51
|
Hamm M, Bailey R, Shaw G, Yen SH, Lewis J, Giasson BI. Physiologically relevant factors influence tau phosphorylation by leucine-rich repeat kinase 2. J Neurosci Res 2015; 93:1567-80. [PMID: 26123245 DOI: 10.1002/jnr.23614] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 11/12/2022]
Abstract
Hyperphosphorylation and aggregation of tau are observed in multiple neurodegenerative diseases termed tauopathies. Tau has also been implicated in the pathogenesis of Parkinson's disease (PD) and parkinsonisms. Some PD patients with mutations in the leucine-rich repeat kinase 2 (LRRK2) gene exhibit tau pathology. Mutations in LRRK2 are a major risk factor for PD, but LRRK2 protein function remains unclear. The most common mutation, G2019S, is located in the kinase domain of LRRK2 and enhances kinase activity in vitro. This suggests that the kinase activity of LRRK2 may underlie its cellular toxicity. Recently, in vitro studies have suggested a direct interaction between tubulin-bound tau and LRRK2 that results in tau phosphorylation at one identified site. Here we present data suggesting that microtubules (MTs) enhance LRRK2-mediated tau phosphorylation at three different epitopes. We also explore the effect of divalent cations as catalytic cofactors for G2019S LRRK2-mediated tau phosphorylation and show that manganese does not support kinase activity but inhibits the efficient ability of magnesium to catalyze LRRK2-mediated phosphorylation of tau. These results suggest that cofactors such as MTs and cations in the cellular milieu have an important impact on LRRK2-tau interactions and resultant tau phosphorylation.
Collapse
Affiliation(s)
- Matthew Hamm
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida.,Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida
| | - Rachel Bailey
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida.,Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida
| | - Gerry Shaw
- EnCor Biotechnology, Gainesville, Florida
| | - Shu-Hui Yen
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Jada Lewis
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida.,Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida
| | - Benoit I Giasson
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida.,Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
52
|
Duan L, Che D, Zhang K, Ong Q, Guo S, Cui B. Optogenetic control of molecular motors and organelle distributions in cells. ACTA ACUST UNITED AC 2015; 22:671-82. [PMID: 25963241 DOI: 10.1016/j.chembiol.2015.04.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/17/2015] [Accepted: 04/17/2015] [Indexed: 12/15/2022]
Abstract
Intracellular transport and distribution of organelles play important roles in diverse cellular functions, including cell polarization, intracellular signaling, cell survival, and apoptosis. Here, we report an optogenetic strategy to control the transport and distribution of organelles by light. This is achieved by optically recruiting molecular motors onto organelles through the heterodimerization of Arabidopsis thaliana cryptochrome 2 (CRY2) and its interacting partner CIB1. CRY2 and CIB1 dimerize within subseconds upon exposure to blue light, which requires no exogenous ligands and low intensity of light. We demonstrate that mitochondria, peroxisomes, and lysosomes can be driven toward the cell periphery upon light-induced recruitment of kinesin, or toward the cell nucleus upon recruitment of dynein. Light-induced motor recruitment and organelle movements are repeatable, reversible, and can be achieved at subcellular regions. This light-controlled organelle redistribution provides a new strategy for studying the causal roles of organelle transport and distribution in cellular functions in living cells.
Collapse
Affiliation(s)
- Liting Duan
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Daphne Che
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Kai Zhang
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Qunxiang Ong
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Shunling Guo
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
53
|
Ziebert F, Mohrbach H, Kulić IM. Why microtubules run in circles: mechanical hysteresis of the tubulin lattice. PHYSICAL REVIEW LETTERS 2015; 114:148101. [PMID: 25910164 DOI: 10.1103/physrevlett.114.148101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Indexed: 06/04/2023]
Abstract
The fate of every eukaryotic cell subtly relies on the exceptional mechanical properties of microtubules. Despite significant efforts, understanding their unusual mechanics remains elusive. One persistent, unresolved mystery is the formation of long-lived arcs and rings, e.g., in kinesin-driven gliding assays. To elucidate their physical origin we develop a model of the inner workings of the microtubule's lattice, based on recent experimental evidence for a conformational switch of the tubulin dimer. We show that the microtubule lattice itself coexists in discrete polymorphic states. Metastable curved states can be induced via a mechanical hysteresis involving torques and forces typical of few molecular motors acting in unison, in agreement with the observations.
Collapse
Affiliation(s)
- Falko Ziebert
- Albert-Ludwigs-Universität, 79104 Freiburg, Germany
- Institut Charles Sadron UPR22-CNRS, 67034 Strasbourg, France
| | - Hervé Mohrbach
- Institut Charles Sadron UPR22-CNRS, 67034 Strasbourg, France
- Groupe BioPhysStat, LCP-A2MC, Université de Lorraine, 57078 Metz, France
| | - Igor M Kulić
- Institut Charles Sadron UPR22-CNRS, 67034 Strasbourg, France
| |
Collapse
|
54
|
Lateral motion and bending of microtubules studied with a new single-filament tracking routine in living cells. Biophys J 2015; 106:2625-35. [PMID: 24940780 DOI: 10.1016/j.bpj.2014.04.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 04/07/2014] [Accepted: 04/18/2014] [Indexed: 12/24/2022] Open
Abstract
The cytoskeleton is involved in numerous cellular processes such as migration, division, and contraction and provides the tracks for transport driven by molecular motors. Therefore, it is very important to quantify the mechanical behavior of the cytoskeletal filaments to get a better insight into cell mechanics and organization. It has been demonstrated that relevant mechanical properties of microtubules can be extracted from the analysis of their motion and shape fluctuations. However, tracking individual filaments in living cells is extremely complex due, for example, to the high and heterogeneous background. We introduce a believed new tracking algorithm that allows recovering the coordinates of fluorescent microtubules with ∼9 nm precision in in vitro conditions. To illustrate potential applications of this algorithm, we studied the curvature distributions of fluorescent microtubules in living cells. By performing a Fourier analysis of the microtubule shapes, we found that the curvatures followed a thermal-like distribution as previously reported with an effective persistence length of ∼20 μm, a value significantly smaller than that measured in vitro. We also verified that the microtubule-associated protein XTP or the depolymerization of the actin network do not affect this value; however, the disruption of intermediate filaments decreased the persistence length. Also, we recovered trajectories of microtubule segments in actin or intermediate filament-depleted cells, and observed a significant increase of their motion with respect to untreated cells showing that these filaments contribute to the overall organization of the microtubule network. Moreover, the analysis of trajectories of microtubule segments in untreated cells showed that these filaments presented a slower but more directional motion in the cortex with respect to the perinuclear region, and suggests that the tracking routine would allow mapping the microtubule dynamical organization in cells.
Collapse
|
55
|
Kuznetsov IA, Kuznetsov AV. Can numerical modeling help understand the fate of tau protein in the axon terminal? Comput Methods Biomech Biomed Engin 2015; 19:115-25. [PMID: 25563412 DOI: 10.1080/10255842.2014.994119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In this paper, we used mathematical modeling to investigate the fate of tau protein in the axon terminal. We developed a comprehensive model of tau transport that accounts for transport of cytosolic tau by diffusion, diffusion transport of microtubule (MT)-bound tau along the MT lattice, active motor-driven transport of MT-bound tau via slow axonal transport mechanism, and degradation of tau in the axon due to tau's finite half-life. We investigated the effect of different assumptions concerning the fate of tau in the terminal on steady-state transport of tau in the axon. In particular, we studied two possible scenarios: (i) tau is destroyed in the terminal and (ii) there is no tau destruction in the terminal, and to avoid tau accumulation we postulated zero flux of tau at the terminal. We found that the tau concentration and percentage of MT-bound tau are not very sensitive to the assumption concerning the fate of tau in the terminal, but the tau's flux and average velocity of tau transport are very sensitive to this assumption. This suggests that measuring the velocity of tau transport and comparing it with the results of mathematical modeling for different assumptions concerning tau's fate in the terminal can provide information concerning what happens to tau in the terminal.
Collapse
Affiliation(s)
- I A Kuznetsov
- a Department of Biomedical Engineering , Johns Hopkins University , Baltimore , MD 21218-2694 , USA
| | - A V Kuznetsov
- b Department of Mechanical and Aerospace Engineering , North Carolina State University , Raleigh , NC 27695-7910 , USA
| |
Collapse
|
56
|
Arendt T, Stieler J, Holzer M. Brain hypometabolism triggers PHF-like phosphorylation of tau, a major hallmark of Alzheimer's disease pathology. J Neural Transm (Vienna) 2014; 122:531-9. [PMID: 25480630 DOI: 10.1007/s00702-014-1342-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/21/2014] [Indexed: 11/26/2022]
Abstract
Sporadic Alzheimer's disease (AD) is a chronic progressive neurodegenerative disorder of unknown cause characterized by fibrillar accumulation of the Aß-peptide and aggregates of the microtubule-associated protein tau in a hyperphosphorylated form. Already at preclinical stages, AD is characterized by hypometabolic states which are a good predictor of cognitive decline. Here, we summarize recent evidence derived from the study of hibernating animals that brain hypometabolism can trigger PHF-like hyperphosphorylation of tau. We put forward the concept that particular types of neurons respond to a hypometabolic state with an elevated phosphorylation of tau protein which represents a physiological mechanism involved in regulating synaptic gain. If, in contrast to hibernation, the hypometabolic state is not terminated after a definite time but rather persists and progresses, the elevated phosphorylation of tau protein endures and the protective reaction associated with it might turn into a pathological cascade leading to neurodegeneration.
Collapse
Affiliation(s)
- Thomas Arendt
- Paul Flechsig Institute of Brain Research, University of Leipzig, Jahnallee 59, 04109, Leipzig, Germany,
| | | | | |
Collapse
|
57
|
A refined reaction-diffusion model of tau-microtubule dynamics and its application in FDAP analysis. Biophys J 2014; 107:2567-78. [PMID: 25468336 DOI: 10.1016/j.bpj.2014.09.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/22/2014] [Accepted: 09/19/2014] [Indexed: 12/20/2022] Open
Abstract
Fluorescence decay after photoactivation (FDAP) and fluorescence recovery after photobleaching (FRAP) are well established approaches for studying the interaction of the microtubule (MT)-associated protein tau with MTs in neuronal cells. Previous interpretations of FDAP/FRAP data have revealed dwell times of tau on MTs in the range of several seconds. However, this is difficult to reconcile with a dwell time recently measured by single-molecule analysis in neuronal processes that was shorter by two orders of magnitude. Questioning the validity of previously used phenomenological interpretations of FDAP/FRAP data, we have generalized the standard two-state reaction-diffusion equations by 1), accounting for the parallel and discrete arrangement of MTs in cell processes (i.e., homogeneous versus heterogeneous distribution of tau-binding sites); and 2), explicitly considering both active (diffusion upon MTs) and passive (piggybacking upon MTs at rates of slow axonal transport) motion of bound tau. For some idealized cases, analytical solutions were derived. By comparing them with the full numerical solution and Monte Carlo simulations, the respective validity domains were mapped. Interpretation of our FDAP data (from processes of neuronally differentiated PC12 cells) in light of the heterogeneous formalism yielded independent estimates for the association (∼2 ms) and dwell (∼100 ms) times of tau to/on a single MT rather than in an MT array. The dwell time was shorter by orders of magnitude than that in a previous report where a homogeneous topology of MTs was assumed. We found that the diffusion of bound tau was negligible in vivo, in contrast to an earlier report that tau diffuses along the MT lattice in vitro. Methodologically, our results demonstrate that the heterogeneity of binding sites cannot be ignored when dealing with reaction-diffusion of cytoskeleton-associated proteins. Physiologically, the results reveal the behavior of tau in cellular processes, which is noticeably different from that in vitro.
Collapse
|
58
|
Di Maïo IL, Barbier P, Allegro D, Brault C, Peyrot V. Quantitative analysis of tau-microtubule interaction using FRET. Int J Mol Sci 2014; 15:14697-714. [PMID: 25196605 PMCID: PMC4159876 DOI: 10.3390/ijms150814697] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/30/2014] [Accepted: 07/14/2014] [Indexed: 11/23/2022] Open
Abstract
The interaction between the microtubule associated protein, tau and the microtubules is investigated. A fluorescence resonance energy transfer (FRET) assay was used to determine the distance separating tau to the microtubule wall, as well as the binding parameters of the interaction. By using microtubules stabilized with Flutax-2 as donor and tau labeled with rhodamine as acceptor, a donor-to-acceptor distance of 54 ± 1 Å was found. A molecular model is proposed in which Flutax-2 is directly accessible to tau-rhodamine molecules for energy transfer. By titration, we calculated the stoichiometric dissociation constant to be equal to 1.0 ± 0.5 µM. The influence of the C-terminal tails of αβ-tubulin on the tau-microtubule interaction is presented once a procedure to form homogeneous solution of cleaved tubulin has been determined. The results indicate that the C-terminal tails of α- and β-tubulin by electrostatic effects and of recruitment seem to be involved in the binding mechanism of tau.
Collapse
Affiliation(s)
- Isabelle L Di Maïo
- Aix-Marseille Université, Inserm, CRO2 UMR_S 911, Faculté de Pharmacie, 27 Bd Jean Moulin, 13385 Marseille, France
| | - Pascale Barbier
- Aix-Marseille Université, Inserm, CRO2 UMR_S 911, Faculté de Pharmacie, 27 Bd Jean Moulin, 13385 Marseille, France.
| | - Diane Allegro
- Aix-Marseille Université, Inserm, CRO2 UMR_S 911, Faculté de Pharmacie, 27 Bd Jean Moulin, 13385 Marseille, France.
| | - Cédric Brault
- Aix-Marseille Université, Inserm, CRO2 UMR_S 911, Faculté de Pharmacie, 27 Bd Jean Moulin, 13385 Marseille, France.
| | - Vincent Peyrot
- Aix-Marseille Université, Inserm, CRO2 UMR_S 911, Faculté de Pharmacie, 27 Bd Jean Moulin, 13385 Marseille, France.
| |
Collapse
|
59
|
Scholz T, Mandelkow E. Transport and diffusion of Tau protein in neurons. Cell Mol Life Sci 2014; 71:3139-50. [PMID: 24687422 PMCID: PMC11113808 DOI: 10.1007/s00018-014-1610-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/20/2014] [Accepted: 03/13/2014] [Indexed: 12/11/2022]
Abstract
In highly polarized and elongated cells such as neurons, Tau protein must enter and move down the axon to fulfill its biological task of stabilizing axonal microtubules. Therefore, cellular systems for distributing Tau molecules are needed. This review discusses different mechanisms that have been proposed to contribute to the dispersion of Tau molecules in neurons. They include (1) directed transport along microtubules as cargo of tubulin complexes and/or motor proteins, (2) diffusion, either through the cytosolic space or along microtubules, and (3) mRNA-based mechanisms such as transport of Tau mRNA into axons and local translation. Diffusion along the microtubule lattice or through the cytosol appear to be the major mechanisms for axonal distribution of Tau protein in the short-to-intermediate range over distances of up to a millimetre. The high diffusion coefficients ensure that Tau can distribute evenly throughout the axonal volume as well as along microtubules. Motor protein-dependent transport of Tau dominates over longer distances and time scales. At low near-physiological levels, Tau is co-transported along with short microtubules from cell bodies into axons by cytoplasmic dynein and kinesin family members at rates of slow axonal transport.
Collapse
Affiliation(s)
- Tim Scholz
- Institute for Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany,
| | | |
Collapse
|
60
|
Enyedi P, Veres I, Braun G, Czirják G. Tubulin binds to the cytoplasmic loop of TRESK background K⁺ channel in vitro. PLoS One 2014; 9:e97854. [PMID: 24830385 PMCID: PMC4022642 DOI: 10.1371/journal.pone.0097854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/25/2014] [Indexed: 12/02/2022] Open
Abstract
The cytoplasmic loop between the second and third transmembrane segments is pivotal in the regulation of TRESK (TWIK-related spinal cord K+ channel, K2P18.1, KCNK18). Calcineurin binds to this region and activates the channel by dephosphorylation in response to the calcium signal. Phosphorylation-dependent anchorage of 14-3-3 adaptor protein also modulates TRESK at this location. In the present study, we identified molecular interacting partners of the intracellular loop. By an affinity chromatography approach using the cytoplasmic loop as bait, we have verified the specific association of calcineurin and 14-3-3 to the channel. In addition to these known interacting proteins, we observed substantial binding of tubulin to the intracellular loop. Successive truncation of the polypeptide and pull-down experiments from mouse brain cytosol narrowed down the region sufficient for the binding of tubulin to a 16 amino acid sequence: LVLGRLSYSIISNLDE. The first six residues of this sequence are similar to the previously reported tubulin-binding region of P2X2 purinergic receptor. The tubulin-binding site of TRESK is located close to the protein kinase A (PKA)-dependent 14-3-3-docking motif of the channel. We provide experimental evidence suggesting that 14-3-3 competes with tubulin for the binding to the cytoplasmic loop of TRESK. It is intriguing that the 16 amino acid tubulin-binding sequence includes the serines, which were previously shown to be phosphorylated by microtubule-affinity regulating kinases (MARK kinases) and contribute to channel inhibition. Although tubulin binds to TRESK in vitro, it remains to be established whether the two proteins also interact in the living cell.
Collapse
Affiliation(s)
- Péter Enyedi
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Irén Veres
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Gabriella Braun
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Gábor Czirják
- Department of Physiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
61
|
Abstract
Tau is a microtubule binding protein that forms pathological aggregates in the brain in Alzheimer's disease and other tauopathies. Disease etiology is thought to arise from loss of native interactions between tau and microtubules, as well as from gain of toxicity tied to tau aggregation, although neither mechanism is well understood. Here we investigate the link between function and disease using disease-associated and disease-motivated mutants of tau. We find that mutations to highly conserved proline residues in repeats 2 and 3 of the microtubule binding domain have differential effects on tau binding to tubulin and the capacity of tau to enhance tubulin polymerization. Notably, mutations to these residues result in an increased affinity for tubulin dimers while having a negligible effect on binding to stabilized microtubules. We measure conformational changes in tau on binding to tubulin that provide a structural framework for the observed altered affinity and function. Additionally, we find that these mutations do not necessarily enhance aggregation, which could have important implications for tau therapeutic strategies that focus solely on searching for tau aggregation inhibitors. We propose a model that describes tau binding to tubulin dimers and a mechanism by which disease-relevant alterations to tau impact its function. Together, these results draw attention to the interaction between tau and free tubulin as playing an important role in mechanisms of tau pathology.
Collapse
|
62
|
Gornstein E, Schwarz TL. The paradox of paclitaxel neurotoxicity: Mechanisms and unanswered questions. Neuropharmacology 2014; 76 Pt A:175-83. [DOI: 10.1016/j.neuropharm.2013.08.016] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/26/2013] [Accepted: 08/07/2013] [Indexed: 11/17/2022]
|
63
|
Mandelkow EM, Mandelkow E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2013; 2:a006247. [PMID: 22762014 DOI: 10.1101/cshperspect.a006247] [Citation(s) in RCA: 572] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tau represents the subunit protein of one of the major hallmarks of Alzheimer disease (AD), the neurofibrillary tangles, and is therefore of major interest as an indicator of disease mechanisms. Many of the unusual properties of Tau can be explained by its nature as a natively unfolded protein. Examples are the large number of structural conformations and biochemical modifications (phosphorylation, proteolysis, glycosylation, and others), the multitude of interaction partners (mainly microtubules, but also other cytoskeletal proteins, kinases, and phosphatases, motor proteins, chaperones, and membrane proteins). The pathological aggregation of Tau is counterintuitive, given its high solubility, but can be rationalized by short hydrophobic motifs forming β structures. The aggregation of Tau is toxic in cell and animal models, but can be reversed by suppressing expression or by aggregation inhibitors. This review summarizes some of the structural, biochemical, and cell biological properties of Tau and Tau fibers. Further aspects of Tau as a diagnostic marker and therapeutic target, its involvement in other Tau-based diseases, and its histopathology are covered by other chapters in this volume.
Collapse
Affiliation(s)
- Eva-Maria Mandelkow
- Max-Planck Unit for Structural Molecular Biology, c/o DESY, 22607 Hamburg, Germany; DZNE, German Center for Neurodegenerative Diseases, and CAESAR Research Center, 53175 Bonn, Germany.
| | | |
Collapse
|
64
|
Arendt T, Bullmann T. Neuronal plasticity in hibernation and the proposed role of the microtubule-associated protein tau as a "master switch" regulating synaptic gain in neuronal networks. Am J Physiol Regul Integr Comp Physiol 2013; 305:R478-89. [PMID: 23824962 DOI: 10.1152/ajpregu.00117.2013] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present paper provides an overview of adaptive changes in brain structure and learning abilities during hibernation as a behavioral strategy used by several mammalian species to minimize energy expenditure under current or anticipated inhospitable environmental conditions. One cellular mechanism that contributes to the regulated suppression of metabolism and thermogenesis during hibernation is reversible phosphorylation of enzymes and proteins, which limits rates of flux through metabolic pathways. Reversible phosphorylation during hibernation also affects synaptic membrane proteins, a process known to be involved in synaptic plasticity. This mechanism of reversible protein phosphorylation also affects the microtubule-associated protein tau, thereby generating a condition that in the adult human brain is associated with aggregation of tau protein to paired helical filaments (PHFs), as observed in Alzheimer's disease. Here, we put forward the concept that phosphorylation of tau is a neuroprotective mechanism to escape NMDA-mediated hyperexcitability of neurons that would otherwise occur during slow gradual cooling of the brain. Phosphorylation of tau and its subsequent targeting to subsynaptic sites might, thus, work as a kind of "master switch," regulating NMDA receptor-mediated synaptic gain in a wide array of neuronal networks, thereby enabling entry into torpor. If this condition lasts too long, however, it may eventually turn into a pathological trigger, driving a cascade of events leading to neurodegeneration, as in Alzheimer's disease or other "tauopathies".
Collapse
Affiliation(s)
- Thomas Arendt
- Paul Flechsig Institute of Brain Research, Universität Leipzig, Germany.
| | | |
Collapse
|
65
|
Breuzard G, Hubert P, Nouar R, De Bessa T, Devred F, Barbier P, Sturgis JN, Peyrot V. Molecular mechanisms of Tau binding to microtubules and its role in microtubule dynamics in live cells. J Cell Sci 2013; 126:2810-9. [PMID: 23659998 DOI: 10.1242/jcs.120832] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite extensive studies, the molecular mechanisms of Tau binding to microtubules (MTs) and its consequences on MT stability still remain unclear. It is especially true in cells where the spatiotemporal distribution of Tau-MT interactions is unknown. Using Förster resonance energy transfer (FRET), we showed that the Tau-MT interaction was distributed along MTs in periodic hotspots of high and low FRET intensities. Fluorescence recovery after photobleaching (FRAP) revealed a two-phase exchange of Tau with MTs as a rapid diffusion followed by a slower binding phase. A real-time FRET assay showed that high FRET occurred simultaneously with rescue and pause transitions at MT ends. To further explore the functional interaction of Tau with MTs, the binding of paclitaxel (PTX), tubulin acetylation induced by trichostatin A (TSA), and the expression of non-acetylatable tubulin were used. With PTX and TSA, FRAP curves best fitted a single phase with a long time constant, whereas with non-acetylatable α-tubulin, curves best fitted a two phase recovery. Upon incubation with PTX and TSA, the number of high and low FRET hotspots decreased by up to 50% and no hotspot was observed during rescue and pause transitions. In the presence of non-acetylatable α-tubulin, a 34% increase in low FRET hotspots occurred, and our real-time FRET assay revealed that low FRET hotspots appeared with MTs recovering growth. In conclusion, we have identified, by FRET and FRAP, a discrete Tau-MT interaction, in which Tau could induce conformational changes of MTs, favoring recovery of MT self-assembly.
Collapse
Affiliation(s)
- Gilles Breuzard
- Aix-Marseille Université, Inserm, CRO2 UMR_S 911, Faculté de Pharmacie 13385, Marseille, France.
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Cassimeris L, Guglielmi L, Denis V, Larroque C, Martineau P. Specific in vivo labeling of tyrosinated α-tubulin and measurement of microtubule dynamics using a GFP tagged, cytoplasmically expressed recombinant antibody. PLoS One 2013; 8:e59812. [PMID: 23555790 PMCID: PMC3610906 DOI: 10.1371/journal.pone.0059812] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/19/2013] [Indexed: 01/05/2023] Open
Abstract
GFP-tagged proteins are used extensively as biosensors for protein localization and function, but the GFP moiety can interfere with protein properties. An alternative is to indirectly label proteins using intracellular recombinant antibodies (scFvs), but most antibody fragments are insoluble in the reducing environment of the cytosol. From a synthetic hyperstable human scFv library we isolated an anti-tubulin scFv, 2G4, which is soluble in mammalian cells when expressed as a GFP-fusion protein. Here we report the use of this GFP-tagged scFv to label microtubules in fixed and living cells. We found that 2G4-GFP localized uniformly along microtubules and did not disrupt binding of EB1, a protein that binds microtubule ends and serves as a platform for binding by a complex of proteins regulating MT polymerization. TOGp and CLIP-170 also bound microtubule ends in cells expressing 2G4-GFP. Microtubule dynamic instability, measured by tracking 2G4-GFP labeled microtubules, was nearly identical to that measured in cells expressing GFP-α-tubulin. Fluorescence recovery after photobleaching demonstrated that 2G4-GFP turns over rapidly on microtubules, similar to the turnover rates of fluorescently tagged microtubule-associated proteins. These data indicate that 2G4-GFP binds relatively weakly to microtubules, and this conclusion was confirmed in vitro. Purified 2G4 partially co-pelleted with microtubules, but a significant fraction remained in the soluble fraction, while a second anti-tubulin scFv, 2F12, was almost completely co-pelleted with microtubules. In cells, 2G4-GFP localized to most microtubules, but did not co-localize with those composed of detyrosinated α-tubulin, a post-translational modification associated with non-dynamic, more stable microtubules. Immunoblots probing bacterially expressed tubulins confirmed that 2G4 recognized α-tubulin and required tubulin’s C-terminal tyrosine residue for binding. Thus, a recombinant antibody with weak affinity for its substrate can be used as a specific intracellular biosensor that can differentiate between unmodified and post-translationally modified forms of a protein.
Collapse
Affiliation(s)
- Lynne Cassimeris
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America.
| | | | | | | | | |
Collapse
|
67
|
Nouar R, Devred F, Breuzard G, Peyrot V. FRET and FRAP imaging: approaches to characterise tau and stathmin interactions with microtubules in cells. Biol Cell 2013; 105:149-61. [PMID: 23312015 DOI: 10.1111/boc.201200060] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 01/09/2013] [Indexed: 12/13/2022]
Abstract
Microtubules (MTs) are involved in many crucial processes such as cell morphogenesis, mitosis and motility. These dynamic structures resulting from the complex assembly of tubulin are tightly regulated by stabilising MT-associated proteins (MAPs) such as tau and destabilising proteins, notably stathmin. Because of their key role, these MAPs and their interactions have been extensively studied using biochemical and biophysical approaches, particularly in vitro. Nevertheless, numerous questions remain unanswered and the mechanisms of interaction between MT and these proteins are still unclear in cells. Techniques coupling cell imaging and fluorescence methods, such as Förster resonance energy transfer and fluorescence recovery after photobleaching, are excellent tools to study these interactions in situ. After describing these methods, we will present emblematic data from the literature and unpublished experimental results from our laboratory concerning the interactions between MTs, tau and stathmin in cells.
Collapse
Affiliation(s)
- Roqiya Nouar
- INSERM UMR 911, Aix-Marseille Université, CRO2, 13385, Marseille, France
| | | | | | | |
Collapse
|
68
|
Abstract
AbstractRecent investigations into the etiology and pathogenesis of Alzheimer’s disease (AD) in the past few years have expanded to include previously unexplored and/or disconnected aspects of AD and related conditions at both the cellular and systemic levels of organization. These include how AD-associated abnormalities affect the cell cycle and neuronal differentiation state and how they recruit signal transduction, membrane trafficking and protein transcytosis mechanisms to produce a neurotoxic syndrome capable of spreading itself throughout the brain. The recent expansion of AD research into intercellular and new aspects of cellular degenerative mechanisms is causing a systemic re-evaluation of AD pathogenesis, including the roles played by well-studied elements, such as the generation of Aβ and tau protein aggregates. It is also changing our view of neurodegenerative diseases as a whole. Here we propose a conceptual framework to account for some of the emerging aspects of the role of tau in AD pathogenesis.
Collapse
|
69
|
Abstract
Microtubules play an important role in a number of vital cell processes such as cell division, intracellular transport, and cell architecture. The highly dynamic structure of microtubules is tightly regulated by a number of stabilizing and destabilizing microtubule-associated proteins (MAPs), such as tau and stathmin. Because of their importance, tubulin-MAPs interactions have been extensively studied using various methods that provide researchers with complementary but sometimes contradictory thermodynamic data. Isothermal titration calorimetry (ITC) is the only direct thermodynamic method that enables a full thermodynamic characterization (stoichiometry, enthalpy, entropy of binding, and association constant) of the interaction after a single titration experiment. This method has been recently applied to study tubulin-MAPs interactions in order to bring new insights into molecular mechanisms of tubulin regulation. In this chapter, we review the technical specificity of this method and then focus on the use of ITC in the investigation of tubulin-MAPs binding. We describe technical issues which could arise during planning and carrying out the ITC experiments, in particular with fragile proteins such as tubulin. Using examples of stathmin and tau, we demonstrate how ITC can be used to gain major insights into tubulin-MAP interaction.
Collapse
|
70
|
Oz S, Ivashko-Pachima Y, Gozes I. The ADNP derived peptide, NAP modulates the tubulin pool: implication for neurotrophic and neuroprotective activities. PLoS One 2012; 7:e51458. [PMID: 23272107 PMCID: PMC3522725 DOI: 10.1371/journal.pone.0051458] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/01/2012] [Indexed: 12/12/2022] Open
Abstract
Microtubules (MTs), key cytoskeletal elements in living cells, are critical for axonal transport, synaptic transmission, and maintenance of neuronal morphology. NAP (NAPVSIPQ) is a neuroprotective peptide derived from the essential activity-dependent neuroprotective protein (ADNP). In Alzheimer’s disease models, NAP protects against tauopathy and cognitive decline. Here, we show that NAP treatment significantly affected the alpha tubulin tyrosination cycle in the neuronal differentiation model, rat pheochromocytoma (PC12) and in rat cortical astrocytes. The effect on tubulin tyrosination/detyrosination was coupled to increased MT network area (measured in PC12 cells), which is directly related to neurite outgrowth. Tubulin beta3, a marker for neurite outgrowth/neuronal differentiation significantly increased after NAP treatment. In rat cortical neurons, NAP doubled the area of dynamic MT invasion (Tyr-tubulin) into the neuronal growth cone periphery. NAP was previously shown to protect against zinc-induced MT/neurite destruction and neuronal death, here, in PC12 cells, NAP treatment reversed zinc-decreased tau-tubulin-MT interaction and protected against death. NAP effects on the MT pool, coupled with increased tau engagement on compromised MTs imply an important role in neuronal plasticity, protecting against free tau accumulation leading to tauopathy. With tauopathy representing a major pathological hallmark in Alzheimer's disease and related disorders, the current findings provide a mechanistic basis for further development. NAP (davunetide) is in phase 2/3 clinical trial in progressive supranuclear palsy, a disease presenting MT deficiency and tau pathology.
Collapse
Affiliation(s)
- Saar Oz
- The Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, Tel Aviv University, Tel Aviv, Israel
- The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yanina Ivashko-Pachima
- The Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, Tel Aviv University, Tel Aviv, Israel
- The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Illana Gozes
- The Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, Tel Aviv University, Tel Aviv, Israel
- The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
71
|
Brain-penetrant microtubule-stabilizing compounds as potential therapeutic agents for tauopathies. Biochem Soc Trans 2012; 40:661-6. [PMID: 22817712 DOI: 10.1042/bst20120010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Neurons within the brains of those with AD (Alzheimer's disease) and related neurodegenerative disorders, collectively termed 'tauopathies', contain fibrillar inclusions composed of hyperphosphorylated tau protein. Tau is normally enriched in axons, where it binds and stabilizes MTs (microtubules). Tau hyperphosphorylation and aggregation probably result in reduced MT binding that could affect axonal transport and neuronal function. A possible therapeutic strategy to overcome a loss of tau function in tauopathies is administration of MT-stabilizing agents, such as those used in the treatment of cancer. However, these drugs elicit severe side effects, and most existing MT-stabilizing compounds have poor BBB (blood-brain barrier) permeability, which renders them unsuitable for tauopathy treatment. We identified EpoD (epothilone D) as a brain-penetrant MT-stabilizing agent with preferred pharmacokinetic and pharmacodynamic properties. EpoD was evaluated for its ability to compensate for tau loss-of-function in an established Tg (transgenic) mouse model, using both preventative and interventional dosing paradigms. EpoD at doses much lower than previously used in human cancer patients caused improved axonal MT density and decreased axonal dystrophy in the tau Tg mice, leading to an alleviation of cognitive deficits. Moreover, EpoD reduced the extent of tau pathology in aged tau Tg mice. Importantly, no adverse side effects were observed in the EpoD-treated mice. These results suggest that EpoD might be a viable drug candidate for the treatment of AD and related tauopathies.
Collapse
|
72
|
Non-taxoid site microtubule-stabilizing drugs work independently of tau overexpression in mouse N2a neuroblastoma cells. Brain Res 2012; 1489:121-32. [DOI: 10.1016/j.brainres.2012.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/11/2012] [Accepted: 10/10/2012] [Indexed: 11/23/2022]
|
73
|
Ballatore C, Brunden KR, Huryn DM, Trojanowski JQ, Lee VMY, Smith AB. Microtubule stabilizing agents as potential treatment for Alzheimer's disease and related neurodegenerative tauopathies. J Med Chem 2012; 55:8979-96. [PMID: 23020671 PMCID: PMC3493881 DOI: 10.1021/jm301079z] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The microtubule (MT) associated protein tau, which is highly expressed in the axons of neurons, is an endogenous MT-stabilizing agent that plays an important role in axonal transport. Loss of MT-stabilizing tau function, caused by misfolding, hyperphosphorylation, and sequestration of tau into insoluble aggregates, leads to axonal transport deficits with neuropathological consequences. Several in vitro and preclinical in vivo studies have shown that MT-stabilizing drugs can be utilized to compensate for the loss of tau function and to maintain/restore effective axonal transport. These findings indicate that MT-stabilizing compounds hold considerable promise for the treatment of Alzheimer disease and related tauopathies. The present article provides a synopsis of the key findings demonstrating the therapeutic potential of MT-stabilizing drugs in the context of neurodegenerative tauopathies, as well as an overview of the different classes of MT-stabilizing compounds.
Collapse
Affiliation(s)
- Carlo Ballatore
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323
- Center for Neurodegenerative Diseases Research and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104-6323
| | - Kurt R. Brunden
- Center for Neurodegenerative Diseases Research and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104-6323
| | - Donna M. Huryn
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323
| | - John Q. Trojanowski
- Center for Neurodegenerative Diseases Research and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104-6323
| | - Virginia M.-Y. Lee
- Center for Neurodegenerative Diseases Research and Institute on Aging, Perelman School of Medicine, University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104-6323
| | - Amos B. Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323
| |
Collapse
|
74
|
Hinrichs MH, Jalal A, Brenner B, Mandelkow E, Kumar S, Scholz T. Tau protein diffuses along the microtubule lattice. J Biol Chem 2012; 287:38559-68. [PMID: 23019339 DOI: 10.1074/jbc.m112.369785] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Current models for the intracellular transport of Tau protein suggest motor protein-dependent co-transport with microtubule fragments and diffusion of Tau in the cytoplasm, whereas Tau is believed to be stationary while bound to microtubules and in equilibrium with free diffusion in the cytosol. Observations that members of the microtubule-dependent kinesin family show Brownian motion along microtubules led us to hypothesize that diffusion along microtubules could also be relevant in the case of Tau. We used single-molecule total internal reflection fluorescence microscopy to probe for diffusion of individual fluorescently labeled Tau molecules along microtubules. This allowed us to avoid the problem that microtubule-dependent diffusion could be masked by excess of labeled Tau in solution that might occur in in vivo overexpression experiments. We found that approximately half of the individually detected Tau molecules moved bidirectionally along microtubules over distances up to several micrometers. Diffusion parameters such as diffusion coefficient, interaction time, and scanned microtubule length did not change with Tau concentration. Tau binding and diffusion along the microtubule lattice, however, were sensitive to ionic strength and pH and drastically reduced upon enzymatic removal of the negatively charged C termini of tubulin. We propose one-dimensional Tau diffusion guided by the microtubule lattice as one possible additional mechanism for Tau distribution. By such one-dimensional microtubule lattice diffusion, Tau could be guided to both microtubule ends, i.e. the sites where Tau is needed during microtubule polymerization, independently of directed motor-dependent transport. This could be important in conditions where active transport along microtubules might be compromised.
Collapse
Affiliation(s)
- Maike H Hinrichs
- Institute for Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
75
|
Jean DC, Baas PW, Black MM. A novel role for doublecortin and doublecortin-like kinase in regulating growth cone microtubules. Hum Mol Genet 2012; 21:5511-27. [PMID: 23001563 DOI: 10.1093/hmg/dds395] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Doublecortin (DCX) and doublecortin-like kinase (DCLK), closely related family members, are microtubule-associated proteins with overlapping functions in both neuronal migration and axonal outgrowth. In growing axons, these proteins appear to have their primary functions in the growth cone. Here, we used siRNA to deplete these proteins from cultured rat sympathetic neurons. Normally, microtubules in the growth cone exhibit a gently curved contour as they extend from the base of the cone toward its periphery. However, following depletion of DCX and DCLK, microtubules throughout the growth cone become much more curvy, with many microtubules exhibiting multiple prominent bends over relatively short distances, creating a configuration that we termed wave-like folds. Microtubules with these folds appeared as if they were buckling in response to powerful forces. Indeed, inhibition of myosin-II, which generates forces on the actin cytoskeleton to push microtubules in the growth cone back toward the axonal shaft, significantly decreases the frequency of these wave-like folds. In addition, in the absence of DCX and DCLK, the depth of microtubule invasion into filopodia is reduced compared with controls, and at a functional level, growth cone responses to substrate guidance cues are altered. Conversely, overexpression of DCX results in microtubules that are straighter than usual, suggesting that higher levels of these proteins can enable an even greater resistance to folding. These findings support a role for DCX and DCLK in enabling microtubules to overcome retrograde actin-based forces, thereby facilitating the ability of the growth cone to carry out its crucial path-finding functions.
Collapse
Affiliation(s)
- Daphney C Jean
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | |
Collapse
|
76
|
Funk KE, Kuret J. Lysosomal fusion dysfunction as a unifying hypothesis for Alzheimer's disease pathology. Int J Alzheimers Dis 2012; 2012:752894. [PMID: 22970406 PMCID: PMC3437286 DOI: 10.1155/2012/752894] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease is characterized pathologically by extracellular senile plaques, intracellular neurofibrillary tangles, and granulovacuolar degeneration. It has been debated whether these hallmark lesions are markers or mediators of disease progression, and numerous paradigms have been proposed to explain the appearance of each lesion individually. However, the unfaltering predictability of these lesions suggests a single pathological nidus central to disease onset and progression. One of the earliest pathologies observed in Alzheimer's disease is endocytic dysfunction. Here we review the recent literature of endocytic dysfunction with particular focus on disrupted lysosomal fusion and propose it as a unifying hypothesis for the three most-studied lesions of Alzheimer's disease.
Collapse
Affiliation(s)
- Kristen E. Funk
- Department of Molecular and Cellular Biochemistry, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jeff Kuret
- Department of Molecular and Cellular Biochemistry, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
77
|
The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice. J Neurosci 2012; 32:3601-11. [PMID: 22423084 DOI: 10.1523/jneurosci.4922-11.2012] [Citation(s) in RCA: 288] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neurodegenerative tauopathies, such as Alzheimer's disease (AD), are characterized by insoluble deposits of hyperphosphorylated tau protein within brain neurons. Increased phosphorylation and decreased solubility has been proposed to diminish normal tau stabilization of microtubules (MTs), thereby leading to neuronal dysfunction. Earlier studies have provided evidence that small molecule MT-stabilizing drugs that are used in the treatment of cancer may have utility in the treatment of tauopathies. However, it has not been established whether treatment with a small molecule MT-stabilizing compound will provide benefit in a transgenic model with pre-existing tau pathology, as would be seen in human patients with clinical symptoms. Accordingly, we describe here an interventional study of the brain-penetrant MT-stabilizing agent, epothilone D (EpoD), in aged PS19 mice with existing tau pathology and related behavioral deficits. EpoD treatment reduced axonal dystrophy and increased axonal MT density in the aged PS19 mice, which led to improved fast axonal transport and cognitive performance. Moreover, the EpoD-treated PS19 mice had less forebrain tau pathology and increased hippocampal neuronal integrity, with no dose-limiting side effects. These data reveal that brain-penetrant MT-stabilizing drugs hold promise for the treatment of AD and related tauopathies, and that EpoD could be a candidate for clinical testing.
Collapse
|
78
|
Accumulation of vesicle-associated human tau in distal dendrites drives degeneration and tau secretion in an in situ cellular tauopathy model. Int J Alzheimers Dis 2012; 2012:172837. [PMID: 22315694 PMCID: PMC3270555 DOI: 10.1155/2012/172837] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/15/2011] [Indexed: 02/07/2023] Open
Abstract
We used a nontransgenic cellular tauopathy model in which individual giant neurons in the lamprey CNS (ABCs) overexpress human tau isoforms cell autonomously to characterize the still poorly understood consequences of disease-associated tau processing in situ. In this model, tau colocalizes with endogenous microtubules and is nontoxic when expressed at low levels, but is misprocessed by a toxicity-associated alternative pathway when expressed above levels that saturate dendritic microtubules, causing abnormally phosphorylated, vesicle-associated tau to accumulate in ABC distal dendrites. This causes localized microtubule loss and eventually dendritic degeneration, which is preceded by tau secretion to the extracellular space. This sequence is reiterated at successively more proximal dendritic locations over time, suggesting that tau-induced dendritic degeneration is driven by distal dendritic accumulation of hyperphosphorylated, vesicle-associated tau perpetuated by localized microtubule loss. The implications for the diagnosis and treatment of human disease are discussed.
Collapse
|
79
|
Mohrbach H, Johner A, Kulić IM. Cooperative lattice dynamics and anomalous fluctuations of microtubules. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 41:217-39. [PMID: 22173449 DOI: 10.1007/s00249-011-0778-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/19/2011] [Accepted: 11/22/2011] [Indexed: 12/27/2022]
Abstract
Microtubules have been in the focus of biophysical research for several decades. However, the confusing and mutually contradictory results regarding their elasticity and fluctuations have cast doubt on their present understanding. In this paper, we present the empirical evidence for the existence of discrete guanosine diphosphate (GDP)-tubulin fluctuations between a curved and a straight configuration at room temperature as well as for conformational tubulin cooperativity. Guided by a number of experimental findings, we build the case for a novel microtubule model, with the principal result that microtubules can spontaneously form micron-sized cooperative helical states with unique elastic and dynamic features. The polymorphic dynamics of the microtubule lattice resulting from the tubulin bistability quantitatively explains several experimental puzzles, including anomalous scaling of dynamic fluctuations of grafted microtubules, their apparent length-stiffness relation, and their remarkable curved-helical appearance in general. We point out that the multistability and cooperative switching of tubulin dimers could participate in important cellular processes, and could in particular lead to efficient mechanochemical signaling along single microtubules.
Collapse
Affiliation(s)
- Hervé Mohrbach
- Groupe BioPhysStat, Université Paul Verlaine-Metz, 57078, Metz, France
| | | | | |
Collapse
|
80
|
Novel diffusion barrier for axonal retention of Tau in neurons and its failure in neurodegeneration. EMBO J 2011; 30:4825-37. [PMID: 22009197 DOI: 10.1038/emboj.2011.376] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 09/21/2011] [Indexed: 12/12/2022] Open
Abstract
Missorting of Tau from axons to the somatodendritic compartment of neurons is a hallmark of Alzheimer's disease, but the mechanisms underlying normal sorting and pathological failure are poorly understood. Here, we used several Tau constructs labelled with photoconvertible Dendra2 to analyse its mobility in polarized neurons. This revealed a novel mechanism of sorting-a retrograde barrier in the axon initial segment (AIS) operating as cellular rectifier. It allows anterograde flow of axonal Tau but prevents retrograde flow back into soma and dendrites. The barrier requires binding of Tau to microtubules but does not require F-actin and thus is distinct from the sorting of membrane-associated proteins at the AIS. The barrier breaks down when Tau is phosphorylated in its repeat domain and detached from microtubules, for example, by the kinase MARK/Par1. These observations link the pathological hallmarks of Tau missorting and hyperphosphorylation in neurodegenerative diseases.
Collapse
|
81
|
Amos LA. What tubulin drugs tell us about microtubule structure and dynamics. Semin Cell Dev Biol 2011; 22:916-26. [PMID: 22001382 DOI: 10.1016/j.semcdb.2011.09.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 09/29/2011] [Indexed: 12/13/2022]
Abstract
A wide range of small molecules, including alkaloids, macrolides and peptides, bind to tubulin and disturb microtubule assembly dynamics. Some agents inhibit assembly, others inhibit disassembly. The binding sites of drugs that stabilize microtubules are discussed in relation to the properties of microtubule associated proteins. The activities of assembly inhibitors are discussed in relation to different nucleotide states of tubulin family protein structures.
Collapse
Affiliation(s)
- Linda A Amos
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
| |
Collapse
|
82
|
The physiological link between metabolic rate depression and tau phosphorylation in mammalian hibernation. PLoS One 2011; 6:e14530. [PMID: 21267079 PMCID: PMC3022585 DOI: 10.1371/journal.pone.0014530] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 11/22/2010] [Indexed: 11/19/2022] Open
Abstract
Abnormal phosphorylation and aggregation of tau protein are hallmarks of a variety of neurological disorders, including Alzheimer's disease (AD). Increased tau phosphorylation is assumed to represent an early event in pathogenesis and a pivotal aspect for aggregation and formation of neurofibrillary tangles. However, the regulation of tau phosphorylation in vivo and the causes for its increased stage of phosphorylation in AD are still not well understood, a fact that is primarily based on the lack of adequate animal models. Recently we described the reversible formation of highly phosphorylated tau protein in hibernating European ground squirrels. Hence, mammalian hibernation represents a model system very well suited to study molecular mechanisms of both tau phosphorylation and dephosphorylation under in vivo physiological conditions. Here, we analysed the extent and kinetics of hibernation-state dependent tau phosphorylation in various brain regions of three species of hibernating mammals: arctic ground squirrels, Syrian hamsters and black bears. Overall, tau protein was highly phosphorylated in torpor states and phosphorylation levels decreased after arousal in all species. Differences between brain regions, hibernation-states and phosphosites were observed with respect to degree and kinetics of tau phosphorylation. Furthermore, we tested the phosphate net turnover of tau protein to analyse potential alterations in kinase and/or phosphatase activities during hibernation. Our results demonstrate that the hibernation-state dependent phosphorylation of tau protein is specifically regulated but involves, in addition, passive, temperature driven regulatory mechanisms. By determining the activity-state profile for key enzymes of tau phosphorylation we could identify kinases potentially involved in the differentially regulated, reversible tau phosphorylation that occurs during hibernation. We show that in black bears hibernation is associated with conformational changes of highly phosphorylated tau protein that are typically related to neuropathological alterations. The particular hibernation characteristics of black bears with a continuous torpor period and an only slightly decreased body temperature, therefore, potentially reflects the limitations of this adaptive reaction pattern and, thus, might indicate a transitional state of a physiological process.
Collapse
|
83
|
Mohrbach H, Johner A, Kulić IM. Tubulin bistability and polymorphic dynamics of microtubules. PHYSICAL REVIEW LETTERS 2010; 105:268102. [PMID: 21231714 DOI: 10.1103/physrevlett.105.268102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Indexed: 05/30/2023]
Abstract
Based on the hypothesis that the GDP-tubulin dimer is a conformationally bistable molecule-rapidly fluctuating between a discrete curved and a straight state-we develop a model for polymorphic dynamics of the microtubule lattice. We show that GDP-tubulin bistability consistently explains unusual dynamic fluctuations, the apparent length-stiffness relation of grafted taxol-stabilized microtubules, and the curved-helical appearance of microtubules in general. When clamped by one end the microtubules undergo an unusual zero energy motion-in its effect reminiscent of a limited rotational hinge. We conclude that microtubules exist in highly cooperative energy-degenerate helical states and discuss possible implications in vivo.
Collapse
Affiliation(s)
- Hervé Mohrbach
- Groupe BioPhysStat, Université Paul Verlaine, Metz, France
| | | | | |
Collapse
|
84
|
Peck A, Sargin ME, LaPointe NE, Rose K, Manjunath BS, Feinstein SC, Wilson L. Tau isoform-specific modulation of kinesin-driven microtubule gliding rates and trajectories as determined with tau-stabilized microtubules. Cytoskeleton (Hoboken) 2010; 68:44-55. [PMID: 21162159 DOI: 10.1002/cm.20494] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 10/01/2010] [Accepted: 10/01/2010] [Indexed: 11/10/2022]
Abstract
We have utilized tau-assembled and tau-stabilized microtubules (MTs), in the absence of taxol, to investigate the effects of tau isoforms with three and four MT binding repeats upon kinesin-driven MT gliding. MTs were assembled in the presence of either 3-repeat tau (3R tau) or 4-repeat tau (4R tau) at tau:tubulin dimer molar ratios that approximate those found in neurons. MTs assembled with 3R tau glided at 31.1 μm/min versus 25.8 μm/min for 4R tau, a statistically significant 17% difference. Importantly, the gliding rates for either isoform did not change over a fourfold range of tau concentrations. Further, tau-assembled MTs underwent minimal dynamic instability behavior while gliding and moved with linear trajectories. In contrast, MTs assembled with taxol in the absence of tau displayed curved gliding trajectories. Interestingly, addition of 4R tau to taxol-stabilized MTs restored linear gliding, while addition of 3R tau did not. The data are consistent with the ideas that (i) 3R and 4R tau-assembled MTs possess at least some isoform-specific features that impact upon kinesin translocation, (ii) tau-assembled MTs possess different structural features than do taxol-assembled MTs, and (iii) some features of tau-assembled MTs can be masked by prior assembly by taxol. The differences in kinesin-driven gliding between 3R and 4R tau suggest important features of tau function related to the normal shift in tau isoform composition that occurs during neural development as well as in neurodegeneration caused by altered expression ratios of otherwise normal tau isoforms.
Collapse
Affiliation(s)
- Austin Peck
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
| | | | | | | | | | | | | |
Collapse
|
85
|
Goodson HV, Dzurisin JS, Wadsworth P. Methods for expressing and analyzing GFP-tubulin and GFP-microtubule-associated proteins. Cold Spring Harb Protoc 2010; 2010:pdb.top85. [PMID: 20810643 DOI: 10.1101/pdb.top85] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Important advances in our understanding of the organization and dynamics of the cytoskeleton have been made by direct observations of fluorescently tagged cytoskeletal proteins in living cells. In early experiments, the cytoskeletal protein of interest was purified, covalently modified with a fluorescent dye, and microinjected into living cells. In the mid-1990s, a powerful new technology arose: Researchers developed methods for expressing chimeric proteins consisting of the gene of interest fused to green fluorescent protein (GFP). This approach has become a standard method for characterizing protein localization and dynamics. More recently, a profusion of "XFP" (spectral variants of GFP) has been developed, allowing researchers straightforwardly to perform experiments ranging from simultaneous co-observation of protein dynamics to fluorescence recovery after photobleaching (FRAP), fluorescence resonance energy transfer (FRET), and subresolution techniques such as stimulated emission-depletion microscopy (STED) and photoactivated localization microscopy (PALM). In this article, the methods used to express and analyze GFP- and/or XFP-tagged tubulin and microtubule-associated proteins (MAPs) are discussed. Although some details may be system-specific, the methods and considerations outlined here can be adapted to a wide variety of proteins and organisms.
Collapse
|
86
|
Elbaum-Garfinkle S, Ramlall T, Rhoades E. The role of the lipid bilayer in tau aggregation. Biophys J 2010; 98:2722-30. [PMID: 20513417 PMCID: PMC2877329 DOI: 10.1016/j.bpj.2010.03.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/12/2010] [Accepted: 03/02/2010] [Indexed: 11/22/2022] Open
Abstract
Tau is a microtubule associated protein whose aggregation is implicated in a number of neurodegenerative diseases. We investigate the mechanism by which anionic lipid vesicles induce aggregation of tau in vitro using K18, a fragment of tau corresponding to the four repeats of the microtubule binding domain. Our results show that aggregation occurs when the amount of K18 bound to the lipid bilayer exceeds a critical surface density. The ratio of protein/lipid at the critical aggregation concentration is pH-dependent, as is the binding affinity. At low pH, where the protein binds with high affinity, the critical surface density is independent both of total lipid concentration as well as the fraction of anionic lipid present in the bilayer. Furthermore, the aggregates consist of both protein and vesicles and bind the beta-sheet specific dye, Thioflavin T, in the manner characteristic of pathological aggregates. Our results suggest that the lipid bilayer facilitates protein-protein interactions both by screening charges on the protein and by increasing the local protein concentration, resulting in rapid aggregation. Because anionic lipids are abundant in cellular membranes, these findings contribute to understanding tau-lipid bilayer interactions that may be relevant to disease pathology.
Collapse
Key Words
- al488, alexa fluor 488
- cac, critical aggregation concentration
- fcs, fluorescence correlation spectroscopy
- luvs, large unilamellar vesicles
- nft, neurofibrillary tangle
- pc, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
- phfs, paired helical filaments
- ps, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine
- tht, thioflavin t
- rhod-pe, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-n-(lissamine rhodamine b sulfonyl)
Collapse
Affiliation(s)
- Shana Elbaum-Garfinkle
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Trudy Ramlall
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York
| | - Elizabeth Rhoades
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
- Department of Physics, Yale University, New Haven, Connecticut
| |
Collapse
|
87
|
Stamelou M, de Silva R, Arias-Carrión O, Boura E, Höllerhage M, Oertel WH, Müller U, Höglinger GU. Rational therapeutic approaches to progressive supranuclear palsy. Brain 2010; 133:1578-90. [PMID: 20472654 DOI: 10.1093/brain/awq115] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Progressive supranuclear palsy is a sporadic and progressive neurodegenerative disease, most often presenting as a symmetric, akinetic-rigid syndrome with postural instability, vertical supranuclear gaze palsy and frontal lobe deficits. It belongs to the family of tauopathies and involves both cortical and subcortical structures. Although the exact pathophysiology is not yet fully understood, several lines of evidence point to a crucial contribution from both genetic predisposition and mitochondrial dysfunction. Recently gained insights into the pathophysiology of this disease have led to several hypothesis-driven therapeutic approaches aiming at disease-modification rather than mere symptomatic neurotransmitter-replacement therapy. Agents targeting mitochondrial dysfunction have already shown a positive effect in a phase II study and further studies to verify and expand these results are ongoing. Clinical studies with agents targeting tau dysfunction such as tau-kinase inhibitors, tau-aggregation inhibitors and microtubule stabilizers are in preparation or ongoing. This review presents the current pathophysiological concepts driving these exciting therapeutic developments.
Collapse
Affiliation(s)
- Maria Stamelou
- Department of Neurology, Philipps University, Rudolf-Bultmann Str. 8, D-35033 Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Grzeschik H, Harris RJ, Santen L. Traffic of cytoskeletal motors with disordered attachment rates. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:031929. [PMID: 20365792 DOI: 10.1103/physreve.81.031929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Indexed: 05/29/2023]
Abstract
Motivated by experimental results on the interplay between molecular motors and tau proteins, we extend lattice-based models of intracellular transport to include a second species of particle which locally influences the motor-filament attachment rate. We consider various exactly solvable limits of a stochastic multiparticle model before focusing on the low-motor-density regime. Here, an approximate treatment based on the random-walk behavior of single motors gives good quantitative agreement with simulation results for the tau dependence of the motor current. Finally, we discuss the possible physiological implications of our results.
Collapse
Affiliation(s)
- H Grzeschik
- Fachrichtung Theoretische Physik, Universität des Saarlandes, 66041 Saarbrücken, Germany.
| | | | | |
Collapse
|
89
|
Hammond JW, Huang CF, Kaech S, Jacobson C, Banker G, Verhey KJ. Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons. Mol Biol Cell 2009; 21:572-83. [PMID: 20032309 PMCID: PMC2820422 DOI: 10.1091/mbc.e09-01-0044] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
During the development of neuronal polarity, the Kinesin-1 motor translocates preferentially to the axon. We show that Kinesin-1 selectivity does not depend on differences between axons and dendrites in microtubule stability or tubulin acetylation, but is likely specified by other tubulin posttranslational modifications. Polarized transport by microtubule-based motors is critical for neuronal development and function. Selective translocation of the Kinesin-1 motor domain is the earliest known marker of axonal identity, occurring before morphological differentiation. Thus, Kinesin-1–mediated transport may contribute to axonal specification. We tested whether posttranslational modifications of tubulin influence the ability of Kinesin-1 motors to distinguish microtubule tracks during neuronal development. We detected no difference in microtubule stability between axons and minor neurites in polarized stage 3 hippocampal neurons. In contrast, microtubule modifications were enriched in a subset of neurites in unpolarized stage 2 cells and the developing axon in polarized stage 3 cells. This enrichment correlated with the selective accumulation of constitutively active Kinesin-1 motors. Increasing tubulin acetylation, without altering the levels of other tubulin modifications, did not alter the selectivity of Kinesin-1 accumulation in polarized cells. However, globally enhancing tubulin acetylation, detyrosination, and polyglutamylation by Taxol treatment or inhibition of glycogen synthase kinase 3β decreased the selectivity of Kinesin-1 translocation and led to the formation of multiple axons. Although microtubule acetylation enhances the motility of Kinesin-1, the preferential translocation of Kinesin-1 on axonal microtubules in polarized neuronal cells is not determined by acetylation alone but is probably specified by a combination of tubulin modifications.
Collapse
Affiliation(s)
- Jennetta W Hammond
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
90
|
Weissmann C, Reyher HJ, Gauthier A, Steinhoff HJ, Junge W, Brandt R. Microtubule binding and trapping at the tip of neurites regulate tau motion in living neurons. Traffic 2009; 10:1655-68. [PMID: 19744140 DOI: 10.1111/j.1600-0854.2009.00977.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During the development of neurons, the microtubule-associated tau proteins show a graded proximo-distal distribution in axons. In tauopathies such as Alzheimer's disease, tau accumulates in the somatodendritic compartment. To scrutinize the determinants of tau's distribution and motion, we constructed photoactivatable green fluorescent protein (GFP)-tagged tau fusion proteins and recorded their distribution after focal activation in living cells. Simulation showed that the motion of tau was compatible with diffusion/reaction as opposed to active transport/reaction. Effective diffusion constants of 0.7-0.8 microm(2)/second were calculated in neurites of PC12 cells and primary cortical neurons. Furthermore, tau's amino terminal projection domain mediated binding and enrichment of tau at distal neurites indicating that the tip of a neurite acts as an adsorber trapping tau protein. Treatment with taxol, incorporation of disease-related tau modifications, experimentally induced hyperphosphorylation and addition of preaggregated amyloid beta peptides (Abeta) increased the effective diffusion constant compatible with a decreased binding to microtubules. Distal enrichment was present after taxol treatment but was suppressed at disease-relevant conditions. The data suggest that (i) dynamic binding of tau to microtubules and diffusion along microtubules and (ii) trapping at the tip of a neurite both contribute to its distribution during development and disease.
Collapse
Affiliation(s)
- Carina Weissmann
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, D-49076 Osnabrück, Germany
| | | | | | | | | | | |
Collapse
|
91
|
Stieler JT, Bullmann T, Kohl F, Barnes BM, Arendt T. PHF-like tau phosphorylation in mammalian hibernation is not associated with p25-formation. J Neural Transm (Vienna) 2009; 116:345-50. [PMID: 19184336 DOI: 10.1007/s00702-008-0181-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 12/19/2008] [Indexed: 01/03/2023]
Abstract
In Alzheimer's disease and related disorders, hyperphosphorylation of tau is associated with an increased activity of cyclin dependent kinase 5 (cdk5). Elevated cdk5 activity is thought to be due to the formation of p25 and thereby represents a critical element in the dysregulation of tau phosphorylation under pathological conditions. However, there is still a controversy regarding the correlation of p25 generation and tau pathology. Recently, we demonstrated physiological, paired helical filament-like tau phosphorylation that reversibly occurs in hibernating mammals. Here we used this model to test whether the tau phosphorylation in hibernation is associated with the formation of p25. Analysing brain material of arctic ground squirrels and Syrian hamsters we found no evidence for a hibernation dependent generation of p25. Hence, we suppose that phosphorylation of tau does not require the formation of p25. Instead we suggest that the truncation of p35 to p25 represents a characteristic of pathological alterations and may contribute to aggregation and deposition of hyperphosphorylated tau.
Collapse
Affiliation(s)
- Jens Thorsten Stieler
- Department of Molecular and Cellular Mechanisms of Neurodegeneration, Paul Flechsig Institute of Brain Research, University of Leipzig, Jahnallee 59, 04109, Leipzig, Germany.
| | | | | | | | | |
Collapse
|
92
|
Stoothoff WH, Bacskai BJ, Hyman BT. Monitoring tau-tubulin interactions utilizing second harmonic generation in living neurons. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:064039. [PMID: 19123685 PMCID: PMC3004129 DOI: 10.1117/1.3050422] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Tau is a microtubule associated protein that is localized to the axon in neurons. During pathological conditions, including frontotemporal dementia (FTD), a shift in tau isoforms occurs that leads to enhanced expression of a form of tau with four (rather than three) microtubule binding repeats; this has been postulated to alter microtubule structure. Second harmonic generation (SHG) is a technique that allows the visualization of intact microtubules in axons of living neurons without the need for labeling or fixing. We examined how the presence of exogenous tau influences SHG in living neurons. Our results show that the presence of tau significantly enhances SHG, specifically in neuronal axons, despite the presence of tau throughout the entire cell. Our data also suggest that the presence or absence of the fourth microtubule binding repeat does not significantly alter tau's ability to enhance SHG. These results provide evidence that SHG is a useful, noninvasive tool to study tau-microtubule interactions in axons; further, it appears that tau overexpression, rather than specific isoforms, is the major contributor to tau-induced changes in axonal microtubule SHG signal.
Collapse
Affiliation(s)
- William H Stoothoff
- Massachusetts General Hospital-Harvard Medical School, Department of Neurology, Charlestown, Massachusetts 02129, USA
| | | | | |
Collapse
|
93
|
Tau-isoform dependent enhancement of taxol mobility through microtubules. Arch Biochem Biophys 2008; 478:119-26. [DOI: 10.1016/j.abb.2008.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Revised: 07/17/2008] [Accepted: 07/17/2008] [Indexed: 11/18/2022]
|
94
|
Krajciova G, Skrabana R, Filipcik P, Novak M. Preserving free thiols of intrinsically disordered tau protein without the use of a reducing agent. Anal Biochem 2008; 383:343-5. [PMID: 18834853 DOI: 10.1016/j.ab.2008.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/12/2008] [Accepted: 09/12/2008] [Indexed: 11/19/2022]
Abstract
Intrinsically disordered proteins (IDPs) represent key mediators in many physiological as well as pathological processes. Solution-exposed cysteines of IDPs are highly reactive and therefore reducing agents are frequently included during their preparation to prevent formation of nonnative disulfides. However, reductants can potentially interfere with subsequent assays performed on the purified IDPs. Herein we report a method for purification of IDP tau in an atmosphere of inert argon, which eliminates the need for reducing agents. We have used this method for preparing several IDP tau isoforms and found it useful in the investigation of monomeric tau toxicity in rat cerebral neurons.
Collapse
Affiliation(s)
- Gabriela Krajciova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovakia
| | | | | | | |
Collapse
|
95
|
|
96
|
Morfini G, Pigino G, Mizuno N, Kikkawa M, Brady ST. Tau binding to microtubules does not directly affect microtubule-based vesicle motility. J Neurosci Res 2008; 85:2620-30. [PMID: 17265463 DOI: 10.1002/jnr.21154] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tau protein is a major microtubule (MT)-associated brain protein enriched in axons. Multiple functional roles are proposed for tau protein, including MT stabilization, generation of cell processes, and targeting of phosphotransferases to MTs. Recently, experiments involving exogenous tau expression in cultured cells suggested a role for tau as a regulator of kinesin-1-based motility. Tau was proposed to inhibit attachment of kinesin-1 to MTs by competing for the kinesin-1 binding site. In this work, we evaluated effects of tau on fast axonal transport (FAT) by using vesicle motility assays in isolated squid axoplasm. Effects of recombinant tau constructs on both kinesin-1 and cytoplasmic dynein-dependent FAT rates were evaluated by video microscopy. Exogenous tau binding to endogenous squid MTs was evidenced by a dramatic change in individual MT morphologies. However, perfusion of tau at concentrations approximately 20-fold higher than physiological levels showed no effect on FAT. In contrast, perfusion of a cytoplasmic dynein-derived peptide that competes with kinesin-1 and cytoplasmic dynein binding to MTs in vitro rapidly inhibited FAT in both directions. Taken together, our results indicate that binding of tau to MTs does not directly affect kinesin-1- or cytoplasmic dynein-based motilities. In contrast, our results provide further evidence indicating that the functional binding sites for kinesin-1 and cytoplasmic dynein on MTs overlap.
Collapse
Affiliation(s)
- Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
97
|
Weissmann C, Brandt R. Mechanisms of neurodegenerative diseases: Insights from live cell imaging. J Neurosci Res 2008; 86:504-11. [PMID: 17668854 DOI: 10.1002/jnr.21448] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pathologic alterations in protein dynamics such as changes in protein degradation, accumulation of misfolded proteins, and deficits in cellular transport mechanisms are a common feature of most if not all neurodegenerative diseases. Live cell imaging studies promise to contribute to a better understanding of the molecular mechanisms underlying these diseases by visualizing the turnover, accumulation, and transport of proteins in a living cellular context in real time. In this review, we discuss recent work in which different live cell imaging approaches are applied in cellular models of amyotrophic lateral sclerosis, polyQ diseases, and tauopathies as paradigmatic examples of diseases with different types of alterations in protein dynamics. It becomes evident that live cell imaging studies provide new insights into different aspects of protein dynamics, such as the understanding that aggregates are not as static as concluded from previous studies but exhibit a remarkable molecular exchange and that the dynamicity state of the neuronal cytoskeleton might have a critical role in neuronal degeneration. It can be anticipated that live cell imaging studies will lead to a more dynamic view of protein turnover and aggregation, which may aid in identifying drugs that specifically interfere with disease-related changes.
Collapse
Affiliation(s)
- Carina Weissmann
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | | |
Collapse
|
98
|
Konzack S, Thies E, Marx A, Mandelkow EM, Mandelkow E. Swimming against the tide: mobility of the microtubule-associated protein tau in neurons. J Neurosci 2007; 27:9916-27. [PMID: 17855606 PMCID: PMC6672630 DOI: 10.1523/jneurosci.0927-07.2007] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Long-haul transport along microtubules is crucial for neuronal polarity, and transport defects cause neurodegeneration. Tau protein stabilizes microtubule tracks, but in Alzheimer's disease it aggregates and becomes missorted into the somatodendritic compartment. Tau can inhibit axonal transport by obstructing motors on microtubules, yet tau itself can still move into axons. We therefore investigated tau movement by live-cell fluorescence microscopy, FRAP (fluorescence recovery after photobleaching), and FSM (fluorescence speckle microscopy). Tau is highly dynamic, with diffusion coefficients of approximately 3 microm2/s and microtubule dwell times of approximately 4 s. This facilitates the entry of tau into axons over distances of millimeters and periods of days. For longer distances and times, two mechanisms of tau transport are observed. At low near-physiological levels, tau is cotransported with microtubule fragments from cell bodies into axons, moving at instantaneous velocities approximately 1 microm/s. At high concentrations, tau forms local accumulations moving bidirectionally at approximately 0.3 microm/s. These clusters first appear at distal endings of axons and may indicate an early stage of neurite degeneration.
Collapse
Affiliation(s)
- Sven Konzack
- Max-Planck-Unit for Structural Molecular Biology, 22607 Hamburg, Germany
| | - Edda Thies
- Max-Planck-Unit for Structural Molecular Biology, 22607 Hamburg, Germany
| | - Alexander Marx
- Max-Planck-Unit for Structural Molecular Biology, 22607 Hamburg, Germany
| | | | - Eckhard Mandelkow
- Max-Planck-Unit for Structural Molecular Biology, 22607 Hamburg, Germany
| |
Collapse
|
99
|
Slep KC, Vale RD. Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1. Mol Cell 2007; 27:976-91. [PMID: 17889670 PMCID: PMC2052927 DOI: 10.1016/j.molcel.2007.07.023] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 06/27/2007] [Accepted: 07/17/2007] [Indexed: 02/01/2023]
Abstract
Microtubule plus end binding proteins (+TIPs) localize to the dynamic plus ends of microtubules, where they stimulate microtubule growth and recruit signaling molecules. Three main +TIP classes have been identified (XMAP215, EB1, and CLIP-170), but whether they act upon microtubule plus ends through a similar mechanism has not been resolved. Here, we report crystal structures of the tubulin binding domains of XMAP215 (yeast Stu2p and Drosophila Msps), EB1 (yeast Bim1p and human EB1), and CLIP-170 (human), which reveal diverse tubulin binding interfaces. Functional studies, however, reveal a common property that native or artificial dimerization of tubulin binding domains (including chemically induced heterodimers of EB1 and CLIP-170) induces tubulin nucleation/assembly in vitro and, in most cases, plus end tracking in living cells. We propose that +TIPs, although diverse in structure, share a common property of multimerizing tubulin, thus acting as polymerization chaperones that aid in subunit addition to the microtubule plus end.
Collapse
Affiliation(s)
- Kevin C Slep
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
100
|
Tsvetkov AS, Samsonov A, Akhmanova A, Galjart N, Popov SV. Microtubule-binding proteins CLASP1 and CLASP2 interact with actin filaments. ACTA ACUST UNITED AC 2007; 64:519-30. [PMID: 17342765 DOI: 10.1002/cm.20201] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cell morphogenesis requires dynamic communication between actin filaments and microtubules which is mediated, at least in part, by direct structural links between the two cytoskeletal systems. Here, we examined interaction between the CLIP-associated proteins (CLASP) CLASP1 and CLASP2, and actin filaments. We demonstrate that, in addition to a well-established association with the distal ends of microtubules, CLASP2alpha co-localizes with stress fibers, and that both CLASP1alpha and CLASP2alpha co-immunoprecipitate with actin. GFP-CLASP2alpha exhibits retrograde flow in the lamellipodia of Xenopus primary fibroblasts and in the filopodia of Xenopus spinal cord neurons. A deletion mapping analysis reveals that both the microtubule-binding domain of CLASP2 (which is homologous between all CLASPs) and the N-terminal dis1/TOG domain of CLASP2alpha (which is homologous between alpha isoforms) possess actin-binding activity. Fluorescence resonance energy transfer experiments demonstrate significant energy transfer between YFP-CLASP2alpha and CFP-actin. Our results indicate that CLASPs function as actin/microtubule crosslinkers in interphase cells. We propose that CLASPs facilitate recognition of actin filaments by the plus ends of growing microtubules at the initial stages of actin-microtubule interaction. Cell Motil.
Collapse
Affiliation(s)
- Andrey S Tsvetkov
- Department of Physiology and Biophysics M/C 901, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|