51
|
Simon DN, Wilson KL. The nucleoskeleton as a genome-associated dynamic 'network of networks'. Nat Rev Mol Cell Biol 2011; 12:695-708. [PMID: 21971041 DOI: 10.1038/nrm3207] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the cytosol, actin polymers, intermediate filaments and microtubules can anchor to cell surface adhesions and interlink to form intricate networks. This cytoskeleton is anchored to the nucleus through LINC (links the nucleoskeleton and cytoskeleton) complexes that span the nuclear envelope and in turn anchor to networks of filaments in the nucleus. The metazoan nucleoskeleton includes nuclear pore-linked filaments, A-type and B-type lamin intermediate filaments, nuclear mitotic apparatus (NuMA) networks, spectrins, titin, 'unconventional' polymers of actin and at least ten different myosin and kinesin motors. These elements constitute a poorly understood 'network of networks' that dynamically reorganizes during mitosis and is responsible for genome organization and integrity.
Collapse
Affiliation(s)
- Dan N Simon
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
52
|
Kuvichkin VV. The mechanism of a nuclear pore assembly: a molecular biophysics view. J Membr Biol 2011; 241:109-16. [PMID: 21678042 DOI: 10.1007/s00232-011-9367-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 04/22/2011] [Indexed: 11/29/2022]
Abstract
The basic problem of nuclear pore assembly is the big perinuclear space that must be overcome for nuclear membrane fusion and pore creation. Our investigations of ternary complexes: DNA-PC liposomes-Mg²⁺, and modern conceptions of nuclear pore structure allowed us to introduce a new mechanism of nuclear pore assembly. DNA-induced fusion of liposomes (membrane vesicles) with a single-lipid bilayer or two closely located nuclear membranes is considered. After such fusion on the lipid bilayer surface, traces of a complex of ssDNA with lipids were revealed. At fusion of two identical small liposomes (membrane vesicles) < 100 nm in diameter, a "big" liposome (vesicle) with ssDNA on the vesicle equator is formed. ssDNA occurrence on liposome surface gives a biphasic character to the fusion kinetics. The "big" membrane vesicle surrounded by ssDNA is the base of nuclear pore assembly. Its contact with the nuclear envelope leads to fast fusion of half of the vesicles with one nuclear membrane; then ensues a fusion delay when ssDNA reaches the membrane. The next step is to turn inside out the second vesicle half and its fusion to other nuclear membrane. A hole is formed between the two membranes, and nucleoporins begin pore complex assembly around the ssDNA. The surface tension of vesicles and nuclear membranes along with the kinetic energy of a liquid inside a vesicle play the main roles in this process. Special cases of nuclear pore formation are considered: pore formation on both nuclear envelope sides, the difference of pores formed in various cell-cycle phases and linear nuclear pore clusters.
Collapse
Affiliation(s)
- Vasily V Kuvichkin
- Department of Mechanisms Reception, Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| |
Collapse
|
53
|
Meyer AJ, Almendrala DK, Go MM, Krauss SW. Structural protein 4.1R is integrally involved in nuclear envelope protein localization, centrosome-nucleus association and transcriptional signaling. J Cell Sci 2011; 124:1433-44. [PMID: 21486941 DOI: 10.1242/jcs.077883] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The multifunctional structural protein 4.1R is required for assembly and maintenance of functional nuclei but its nuclear roles are unidentified. 4.1R localizes within nuclei, at the nuclear envelope, and in cytoplasm. Here we show that 4.1R, the nuclear envelope protein emerin and the intermediate filament protein lamin A/C co-immunoprecipitate, and that 4.1R-specific depletion in human cells by RNA interference produces nuclear dysmorphology and selective mislocalization of proteins from several nuclear subcompartments. Such 4.1R-deficiency causes emerin to partially redistribute into the cytoplasm, whereas lamin A/C is disorganized at nuclear rims and displaced from nucleoplasmic foci. The nuclear envelope protein MAN1, nuclear pore proteins Tpr and Nup62, and nucleoplasmic proteins NuMA and LAP2α also have aberrant distributions, but lamin B and LAP2β have normal localizations. 4.1R-deficient mouse embryonic fibroblasts show a similar phenotype. We determined the functional effects of 4.1R-deficiency that reflect disruption of the association of 4.1R with emerin and A-type lamin: increased nucleus-centrosome distances, increased β-catenin signaling, and relocalization of β-catenin from the plasma membrane to the nucleus. Furthermore, emerin- and lamin-A/C-null cells have decreased nuclear 4.1R. Our data provide evidence that 4.1R has important functional interactions with emerin and A-type lamin that impact upon nuclear architecture, centrosome-nuclear envelope association and the regulation of β-catenin transcriptional co-activator activity that is dependent on β-catenin nuclear export.
Collapse
Affiliation(s)
- Adam J Meyer
- Department of Genome Dynamics, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
54
|
Kinugasa S, Tojo A, Sakai T, Fujita T. Silver-enhanced immunogold scanning electron microscopy using vibratome sections of rat kidneys: detection of albumin filtration and reabsorption. Med Mol Morphol 2011; 43:218-25. [DOI: 10.1007/s00795-010-0500-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 02/02/2010] [Indexed: 10/18/2022]
|
55
|
Affiliation(s)
- Katherine L Wilson
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA.
| | | |
Collapse
|
56
|
Castano E, Philimonenko VV, Kahle M, Fukalová J, Kalendová A, Yildirim S, Dzijak R, Dingová-Krásna H, Hozák P. Actin complexes in the cell nucleus: new stones in an old field. Histochem Cell Biol 2010; 133:607-26. [PMID: 20443021 DOI: 10.1007/s00418-010-0701-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2010] [Indexed: 01/13/2023]
Abstract
Actin is a well-known protein that has shown a myriad of activities in the cytoplasm. However, recent findings of actin involvement in nuclear processes are overwhelming. Actin complexes in the nucleus range from very dynamic chromatin-remodeling complexes to structural elements of the matrix with single partners known as actin-binding proteins (ABPs). This review summarizes the recent findings of actin-containing complexes in the nucleus. Particular attention is given to key processes like chromatin remodeling, transcription, DNA replication, nucleocytoplasmic transport and to actin roles in nuclear architecture. Understanding the mechanisms involving ABPs will definitely lead us to the principles of the regulation of gene expression performed via concerting nuclear and cytoplasmic processes.
Collapse
Affiliation(s)
- E Castano
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Dion V, Shimada K, Gasser SM. Actin-related proteins in the nucleus: life beyond chromatin remodelers. Curr Opin Cell Biol 2010; 22:383-91. [PMID: 20303249 DOI: 10.1016/j.ceb.2010.02.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 02/24/2010] [Accepted: 02/24/2010] [Indexed: 12/18/2022]
Abstract
Since their discovery in the mid-1990s, nuclear actin-related proteins (ARPs) have gained attention for their roles as structural components of ATP-dependent chromatin-remodeling complexes. These remodelers can move nucleosomes along the DNA, evict them from chromatin, and exchange histone variants to alter chromatin states locally. Chromatin-remodeling facilitates DNA-templated processes such as transcription regulation, DNA replication, and repair. Consistent with a role for ARPs in shaping chromatin structure, recent genetic studies show that they affect developmental and cell-type specific transcriptional programming. Here, we focus on recent results that suggest a specific contribution of ARPs to long-range interactions in the nucleus, and review evidence indicating that some ARPs may act independently of chromatin-remodeling machines.
Collapse
Affiliation(s)
- Vincent Dion
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | |
Collapse
|
58
|
Abstract
Actin participates in several essential processes in the cell nucleus. Even though the presence of actin in the nucleus was proposed more than 30 years ago, nuclear processes that require actin have been only recently identified. Actin is part of chromatin remodeling complexes; it is associated with the transcription machineries; it becomes incorporated into newly synthesized ribonucleoproteins; and it influences long-range chromatin organization. As in the cytoplasm, nuclear actin works in conjunction with different types of actin-binding proteins that regulate actin function and bridge interactions between actin and other nuclear components.
Collapse
|
59
|
X-linked mental retardation gene CASK interacts with Bcl11A/CTIP1 and regulates axon branching and outgrowth. J Neurosci Res 2010; 88:2364-73. [DOI: 10.1002/jnr.22407] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
60
|
Abstract
The nucleus is bordered by a double bilayer nuclear envelope, communicates with the cytoplasm via embedded nuclear pore complexes, and is structurally supported by an underlying nucleoskeleton. The nucleoskeleton includes nuclear intermediate filaments formed by lamin proteins, which provide major structural and mechanical support to the nucleus. However, other structural proteins also contribute to the function of the nucleoskeleton and help connect it to the cytoskeleton. This chapter reviews nucleoskeletal components beyond lamins and summarizes specific methods and strategies useful for analyzing nuclear structural proteins including actin, spectrin, titin, linker of nucleoskeleton and cytoskeleton (LINC) complex proteins, and nuclear spindle matrix proteins. These components can localize to highly specific functional subdomains at the nuclear envelope or nuclear interior and can interact either stably or dynamically with a variety of partners. These components confer upon the nucleoskeleton a functional diversity and mechanical resilience that appears to rival the cytoskeleton. To facilitate the exploration of this understudied area of biology, we summarize methods useful for localizing, solubilizing, and immunoprecipitating nuclear structural proteins, and a state-of-the-art method to measure a newly-recognized mechanical property of nucleus.
Collapse
Affiliation(s)
- Zhixia Zhong
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Katherine L. Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kris Noel Dahl
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
61
|
Xylourgidis N, Fornerod M. Acting out of character: regulatory roles of nuclear pore complex proteins. Dev Cell 2009; 17:617-25. [PMID: 19922867 DOI: 10.1016/j.devcel.2009.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nuclear pore complexes (NPCs) mediate all selective bidirectional transport between the nucleus and the cytoplasm. Additional functions for NPCs and their constituent proteins (nucleoporins) are emerging, some independent of classical transport. Specifically, enzymatic activities at the NPC regulate nucleocytoplasmic transport and use the NPC as a regulatory scaffold. Also, nucleoporins may regulate gene expression by contacting chromatin. Discriminating between effects on transport, scaffolding, and gene expression is a major challenge in understanding the role of the NPC in signaling and development.
Collapse
Affiliation(s)
- Nikos Xylourgidis
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | | |
Collapse
|
62
|
|
63
|
Obrdlik A, Louvet E, Kukalev A, Naschekin D, Kiseleva E, Fahrenkrog B, Percipalle P. Nuclear myosin 1 is in complex with mature rRNA transcripts and associates with the nuclear pore basket. FASEB J 2009; 24:146-57. [PMID: 19729515 DOI: 10.1096/fj.09-135863] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In rRNA biogenesis, nuclear myosin 1 (NM1) and actin synergize to activate rRNA gene transcription. Evidence that actin is in preribosomal subunits and NM1 may control rRNA biogenesis post-transcriptionally prompted us to investigate whether NM1 associates with and accompanies rRNA to nuclear pores (NPC). Ultracentrifugation on HeLa nucleolar extracts showed RNA-dependent NM1 coelution with preribosomal subunits. In RNA immunoprecipitations (RIPs), NM1 coprecipitated with pre-rRNAs and 18S, 5.8S, and 28S rRNAs, but failed to precipitate 5S rRNA and 7SL RNA. In isolated nuclei and living HeLa cells, NM1 or actin inhibition and selective alterations in actin polymerization impaired 36S pre-rRNA processing. Immunoelectron microscopy (IEM) on sections of manually isolated Xenopus oocyte nuclei showed NM1 localization at the NPC basket. Field emission scanning IEM on isolated nuclear envelopes and intranuclear content confirmed basket localization and showed that NM1 decorates actin-rich pore-linked filaments. Finally, RIP and successive RIPs (reRIPs) on cross-linked HeLa cells demonstrated that NM1, CRM1, and Nup153 precipitate same 18S and 28S rRNAs but not 5S rRNA. We conclude that NM1 facilitates maturation and accompanies export-competent preribosomal subunits to the NPC, thus modulating export.
Collapse
Affiliation(s)
- Ales Obrdlik
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
64
|
Percipalle P. The long journey of actin and actin-associated proteins from genes to polysomes. Cell Mol Life Sci 2009; 66:2151-65. [PMID: 19300907 PMCID: PMC11115535 DOI: 10.1007/s00018-009-0012-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/13/2009] [Accepted: 02/24/2009] [Indexed: 12/11/2022]
Abstract
During gene expression, multiple regulatory steps make sure that alterations of chromatin structure are synchronized with RNA synthesis, co-transcriptional assembly of ribonucleoprotein complexes, transport to the cytoplasm and localized translation. These events are controlled by large multiprotein complexes commonly referred to as molecular machines, which are specialized and at the same time display a highly dynamic protein composition. The crosstalk between these molecular machines is essential for efficient RNA biogenesis. Actin has been recently proposed to be an important factor throughout the entire RNA biogenesis pathway as a component of chromatin remodeling complexes, associated with all eukaryotic RNA polymerases as well as precursor and mature ribonucleoprotein complexes. The aim of this review is to present evidence on the involvement of actin and actin-associated proteins in RNA biogenesis and propose integrative models supporting the view that actin facilitates coordination of the different steps in gene expression.
Collapse
Affiliation(s)
- Piergiorgio Percipalle
- Department of Cell and Molecular Biology, Karolinska Institutet, Box 285, 171 77, Stockholm, Sweden.
| |
Collapse
|
65
|
Gieni RS, Hendzel MJ. Actin dynamics and functions in the interphase nucleus: moving toward an understanding of nuclear polymeric actin. Biochem Cell Biol 2009; 87:283-306. [PMID: 19234542 DOI: 10.1139/o08-133] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Actin exists as a dynamic equilibrium of monomers and polymers within the nucleus of living cells. It is utilized by the cell for many aspects of gene regulation, including mRNA processing, chromatin remodelling, and global gene expression. Polymeric actin is now specifically linked to transcription by RNA polymerase I, II, and III. An active process, requiring both actin polymers and myosin, appears to drive RNA polymerase I transcription, and is also implicated in long-range chromatin movement. This type of mechanism brings activated genes from separate chromosomal territories together, and then participates in their compartmentalization near nuclear speckles. Nuclear speckle formation requires polymeric actin, and factors promoting polymerization, such as profilin and PIP2, are concentrated there. A review of the literature shows that a functional population of G-actin cycles between the cytoplasm and the nucleoplasm. Its nuclear concentration is dependent on the cytoplasmic G-actin pool, as well as on the activity of import and export mechanisms and the availability of interactions that sequester it within the nucleus. The N-WASP-Arp2/3 actin polymer-nucleating mechanism functions in the nucleus, and its mediators, including NCK, PIP2, and Rac1, can be found in the nucleoplasm, where they likely influence the kinetics of polymer formation. The actin polymer species produced are tightly regulated, and may take on conformations not easily recognized by phalloidin. Many of the factors that cleave F-actin in the cytoplasm are present at high levels in the nucleoplasm, and are also likely to affect actin dynamics there. The absolute and relative G-actin content in the nucleoplasm and the cytoplasm of a cell contains information about the homeostatic state of that cell. We propose that the cycling of G-actin between the nucleus and cytoplasm represents a signal transduction mechanism that can function through both extremes of global cellular G-actin content. MAL signalling within the serum response factor pathway, when G-actin levels are low, represents a well-studied example of actin functioning in signal transduction. The translocation of NCK into the nucleus, along with G-actin, during dissolution of the cytoskeleton in response to DNA damage represents another instance of a unique signalling mechanism operating when G-actin levels are high.
Collapse
Affiliation(s)
- Randall S Gieni
- Cross Cancer Institute and Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, ABT6G1Z2, Canada
| | | |
Collapse
|
66
|
Carotenuto R, Petrucci TC, Correas I, Vaccaro MC, De Marco N, Dale B, Wilding M. Protein 4.1 and its interaction with other cytoskeletal proteins in Xenopus laevis oogenesis. Eur J Cell Biol 2009; 88:343-56. [DOI: 10.1016/j.ejcb.2009.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 01/16/2009] [Accepted: 01/16/2009] [Indexed: 01/09/2023] Open
|
67
|
Actin microfilaments guide the polarized transport of nuclear pore complexes and the cytoplasmic dispersal of Vasa mRNA during GVBD in the ascidian Halocynthia roretzi. Dev Biol 2009; 330:377-88. [PMID: 19362546 DOI: 10.1016/j.ydbio.2009.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 03/30/2009] [Accepted: 04/03/2009] [Indexed: 12/16/2022]
Abstract
Meiosis reinitiation starts with the germinal vesicle breakdown (GVBD) within the gonad before spawning. Here, we have extended our previous observations and identified the formation of conspicuous actin bundles emanating from the germinal vesicle (GV) during its breakdown in the ascidian Halocynthia roretzi. Time-lapse video recordings and fluorescent labelling of microfilaments (MFs) indicate that these microfilamentous structures invariantly elongate towards the vegetal hemisphere at the estimated speed of 20 mum/min. Interestingly, the nuclear pore complex protein Nup153 accumulates at the vegetal tip of actin bundles. To determine if these structures play a role in the formation of the germ plasm, we have analyzed the localization pattern of Vasa transcript in maturing oocytes and early embryos. We found that Hr-Vasa mRNA, one of Type II postplasmic/PEM mRNAs, changes from a granular and perinuclear localization to an apparent uniform cytoplasmic distribution during oocyte maturation, and then concentrate in the centrosome-attracting body (CAB) by the eight-cell stage. In addition, treatments with Latrunculin B, but not with Nocodazole, blocked the redistribution of Nup153 and Hr-Vasa mRNA, suggesting that these mechanisms are both actin-dependant. We discuss the pleiotropic role played by MFs, and the relationship between nuclear pores, maternal Vasa mRNA and germ plasm in maturing ascidian oocytes.
Collapse
|
68
|
Miki T, Okawa K, Sekimoto T, Yoneda Y, Watanabe S, Ishizaki T, Narumiya S. mDia2 shuttles between the nucleus and the cytoplasm through the importin-{alpha}/{beta}- and CRM1-mediated nuclear transport mechanism. J Biol Chem 2009; 284:5753-62. [PMID: 19117945 DOI: 10.1074/jbc.m806191200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian homolog of Drosophila diaphanous (mDia) consisting of three isoforms, mDia1, mDia2, and mDia3, is an effector of Rho GTPases that catalyzes actin nucleation and polymerization. Although the mDia actions on actin dynamics in the cytoplasm have been well studied, whether mDia accumulates and functions in the nucleus remains largely unknown. Given the presence of actin and actin-associated proteins in the nucleus, we have examined nuclear localization of mDia isoforms. We expressed each of mDia isoforms as a green fluorescent protein fusion protein and examined their localization. Although all the mDia isoforms were localized predominantly in the cytoplasm under the steady-state conditions, mDia2 and not mDia1 or mDia3 accumulated extensively in the nucleus upon treatment with leptomycin B (LMB), an inhibitor of CRM1-dependent nuclear export. The LMB-induced nuclear accumulation was confirmed for endogenous mDia2 by using an antibody specific to mDia2. Studies using green fluorescent protein fusions of various truncation mDia2 mutants and point mutants of some of these proteins identified a functional nuclear localization signal in the N terminus of mDia2 and at least one functional nuclear export signal in the C terminus. The nuclear localization signal of mDia2 bound to importin-alpha and was imported into the nucleus by importin-alpha/beta complex in an in vitro transport assay. Consistently, depletion of importin-beta with RNA interference suppressed the LMB-induced nuclear localization of endogenous mDia2. These results suggest that mDia2 continuously shuttles between the nucleus and the cytoplasm using specific nuclear transport machinery composing of importin-alpha/beta and CRM1.
Collapse
Affiliation(s)
- Takashi Miki
- Department of Pharmacology and Frontier Technology Center, Kyoto University Faculty of Medicine, Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
69
|
Hofmann WA. Cell and molecular biology of nuclear actin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:219-63. [PMID: 19215906 DOI: 10.1016/s1937-6448(08)01806-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Actin is a highly conserved protein and one of the major components of the cytoplasm and the nucleus in eukaryotic cells. In the nucleus, actin is involved in a variety of nuclear processes that include transcription and transcription regulation, RNA processing and export, intranuclear movement, and structure maintenance. Recent advances in the field of nuclear actin have established that functions of actin in the nucleus are versatile, complex, and interconnected. It also has become increasingly evident that the cytoplasmic and nuclear pools of actin are functionally linked. However, while the biological significance of nuclear actin has become clear, we are only beginning to understand the mechanisms that lie behind the regulation of nuclear actin. This review provides an overview of our current understanding of the functions of actin in the nucleus.
Collapse
Affiliation(s)
- Wilma A Hofmann
- Department of Physiology and Biophysics, State University of New York, Buffalo, NY, USA
| |
Collapse
|
70
|
Walther P. High-resolution cryo-SEM allows direct identification of F-actin at the inner nuclear membrane of Xenopus oocytes by virtue of its structural features. J Microsc 2008; 232:379-85. [PMID: 19017237 DOI: 10.1111/j.1365-2818.2008.02109.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nuclear envelope of Xenopus laevis stage VI oocytes was studied in a high-resolution field emission cryo-scanning electron microscope to compare the level of structural preservation obtainable by different procedures of specimen preparation. All approaches generally allowed frequent detection of long filaments of about 10 nm in diameter that were attached to the nuclear envelope's inner membrane facing the nuclear interior. Structural details of these 10-nm filaments, however, could not be unveiled by standard procedures of specimen preparation and analysis, including critical point drying and imaging at room temperature. In contrast, after freeze-drying and imaging at -100 degrees C, the 10-nm filament type was found to be composed of distinct globular subunits of approximately 5 nm in diameter that were arranged in a helical manner with right-handed periodicity. Stereoscopic images showed that some of these filaments were lying directly on the membrane whereas others appeared to hover at a certain distance above the nuclear envelope. The appearance of these filaments was highly similar to that of in vitro polymerized F-actin analysed in parallel, and closely resembled the structural characteristics of F-actin filaments described earlier. By virtue of their structural features we therefore conclude that these filaments at the nuclear periphery represent F-actin. The high level of structural resolution obtainable by field emission cryo-SEM illustrates the potential of this method for studying details of biological structures in a subcellular context.
Collapse
Affiliation(s)
- P Walther
- Central Electron Microscopy Unit, University of Ulm, 89069 Ulm, Germany.
| |
Collapse
|
71
|
Cruz JR, Moreno Díaz de la Espina S. Subnuclear compartmentalization and function of actin and nuclear myosin I in plants. Chromosoma 2008; 118:193-207. [PMID: 18982342 DOI: 10.1007/s00412-008-0188-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 10/02/2008] [Accepted: 10/06/2008] [Indexed: 01/08/2023]
Abstract
Actins are highly conserved proteins that serve as the basic building blocks of cytoskeletal microfilaments. In animal cells, specific nuclear actin adopts unconventional conformations that are involved in multiple nuclear functions and that associate with nuclear actin binding proteins. However, there is practically no information available about nuclear actin in plants. Indeed, actin has not been detected in the nuclear proteomes of many plants, and orthologs of the main structural nuclear actin-binding proteins have yet to be identified. Here, we have investigated the characteristics, intranuclear compartmentalization, and function of actin in isolated Allium cepa nuclei as well as that of its motor protein nuclear myosin I (NMI). Using conformation-specific antibodies for nuclear actin isoforms, ss-actin, and NMI, the distribution of these proteins was studied in Western blots and by immunocytochemistry. Moreover, the participation of nuclear actin in transcription was analyzed in run on in situ assays and inhibition of RNA polymerases I and II. We show that actin isoforms with distinct solubilities are present in onion nuclei with a consistent subnuclear compartmentalization. Actin and NMI are highly enriched in foci that are similar to transcription foci, although actin is also distributed diffusely in the nucleus and nucleolus as well as accumulating in a subset of the Cajal bodies. Immunogold labeling identified both proteins in the nuclear transcription subdomains and in other subnuclear compartments. In addition, actin and NMI were diffusely distributed in the nuclear matrix.
Collapse
Affiliation(s)
- J R Cruz
- Department of Plant Biology, Centro Investigaciones Biológicas, CSIC, Madrid, Spain.
| | | |
Collapse
|
72
|
Pranchevicius MCS, Baqui MMA, Ishikawa-Ankerhold HC, Lourenço EV, Leão RM, Banzi SR, dos Santos CT, Roque-Barreira MC, Barreira MCR, Espreafico EM, Larson RE. Myosin Va phosphorylated on Ser1650 is found in nuclear speckles and redistributes to nucleoli upon inhibition of transcription. ACTA ACUST UNITED AC 2008; 65:441-56. [PMID: 18330901 DOI: 10.1002/cm.20269] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nuclear actin and nuclear myosins have been implicated in the regulation of gene expression in vertebrate cells. Myosin V is a class of actin-based motor proteins involved in cytoplasmic vesicle transport and anchorage, spindle-pole alignment and mRNA translocation. In this study, myosin-Va, phosphorylated on a conserved serine in the tail domain (phospho-ser(1650) MVa), was localized to subnuclear compartments. A monoclonal antibody, 9E6, raised against a peptide corresponding to phosphoserine(1650) and flanking regions of the murine myosin Va sequence, was immunoreactive to myosin Va heavy chain in cellular and nuclear extracts of HeLa cells, PC12 cells and B16-F10 melanocytes. Immunofluorescence microscopy with this antibody revealed discrete irregular spots within the nucleoplasm that colocalized with SC35, a splicing factor that earmarks nuclear speckles. Phospho-ser(1650) MVa was not detected in other nuclear compartments, such as condensed chromatin, Cajal bodies, gems and perinucleolar caps. Although nucleoli also were not labeled by 9E6 under normal conditions, inhibition of transcription in HeLa cells by actinomycin D caused the redistribution of phospho-ser(1650) MVa to nucleoli, as well as separating a fraction of phospho-ser(1650) MVa from SC35 into near-neighboring particles. These observations indicate a novel role for myosin Va in nuclear compartmentalization and offer a new lead towards the understanding of actomyosin-based gene regulation.
Collapse
Affiliation(s)
- Maria Cristina S Pranchevicius
- Department of Cellular and Molecular Biology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
In eukaryotic cells, the nucleus contains the genome and is the site of transcriptional regulation. The nucleus is the largest and stiffest organelle and is exposed to mechanical forces transmitted through the cytoskeleton from outside the cell and from force generation within the cell. Here, we discuss the effect of intra- and extracellular forces on nuclear shape and structure and how these force-induced changes could be implicated in nuclear mechanotransduction, ie, force-induced changes in cell signaling and gene transcription. We review mechanical studies of the nucleus and nuclear structural proteins, such as lamins. Dramatic changes in nuclear shape, organization, and stiffness are seen in cells where lamin proteins are mutated or absent, as in genetically engineered mice, RNA interference studies, or human disease. We examine the different mechanical pathways from the force-responsive cytoskeleton to the nucleus. We also highlight studies that link changes in nuclear shape with cell function during developmental, physiological, and pathological modifications. Together, these studies suggest that the nucleus itself may play an important role in the response of the cell to force.
Collapse
Affiliation(s)
- Kris Noel Dahl
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
74
|
Abstract
In this article, we follow the history of one of the most abundant, most intensely studied proteins of the eukaryotic cells: actin. We report on hallmarks of its discovery, its structural and functional characterization and localization over time, and point to present days’ knowledge on its position as a member of a large family. We focus on the rather puzzling number of diverse functions as proposed for actin as a dual compartment protein. Finally, we venture on some speculations as to its origin.
Collapse
|
75
|
Vartiainen MK. Nuclear actin dynamics--from form to function. FEBS Lett 2008; 582:2033-40. [PMID: 18423404 DOI: 10.1016/j.febslet.2008.04.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/28/2008] [Accepted: 04/09/2008] [Indexed: 01/10/2023]
Abstract
Cell biological functions of actin have recently expanded from cytoplasm to nucleus, with actin implicated in such diverse processes as gene expression, transcription factor regulation and intranuclear motility. Actin in the nucleus seems to behave differently than in the cytoplasm, raising new questions regarding the molecular mechanisms by which actin functions in cells. In this review, I will discuss dynamic properties of nuclear actin that are related to its polymerization cycle and nucleocytoplasmic shuttling. By comparing the behaviour of nuclear and cytoplasmic actin and their regulators, I try to dissect the underlying differences of these equally important cellular actin pools.
Collapse
Affiliation(s)
- Maria K Vartiainen
- Research Program in Cellular Biotechnology, Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland.
| |
Collapse
|
76
|
Pederson T. As functional nuclear actin comes into view, is it globular, filamentous, or both? ACTA ACUST UNITED AC 2008; 180:1061-4. [PMID: 18347069 PMCID: PMC2290836 DOI: 10.1083/jcb.200709082] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The idea that actin may have an important function in the nucleus has undergone a rapid transition from one greeted with skepticism to a now rapidly advancing research field. Actin has now been implicated in transcription by all three RNA polymerases, but the structural form it adopts in these processes remains unclear. Recently, a claim was made that monomeric nuclear actin plays a role in signal transduction, while a just-published study of RNA polymerase I transcription has implicated polymeric actin, consorting with an isoform of its classical partner myosin. Both studies are critically discussed here, and although there are several issues to be resolved, it now seems reasonable to start thinking about functions for both monomeric and assembled actin in the nucleus.
Collapse
Affiliation(s)
- Thoru Pederson
- Program in Cell Dynamics, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
77
|
Allen TD, Rutherford SA, Murray S, Sanderson HS, Gardiner F, Kiseleva E, Goldberg MW, Drummond SP. A protocol for isolating Xenopus oocyte nuclear envelope for visualization and characterization by scanning electron microscopy (SEM) or transmission electron microscopy (TEM). Nat Protoc 2008; 2:1166-72. [PMID: 17546011 DOI: 10.1038/nprot.2007.137] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This protocol details methods for the isolation of oocyte nuclear envelopes (NEs) from the African clawed toad Xenopus laevis, immunogold labeling of component proteins and subsequent visualization by field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). This procedure involves the initial removal of the ovaries from mature female X. laevis, the dissection of individual oocytes, then the manual isolation of the giant nucleus and subsequent preparation for high-resolution visualization. Unlike light microscopy, and its derivative technologies, electron microscopy enables 3-5 nm resolution of nuclear structures, thereby giving unrivalled opportunities for investigation and immunological characterization in situ of nuclear structures and their structural associations. There are a number of stages where samples can be stored, although we recommend that this protocol take no longer than 2 d. Samples processed for FESEM can be stored for weeks under vacuum, allowing considerable time for image acquisition.
Collapse
Affiliation(s)
- T D Allen
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Withington, Manchester M20 4BX, UK.
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Louvet E, Percipalle P. Transcriptional control of gene expression by actin and myosin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:107-47. [PMID: 19121817 DOI: 10.1016/s1937-6448(08)01603-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Recent years have witnessed a new turn in the field of gene expression regulation. Actin and an ever-growing family of actin-associated proteins have been accepted as members of the nuclear crew, regulating eukaryotic gene transcription. In complex with heterogeneous nuclear ribonucleoproteins and certain myosin species, actin has been shown to be an important regulator in RNA polymerase II transcription. Furthermore, actin-based molecular motors are believed to facilitate RNA polymerase I transcription and possibly downstream events during rRNA biogenesis. Probably these findings represent the tip of the iceberg of a rapidly expanding area within the functional architecture of the cell nucleus. Further studies will contribute to clarify how actin mediates nuclear functions with a glance to cytoplasmic signalling. These discoveries have the potential to define novel regulatory networks required to control gene expression at multiple levels.
Collapse
Affiliation(s)
- Emilie Louvet
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | |
Collapse
|
79
|
|
80
|
Allen TD, Rutherford SA, Murray S, Drummond SP, Goldberg MW, Kiseleva E. Scanning electron microscopy of nuclear structure. Methods Cell Biol 2008; 88:389-409. [PMID: 18617044 DOI: 10.1016/s0091-679x(08)00420-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Accessing internal structure and retaining relative three dimensional (3D) organization within the nucleus has always proved difficult in the electron microscope. This is due to the overall size and largely fibrous nature of the contents, making large scale 3D reconstructions difficult from thin sections using transmission electron microscopy. This chapter brings together a number of methods developed for visualization of nuclear structure by scanning electron microscopy (SEM). These methods utilize the easily accessed high resolution available in field emission instruments. Surface imaging has proved particularly useful to date in studies of the nuclear envelope and pore complexes, and has also shown promise for internal nuclear organization, including the dynamic and radical reorganization of structure during cell division. Consequently, surface imaging in the SEM has the potential to make a significant contribution to our understanding of nuclear structure.
Collapse
Affiliation(s)
- Terence D Allen
- Department of Structural Cell Biology, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, United Kingdom
| | | | | | | | | | | |
Collapse
|
81
|
Kiseleva E, Morozova KN, Voeltz GK, Allen TD, Goldberg MW. Reticulon 4a/NogoA locates to regions of high membrane curvature and may have a role in nuclear envelope growth. J Struct Biol 2007; 160:224-35. [PMID: 17889556 PMCID: PMC2048824 DOI: 10.1016/j.jsb.2007.08.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 08/10/2007] [Accepted: 08/13/2007] [Indexed: 11/27/2022]
Abstract
Reticulon 4a (Rtn4a) is a membrane protein that shapes tubules of the endoplasmic reticulum (ER). The ER is attached to the nuclear envelope (NE) during interphase and has a role in post mitotic/meiotic NE reassembly. We speculated that Rtn4a has a role in NE dynamics. Using immuno-electron microscopy we found that Rtn4a is located at junctions between membranes in the cytoplasm, and between cytoplasmic membranes and the outer nuclear membrane in growing Xenopus oocyte nuclei. We found that during NE assembly in Xenopus egg extracts, Rtn4a localises to the edges of membranes that are flattening onto the chromatin. These results demonstrate that Rtn4a locates to regions of high membrane curvature in the ER and the assembling NE. Previously it was shown that incubation of egg extracts with antibodies against Rtn4a caused ER to form into large vesicles instead of tubules. To test whether Rtn4a contributes to NE assembly, we added the same Rtn4a antibody to nuclear assembly reactions. Chromatin was enclosed by membranes containing nuclear pore complexes, but nuclei did not grow. Instead large sacs of ER membranes attached to, but did not integrate into the NE. It is possible therefore that Rtn4a may have a role in NE assembly.
Collapse
Affiliation(s)
- Elena Kiseleva
- Laboratory of Morphology and Function of Cell Structure, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, 630090, Russia
| | - Ksenia N. Morozova
- Laboratory of Morphology and Function of Cell Structure, Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk, 630090, Russia
| | - Gia K. Voeltz
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Terrence D. Allen
- Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - Martin W. Goldberg
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK
- Corresponding author. Fax: +44 0 191 334 1201.
| |
Collapse
|
82
|
Beçak ML, Fukuda-Pizzocaro K. Pore-linked filaments in anura spermatocyte nuclei. AN ACAD BRAS CIENC 2007; 79:63-70. [PMID: 17401476 DOI: 10.1590/s0001-37652007000100009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 02/17/2006] [Indexed: 05/14/2023] Open
Abstract
Pore-linked filaments were visualized in spreads of anuran spermatocyte nuclei using transmission electron microscope. We used Odontophrynus diplo and tetraploid species having the tetraploid frogs reduced metabolic activities. The filaments with 20-40 nm width are connected to a ring component of the nuclear pore complex with 90-120 nm and extend up to 1 microm (or more) into the nucleus. The filaments are curved and connect single or neighboring pores. The intranuclear filaments are associated with chromatin fibers and related to RNP particles of 20-25 nm and spheroidal structures of 0.5 microm, with variations. The aggregates of several neighboring pores with the filaments are more commonly observed in 4n nuclei. We concluded that the intranuclear filaments may correspond to the fibrillar network described in Xenopus oocyte nucleus being probably related to RNA transport. The molecular basis of this RNA remains elusive. Nevertheless, the morphological aspects of the spheroidal structures indicate they could correspond to nucleolar chromatin or to nucleolus-derived structures. We also speculate whether the complex aggregates of neighboring pores with intranuclear filaments may correspond to pore clustering previously described in these tetraploid animals using freeze-etching experiments.
Collapse
Affiliation(s)
- Maria Luiza Beçak
- Laboratório de Genética, Instituto Butantan, São Paulo, SP, 05503-900, Brasil.
| | | |
Collapse
|
83
|
Yoo Y, Wu X, Guan JL. A novel role of the actin-nucleating Arp2/3 complex in the regulation of RNA polymerase II-dependent transcription. J Biol Chem 2007; 282:7616-23. [PMID: 17220302 DOI: 10.1074/jbc.m607596200] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It has been well documented that actin is present in the nucleus and involved in numerous nuclear functions including regulation of transcription. The actin-nucleating Arp2/3 complex is an essential, evolutionarily conserved seven-subunit protein complex that promotes actin cytoskeleton assembly in the cytoplasm upon stimulation by WASP family proteins. Our recent study indicates that the nuclear localized neural Wiskott-Aldrich syndrome protein (N-WASP) can induce de novo actin polymerization in the nucleus, and this function is important for the role of N-WASP in the regulation of RNA polymerase II-dependent transcription. Here, we have presented evidence to show that the Arp2/3 complex is also localized in the nucleus and plays an essential role in mediating nuclear actin polymerization induced by N-WASP. We have also demonstrated that the Arp2/3 complex physically associates with RNA polymerase II and is involved in the RNA polymerase II-dependent transcriptional regulation both in vivo and in vitro. Together, these data provide strong support for the hypothesis that N-WASP and the Arp2/3 complex regulate transcription, at least in part, through the regulation of nuclear actin polymerization in a manner similar to their function in the cytoplasm.
Collapse
Affiliation(s)
- Youngdong Yoo
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
84
|
Wang IF, Chang HY, Shen CKJ. Actin-based modeling of a transcriptionally competent nuclear substructure induced by transcription inhibition. Exp Cell Res 2006; 312:3796-807. [PMID: 17022973 DOI: 10.1016/j.yexcr.2006.07.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 07/23/2006] [Accepted: 07/26/2006] [Indexed: 12/21/2022]
Abstract
During transcription inactivation, the nuclear bodies in the mammalian cells often undergo reorganization. In particular, the interchromatin granule clusters, or IGCs, become colocalized with RNA polymerase II (RNAP II) upon treatment with transcription inhibitors. This colocalization has also been observed in untreated but transcriptionally inactive cells. We report here that the reorganized IGC domains are unique substructure consisting of outer shells made of SC35, ERK2, SF2/ASF, and actin. The apparently hollow holes of these domains contain clusters of RNAP II, mostly phosphorylated, and the splicing regulator SMN. This class of complexes are also the sites where prominent transcription activities are detected once the inhibitors are removed. Furthermore, actin polymerization is required for reorganization of the IGCs. In connection with this, immunoprecipitation and immunostaining experiments showed that nuclear actin is associated with IGCs and the reorganized IGC domains. The study thus provides further evidence for the existence of an actin-based nuclear skeleton structure in association with the dynamic reorganization processes in the nucleus. Overall, our data suggest that mammalian cells have adapted to utilize the reorganized, uniquely shaped IGC domains as the temporary storage sites of RNAP II transcription machineries in response to certain transient states of transcription inactivation.
Collapse
Affiliation(s)
- I-Fan Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, R.O.C
| | | | | |
Collapse
|
85
|
Wu X, Yoo Y, Okuhama NN, Tucker PW, Liu G, Guan JL. Regulation of RNA-polymerase-II-dependent transcription by N-WASP and its nuclear-binding partners. Nat Cell Biol 2006; 8:756-63. [PMID: 16767080 DOI: 10.1038/ncb1433] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 04/24/2006] [Indexed: 12/16/2022]
Abstract
The presence of actin in the nucleus has been well established, and several studies have implicated nuclear actin in transcriptional regulation. Neuronal Wiskott-Aldrich syndrome protein (N-WASP) is a member of the WASP family of proteins; these proteins function in the cytoplasm as key regulators of cortical actin filament. Interestingly, N-WASP has also been observed in the nucleus. However, a potential nuclear function for N-WASP has not been established. Here, we report the identification of nuclear N-WASP within a large nuclear-protein complex containing PSF-NonO (polypyrimidine-tract-binding-protein-associated splicing factor-non-Pou-domain octamer-binding protein/p54(nrb)), nuclear actin and RNA polymerase II. The PSF-NonO complex is involved in the regulation of many cellular processes, such as transcription, RNA processing, DNA unwinding and repair. We demonstrate that the interaction of N-WASP with the PSF-NonO complex can couple N-WASP with RNA polymerase II to regulate transcription. We also provide evidence that the potential function of N-WASP in promoting polymerization of nuclear actins has an important role in this process. Based on these results, we propose a nuclear function for N-WASP in transcriptional regulation.
Collapse
Affiliation(s)
- Xiaoyang Wu
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
86
|
Münter S, Enninga J, Vazquez-Martinez R, Delbarre E, David-Watine B, Nehrbass U, Shorte SL. Actin polymerisation at the cytoplasmic face of eukaryotic nuclei. BMC Cell Biol 2006; 7:23. [PMID: 16719903 PMCID: PMC1481536 DOI: 10.1186/1471-2121-7-23] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 05/23/2006] [Indexed: 12/25/2022] Open
Abstract
Background There exists abundant molecular and ultra-structural evidence to suggest that cytoplasmic actin can physically interact with the nuclear envelope (NE) membrane system. However, this interaction has yet to be characterised in living interphase cells. Results Using a fluorescent conjugate of the actin binding drug cytochalasin D (CD-BODIPY) we provide evidence that polymerising actin accumulates in vicinity to the NE. In addition, both transiently expressed fluorescent actin and cytoplasmic micro-injection of fluorescent actin resulted in accumulation of actin at the NE-membrane. Consistent with the idea that the cytoplasmic phase of NE-membranes can support this novel pool of perinuclear actin polymerisation we show that isolated, intact, differentiated primary hepatocyte nuclei support actin polymerisation in vitro. Further this phenomenon was inhibited by treatments hindering steric access to outer-nuclear-membrane proteins (e.g. wheat germ agglutinin, anti-nesprin and anti-nucleoporin antibodies). Conclusion We conclude that actin polymerisation occurs around interphase nuclei of living cells at the cytoplasmic phase of NE-membranes.
Collapse
Affiliation(s)
- Sylvia Münter
- Unité de Biologie Cellulaire du Noyau, CNRS URA 2582, Département de Biologie Cellulaire et Infection, Institut Pasteur; 25, Rue du Docteur Roux, 75724 Paris Cedex 15, France
- Current address: Department of Parasitology, Heidelberg University School of Medicine, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Jost Enninga
- Unité de Pathogénie Microbienne Moléculaire, U389 INSERM Institut Pasteur; 28, Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Rafael Vazquez-Martinez
- Unité de Embryologie Moléculaire, Institut Pasteur; 25, Rue du Docteur Roux, 75724 Paris Cedex 15, France
- Current address: Department of Cell Biology, University of Cordoba, 14014-Cordoba, Spain
| | - Erwan Delbarre
- Département de Biologie Cellulaire, Institut Jacques Monod, CNRS, Universités Paris 6 and 7, 75251 Paris Cedex 05, France
| | - Brigitte David-Watine
- Unité de Biologie Cellulaire du Noyau, CNRS URA 2582, Département de Biologie Cellulaire et Infection, Institut Pasteur; 25, Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Ulf Nehrbass
- Unité de Biologie Cellulaire du Noyau, CNRS URA 2582, Département de Biologie Cellulaire et Infection, Institut Pasteur; 25, Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Spencer L Shorte
- Plate-Forme d'Imagerie Dynamique (PFID), Département de Biologie Cellulaire et Infection, Institut Pasteur; 25, Rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
87
|
Abstract
Actin has been found in nuclei of many cell types, but little is known about its form and function. A recent study has shown that a lack of specific export allows actin to accumulate in the nucleus, where it forms a network of actin filaments that may be required to stabilize the giant nucleus of the Xenopus oocyte.
Collapse
Affiliation(s)
- Melina Schuh
- Gene Expression and Cell Biology/Biophysics Units, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | |
Collapse
|
88
|
McDonald D, Carrero G, Andrin C, de Vries G, Hendzel MJ. Nucleoplasmic beta-actin exists in a dynamic equilibrium between low-mobility polymeric species and rapidly diffusing populations. ACTA ACUST UNITED AC 2006; 172:541-52. [PMID: 16476775 PMCID: PMC2063674 DOI: 10.1083/jcb.200507101] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
β-Actin, once thought to be an exclusively cytoplasmic protein, is now known to have important functions within the nucleus. Nuclear β-actin associates with and functions in chromatin remodeling complexes, ribonucleic acid polymerase complexes, and at least some ribonucleoproteins. Proteins involved in regulating actin polymerization are also found in the interphase nucleus. We define the dynamic properties of nuclear actin molecules using fluorescence recovery after photobleaching. Our results indicate that actin and actin-containing complexes are reduced in their mobility through the nucleoplasm diffusing at ∼0.5 μm2 s−1. We also observed that ∼20% of the total nuclear actin pool has properties of polymeric actin that turns over rapidly. This pool could be detected in endogenous nuclear actin by using fluorescent polymeric actin binding proteins and was sensitive to drugs that alter actin polymerization. Our results validate previous reports of polymeric forms of nuclear actin observed in fixed specimens and reveal that these polymeric forms are very dynamic.
Collapse
Affiliation(s)
- Darin McDonald
- Department of Oncology and 2Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2
| | | | | | | | | |
Collapse
|
89
|
Abstract
Actin is not only a major cytoskeletal component in all eukaryotic cells but also a nuclear protein that plays a role in gene transcription. We put together data from in vitro and in vivo experiments that begin to provide insights into the molecular mechanisms by which actin functions in transcription. Recent studies performed in vitro have suggested that actin, in direct contact with the transcription apparatus, is required in an early step of transcription that is common to all three eukaryotic RNA polymerases. In addition, there is evidence from in vivo studies that actin is involved in the transcription elongation of class II genes. In this case, actin is bound to a specific subset of premessenger RNA binding proteins, and the actin–messenger RNP complex may constitute a molecular platform for recruitment of histone-modifying enzymes. We discuss a general model for actin in RNA polymerase II transcription whereby actin works as a conformational switch in conjunction with specific adaptors to facilitate the remodeling of large macromolecular assemblies at the promoter and along the active gene.
Collapse
Affiliation(s)
- Piergiorgio Percipalle
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-117 77 Stockholm, Sweden.
| | | |
Collapse
|
90
|
Bohnsack MT, Stüven T, Kuhn C, Cordes VC, Görlich D. A selective block of nuclear actin export stabilizes the giant nuclei of Xenopus oocytes. Nat Cell Biol 2006; 8:257-63. [PMID: 16489345 DOI: 10.1038/ncb1357] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 12/13/2005] [Indexed: 12/22/2022]
Abstract
Actin is a major cytoskeletal element and is normally kept cytoplasmic by exportin 6 (Exp6)-driven nuclear export. Here, we show that Exp6 recognizes actin features that are conserved from yeast to human. Surprisingly however, microinjected actin was not exported from Xenopus laevis oocyte nuclei, unless Exp6 was co-injected, indicating that the pathway is inactive in this cell type. Indeed, Exp6 is undetectable in oocytes, but is synthesized from meiotic maturation onwards, which explains how actin export resumes later in embryogenesis. Exp6 thus represents the first example of a strictly developmentally regulated nuclear transport pathway. We asked why Xenopus oocytes lack Exp6 and observed that ectopic application of Exp6 renders the giant oocyte nuclei extremely fragile. This effect correlates with the selective disappearance of a sponge-like intranuclear scaffold of F-actin. These nuclei have a normal G2-phase DNA content in a volume 100,000 times larger than nuclei of somatic cells. Apparently, their mechanical integrity cannot be maintained by chromatin and the associated nuclear matrix, but instead requires an intranuclear actin-scaffold.
Collapse
Affiliation(s)
- Markus T Bohnsack
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), INF 282, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
91
|
Prunuske AJ, Ullman KS. The nuclear envelope: form and reformation. Curr Opin Cell Biol 2006; 18:108-16. [PMID: 16364623 PMCID: PMC4339063 DOI: 10.1016/j.ceb.2005.12.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 12/01/2005] [Indexed: 02/06/2023]
Abstract
The membrane system that encloses genomic DNA is referred to as the nuclear envelope. However, with emerging roles in signaling and gene expression, these membranes clearly serve as more than just a physical barrier separating the nucleus and cytoplasm. Recent progress in our understanding of nuclear envelope architecture and composition has also revealed an intriguing connection between constituents of the nuclear envelope and human disease, providing further impetus to decipher this cellular structure and the dramatic remodeling process it undergoes with each cell division.
Collapse
Affiliation(s)
- Amy J Prunuske
- Department of Oncological Sciences, Huntsman Cancer Institute, 2000 Circle of Hope, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
92
|
Samaniego R, Jeong SY, de la Torre C, Meier I, Moreno Díaz de la Espina S. CK2 phosphorylation weakens 90 kDa MFP1 association to the nuclear matrix in Allium cepa. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:113-24. [PMID: 16291799 DOI: 10.1093/jxb/erj010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
MFP1 is a conserved plant coiled-coil protein located on the stroma side of the chloroplast thylakoids, as well as in the nuclear matrix. It displays species-specific variability in the number of genes, proteins, and expression. Allium cepa has two nuclear proteins antigenically related to MFP1 with different M(r), pI, distribution, and expression, but only the 90 kDa MFP1 protein is a nuclear matrix component that associates with both the nucleoskeletal filaments and a new category of nuclear bodies. The 90 kDa AcMFP1 migrates in two-dimensional blots as two sets of spots. The hypo-phosphorylated forms (pI approximately 9.5) are tightly bound to the nuclear matrix, while high ionic strength buffers release the more acidic hyper-phosphorylated ones (pI approximately 8.5), suggesting that the protein is post-translationally modified, and that these modifications control its attachment to the nuclear matrix. Dephosphorylation by exogenous alkaline phosphatase and phosphorylation by exogenous CK2, as well as specific inhibition and stimulation of endogenous CK2 with heparin and spermine and spermidine, respectively, revealed that the protein is an in vitro and in vivo substrate of this enzyme, and that CK2 phosphorylation weakens the strength of its binding to the nuclear matrix. In synchronized cells, the nuclear 90 kDa AcMFP1 phosphorylation levels vary during the cell cycle with a moderate peak in G2. These results provide the first evidence for AcMFP1 in vivo phosphorylation, and open up further research on its nuclear functions.
Collapse
Affiliation(s)
- Rafael Samaniego
- Nuclear Matrix Laboratory, Centro de Investigaciones Biológicas, CSIC, 28040-Madrid, Spain
| | | | | | | | | |
Collapse
|
93
|
Li L, Roy K, Katyal S, Sun X, Bléoo S, Godbout R. Dynamic nature of cleavage bodies and their spatial relationship to DDX1 bodies, Cajal bodies, and gems. Mol Biol Cell 2005; 17:1126-40. [PMID: 16371507 PMCID: PMC1382303 DOI: 10.1091/mbc.e05-08-0768] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
DDX1 bodies, cleavage bodies, Cajal bodies (CBs), and gems are nuclear suborganelles that contain factors involved in RNA transcription and/or processing. Although all four nuclear bodies can exist as distinct entities, they often colocalize or overlap with each other. To better understand the relationship between these four nuclear bodies, we examined their spatial distribution as a function of the cell cycle. Here, we report that whereas DDX1 bodies, CBs and gems are present throughout interphase, CPSF-100-containing cleavage bodies are predominantly found during S and G2 phases, whereas CstF-64-containing cleavage bodies are primarily observed during S phase. All four nuclear bodies associate with each other during S phase, with cleavage bodies colocalizing with DDX1 bodies, and cleavage bodies/DDX1 bodies residing adjacent to gems and CBs. Although inhibitors of RNA transcription had no effect on DDX1 bodies or cleavage bodies, inhibitors of DNA replication resulted in loss of CstF-64-containing cleavage bodies. A striking effect on nuclear structures was observed with latrunculin B, an inhibitor of actin polymerization, resulting in the formation of needlelike nuclear spicules made up of CstF-64, CPSF-100, RNA, and RNA polymerase II. Our results suggest that cleavage body components are highly dynamic in nature.
Collapse
Affiliation(s)
- Lei Li
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | | | | | | | | | | |
Collapse
|
94
|
Schoenenberger CA, Buchmeier S, Boerries M, Sütterlin R, Aebi U, Jockusch BM. Conformation-specific antibodies reveal distinct actin structures in the nucleus and the cytoplasm. J Struct Biol 2005; 152:157-68. [PMID: 16297639 DOI: 10.1016/j.jsb.2005.09.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 09/02/2005] [Accepted: 09/20/2005] [Indexed: 11/22/2022]
Abstract
For many years the existence of actin in the nucleus has been doubted because of the lack of phalloidin staining as well as the failure to document nuclear actin filaments by electron microscopy. More recent findings reveal actin to be a component of chromatin remodeling complexes and of the machinery involved in RNA synthesis and transport. With distinct functions for nuclear actin emerging, the quest for its conformation and oligomeric/polymeric structure in the nucleus has resumed importance. We used chemically cross-linked 'lower dimer' (LD) to generate mouse monoclonal antibodies specific for different actin conformations. One of the resulting antibodies, termed 1C7, recognizes an epitope that is buried in the F-actin filament, but is surface-exposed in G-actin as well as in the LD. In immunofluorescence studies with different cell lines, 1C7 selectively reacts with non-filamentous actin in the cytoplasm. In addition, it detects a discrete form of actin in the nucleus, which is different from the nuclear actin revealed by the previously described 2G2 [Gonsior, S.M., Platz, S., Buchmeier, S., Scheer, U., Jockusch, B.M., Hinssen, H., 1999. J. Cell Sci. 112, 797]. Upon latrunculin-induced disassembly of the filamentous cytoskeleton in Rat2 fibroblasts, we observed a perinuclear accumulation of the 1C7-reactive actin conformation. In addition, latrunculin treatment led to the assembly of phalloidin-staining actin structures in chromatin-free regions of the nucleus in these cells. Our results indicate that distinct actin conformations and/or structures are present in the nucleus and the cytoplasm of different cell types and that their distribution varies in response to external signals.
Collapse
Affiliation(s)
- C-A Schoenenberger
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
95
|
Ou H, Shen YH, Utama B, Wang J, Wang X, Coselli J, Wang XL. Effect of nuclear actin on endothelial nitric oxide synthase expression. Arterioscler Thromb Vasc Biol 2005; 25:2509-14. [PMID: 16210567 PMCID: PMC1382336 DOI: 10.1161/01.atv.0000189306.99112.4c] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Previously, we showed that the 27nt repeat polymorphism in endothelial nitric oxide synthase (eNOS) intron 4 was associated with altered eNOS mRNA and protein levels, nitric oxide (NO) production and vascular disease risk; the 27-nt repeats had a cis-acting role in eNOS promoter function. In the present study, we investigated nuclear protein that binds the 27nt repeat and mediates eNOS expression. METHODS AND RESULTS Using 5'-biotin-labeled 27nt DNA duplex and streptavidin-agarose beads pull-down assay and mass spectrometry, we identified that nuclear beta-actin was one of the major 27nt binding proteins. Using the pGL3 reporter vectors containing the 5x27nt repeats as an enhancer in an in vitro transcription assay, we found that exogenous beta-actin significantly increased reporter gene transcription efficiency. The beta-actin's upregulating effect was compromised when exogenous 27nt RNA duplex was added. Furthermore, the eNOS expression was reduced when beta-actin gene was silenced by specific siRNA, and actin overexpression upregulated eNOS expression >3-fold. CONCLUSIONS Our data demonstrate that beta-actin as a transcription factor stimulates eNOS expression; and the transcriptional effect appears to be 27nt-dependent. Our findings represent a novel molecular mechanism regulating eNOS expression, which could potentially lead to discoveries of eNOS specific pharmaceutical agents, eg, active peptides, with clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xing Li Wang
- Correspondence to Xing Li Wang, NAB 2010, One Baylor Plaza, Baylor College of Medicine, Houston, TX 77030. E-mail
| |
Collapse
|
96
|
Abstract
Within the past two years, actin has been implicated in eukaryotic gene transcription by all three classes of RNA polymerase. Moreover, within just the past year, actin has been identified as a constituent of filaments attached to the nuclear pore complexes and extending into the nucleus. This review summarizes these and other very recent advances in the nuclear actin field and emphasizes the key present issues. On the one hand, we are confronted with a body of evidence for a role of actin in gene transcription but with no known structural basis; on the other hand, there is now evidence for polymeric actin--not likely in the classical F-actin conformation--in the nuclear periphery with no known function. In addition, numerous proteins that interact with either G- or F-actin are increasingly being detected in the nucleus, suggesting that both monomeric and oligomeric or polymeric forms of actin are at play and raising the possibility that the equilibrium between them, perhaps differentially regulated at various intranuclear sites, may be a major determinant of nuclear function.
Collapse
Affiliation(s)
- Thoru Pederson
- Department of Biochemistry and Molecular Pharmacology and Program in Cell Dynamics, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|
97
|
Moreno Díaz de la Espina S, Alverca E, Cuadrado A, Franca S. Organization of the genome and gene expression in a nuclear environment lacking histones and nucleosomes: the amazing dinoflagellates. Eur J Cell Biol 2005; 84:137-49. [PMID: 15819396 DOI: 10.1016/j.ejcb.2005.01.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dinoflagellates are fascinating protists that have attracted researchers from different fields. The free-living species are major primary producers and the cause of harmful algal blooms sometimes associated with red tides. Dinoflagellates lack histones and nucleosomes and present a unique genome and chromosome organization, being considered the only living knockouts of histones. Their plastids contain genes organized in unigenic minicircles. Basic cell structure, biochemistry and molecular phylogeny place the dinoflagellates firmly among the eukaryotes. They have G1-S-G2-M cell cycles, repetitive sequences, ribosomal genes in tandem, nuclear matrix, snRNAs, and eukaryotic cytoplasm, whereas their nuclear DNA is different, from base composition to chromosome organization. They have a high G + C content, highly methylated and rare bases such as 5-hydroxymethyluracil (HOMeU), no TATA boxes, and form distinct interphasic dinochromosomes with a liquid crystalline organization of DNA, stabilized by metal cations and structural RNA. Without histones and with a protein:DNA mass ratio (1:10) lower than prokaryotes, they need a different way of packing their huge amounts of DNA into a functional chromatin. In spite of the high interest in the dinoflagellate system in genetics, molecular and cellular biology, their analysis until now has been very restricted. We review here the main achievements in the characterization of the genome, nucleus and chromosomes in this diversified phylum. The recent discovery of a eukaryotic structural and functional differentiation in the dinochromosomes and of the organization of gene expression in them, demonstrate that in spite of the secondary loss of histones, that produce a lack of nucleosomal and supranucleosomal chromatin organization, they keep a functional nuclear organization closer to eukaryotes than to prokaryotes.
Collapse
|
98
|
Hu S, Chen J, Butler JP, Wang N. Prestress mediates force propagation into the nucleus. Biochem Biophys Res Commun 2005; 329:423-8. [PMID: 15737604 DOI: 10.1016/j.bbrc.2005.02.026] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Indexed: 02/05/2023]
Abstract
Several reports show that the nucleus is 10 times stiffer than the cytoplasm. Hence, it is not clear if intra-nuclear structures can be directly deformed by a load of physiologic magnitudes. If a physiologic load could not directly deform intra-nuclear structures, then signaling inside the nucleus would occur only via the mechanisms of diffusion or translocation. Using a synchronous detection approach, we quantified displacements of nucleolar structures in cultured airway smooth muscle cells in response to a localized physiologic load ( approximately 0.4 microm surface deformation) via integrin receptors. The nucleolus exhibited significant displacements. Nucleolar structures also exhibited significant deformation, with the dominant strain being the bulk strain. Increasing the pre-existing tensile stress (prestress) in the cytoskeleton significantly increased the stress propagation efficiency to the nucleolus (defined as nucleolus displacement per surface deformation) whereas decreasing the prestress significantly lowered the stress propagation efficiency to the nucleolus. Abolishing the stress fibers/actin bundles by plating the cells on poly-L-lysine-coated dishes dramatically inhibited stress propagation to the nucleolus. These results demonstrate that the prestress in the cytoskeleton is crucial in mediating stress propagation to the nucleolus, with implications for direct mechanical regulation of nuclear activities and functions.
Collapse
Affiliation(s)
- Shaohua Hu
- Physiology Program, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
99
|
|
100
|
Abstract
Actin is an ancient and abundant protein with well-established roles in fundamental processes ranging from cell migration to membrane transport. Most eukaryotic cells also contain at least eight actin-related proteins (ARPs) that are, themselves, conserved between organisms as divergent as yeast and mammals. Although many ARPs are cytoskeletal, recent biochemical and genetic work has demonstrated that some ARPs function largely or entirely in the nucleus. Evidence for the participation of both actin and ARPs in chromatin remodeling is becoming conclusive, and support for the still controversial involvement of actin in processes ranging from transcription to nuclear assembly is growing. The existence of conserved nuclear ARPs, together with accumulating biochemical, genetic and cell biology data, points to ancient and fundamental roles of actin in the nucleus, but the nature of these roles is just beginning to be revealed.
Collapse
Affiliation(s)
- Carolyn A Blessing
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|