51
|
Meng XQ, Zheng KG, Yang Y, Jiang MX, Zhang YL, Sun QY, Li YL. Proline-rich tyrosine kinase2 is involved in F-actin organization during in vitro maturation of rat oocyte. Reproduction 2007; 132:859-67. [PMID: 17127746 DOI: 10.1530/rep.1.01212] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Microfilaments (actin filaments) regulate various dynamic events during meiotic maturation. Relatively, little is known about the regulation of microfilament organization in mammalian oocytes. Proline-rich tyrosine kinase2 (Pyk2), a protein tyrosine kinase related to focal adhesion kinase (FAK) is essential in actin filaments organization. The present study was to examine the expression and localization of Pyk2, and in particular, its function during rat oocyte maturation. For the first time, by using Western blot and confocal laser scanning microscopy, we detected the expression of Pyk2 in rat oocytes and found that Pyk2 and Try402 phospho-Pyk2 were localized uniformly at the cell cortex and surrounded the germinal vesicle (GV) or the condensed chromosomes at the GV stage or after GV breakdown. At the metaphase and the beginning of anaphase, Pyk2 distributed asymmetrically both in the ooplasm and the cortex with a marked staining associated with the chromosomes and the region overlying the meiotic spindle. At telophase, Pyk2 was observed in the cleavage furrows in addition to its cortex and cytoplasm localization. The dynamics of Pyk2 were similar to that of F-actin, and this kinase was found to co-localize with microfilaments in several developmental stages during rat oocyte maturation. Microinjection of Pyk2 antibody demolished the microfilaments assembly and also inhibited the first polar body (PB1) emission. These findings suggest an important role of Pyk2 for rat oocyte maturation by regulating the organization of actin filaments.
Collapse
Affiliation(s)
- Xiao-Qian Meng
- Key Laboratory of Animal Resistance, College of Life Science, Shandong Normal University, 88 East Wenhua Road, Jinan 250002, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
52
|
Neumann-Giesen C, Fernow I, Amaddii M, Tikkanen R. Role of EGF-induced tyrosine phosphorylation of reggie-1/flotillin-2 in cell spreading and signaling to the actin cytoskeleton. J Cell Sci 2007; 120:395-406. [PMID: 17213334 DOI: 10.1242/jcs.03336] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholesterol and sphingolipid-rich membrane microdomains or rafts have been shown to be involved in signaling through many growth factor receptors but the molecular details of these processes are not well understood. The reggie/flotillin proteins are ubiquitously expressed proteins with a poorly characterized function. They are constitutively associated with membrane rafts by means of acylation and oligomerization. Previous studies have implicated reggies in signaling, regulation of actin cytoskeleton and in membrane transport processes. In this study, we analyzed the putative role of reggie-1/flotillin-2 in signaling through the epidermal growth factor receptor. We show that reggie-1 becomes phosphorylated by Src kinase at several tyrosines upon stimulation of cells with epidermal growth factor. In addition, Src and reggie-1 are present as a molecular complex. Epidermal growth factor stimulation of cells results in a Tyr163-dependent translocation of reggie-1 from the plasma membrane into endosomes. We also show that reggie-1 is capable of enhancing the spreading of cells, again in a tyrosine-dependent manner, and knockdown of reggie-1 interferes with spreading. Thus, we reveal a new function for reggie-1 in the regulation of cell adhesion and actin dynamics and in growth factor signaling.
Collapse
Affiliation(s)
- Carolin Neumann-Giesen
- Institute of Biochemistry II, University Clinic of Frankfurt am Main and Cluster of Excellence, Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
53
|
Park SY, Li H, Avraham S. RAFTK/Pyk2 regulates EGF-induced PC12 cell spreading and movement. Cell Signal 2007; 19:289-300. [PMID: 16945503 DOI: 10.1016/j.cellsig.2006.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 06/29/2006] [Accepted: 07/04/2006] [Indexed: 01/13/2023]
Abstract
The protein tyrosine kinase RAFTK, also termed Pyk2, is a member of the focal adhesion kinase (FAK) subfamily. In this report, we show the role of RAFTK in neuroendocrine PC12 cells upon epidermal growth factor (EGF) stimulation. Following EGF treatment, we observed that RAFTK was tyrosine-phosphorylated in a time- and dose-dependent manner, while FAK was constitutively phosphorylated and primarily regulated by cell adhesion. Moreover, we found that RAFTK associated with the phosphorylated EGF receptor (EGFR) upon EGF stimulation. RAFTK phosphorylation was mediated primarily through PLCgamma-IP3-Ca(2+) signaling and partially through PI3-Kinase. Furthermore, overexpression of PRNK, a specific dominant-negative construct of RAFTK, was sufficient to block EGF-induced cell spreading and movement. Paxillin, a key modulator of the actin cytoskeleton and an RAFTK substrate, was also phosphorylated following EGF treatment. EGF induced a dynamic reorganization of RAFTK and paxillin at neuronal adhesion sites, with the specific localization of paxillin at the inner juxtaposition of RAFTK. Additionally, we observed that RAFTK associated with the scaffold protein c-Cbl and mediated its phosphorylation. Our data demonstrate that while FAK mediated cell adhesion, RAFTK was localized at the cytoplasm where it mediated inside-out signaling through intracellular Ca(2+), thus leading to cell spreading and movement upon EGF stimulation.
Collapse
Affiliation(s)
- Shin-Young Park
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Harvard Institutes of Medicine, 4 Blackfan Circle, Boston, MA 02215, USA
| | | | | |
Collapse
|
54
|
Swaminathan G, Feshchenko EA, Tsygankov AY. c-Cbl-facilitated cytoskeletal effects in v-Abl-transformed fibroblasts are regulated by membrane association of c-Cbl. Oncogene 2007; 26:4095-105. [PMID: 17237826 DOI: 10.1038/sj.onc.1210184] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The multi-functional protein c-Cbl is an important modulator of actin cytoskeletal dynamics in diverse biological systems. We had previously reported that c-Cbl facilitates cell spreading and adhesion and suppresses anchorage-independent growth of v-Abl-transformed fibroblasts. To assess the importance of membrane localization of c-Cbl for the observed effects of c-Cbl in v-Abl-3T3 cells, we first mapped the membrane interactive domain(s) of c-Cbl. Our studies indicate that localization of c-Cbl to the membrane is likely to be mediated by the tyrosine kinase binding (TKB) domain and the proline-rich region of c-Cbl, whereas C-terminal tyrosine phosphorylation does not play a role. The association of v-Cbl, which encompasses the TKB domain, with the membrane was unusual as it was not entirely dependent on SH2-phosphotyrosine interactions. Our studies further demonstrate that Src-like adaptor protein (SLAP), which binds to v-Cbl in a tyrosine phosphorylation-independent manner, facilitates membrane association of Cbl. The interaction between c-Cbl and SLAP in v-Abl-3T3 cells positively influenced c-Cbl-mediated spreading and adhesion of these cells. SLAP appears to exert its effects not simply by increasing the amount of c-Cbl in the membrane but by facilitating binding of p85-phosphatidylinositol-3-kinase (PI3K) with membrane-associated c-Cbl.
Collapse
Affiliation(s)
- G Swaminathan
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
55
|
Zhang M, Liu J, Cheng A, DeYoung SM, Chen X, Dold LH, Saltiel AR. CAP interacts with cytoskeletal proteins and regulates adhesion-mediated ERK activation and motility. EMBO J 2006; 25:5284-93. [PMID: 17082770 PMCID: PMC1636617 DOI: 10.1038/sj.emboj.7601406] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 10/05/2006] [Indexed: 12/19/2022] Open
Abstract
CAP/Ponsin belongs to the SoHo family of adaptor molecules that includes ArgBP2 and Vinexin. These proteins possess an N-terminal sorbin homology (SoHo) domain and three C-terminal SH3 domains that bind to diverse signaling molecules involved in a variety of cellular processes. Here, we show that CAP binds to the cytoskeletal proteins paxillin and vinculin. CAP localizes to cell-extracellular matrix (ECM) adhesion sites, and this process requires binding to vinculin. Overexpression of CAP induces the aggregation of paxillin, vinculin and actin at cell-ECM adhesion sites. Moreover, CAP inhibits adhesion-dependent processes such as cell spreading and focal adhesion turnover, whereas a CAP mutant that is unable to localize to cell-ECM adhesion sites is incapable of exerting these effects. Finally, depletion of CAP by siRNA-mediated knockdown leads to enhanced cell spreading, migration and the activation of the PAK/MEK/ERK pathway in REF52 cells. Taken together, these results indicate that CAP is a cytoskeletal adaptor protein involved in modulating adhesion-mediated signaling events that lead to cell migration.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jun Liu
- Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Alan Cheng
- Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie M DeYoung
- Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xiaowei Chen
- Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Lisa H Dold
- Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Alan R Saltiel
- Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Departments of Internal Medicine and Physiology, Life Sciences Institute, University of Michigan, 210 Washtenaw Ave, 3rd Floor, Ann Arbor, MI 48109, USA. Tel.: +1 734 615 9787; Fax: +1 734 763 6492; E-mail:
| |
Collapse
|
56
|
Swaminathan G, Tsygankov AY. The Cbl family proteins: ring leaders in regulation of cell signaling. J Cell Physiol 2006; 209:21-43. [PMID: 16741904 DOI: 10.1002/jcp.20694] [Citation(s) in RCA: 238] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The proto-oncogenic protein c-Cbl was discovered as the cellular form of v-Cbl, a retroviral transforming protein. This was followed over the years by important discoveries, which identified c-Cbl and other Cbl-family proteins as key players in several signaling pathways. c-Cbl has donned the role of a multivalent adaptor protein, capable of interacting with a plethora of proteins, and has been shown to positively influence certain biological processes. The identity of c-Cbl as an E3 ubiquitin ligase unveiled the existence of an important negative regulatory pathway involved in maintaining homeostasis in protein tyrosine kinase (PTK) signaling. Recent years have also seen the emergence of novel regulators of Cbl, which have provided further insights into the complexity of Cbl-influenced pathways. This review will endeavor to provide a summary of current studies focused on the effects of Cbl proteins on various biological processes and the mechanism of these effects. The major sections of the review are as follows: Structure and genomic organization of Cbl proteins; Phosphorylation of Cbl; Interactions of Cbl; Localization of Cbl; Mechanism of effects of Cbl: (a) Ubiquitylation-dependent events: This section elucidates the mechanism of Cbl-mediated downregulation of EGFR and details the PTK and non-PTKs targeted by Cbl. In addition, it addresses the functional requirements for E3 Ubiquitin ligase activity of Cbl and negative regulation of Cbl-mediated downregulation of PTKs, (b) Adaptor functions: This section discusses the mechanisms of adaptor functions of Cbl in mitogen-activated protein kinase (MAPK) activation, insulin signaling, regulation of Ras-related protein 1 (Rap1), PI-3' kinase signaling, and regulation of Rho-family GTPases and cytoskeleton; Biological functions: This section gives an account of the diverse biological functions of Cbl and includes the role of Cbl in transformation, T-cell signaling and thymus development, B-cell signaling, mast-cell degranulation, macrophage functions, bone development, neurite growth, platelet activation, muscle degeneration, and bacterial invasion; Conclusions and perspectives.
Collapse
Affiliation(s)
- Gayathri Swaminathan
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
57
|
Park SY, Schinkmann KA, Avraham S. RAFTK/Pyk2 mediates LPA-induced PC12 cell migration. Cell Signal 2006; 18:1063-71. [PMID: 16199135 DOI: 10.1016/j.cellsig.2005.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 08/26/2005] [Accepted: 08/31/2005] [Indexed: 11/25/2022]
Abstract
The phospholipid lysophosphatidic acid (LPA) is a normal constituent of serum that functions as a lipid growth factor and intracellular signaling molecule. In this report, we have investigated the signaling mechanism and function of the tyrosine kinase RAFTK/Pyk2 in LPA-induced cell migration. Analysis of tyrosine phosphorylation upon LPA stimulation in neuroendocrine PC12 cells revealed 6 major tyrosine-phosphorylated proteins with estimated sizes of 180, 120, 115, 68, 44, and 42 kDa. These proteins were identified as epidermal growth factor receptor (EGFR), focal adhesion kinase, RAFTK/Pyk2, paxillin, Erk 1, and Erk 2, respectively. Using specific pharmacological inhibitors, we found that the tyrosine phosphorylation of RAFTK/Pyk2 was intracellular Ca2+-dependent, but not EGFR-dependent, during LPA stimulation of these cells. Moreover, the cytoskeletal and signal scaffolding protein, paxillin, associated with and was regulated by RAFTK/Pyk2 in a Ca2+-dependent manner. Characterization of LPA receptors showed that LPA1 (Edg2) and LPA2 (Edg4) are major receptors for LPA, while LPA3 receptor (Edg7) expression was limited. Upon using the LPA1/LPA3 receptor-specific antagonist VPC 32179, we observed that inhibition of the LPA1/LPA3 receptors had no effect on the LPA-induced phosphorylation of RAFTK, strongly suggesting that the LPA2 receptor is a key mediator of RAFTK phosphorylation. Furthermore, LPA induced PC12 cell migration, which was subsequently blocked by the dominant-negative form of FAK, FRNK. Expression of a dominant-negative form of the small GTPase Ras also blocked LPA-induced cell migration and RAFTK phosphorylation. Taken together, these results indicate that RAFTK is a key signaling molecule that mediates LPA-induced PC12 cell migration in a Ras-dependent manner.
Collapse
Affiliation(s)
- Shin-Young Park
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, United States
| | | | | |
Collapse
|
58
|
Huang J, Sakai R, Furuichi T. The docking protein Cas links tyrosine phosphorylation signaling to elongation of cerebellar granule cell axons. Mol Biol Cell 2006; 17:3187-96. [PMID: 16687575 PMCID: PMC1483050 DOI: 10.1091/mbc.e05-12-1122] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Crk-associated substrate (Cas) is a tyrosine-phosphorylated docking protein that is indispensable for the regulation of the actin cytoskeletal organization and cell migration in fibroblasts. The function of Cas in neurons, however, is poorly understood. Here we report that Cas is dominantly enriched in the brain, especially the cerebellum, of postnatal mice. During cerebellar development, Cas is highly tyrosine phosphorylated and is concentrated in the neurites and growth cones of granule cells. Cas coimmunoprecipitates with Src family protein tyrosine kinases, Crk, and cell adhesion molecules and colocalizes with these proteins in granule cells. The axon extension of granule cells is inhibited by either RNA interference knockdown of Cas or overexpression of the Cas mutant lacking the YDxP motifs, which are tyrosine phosphorylated and thereby interact with Crk. These findings demonstrate that Cas acts as a key scaffold that links the proteins associated with tyrosine phosphorylation signaling pathways to the granule cell axon elongation.
Collapse
Affiliation(s)
- Jinhong Huang
- *Laboratory for Molecular Neurogenesis, Riken Brain Science Institute, Wako, Saitama 351-0198; and
| | - Ryuichi Sakai
- Growth Factor Division, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Teiichi Furuichi
- *Laboratory for Molecular Neurogenesis, Riken Brain Science Institute, Wako, Saitama 351-0198; and
| |
Collapse
|
59
|
Hecker CM, Rabiller M, Haglund K, Bayer P, Dikic I. Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem 2006; 281:16117-27. [PMID: 16524884 DOI: 10.1074/jbc.m512757200] [Citation(s) in RCA: 414] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
SUMO proteins are ubiquitin-related modifiers implicated in the regulation of gene transcription, cell cycle, DNA repair, and protein localization. The molecular mechanisms by which the sumoylation of target proteins regulates diverse cellular functions remain poorly understood. Here we report isolation and characterization of SUMO1- and SUMO2-binding motifs. Using yeast two-hybrid system, bioinformatics, and NMR spectroscopy we define a common SUMO-interacting motif (SIM) and map its binding surfaces on SUMO1 and SUMO2. This motif forms a beta-strand that could bind in parallel or antiparallel orientation to the beta2-strand of SUMO due to the environment of the hydrophobic core. A negative charge imposed by a stretch of neighboring acidic amino acids and/or phosphorylated serine residues determines its specificity in binding to distinct SUMO paralogues and can modulate the spatial orientation of SUMO-SIM interactions.
Collapse
Affiliation(s)
- Christina-Maria Hecker
- Institute for Biochemistry II, Goethe University Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
60
|
Sayas CL, Ariaens A, Ponsioen B, Moolenaar WH. GSK-3 is activated by the tyrosine kinase Pyk2 during LPA1-mediated neurite retraction. Mol Biol Cell 2006; 17:1834-44. [PMID: 16452634 PMCID: PMC1415316 DOI: 10.1091/mbc.e05-07-0688] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a multifunctional serine/threonine kinase that is usually inactivated by serine phosphorylation in response to extracellular cues. However, GSK-3 can also be activated by tyrosine phosphorylation, but little is known about the upstream signaling events and tyrosine kinase(s) involved. Here we describe a G protein signaling pathway leading to GSK-3 activation during lysophosphatidic acid (LPA)-induced neurite retraction. Using neuronal cells expressing the LPA(1) receptor, we show that LPA(1) mediates tyrosine phosphorylation and activation of GSK-3 with subsequent phosphorylation of the microtubule-associated protein tau via the G(i)-linked PIP(2) hydrolysis-Ca(2+) mobilization pathway. LPA concomitantly activates the Ca(2+)-dependent tyrosine kinase Pyk2, which is detected in a complex with GSK-3beta. Inactivation or knockdown of Pyk2 inhibits LPA-induced (but not basal) tyrosine phosphorylation of GSK-3 and partially inhibits LPA-induced neurite retraction, similar to what is observed following GSK-3 inhibition. Thus, Pyk2 mediates LPA(1)-induced activation of GSK-3 and subsequent phosphorylation of microtubule-associated proteins. Pyk2-mediated GSK-3 activation is initiated by PIP(2) hydrolysis and may serve to destabilize microtubules during actomyosin-driven neurite retraction.
Collapse
Affiliation(s)
- C Laura Sayas
- Division of Cellular Biochemistry and Center for Biomedical Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
61
|
Langhorst MF, Reuter A, Luxenhofer G, Boneberg EM, Legler DF, Plattner H, Stuermer CAO. Preformed reggie/flotillin caps: stable priming platforms for macrodomain assembly in T cells. FASEB J 2006; 20:711-3. [PMID: 16452278 DOI: 10.1096/fj.05-4760fje] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
T cell activation after contact with an antigen-presenting cell depends on the regulated assembly of the T cell receptor signaling complex, which involves the polarized assembly of a stable, raft-like macrodomain surrounding engaged T cell receptors. Here we show that the preformed reggie/flotillin caps present in resting T cells act as priming platforms for macrodomain assembly. Preformed reggie-1/flotillin-2 caps are exceptionally stable, as shown by fluorescence recovery after photobleaching (FRAP). Upon T cell stimulation, signaling molecules are recruited to the stable reggie/flotillin caps. Importantly, a trans-negative reggie-1/flotillin-2 deletion mutant, which interferes with assembly of the preformed reggie/flotillin cap, impairs raft polarization and macrodomain formation after T cell activation. Accordingly, expression of the trans-negative reggie-1 mutant leads to the incorrect positioning of the guanine nucleotide exchange factor Vav, resulting in defects in cytoskeletal reorganization. Thus, the preformed reggie/flotillin caps are stable priming platforms for the assembly of multiprotein complexes controlling actin reorganization during T cell activation.
Collapse
Affiliation(s)
- Matthias F Langhorst
- Developmental Neurobiology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| | | | | | | | | | | | | |
Collapse
|
62
|
Patrick GN. Synapse formation and plasticity: recent insights from the perspective of the ubiquitin proteasome system. Curr Opin Neurobiol 2006; 16:90-4. [PMID: 16427269 DOI: 10.1016/j.conb.2006.01.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Accepted: 01/09/2006] [Indexed: 11/18/2022]
Abstract
The formation of synaptic connections during the development of the nervous system requires the precise targeting of presynaptic and postsynaptic compartments. Furthermore, synapses are continually modified in the brain by experience. Recently, the ubiquitin proteasome system has emerged as a key regulator of synaptic development and function. The modification of proteins by ubiquitin, and in many cases their subsequent proteasomal degradation, has proven to be an important mechanism to control protein stability, activity and localization at synapses. Recent work has highlighted key questions of the UPS during the development and remodeling of synaptic connections in the nervous system.
Collapse
Affiliation(s)
- Gentry N Patrick
- University of California San Diego, Division of Biological Sciences, Neurobiology Section, 9500 Gilman Drive, La Jolla, CA, 92093-0347, USA.
| |
Collapse
|
63
|
Abrami L, Leppla SH, van der Goot FG. Receptor palmitoylation and ubiquitination regulate anthrax toxin endocytosis. ACTA ACUST UNITED AC 2006; 172:309-20. [PMID: 16401723 PMCID: PMC2063559 DOI: 10.1083/jcb.200507067] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The anthrax toxin is composed of three independent polypeptide chains. Successful intoxication only occurs when heptamerization of the receptor-binding polypeptide, the protective antigen (PA), allows binding of the two enzymatic subunits before endocytosis. We show that this tailored behavior is caused by two counteracting posttranslational modifications in the cytoplasmic tail of PA receptors. The receptor is palmitoylated, and this unexpectedly prevents its association with lipid rafts and, thus, its premature ubiquitination. This second modification, which is mediated by the E3 ubiquitin ligase Cbl, only occurs in rafts and is required for rapid endocytosis of the receptor. As a consequence, cells expressing palmitoylation-defective mutant receptors are less sensitive to anthrax toxin because of a lower number of surface receptors as well as premature internalization of PA without a requirement for heptamerization.
Collapse
Affiliation(s)
- Laurence Abrami
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
64
|
Haglund K, Schmidt MHH, Wong ESM, Guy GR, Dikic I. Sprouty2 acts at the Cbl/CIN85 interface to inhibit epidermal growth factor receptor downregulation. EMBO Rep 2005; 6:635-41. [PMID: 15962011 PMCID: PMC1369112 DOI: 10.1038/sj.embor.7400453] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 05/13/2005] [Accepted: 05/17/2005] [Indexed: 11/09/2022] Open
Abstract
The ubiquitin ligase Cbl mediates ubiquitination of activated receptor tyrosine kinases (RTKs) and interacts with endocytic scaffold complexes, including CIN85/endophilins, to facilitate RTK endocytosis and degradation. Several mechanisms regulate the functions of Cbl to ensure the fine-tuning of RTK signalling and cellular homeostasis. One regulatory mechanism involves the binding of Cbl to Sprouty2, which sequesters Cbl away from activated epidermal growth factor receptors (EGFRs). Here, we show that Sprouty2 associates with CIN85 and acts at the interface between Cbl and CIN85 to inhibit EGFR downregulation. The CIN85 SH3 domains A and C bind specifically to proline-arginine motifs present in Sprouty2. Intact association between Sprouty2, Cbl and CIN85 is required for inhibition of EGFR endocytosis as well as EGF-induced differentiation of PC12 cells. Moreover, Sprouty4, which lacks CIN85-binding sites, does not inhibit EGFR downregulation, providing a molecular explanation for functional differences between Sprouty isoforms. Sprouty2 therefore acts as an inducible inhibitor of EGFR downregulation by targeting both the Cbl and CIN85 pathways.
Collapse
Affiliation(s)
- Kaisa Haglund
- Institute for Biochemistry II, Building 75, Goethe University Medical School, Theoder-Stern-Kai 7, 605 90 Frankfurt am Main, Germany
| | - Mirko H H Schmidt
- Institute for Biochemistry II, Building 75, Goethe University Medical School, Theoder-Stern-Kai 7, 605 90 Frankfurt am Main, Germany
| | - Esther Sook Miin Wong
- Signal Transduction Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos 138673, Singapore
| | - Graeme R Guy
- Signal Transduction Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos 138673, Singapore
| | - Ivan Dikic
- Institute for Biochemistry II, Building 75, Goethe University Medical School, Theoder-Stern-Kai 7, 605 90 Frankfurt am Main, Germany
- Tel: +49 69 6301 83647; Fax: +49 69 6301 5577; E-mail:
| |
Collapse
|
65
|
Abstract
While our understanding of lipid microdomains has advanced in recent years, many aspects of their formation and dynamics are still unclear. In particular, the molecular determinants that facilitate the partitioning of integral membrane proteins into lipid raft domains are yet to be clarified. This review focuses on a family of raft-associated integral membrane proteins, termed flotillins, which belongs to a larger class of integral membrane proteins that carry an evolutionarily conserved domain called the prohibitin homology (PHB) domain. A number of studies now suggest that eucaryotic proteins carrying this domain have affinity for lipid raft domains. The PHB domain is carried by a diverse array of proteins including stomatin, podocin, the archetypal PHB protein, prohibitin, lower eucaryotic proteins such as the Dictyostelium discoideum proteins vacuolin A and vacuolin B and the Caenorhabditis elegans proteins unc-1, unc-24 and mec-2. The presence of this domain in some procaryotic proteins suggests that the PHB domain may constitute a primordial lipid recognition motif. Recent work has provided new insights into the trafficking and targeting of flotillin and other PHB domain proteins. While the function of this large family of proteins remains unclear, studies of the C. elegans PHB proteins suggest possible links to a class of volatile anaesthetics raising the possibility that these lipophilic agents could influence lipid raft domains. This review will discuss recent insights into the cell biology of flotillins and the large family of evolutionarily conserved PHB domain proteins.
Collapse
Affiliation(s)
- Isabel C Morrow
- Institute for Molecular Bioscience, Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
66
|
Liu J, Deyoung SM, Zhang M, Dold LH, Saltiel AR. The Stomatin/Prohibitin/Flotillin/HflK/C Domain of Flotillin-1 Contains Distinct Sequences That Direct Plasma Membrane Localization and Protein Interactions in 3T3-L1 Adipocytes. J Biol Chem 2005; 280:16125-34. [PMID: 15713660 DOI: 10.1074/jbc.m500940200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Flotillin-1 is a lipid raft-associated protein that has been implicated in various cellular processes. We examined the subcellular distribution of flotillin-1 in different cell types and found that localization is cell type-specific. Flotillin-1 relocates from a cytoplasmic compartment to the plasma membrane upon the differentiation of 3T3-L1 adipocytes. To delineate the structural determinants necessary for its localization, we generated a series of truncation mutants of flotillin-1. Wild type flotillin-1 has two putative hydrophobic domains and is localized to lipid raft microdomains at the plasma membrane. Flotillin-1 fragments lacking the N-terminal hydrophobic stretch are excluded from the lipid raft compartments but remain at the plasma membrane. On the other hand, mutants with the second hydrophobic region deleted fail to traffic to the plasma membrane but are instead found in intracellular granule-like structures. Flotillin-1 specifically interacts with the adaptor protein CAP, the Src family kinase Fyn, and cortical F-actin in lipid raft microdomains in adipocytes. Furthermore, CAP and Fyn associate with different regions in the N-terminal sequences of flotillin-1. These results furthered our understanding for how flotillin-1 can function as a molecular link between lipid rafts of the plasma membrane and a multimeric signaling complex at the actin cytoskeleton.
Collapse
Affiliation(s)
- Jun Liu
- Department of Internal Medicine, Life Sciences Institute, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
67
|
Cestra G, Toomre D, Chang S, De Camilli P. The Abl/Arg substrate ArgBP2/nArgBP2 coordinates the function of multiple regulatory mechanisms converging on the actin cytoskeleton. Proc Natl Acad Sci U S A 2005; 102:1731-6. [PMID: 15659545 PMCID: PMC547834 DOI: 10.1073/pnas.0409376102] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
ArgBP2, and its brain-specific splice variant, nArgBP2, are interactors and substrates of Abl/Arg tyrosine kinases and of the ubiquitin ligase Cbl. They are members of a family of adaptor proteins that colocalize with actin on stress fibers and at cell-adhesion sites, including neuronal synapses. We show here that their NH2-terminal region, which contains a sorbin homology domain domain, interacts with spectrin, and we identify binding proteins for their COOH-terminal SH3 domains. All these binding partners participate in the regulation of the actin cytoskeleton. These include dynamin, synaptojanin, and WAVE isoforms, as well as WAVE regulatory proteins. At least two of the ArgBP2/nArgBP2 binding partners, synaptojanin 2B and WAVE2, undergo ubiquitination and Abl-dependent tyrosine phosphorylation. ArgBP2/nArgBP2 knockdown in astrocytes produces a redistribution of focal adhesion proteins and an increase in peripheral actin ruffles, whereas nArgBP2 overexpression produces a collapse of the actin cytoskeleton. Thus, ArgBP2/nArgBP2 is a scaffold protein that control the balance between adhesion and motility by coordinating the function of multiple signaling pathways converging on the actin cytoskeleton.
Collapse
Affiliation(s)
- Gianluca Cestra
- Department of Cell Biology and Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
68
|
Pandur PD, Dirksen ML, Moore KB, Moody SA. Xenopus flotillin1, a novel gene highly expressed in the dorsal nervous system. Dev Dyn 2004; 231:881-7. [PMID: 15517583 DOI: 10.1002/dvdy.20191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The two paralogues of the Xenopus flotillin1 gene (flotillin1A and flotillin1B), which encodes a putative membrane-associated protein, were cloned from egg, cleavage, and tadpole cDNA libraries. Both mRNAs are present during oogenesis and cleavage stages. After the onset of zygotic transcription, flotillin1 transcripts are first expressed throughout the embryonic ectoderm and become enhanced in the presumptive neural ectoderm as the neural plate forms. As the neural tube forms and differentiates, flotillin1 transcripts become enriched in the dorsal half, with particularly high expression in dorsal primary neurons. At early tail bud stages, there is additional expression in the paraxial mesoderm. At late tail bud stages, flotillin1A is expressed in branchial arch mesenchyme, the overlying branchial ectoderm and in dorsal somitic mesoderm, whereas flotillin1B expression is more restricted in the dorsal neural tube and head sensory structures. This report is the first comprehensive developmental description in any animal of the expression pattern of this gene, whose protein product in several systems plays important roles in signal transduction events.
Collapse
Affiliation(s)
- Petra D Pandur
- Department of Anatomy and Cell Biology, The George Washington University, Washington, DC 20037, USA
| | | | | | | |
Collapse
|