells, but also in neurons and cells involved in surface protection and mechanical extension. To evaluate the function in pituitary endocrine cells where the isoform Rab27a is coexpressed, we generated Rab27a/Rab27b double knockout mice by crossing Rab27b knockout mice with Rab27a-mutated ashen mice. The polarized distribution of secretory granules close to the plasma membrane was markedly impaired in the pituitary of double knockout mice, indicating that the Rab27 subfamily is involved in the delivery of granules near the exocytic site. In conjunction with a phenotype having a pituitary devoid of the Rab27 effector granuphilin, we discuss the relationship between the residence and the releasable pool of granules.
Collapse
Affiliation(s)
- Hiroshi Gomi
- *Laboratory of Molecular Endocrinology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan; and
| | - Kenichi Mori
- *Laboratory of Molecular Endocrinology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan; and
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, Brain Science Institute, Institute of Physical and Chemical Research, Wako 351-0198, Japan
| | - Tetsuro Izumi
- *Laboratory of Molecular Endocrinology and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan; and
| |
Collapse
|
66
|
Mizuno K, Tolmachova T, Ushakov DS, Romao M, Åbrink M, Ferenczi MA, Raposo G, Seabra MC. Rab27b regulates mast cell granule dynamics and secretion. Traffic 2007; 8:883-92. [PMID: 17587407 PMCID: PMC2063611 DOI: 10.1111/j.1600-0854.2007.00571.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Rab GTPase family regulates membrane domain organization and vesicular transport pathways. Recent studies indicate that one member of the family, Rab27a, regulates transport of lysosome-related organelles in specialized cells, such as melanosomes and lytic granules. Very little is known about the related isoform, Rab27b. Here we used genetically modified mice to study the involvement of the Rab27 proteins in mast cells, which play key roles in allergic responses. Both Rab27a and Rab27b isoforms are expressed in bone marrow-derived mast cells (BMMC) and localize to secretory granules. Nevertheless, secretory defects as measured by β-hexosaminidase release in vitro and passive cutaneous anaphylaxis in vivo were found only in Rab27b and double Rab27 knockout (KO) mice. Immunofluorescence studies suggest that a subset of Rab27b and double Rab27-deficient BMMCs exhibit mild clustering of granules. Quantitative analysis of live-cell time-lapse imaging revealed that BMMCs derived from double Rab27 KO mice showed almost 10-fold increase in granules exhibiting fast movement (>1.5 μm/s), which could be disrupted by nocodazole. These results suggest that Rab27 proteins, particularly Rab27b, play a crucial role in mast cell degranulation and that their action regulates the transition from microtubule to actin-based motility.
Collapse
Affiliation(s)
- Kouichi Mizuno
- Molecular and Cellular Medicine, National Heart and Lung Institute, Imperial College London SW7 2AZUK
| | - Tanya Tolmachova
- Molecular and Cellular Medicine, National Heart and Lung Institute, Imperial College London SW7 2AZUK
| | - Dmitry S Ushakov
- Biological Nanoscience, National Heart and Lung Institute, Imperial College London SW7 2AZUK
| | - Maryse Romao
- Institut Curie, CNRS UMR144, Structure and Membrane Compartments, 75248 ParisFrance
| | - Magnus Åbrink
- Department of Medical Biochemistry and Microbiology, Uppsala University, 751 05 UppsalaSweden
| | - Michael A Ferenczi
- Biological Nanoscience, National Heart and Lung Institute, Imperial College London SW7 2AZUK
| | - Graça Raposo
- Institut Curie, CNRS UMR144, Structure and Membrane Compartments, 75248 ParisFrance
| | - Miguel C Seabra
- Molecular and Cellular Medicine, National Heart and Lung Institute, Imperial College London SW7 2AZUK
- * Corresponding author: Miguel C. Seabra,
| |
Collapse
|
67
|
Munafó D, Johnson J, Ellis B, Rutschmann S, Beutler B, Catz S. Rab27a is a key component of the secretory machinery of azurophilic granules in granulocytes. Biochem J 2007; 402:229-39. [PMID: 17090228 PMCID: PMC1798439 DOI: 10.1042/bj20060950] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Neutrophils kill micro-organisms using microbicidal products that they release into the phagosome or into the extracellular space. The secretory machinery utilized by neutrophils is poorly characterized. We show that the small GTPase Rab27a is an essential component of the secretory machinery of azurophilic granules in granulocytes. Rab27a-deficient mice have impaired secretion of MPO (myeloperoxidase) into the plasma in response to lipopolysaccharide. Cell fractionation analysis revealed that Rab27a and the Rab27a effector protein JFC1/Slp1 (synaptotagmin-like protein 1) are distributed principally in the low-density fraction containing a minor population of MPO-containing granules. By immunofluorescence microscopy, we detected Rab27a and JFC1/Slp1 in a minor subpopulation of MPO-containing granules. Interference with the JFC1/Slp1-Rab27a secretory machinery impaired secretion of MPO in permeabilized neutrophils. The expression of Rab27a was dramatically increased when promyelocytic HL-60 cells were differentiated into granulocytes but not when they were differentiated into monocytes. Down-regulation of Rab27a in HL-60 cells by RNA interference did not affect JFC1/Slp1 expression but significantly decreased the secretion of MPO. Neither Rab27a nor JFC1/Slp1 was integrated into the phagolysosome membrane during phagocytosis. Neutrophils from Rab27a-deficient mice efficiently phagocytose zymosan opsonized particles and deliver MPO to the phagosome. We conclude that Rab27a and JFC1/Slp1 permit MPO release into the surrounding milieu and constitute key components of the secretory machinery of azurophilic granules in granulocytes. Our results suggest that the granules implicated in cargo release towards the surrounding milieu are molecularly and mechanistically different from those involved in their release towards the phagolysosome.
Collapse
Affiliation(s)
- Daniela B. Munafó
- *Department of Molecular and Experimental Medicine, Division of Biochemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla CA, 92037, U.S.A
| | - Jennifer L. Johnson
- *Department of Molecular and Experimental Medicine, Division of Biochemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla CA, 92037, U.S.A
| | - Beverly A. Ellis
- *Department of Molecular and Experimental Medicine, Division of Biochemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla CA, 92037, U.S.A
| | - Sophie Rutschmann
- †Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
| | - Bruce Beutler
- †Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
| | - Sergio D. Catz
- *Department of Molecular and Experimental Medicine, Division of Biochemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla CA, 92037, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
68
|
Fukuda M. Rab27 and its effectors in secretory granule exocytosis: a novel docking machinery composed of a Rab27·effector complex. Biochem Soc Trans 2006; 34:691-5. [PMID: 17052176 DOI: 10.1042/bst0340691] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A small GTPase Rab27 is present on secretory granules in a wide variety of secretory cells and on melanosomes in melanocytes, and it is involved in controlling the trafficking of these organelles through interaction with a cell-type- or tissue-specific Rab27 effector(s). Slps (synaptotagmin-like proteins) and rabphilin contain an N-terminal Rab27-binding domain and C-terminal tandem C2 domains, and some of the Rab27-binding proteins have recently been shown to promote docking of Rab27-bound organelles to the plasma membrane. This mini-review presents a model for how the Rab27·effector complex controls the docking step in the trafficking of Rab27-bound organelles. Our results indicate that Slp2-a, Slp4-a/granuphilin-a and rabphilin are capable of interacting with the plasma membrane directly or indirectly, and thus that these Rab27 effectors form a bridge between Rab27-bound organelles and the plasma membrane.
Collapse
Affiliation(s)
- M Fukuda
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
69
|
Imai A, Yoshie S, Nashida T, Shimomura H, Fukuda M. Functional involvement of Noc2, a Rab27 effector, in rat parotid acinar cells. Arch Biochem Biophys 2006; 455:127-35. [PMID: 17067543 DOI: 10.1016/j.abb.2006.09.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 09/17/2006] [Accepted: 09/18/2006] [Indexed: 11/23/2022]
Abstract
Noc2 has recently been proposed to regulate exocytosis in both endocrine and exocrine cells; however, protein expression, subcellular localization and function of Noc2 in exocrine cells have never been elucidated. In this study, we investigated whether Noc2, a Rab27 effector, is involved in isoproterenol (IPR)-stimulated amylase release from acinar cells. Rab27 was detected in the apical plasma membrane (APM) and secretory granule membrane (SGM) fractions, and was translocated to the APM after IPR stimulation for 5 min, but was detected at lower levels in the APM after 30 min. In contrast, although Noc2 was expressed in SGM bound to Rab27, Noc2 was not translocated to APM and the Noc2/Rab27 complex was disrupted after stimulation with IPR for short time. In addition, the anti-Noc2-Rab-binding-domain antibody inhibited IPR-stimulated amylase release from streptolysin O-permeabilized parotid acinar cells. Our results suggest that the Noc2/Rab27 complex is an important constituent of the early stages of IPR-stimulated amylase release.
Collapse
Affiliation(s)
- Akane Imai
- Department of Biochemistry, The Nippon Dental University, School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Niigata 951-8580, Japan.
| | | | | | | | | |
Collapse
|
70
|
Saegusa C, Tanaka T, Tani S, Itohara S, Mikoshiba K, Fukuda M. Decreased basal mucus secretion by Slp2-a-deficient gastric surface mucous cells. Genes Cells 2006; 11:623-31. [PMID: 16716193 DOI: 10.1111/j.1365-2443.2006.00964.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synaptotagmin-like protein (Slp) 2-a is a putative Rab27A/B-effector protein and is implicated in intracellular membrane transport. However, the precise tissue distribution of Slp2-a protein and its functions remain largely unknown. In this study we used a specific anti-Slp2-a antibody to investigate the tissue distribution of Slp2-a in mice and found that Slp2-a is most abundantly expressed in mouse stomach. Co-immunoprecipitation experiments indicated that Slp2-a interacts with Rab27A/B in vivo. We also discovered that Slp2-a and Rab27A/B are predominantly localized at the apical region of gastric-surface mucous cells, where mucus granules are accumulated. Analysis of Slp2-a mutant mice generated by homologous recombination showed a reduced number of mucus granules, a deficiency of granule docking with the apical plasma membrane in the gastric-surface mucous cells and reduction of mucus secretion by Slp2-a-deficient gastric primary cells. Based on these results, we propose that Slp2-a is part of the mucin secretory machinery in surface mucous cells of mouse stomach.
Collapse
Affiliation(s)
- Chika Saegusa
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
71
|
Ishikawa Y, Cho G, Yuan Z, Skowronski MT, Pan Y, Ishida H. Water channels and zymogen granules in salivary glands. J Pharmacol Sci 2006; 100:495-512. [PMID: 16799262 DOI: 10.1254/jphs.crj06007x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Salivary secretion occurs in response to stimulation by neurotransmitters released from autonomic nerve endings. The molecular mechanisms underlying the secretion of water, a main component of saliva, from salivary glands are not known; the plasma membrane is a major barrier to water transport. A 28-kDa integral membrane protein, distributed in highly water-permeable tissues, was identified as a water channel protein, aquaporin (AQP). Thirteen AQPs (AQP0 - AQP12) have been identified in mammals. AQP5 is localized in lipid rafts under unstimulated conditions and translocates to the apical plasma membrane in rat parotid glands upon stimulation by muscarinic agonists. The importance of increases in intracellular calcium concentration [Ca(2+)](i) and the nitric oxide synthase and protein kinase G signaling pathway in the translocation of AQP5 is reviewed in section I. Signals generated by the activation of Ca(2+) mobilizing receptors simultaneously trigger and regulate exocytosis. Zymogen granule exocytosis occurs under the control of essential process, stimulus-secretion coupling, in salivary glands. Ca(2+) signaling is a principal signal in both protein and water secretion from salivary glands induced by cholinergic stimulation. On the other hand, the cyclic adenosine monophosphate (cAMP)/cAMP-dependent protein kinase system has a major role in zymogen granule exocytosis without significant increases in [Ca(2+)](i). In section II, the mechanisms underlying the control of salivary protein secretion and its dysfunction are reviewed.
Collapse
Affiliation(s)
- Yasuko Ishikawa
- Department of Pharmacology, The University of Tokushima School of Dentistry, Tokushima, Japan.
| | | | | | | | | | | |
Collapse
|
72
|
Kondo H, Shirakawa R, Higashi T, Kawato M, Fukuda M, Kita T, Horiuchi H. Constitutive GDP/GTP exchange and secretion-dependent GTP hydrolysis activity for Rab27 in platelets. J Biol Chem 2006; 281:28657-65. [PMID: 16880209 DOI: 10.1074/jbc.m603227200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have previously demonstrated that Rab27 regulates dense granule secretion in platelets. Here, we analyzed the activation status of Rab27 using the thin layer chromatography method analyzing nucleotides bound to immunoprecipitated Rab27 and the pull-down method quantifying Rab27 bound to the GTP-Rab27-binding domain (synaptotagmin-like protein (Slp)-homology domain) of its specific effector, Slac2-b. We found that Rab27 was predominantly present in the GTP-bound form in unstimulated platelets due to constitutive GDP/GTP exchange activity. The GTP-bound Rab27 level drastically decreased due to enhanced GTP hydrolysis activity upon granule secretion. In permeabilized platelets, increase of Ca(2+) concentration induced dense granule secretion with concomitant decrease of GTP-Rab27, whereas in non-hydrolyzable GTP analogue GppNHp (beta-gamma-imidoguanosine 5'-triphosphate)-loaded permeabilized platelets, the GTP (GppNHp)-Rab27 level did not decrease upon the Ca(2+)-induced secretion. These data suggested that GTP hydrolysis of Rab27 was not necessary for inducing the secretion. Taken together, Rab27 is maintained in the active status in unstimulated platelets, which could function to keep dense granules in a preparative status for secretion.
Collapse
Affiliation(s)
- Hirokazu Kondo
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
73
|
Fujii M, Kawai Y, Endoh M, Hossain MN, Nakabayashi K, Ayusawa D. Expression of RAB27B is up-regulated in senescent human cells. Mech Ageing Dev 2006; 127:639-42. [PMID: 16620919 DOI: 10.1016/j.mad.2006.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 03/02/2006] [Accepted: 03/07/2006] [Indexed: 11/20/2022]
Abstract
Immortal SVts8 cells that express thermolabile SV40 T antigen exhibit a senescence-like phenomenon upon inactivation of the T antigen. By using a cDNA subtractive hybridization technique, RAB27B, a member of the RAB GTPase family, was found to be up-regulated in senescent SVts8 cells. The up-regulation of RAB27B depends on the p53 gene. Enhanced expression was also observed in replicative senescence in normal human fibroblasts.
Collapse
Affiliation(s)
- Michihiko Fujii
- Division of Biochemistry, Kihara Institute for Biological Research and Graduate School of Integrated Science, Yokohama City University, Maioka-cho 641-12, Totsuka-ku, Yokohama 244-0813, Japan
| | | | | | | | | | | |
Collapse
|
74
|
Tsuboi T, Fukuda M. Rab3A and Rab27A cooperatively regulate the docking step of dense-core vesicle exocytosis in PC12 cells. J Cell Sci 2006; 119:2196-203. [PMID: 16684812 DOI: 10.1242/jcs.02962] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recent studies have suggested that two small GTPases, Rab3A and Rab27A, play a key role in the late steps of dense-core vesicle exocytosis in endocrine cells; however, neither the precise mechanisms by which these two GTPases regulate dense-core vesicle exocytosis nor the functional relationship between them is clear. In this study, we expressed a number of different Rab proteins, from Rab1 to Rab41 in PC12 cells and systematically screened them for those that are specifically localized on dense-core vesicles. We found that four Rabs (Rab3A, Rab27A, Rab33A, Rab37) are predominantly targeted to dense-core vesicles in PC12 cells, and that three of them (Rab3A, Rab27A, Rab33A) are endogenously expressed on dense-core vesicles. We further investigated the effect of silencing each Rab with specific small interfering RNA on vesicle dynamics by total internal reflection fluorescence microscopy in a single PC12 cell. Silencing either Rab3A or Rab27A in PC12 cells significantly decreased the number of dense-core vesicles docked to the plasma membrane without altering the kinetics of individual exocytotic events, whereas silencing of Rab33A had no effect at all. Simultaneous silencing of Rab3A and Rab27A caused a significantly greater decrease in number of vesicles docked to the plasma membrane. Our findings indicate that Rab3A and Rab27A cooperatively regulate docking step(s) of dense-core vesicles to the plasma membrane.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama, Japan
| | | |
Collapse
|
75
|
Fukuda M. Distinct Rab27A binding affinities of Slp2-a and Slac2-a/melanophilin: Hierarchy of Rab27A effectors. Biochem Biophys Res Commun 2006; 343:666-74. [PMID: 16554019 DOI: 10.1016/j.bbrc.2006.03.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 03/01/2006] [Indexed: 11/22/2022]
Abstract
The small GTPase Rab27A has recently been shown to regulate melanosome transport in mammalian skin melanocytes through sequentially interacting with two Rab27A effectors, Slac2-a/melanophilin and Slp2-a. Although Slac2-a and Slp2-a contain a similar N-terminal Rab27A-binding domain (named SHD, Slp homology domain), nothing is known about the functional differences between the Slac2-a SHD and Slp2-a SHD. In this study, the Rab27A-binding affinity of ten putative Rab27A effector proteins has been investigated. It has been found that they could be classified into a low-affinity group (e.g., Slac2-a) and a high-affinity group (e.g., Slp2-a and Slp4-a) based on their Rab27A-binding affinity. Kinetic analysis of the GTP-Rab27A-binding to the SHD of Slp2-a, Slp4-a, and Slac2-a by surface plasmon resonance further indicated that the kinetic parameters of Rab27A for the Slp2-a SHD, Slp4-a SHD, and Slac2-a SHD consisted of a fast association rate constant (3.35 x 10(4), 2.06 x 10(4), and 2.11 x 10(4) M(-1) s(-1), respectively) and a slow dissociation rate constant (4.48 x 10(-4), 3.96 x 10(-4), and 2.37 x 10(-3) s(-1) respectively), and their equilibrium dissociation constants were determined to be 13.4, 19.2, and 112 nM, respectively. Our data suggest that distinct Rab27A binding activities of Slac2-a and Slp2-a ensure the order (or hierarchy) of Rab27A effectors that sequentially function in melanosome transport in melanocytes.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Fukuda Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
76
|
Tsuboi T, Fukuda M. The Slp4-a linker domain controls exocytosis through interaction with Munc18-1.syntaxin-1a complex. Mol Biol Cell 2006; 17:2101-12. [PMID: 16481396 PMCID: PMC1446092 DOI: 10.1091/mbc.e05-11-1047] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 02/06/2006] [Accepted: 02/08/2006] [Indexed: 11/11/2022] Open
Abstract
Synaptotagmin-like protein 4-a (Slp4-a)/granuphilin-a is specifically localized on dense-core vesicles in certain neuroendocrine cells and negatively controls dense-core vesicle exocytosis through specific interaction with Rab27A. However, the precise molecular mechanism of its inhibitory effect on exocytosis has never been elucidated and is still a matter of controversy. Here we show by deletion and chimeric analyses that the linker domain of Slp4-a interacts with the Munc18-1.syntaxin-1a complex by directly binding to Munc18-1 and that this interaction promotes docking of dense-core vesicles to the plasma membrane in PC12 cells. Despite increasing the number of plasma membrane docked vesicles, expression of Slp4-a strongly inhibited high-KCl-induced dense-core vesicle exocytosis. The inhibitory effect by Slp4-a is absolutely dependent on the linker domain of Slp4-a, because substitution of the linker domain of Slp4-a by that of Slp5 (the closest isoform of Slp4-a that cannot bind the Munc18-1.syntaxin-1a complex) completely abrogated the inhibitory effect. Our findings reveal a novel docking machinery for dense-core vesicle exocytosis: Slp4-a simultaneously interacts with Rab27A and Munc18-1 on the dense-core vesicle and with syntaxin-1a in the plasma membrane.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Fukuda Initiative Research Unit, Riken (The Institute of Physical and Chemical Research), Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
77
|
Kuroda TS, Itoh T, Fukuda M. Functional analysis of slac2-a/melanophilin as a linker protein between Rab27A and myosin Va in melanosome transport. Methods Enzymol 2006; 403:419-31. [PMID: 16473608 DOI: 10.1016/s0076-6879(05)03037-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Slac2-a/melanophilin regulates melanosome transport in mammalian skin melanocytes by linking melanosome-bound Rab27A and an actin-based motor protein, myosin Va. Slac2-a consists of an N-terminal Slp homology domain (SHD), which has been identified as a specific GTP-Rab27-binding domain, a myosin Va-binding domain (MBD) in the middle region, and an actin-binding domain (ABD) at the C-terminus. Mutations in the slac2-a/mlph gene cause the abnormal pigmentation (i.e., perinuclear melanosome aggregation in melanocytes) in human Griscelli syndrome type III and in leaden mice because of the inability to form the tripartite protein complex consisting of Rab27A, Slac2-a, and myosin Va. In this chapter we describe the methods, including in vivo melanosome distribution assay combined with dominant-negative approaches and RNA interference technology, that have been used to analyze the function of Slac2-a in melanosome transport in melanocytes.
Collapse
|
78
|
Saxena SK, Horiuchi H, Fukuda M. Rab27a regulates epithelial sodium channel (ENaC) activity through synaptotagmin-like protein (SLP-5) and Munc13-4 effector mechanism. Biochem Biophys Res Commun 2006; 344:651-7. [PMID: 16630545 DOI: 10.1016/j.bbrc.2006.03.160] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2006] [Accepted: 03/27/2006] [Indexed: 02/08/2023]
Abstract
Liddle's syndrome (excessive absorption of sodium ions) and PHA-1 (pseudohypoaldosteronism type 1) with decreased sodium absorption are caused by the mutations in the amiloride-sensitive epithelial sodium channel ENaC. Rab proteins are small GTPases involved in vesicle transport, docking, and fusion. Earlier, we reported that Rab27a inhibits ENaC-mediated currents through protein-protein interaction in HT-29 cells. We hereby report that Rab27a-dependent inhibition is associated with the GTP/GDP status as constitutively active or GTPase-deficient mutant Q78L inhibits amiloride-sensitive currents whereas GDP-locked inactive mutant T23N showed no effect. In order to further explore the molecular mechanism of this regulation, we performed competitive assays with two Rab27a-binding proteins: synaptotagmin-like protein (SLP-5) and Munc13-4 (a putative priming factor for exocytosis). Both proteins eliminate negative modulation of Rab27a on ENaC function. The SLP-5 reversal of Rab27a effect was restricted to C-terminal C2A/C2B domains assigned for putative phospholipids-binding function while the Rab27a-binding SHD motif imparted higher inhibition. The ENaC-mediated currents remain unaffected by Rab27a though SLP-5 appears to strongly bind it. The immunoprecipitation experiments suggest that in the presence of excessive Munc13-4 and SLP-5 proteins, Rab27a interaction with ENaC is diminished. Munc13-4 and SLP-5 limit the Rab27a availability to ENaC, thus minimizing its effect on channel function. These observations decisively prove that Rab27a inhibits ENaC function through a complex mechanism that involves GTP/GDP status, and protein-protein interactions involving Munc13-4 and SLP-5 effector proteins.
Collapse
Affiliation(s)
- Sunil K Saxena
- Center for Cell and Molecular Biology, Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | | | | |
Collapse
|
79
|
Mahoney TR, Liu Q, Itoh T, Luo S, Hadwiger G, Vincent R, Wang ZW, Fukuda M, Nonet ML. Regulation of synaptic transmission by RAB-3 and RAB-27 in Caenorhabditis elegans. Mol Biol Cell 2006; 17:2617-25. [PMID: 16571673 PMCID: PMC1474797 DOI: 10.1091/mbc.e05-12-1170] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rab small GTPases are involved in the transport of vesicles between different membranous organelles. RAB-3 is an exocytic Rab that plays a modulatory role in synaptic transmission. Unexpectedly, mutations in the Caenorhabditis elegans RAB-3 exchange factor homologue, aex-3, cause a more severe synaptic transmission defect as well as a defecation defect not seen in rab-3 mutants. We hypothesized that AEX-3 may regulate a second Rab that regulates these processes with RAB-3. We found that AEX-3 regulates another exocytic Rab, RAB-27. Here, we show that C. elegans RAB-27 is localized to synapse-rich regions pan-neuronally and is also expressed in intestinal cells. We identify aex-6 alleles as containing mutations in rab-27. Interestingly, aex-6 mutants exhibit the same defecation defect as aex-3 mutants. aex-6; rab-3 double mutants have behavioral and pharmacological defects similar to aex-3 mutants. In addition, we demonstrate that RBF-1 (rabphilin) is an effector of RAB-27. Therefore, our work demonstrates that AEX-3 regulates both RAB-3 and RAB-27, that both RAB-3 and RAB-27 regulate synaptic transmission, and that RAB-27 potentially acts through its effector RBF-1 to promote soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) function.
Collapse
Affiliation(s)
- Timothy R. Mahoney
- *Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Qiang Liu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030; and
| | - Takashi Itoh
- Fukuda Initiative Research Unit, RIKEN, Wako, Saitama 351-0198, Japan
| | - Shuo Luo
- *Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gayla Hadwiger
- *Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Rose Vincent
- *Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030; and
| | - Mitsunori Fukuda
- Fukuda Initiative Research Unit, RIKEN, Wako, Saitama 351-0198, Japan
| | - Michael L. Nonet
- *Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
80
|
Wu K, Jerdeva GV, da Costa SR, Sou E, Schechter JE, Hamm-Alvarez SF. Molecular mechanisms of lacrimal acinar secretory vesicle exocytosis. Exp Eye Res 2006; 83:84-96. [PMID: 16530759 DOI: 10.1016/j.exer.2005.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 10/12/2005] [Accepted: 11/01/2005] [Indexed: 11/26/2022]
Abstract
The acinar epithelial cells of the lacrimal gland are responsible for the production, packaging and regulated exocytosis of tear proteins into ocular surface fluid. This review summarizes new findings on the mechanisms of exocytosis in these cells. Participating proteins are discussed within the context of different categories of trafficking effectors including targeting and specificity factors (rabs, SNAREs) and transport factors (microtubules, actin filaments and motor proteins). Recent information describing fundamental changes in basic exocytotic mechanisms in the NOD mouse, an animal model of Sjögren's syndrome, is presented.
Collapse
Affiliation(s)
- Kaijin Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Avenue, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|
81
|
Nashida T, Imai A, Shimomura H. Relation of Rab26 to the amylase release from rat parotid acinar cells. Arch Oral Biol 2006; 51:89-95. [PMID: 16076461 DOI: 10.1016/j.archoralbio.2005.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Accepted: 06/21/2005] [Indexed: 11/18/2022]
Abstract
Amylase secretion from rat parotid acinar cells is induced by the accumulation of cAMP in response to beta-adrenergic agonists as well as by the elevation of intracellular Ca2+ in response to muscarinic cholinergic stimulation. Several proteins including the low molecular weight GTP-binding protein Rab may participate in these exocytic processes. In the current studies, we investigated the role of Rab26 in the process of amylase secretion. Secretory granules were separated by centrifugation on a Percoll-sucrose density gradient into mature and immature granule fractions. Rab26 and two other type III Rab proteins, Rab3D and Rab27, were present in the mature granule membrane fraction. Also, Rab26 was absent in immature granule membrane fractions. Isoproterenol-induced amylase release from streptolysin-O-permeabilised acinar cells was inhibited by an anti-Rab26 antibody, but this antibody had no effect on the Ca2+-induced release of amylase. Finally, in the early stage of beta-adrenergic stimulation, Rab26 was condensed in the secretory granule membrane. These results indicate that Rab26 is involved in the recruitment of mature granules to the plasma membrane upon beta-adrenergic stimulation.
Collapse
Affiliation(s)
- Tomoko Nashida
- Department of Biochemistry, School of Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Niigata 951-8580, Japan.
| | | | | |
Collapse
|
82
|
Abstract
Stimulus-secretion coupling is an essential process in secretory cells in which regulated exocytosis occurs, including neuronal, neuroendocrine, endocrine, and exocrine cells. While an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) is the principal signal, other intracellular signals also are important in regulated exocytosis. In particular, the cAMP signaling system is well known to regulate and modulate exocytosis in a variety of secretory cells. Until recently, it was generally thought that the effects of cAMP in regulated exocytosis are mediated by activation of cAMP-dependent protein kinase (PKA), a major cAMP target, followed by phosphorylation of the relevant proteins. Although the involvement of PKA-independent mechanisms has been suggested in cAMP-regulated exocytosis by pharmacological approaches, the molecular mechanisms are unknown. Newly discovered cAMP-GEF/Epac, which belongs to the cAMP-binding protein family, exhibits guanine nucleotide exchange factor activities and exerts diverse effects on cellular functions including hormone/transmitter secretion, cell adhesion, and intracellular Ca(2+) mobilization. cAMP-GEF/Epac mediates the PKA-independent effects on cAMP-regulated exocytosis. Thus cAMP regulates and modulates exocytosis by coordinating both PKA-dependent and PKA-independent mechanisms. Localization of cAMP within intracellular compartments (cAMP compartmentation or compartmentalization) may be a key mechanism underlying the distinct effects of cAMP in different domains of the cell.
Collapse
Affiliation(s)
- Susumu Seino
- Division of Cellular and Molecular Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | | |
Collapse
|
83
|
Tsuboi T, Fukuda M. The C2B domain of rabphilin directly interacts with SNAP-25 and regulates the docking step of dense core vesicle exocytosis in PC12 cells. J Biol Chem 2005; 280:39253-9. [PMID: 16203731 DOI: 10.1074/jbc.m507173200] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rabphilin is a membrane trafficking protein on secretory vesicles that consists of an N-terminal Rab-binding domain and C-terminal tandem C2 domains. The N-terminal part of rabphilin has recently been shown to function as an effector domain for both Rab27A and Rab3A in PC12 cells (Fukuda, M., Kanno, E., and Yamamoto, A. (2004) J. Biol. Chem. 279, 13065-13075), but the function of the C2 domains of rabphilin during secretory vesicle exocytosis is largely unknown. In this study we investigated the interaction between rabphilin and SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors, VAMP-2/synaptobrevin-2, syntaxin IA, and SNAP-25) and SNARE-associated proteins (Munc18-1 and Munc13-1) and found that the C2B domain of rabphilin, but not of other Rab27A-binding proteins with tandem C2 domains (i.e. Slp1-5), directly interacts with a plasma membrane protein, SNAP-25. The interaction between rabphilin and SNAP-25 occurs even in the absence of Ca(2+) (EC(50) = 0.817 microm SNAP-25), but 0.5 mm Ca(2+) increases the affinity for SNAP-25 2-fold (EC(50) = 0.405 microm SNAP-25) without changing the B(max) value (1.06 mol of SNAP-25/mol of rabphilin). Furthermore, vesicle dynamics were imaged by total internal reflection fluorescence microscopy in a single PC12 cell expressing a lumen-targeted pH-insensitive yellow fluorescent protein (Venus), neuropeptide Y-Venus. Expression of the wild-type rabphilin in PC12 cells significantly increased the number of docked vesicles to the plasma membrane without altering the kinetics of individual secretory events, whereas expression of the mutant rabphilin lacking the C2B domain, rabphilin-DeltaC2B, decreased the number of docked vesicle or fusing at the plasma membrane. These findings suggest that rabphilin is involved in the docking step of regulated exocytosis in PC12 cells, possibly through interaction between the C2B domain and SNAP-25.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
84
|
Fukuda M, Imai A, Nashida T, Shimomura H. Slp4-a/granuphilin-a interacts with syntaxin-2/3 in a Munc18-2-dependent manner. J Biol Chem 2005; 280:39175-84. [PMID: 16186111 DOI: 10.1074/jbc.m505759200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Slp4-a/granuphilin-a was originally described as a protein specifically associated with insulin-containing granules in pancreatic beta-cells, but it was subsequently found to be present on amylase-containing granules in parotid acinar cells. Although Slp4-a has been suggested to control insulin secretion through interaction with syntaxin-1a and/or Munc18-1, nothing is known about the binding partner(s) of Slp4-a during amylase release from parotid acinar cells, which do not endogenously express either syntaxin-1a or Munc18-1. In this study we systematically investigated the interaction between syntaxin-1-5 and Munc18-1-3 by co-immunoprecipitation assay using COS-7 cells and discovered that Slp4-a interacts with a closed conformation of syntaxin-2/3 in a Munc18-2-dependent manner, whereas Munc18-2 itself hardly interacts with Slp4-a at all. By contrast, Slp4-a was found to strongly interact with Munc18-1 regardless of the presence of syntaxin-2/3, and syntaxin-2/3 co-immunoprecipitated with Slp4-a only in the presence of Munc18-1/2. Deletion analysis showed that the syntaxin-2/3 (or Munc18-1/2)-binding site is a linker domain of Slp4-a (amino acid residues 144-354), a previously uncharacterized region located between the N-terminal Rab27A binding domain and the C2A domain. We also found that the Slp4-a.syntaxin-2 complex is actually present in rat parotid glands and that introduction of the antibody against Slp4-a linker domain into streptolysin O-permeabilized parotid acinar cells severely attenuates isoproterenol-stimulated amylase release, possibly by disrupting the interaction between Slp4-a and syntaxin-2/3 (or Munc18-2). These results suggest that Slp4-a modulates amylase release from parotid acinar cells through interaction with syntaxin-2/3 on the apical plasma membrane.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Fukuda Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
85
|
Kuroda TS, Fukuda M. Functional Analysis of Slac2-c/MyRIP as a Linker Protein between Melanosomes and Myosin VIIa*[boxs]. J Biol Chem 2005; 280:28015-22. [PMID: 15927964 DOI: 10.1074/jbc.m501465200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Slac2-c/MyRIP, an in vitro Rab27A- and myosin Va/VIIa-binding protein, has recently been proposed to regulate retinal melanosome transport in retinal pigment epithelium cells by directly linking melanosome-bound Rab27A and myosin VIIa; however, the exact function of Slac2-c in melanosome transport has never been clarified. In this study, we used melanosome transport in skin melanocytes as a model for retinal melanosome transport and analyzed the in vivo function of Slac2-c in melanosome transport by the ectopic expression of Slac2-c, together with myosin VIIa, in Slac2-a-depleted melanocytes. In vitro binding experiments revealed that myosin VIIa had a greater affinity for Slac2-c, compared with the binding affinity of myosin Va, and that the myosin VIIa-binding domain of Slac2-c is different from the previously characterized myosin Va-binding domain that is conserved between Slac2-a/melanophilin and Slac2-c. Consistent with this result, cyan fluorescent protein-tagged Slac2-c expressed in melanocytes was localized on melanosomes via the specific interaction with Rab27A and recruited co-expressed yellow fluorescent protein-tagged myosin VIIa to the melanosomes without interfering with the normal peripheral melanosome distribution, whereas when myosin VIIa alone was expressed in melanocytes, it was not localized on the melanosomes. Moreover, Slac2-c ectopically expressed in melanocytes did not rescue the perinuclear aggregation phenotype induced by the knockdown of endogenous Slac2-a with a specific small interfering RNA, whereas the expression of the Slac2-c x myosin VIIa complex supported the normal melanosome distribution in Slac2-a-depleted melanocytes, indicating that Slac2-c functions as a myosin VIIa receptor rather than a myosin Va receptor in melanosome transport. Based on these findings, we propose that Slac2-c acts as a functional myosin VIIa receptor and that the Rab27A.Slac2-c x myosin VIIa tripartite protein complex regulates the transport of retinal melanosomes in pigment epithelium cells.
Collapse
Affiliation(s)
- Taruho S Kuroda
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
86
|
Kuroda TS, Fukuda M. Identification and biochemical analysis of Slac2-c/MyRIP as a Rab27A-, myosin Va/VIIa-, and actin-binding protein. Methods Enzymol 2005; 403:431-44. [PMID: 16473609 DOI: 10.1016/s0076-6879(05)03038-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Slac2-c/MyRIP is a specific Rab27A-binding protein that contains an N-terminal synaptotagmin-like protein (Slp) homology domain (SHD, a newly identified GTP-Rab27A-binding motif), but in contrast to the Slp family proteins, it lacks C-terminal tandem C2 domains. In vitro Slac2-c simultaneously directly interacts with both Rab27A and an actin-based motor protein, myosin Va, via its N-terminal SHD and middle region, respectively, consistent with the fact that the overall structure of Slac2-c is similar to that of Slac2-a/melanophilin, a linker protein between Rab27A and myosin Va in the melanosome transport in melanocytes. Unlike Slac2-a, however, the middle region of Slac2-c interacts with two types of myosins, myosin Va and myosin VIIa. In addition, the most C-terminal part of both Slac2-a and Slac2-c functions as an actin-binding domain: it directly interacts with globular and fibrous actin in vitro, and the actin-binding domain of Slac2-a and Slac2-c colocalizes with actin filaments when it is expressed in living cells (i.e., PC12 cells and mouse melanocytes). In this chapter we describe the methods that have been used to analyze the protein-protein interactions of Slac2-c, specifically with Rab27A, myosin Va/VIIa, and actin.
Collapse
|
87
|
Fukuda M, Kanno E. Analysis of the role of Rab27 effector Slp4-a/Granuphilin-a in dense-core vesicle exocytosis. Methods Enzymol 2005; 403:445-57. [PMID: 16473610 DOI: 10.1016/s0076-6879(05)03039-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Slp4-a/granuphilin-a is a member of the synaptotagmin-like protein (Slp) family and consists of an N-terminal Slp homology domain (SHD) and C-terminal tandem C2 domains. Slp4-a is specifically localized on secretory granules in some endocrine and exocrine cells through its SHD, and it attenuates Ca(2+)-dependent dense-core vesicle (DCV) exocytosis when transiently expressed in endocrine cells. Although the SHD of Slp4-a interacts with three distinct Rab species (Rab3A, Rab8A, and Rab27A) in vitro, in contrast to other Slp members, which only recognize Rab27 isoforms, Slp4-a functions as a Rab27A effector during DCV exocytosis under physiological conditions. This chapter describes various approaches that have been used to characterize the function of Slp4-a as a Rab27A effector, rather than a Rab3A or Rab8A effector, both in in vitro and in neuroendocrine PC12 cells. Specifically, the methods that have been used to analyze (1) the physical interaction between Slp4-a and Rab27A, including pull-down assay and cotransfection assay in COS-7 cells; (2) the localization of Slp4-a-Rab27A complex on DCVs in PC12 cells; and (3) the involvement of Slp4-a and Rab27A in DCV exocytosis by neuropeptide Y (NPY) cotransfection assay combined with site-directed mutagenesis are described.
Collapse
|
88
|
Chen X, Li C, Izumi T, Ernst SA, Andrews PC, Williams JA. Rab27b localizes to zymogen granules and regulates pancreatic acinar exocytosis. Biochem Biophys Res Commun 2004; 323:1157-62. [PMID: 15451418 DOI: 10.1016/j.bbrc.2004.08.212] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Indexed: 12/13/2022]
Abstract
To understand the function of pancreatic zymogen granules, we performed a proteomics analysis to identify ZG membrane components. Here we report the identification of Rab27b through this proteomics study and validate its role in granule function. MALDI-MS peptide mass fingerprint was matched to rat Rab27b with 43% sequence coverage, and the identification was also confirmed by tandem mass spectrometry. The localization of Rab27b on ZGs was confirmed by Western blotting and immunocytochemistry. To examine the function of Rab27b in acinar secretion, we overexpressed wild type and mutant Rab27b protein in pancreatic acini using recombinant adenoviruses. Wild type Rab27b had no effect on amylase secretion, while Rab27b Q78L enhanced, and Rab27b N133I inhibited, CCK-induced amylase release by 92+/-13% and 53+/-8%, respectively. This enhancement and inhibition occurred at all points on the CCK dose-response curve and over a 30min time course. These results demonstrate that Rab27b is present on ZGs and plays an important role in regulating acinar exocytosis.
Collapse
Affiliation(s)
- Xuequn Chen
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | | | |
Collapse
|
89
|
Kuroda TS, Fukuda M. Rab27A-binding protein Slp2-a is required for peripheral melanosome distribution and elongated cell shape in melanocytes. Nat Cell Biol 2004; 6:1195-203. [PMID: 15543135 DOI: 10.1038/ncb1197] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Accepted: 10/19/2004] [Indexed: 12/16/2022]
Abstract
The synaptotagmin-like protein (Slp) family is implicated in regulating Rab27A-mediated membrane transport, but how it might do this is unknown. Here we report that Slp2-a, a previously uncharacterized Rab27A-binding protein in melanocytes, controls melanosome distribution in the cell periphery and regulates the morphology of melanocytes. Slp2-a is the most abundantly expressed of the Slp- and Slac2-family proteins in melanocytes and colocalizes with Rab27A on melanosomes. Knockdown of endogenous Slp2-a protein by small-interfering RNAs (siRNAs) markedly reduced the number of melanosomes in the cell periphery of mouse melanocytes ('peripheral dilution'). Expression of siRNA-resistant Slp2-a (Slp2-a(SR)) rescued the peripheral dilution of melanosomes induced by Slp2-a siRNAs, but Slp2-a(SR) mutants, which failed to interact with either phospholipids or Rab27A, did not. Loss of Slp2-a protein also induced a change in melanocyte morphology, from their normal elongated shape to a more rounded shape, which depended on the phospholipid-binding activity of Slp2-a, but not on its Rab27A-binding activity. By contrast, knockdown of Slac2-a (also called melanophilin), another Rab27A-binding protein in melanocytes, caused perinuclear aggregation of melanosomes alone without altering cell shape. These results reveal the differential and sequential roles of Rab27A-binding proteins in melanosome transport in melanocytes.
Collapse
Affiliation(s)
- Taruho S Kuroda
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
90
|
Fukuda M, Itoh T. Slac2-a/Melanophilin Contains Multiple PEST-like Sequences That Are Highly Sensitive to Proteolysis. J Biol Chem 2004. [DOI: 10.1074/jbc.m401791200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|