51
|
Campana B, Calabrese D, Matter MS, Terracciano LM, Wieland SF, Heim MH. In vivo analysis at the cellular level reveals similar steatosis induction in both hepatitis C virus genotype 1 and 3 infections. J Viral Hepat 2018; 25:262-271. [PMID: 29086446 DOI: 10.1111/jvh.12816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022]
Abstract
Steatosis is a frequent histological feature of hepatitis C virus (HCV) infection. Cohort studies of patients with chronic hepatitis C identified HCV genotype 3 (HCV GT3) as the prevalent steatotic genotype. Moreover, Huh-7 cells over-expressing HCV GT3 core protein accumulate more triglyceride in larger lipid droplets than cells expressing core proteins of other HCV genotypes. However, little is known about the relationship of steatosis and HCV infection at the cellular level in vivo. In this study, we used highly sensitive multiplex in situ hybridization methodology together with lipid staining to investigate HCV-induced lipid droplet accumulation at the cellular level in liver biopsies. Consistent with previous reports, histological steatosis grades were significantly higher in GT3 compared to GT1 infected livers, but independent of viral load. Using nile red lipid stainings, we observed that the frequency of lipid droplet containing cells was similar in HCV GT1- and HCV GT3-infected livers. Lipid droplet formation preferentially occurred in HCV-infected cells irrespective of the genotype, but was also observed in noninfected cells. These findings demonstrate that the main difference between GT1- and GT3-induced steatosis is the size of lipid droplets, but not the number or relative distribution of lipid droplets in infected vs uninfected hepatocytes.
Collapse
Affiliation(s)
- B Campana
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Division of Gastroenterology and Hepatology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - D Calabrese
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - M S Matter
- Institute of Pathology, Molecular Pathology Division, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - L M Terracciano
- Institute of Pathology, Molecular Pathology Division, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - S F Wieland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - M H Heim
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Division of Gastroenterology and Hepatology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
52
|
Abstract
Long considered inert fat storage depots, it has become clear that lipid droplets (LDs) are bona fide organelles. Like other organelles, they have a characteristic complement of proteins and lipids, and undergo a life cycle that includes biogenesis, maturation, interactions with other organelles, and turnover. I will discuss recent insights into mechanisms governing the life cycle of LDs, and compare and contrast the LD life cycle with that of other metabolic organelles such as mitochondria, peroxisomes, and autophagosomes, highlighting open questions in the field.
Collapse
Affiliation(s)
- Sarah Cohen
- University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
53
|
Tracey TJ, Steyn FJ, Wolvetang EJ, Ngo ST. Neuronal Lipid Metabolism: Multiple Pathways Driving Functional Outcomes in Health and Disease. Front Mol Neurosci 2018; 11:10. [PMID: 29410613 PMCID: PMC5787076 DOI: 10.3389/fnmol.2018.00010] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
Lipids are a fundamental class of organic molecules implicated in a wide range of biological processes related to their structural diversity, and based on this can be broadly classified into five categories; fatty acids, triacylglycerols (TAGs), phospholipids, sterol lipids and sphingolipids. Different lipid classes play major roles in neuronal cell populations; they can be used as energy substrates, act as building blocks for cellular structural machinery, serve as bioactive molecules, or a combination of each. In amyotrophic lateral sclerosis (ALS), dysfunctions in lipid metabolism and function have been identified as potential drivers of pathogenesis. In particular, aberrant lipid metabolism is proposed to underlie denervation of neuromuscular junctions, mitochondrial dysfunction, excitotoxicity, impaired neuronal transport, cytoskeletal defects, inflammation and reduced neurotransmitter release. Here we review current knowledge of the roles of lipid metabolism and function in the CNS and discuss how modulating these pathways may offer novel therapeutic options for treating ALS.
Collapse
Affiliation(s)
- Timothy J Tracey
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Frederik J Steyn
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Shyuan T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
54
|
Hu X, Xu B, Ge W. The Role of Lipid Bodies in the Microglial Aging Process and Related Diseases. Neurochem Res 2017; 42:3140-3148. [PMID: 28699057 DOI: 10.1007/s11064-017-2351-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/22/2017] [Accepted: 07/07/2017] [Indexed: 01/08/2023]
Abstract
Lipid bodies (LBs) have long been considered to be organelles merely for the storage of neutral lipids. However, recent studies have shown the significance of LBs in signal transduction, especially in glial cells, including microglia. Microglial cells are the resident mononuclear phagocytes in the central nervous system and have a close relationship with the aging process and neurodegenerative diseases. Evidence suggests that LBs accumulate and are remodeled during the aging process and the development of neuroinflammatory conditions. However, the mechanisms underlying the formation of LBs under these conditions and the mechanism by which LB remodeling influences the progression of neurodegeneration remain to be clarified. In this review, we have summarized the findings from recent studies with the aim of further elucidating these issues.
Collapse
Affiliation(s)
- Xirong Hu
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, DongdanSantiao 5# Dongcheng District, Beijing, 100730, China
- School of Life Sciences, Tsinghua University, Haidian District, Beijing, 00084, China
| | - Benhong Xu
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, DongdanSantiao 5# Dongcheng District, Beijing, 100730, China.
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China.
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, DongdanSantiao 5# Dongcheng District, Beijing, 100730, China.
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China.
| |
Collapse
|
55
|
Barbosa AD, Siniossoglou S. Function of lipid droplet-organelle interactions in lipid homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1459-1468. [DOI: 10.1016/j.bbamcr.2017.04.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/31/2017] [Accepted: 04/02/2017] [Indexed: 12/20/2022]
|
56
|
Abstract
Lipid droplets (LDs) are ubiquitous organelles that store neutral lipids for energy or membrane synthesis and act as hubs for metabolic processes. Cells generate LDs de novo, converting cells to emulsions with LDs constituting the dispersed oil phase in the aqueous cytoplasm. Here we review our current view of LD biogenesis. We present a model of LD formation from the ER in distinct steps and highlight the biology of proteins that govern this biophysical process. Areas of incomplete knowledge are identified, as are connections with physiology and diseases linked to alterations in LD biology.
Collapse
Affiliation(s)
- Tobias C Walther
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; , .,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142.,Howard Hughes Medical Institute, Boston, Massachusetts 02115
| | - Jeeyun Chung
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; , .,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Robert V Farese
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; , .,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142
| |
Collapse
|
57
|
Su X, Liu S, Zhang X, Lam SM, Hu X, Zhou Y, Chen J, Wang Y, Wu C, Shui G, Lu M, Pei R, Chen X. Requirement of cytosolic phospholipase A2 gamma in lipid droplet formation. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:692-705. [DOI: 10.1016/j.bbalip.2017.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 01/24/2023]
|
58
|
Cai Y, McClinchie E, Price A, Nguyen TN, Gidda SK, Watt SC, Yurchenko O, Park S, Sturtevant D, Mullen RT, Dyer JM, Chapman KD. Mouse fat storage-inducing transmembrane protein 2 (FIT2) promotes lipid droplet accumulation in plants. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:824-836. [PMID: 27987528 PMCID: PMC5466434 DOI: 10.1111/pbi.12678] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 05/23/2023]
Abstract
Fat storage-inducing transmembrane protein 2 (FIT2) is an endoplasmic reticulum (ER)-localized protein that plays an important role in lipid droplet (LD) formation in animal cells. However, no obvious homologue of FIT2 is found in plants. Here, we tested the function of FIT2 in plant cells by ectopically expressing mouse (Mus musculus) FIT2 in Nicotiana tabacum suspension-cultured cells, Nicotiana benthamiana leaves and Arabidopsis thaliana plants. Confocal microscopy indicated that the expression of FIT2 dramatically increased the number and size of LDs in leaves of N. benthamiana and Arabidopsis, and lipidomics analysis and mass spectrometry imaging confirmed the accumulation of neutral lipids in leaves. FIT2 also increased seed oil content by ~13% in some stable, overexpressing lines of Arabidopsis. When expressed transiently in leaves of N. benthamiana or suspension cells of N. tabacum, FIT2 localized specifically to the ER and was often concentrated at certain regions of the ER that resembled ER-LD junction sites. FIT2 also colocalized at the ER with other proteins known to be involved in triacylglycerol biosynthesis or LD formation in plants, but not with ER resident proteins involved in electron transfer or ER-vesicle exit sites. Collectively, these results demonstrate that mouse FIT2 promotes LD accumulation in plants, a surprising functional conservation in the context of a plant cell given the apparent lack of FIT2 homologues in higher plants. These results suggest also that FIT2 expression represents an effective synthetic biology strategy for elaborating neutral lipid compartments in plant tissues for potential biofuel or bioproduct purposes.
Collapse
Affiliation(s)
- Yingqi Cai
- Center for Plant Lipid ResearchUniversity of North TexasDentonTXUSA
| | | | - Ann Price
- Center for Plant Lipid ResearchUniversity of North TexasDentonTXUSA
| | - Thuy N. Nguyen
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
- Present address: Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Satinder K. Gidda
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - Samantha C. Watt
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - Olga Yurchenko
- US Arid‐Land Agricultural Research CenterUSDA‐ARSMaricopaAZUSA
| | - Sunjung Park
- US Arid‐Land Agricultural Research CenterUSDA‐ARSMaricopaAZUSA
- Present address: Biology DepartmentCentral Arizona CollegeMaricopaAZ85138USA
| | - Drew Sturtevant
- Center for Plant Lipid ResearchUniversity of North TexasDentonTXUSA
| | - Robert T. Mullen
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - John M. Dyer
- US Arid‐Land Agricultural Research CenterUSDA‐ARSMaricopaAZUSA
| | - Kent D. Chapman
- Center for Plant Lipid ResearchUniversity of North TexasDentonTXUSA
| |
Collapse
|
59
|
Shepherd SO, Strauss JA, Wang Q, Dube JJ, Goodpaster B, Mashek DG, Chow LS. Training alters the distribution of perilipin proteins in muscle following acute free fatty acid exposure. J Physiol 2017; 595:5587-5601. [PMID: 28560826 PMCID: PMC5556155 DOI: 10.1113/jp274374] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/17/2017] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS The lipid droplet (LD)-associated perilipin (PLIN) proteins promote intramuscular triglyceride (IMTG) storage, although whether the abundance and association of the PLIN proteins with LDs is related to the diverse lipid storage in muscle between trained and sedentary individuals is unknown. We show that lipid infusion augments IMTG content in type I fibres of both trained and sedentary individuals. Most importantly, despite there being no change in PLIN protein content, lipid infusion did increase the number of LDs connected with PLIN proteins in trained individuals only. We conclude that trained individuals are able to redistribute the pre-existing pool of PLIN proteins to an expanded LD pool during lipid infusion and, via this adaptation, may support the storage of fatty acids in IMTG. ABSTRACT Because the lipid droplet (LD)-associated perilipin (PLIN) proteins promote intramuscular triglyceride (IMTG) storage, we investigated the hypothesis that differential protein content of PLINs and their distribution with LDs may be linked to the diverse lipid storage in muscle between trained and sedentary individuals. Trained (n = 11) and sedentary (n = 10) subjects, matched for age, sex and body mass index, received either a 6 h lipid or glycerol infusion in the setting of a concurrent hyperinsulinaemic-euglycaemic clamp. Sequential muscle biopsies (0, 2 and 6 h) were analysed using confocal immunofluorescence microscopy for fibre type-specific IMTG content and PLIN associations with LDs. In both groups, lipid infusion increased IMTG content in type I fibres (trained: +62%, sedentary: +79%; P < 0.05) but did not affect PLIN protein content. At baseline, PLIN2 (+65%), PLIN3 (+105%) and PLIN5 (+53%; all P < 0.05) protein content was higher in trained compared to sedentary individuals. In trained individuals, lipid infusion increased the number of LDs associated with PLIN2 (+27%), PLIN3 (+73%) and PLIN5 (+40%; all P < 0.05) in type I fibres. By contrast, in sedentary individuals, lipid infusion only increased the number of LDs not associated with PLIN proteins. Acute free fatty acid elevation therefore induces a redistribution of PLIN proteins to an expanded LD pool in trained individuals only and this may be part of the mechanism that enables fatty acids to be stored in IMTG.
Collapse
Affiliation(s)
- S O Shepherd
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - J A Strauss
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Q Wang
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - J J Dube
- Department of Biology, Chatham University, Pittsburgh, PA, USA
| | - B Goodpaster
- Translational Research Institute for Metabolism & Diabetes, Florida Hospital, Orlando, FL, USA
| | - D G Mashek
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - L S Chow
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
60
|
VAN ELSLAND D, BOS E, PAWLAK J, OVERKLEEFT H, KOSTER A, VAN KASTEREN S. Correlative light and electron microscopy reveals discrepancy between gold and fluorescence labelling. J Microsc 2017; 267:309-317. [DOI: 10.1111/jmi.12567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 02/17/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Affiliation(s)
- D.M. VAN ELSLAND
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry, Gorlaeus Laboratories; Leiden University; Leiden The Netherlands
- Institute for Chemical Immunology, Gorlaeus Laboratories; Leiden University; Leiden The Netherlands
| | - E. BOS
- Department of Molecular Cell Biology, Section Electron Microscopy; Leiden University Medical Center; Leiden The Netherlands
| | - J.B. PAWLAK
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry, Gorlaeus Laboratories; Leiden University; Leiden The Netherlands
- Institute for Chemical Immunology, Gorlaeus Laboratories; Leiden University; Leiden The Netherlands
| | - H.S. OVERKLEEFT
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry, Gorlaeus Laboratories; Leiden University; Leiden The Netherlands
- Institute for Chemical Immunology, Gorlaeus Laboratories; Leiden University; Leiden The Netherlands
| | - A.J. KOSTER
- Department of Molecular Cell Biology, Section Electron Microscopy; Leiden University Medical Center; Leiden The Netherlands
| | - S.I. VAN KASTEREN
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry, Gorlaeus Laboratories; Leiden University; Leiden The Netherlands
- Institute for Chemical Immunology, Gorlaeus Laboratories; Leiden University; Leiden The Netherlands
| |
Collapse
|
61
|
The stellate cell system (vitamin A-storing cell system). Anat Sci Int 2017; 92:387-455. [PMID: 28299597 DOI: 10.1007/s12565-017-0395-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/15/2017] [Indexed: 01/18/2023]
Abstract
Past, present, and future research into hepatic stellate cells (HSCs, also called vitamin A-storing cells, lipocytes, interstitial cells, fat-storing cells, or Ito cells) are summarized and discussed in this review. Kupffer discovered black-stained cells in the liver using the gold chloride method and named them stellate cells (Sternzellen in German) in 1876. Wake rediscovered the cells in 1971 using the same gold chloride method and various modern histological techniques including electron microscopy. Between their discovery and rediscovery, HSCs disappeared from the research history. Their identification, the establishment of cell isolation and culture methods, and the development of cellular and molecular biological techniques promoted HSC research after their rediscovery. In mammals, HSCs exist in the space between liver parenchymal cells (PCs) or hepatocytes and liver sinusoidal endothelial cells (LSECs) of the hepatic lobule, and store 50-80% of all vitamin A in the body as retinyl ester in lipid droplets in the cytoplasm. SCs also exist in extrahepatic organs such as pancreas, lung, and kidney. Hepatic (HSCs) and extrahepatic stellate cells (EHSCs) form the stellate cell (SC) system or SC family; the main storage site of vitamin A in the body is HSCs in the liver. In pathological conditions such as liver fibrosis, HSCs lose vitamin A, and synthesize a large amount of extracellular matrix (ECM) components including collagen, proteoglycan, glycosaminoglycan, and adhesive glycoproteins. The morphology of these cells also changes from the star-shaped HSCs to that of fibroblasts or myofibroblasts.
Collapse
|
62
|
Barneda D, Christian M. Lipid droplet growth: regulation of a dynamic organelle. Curr Opin Cell Biol 2017; 47:9-15. [PMID: 28231490 DOI: 10.1016/j.ceb.2017.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/01/2017] [Accepted: 02/04/2017] [Indexed: 12/31/2022]
Abstract
Intracellular lipid droplets (LDs) are remarkably dynamic and complex organelles that enact regulated storage and release of lipids to fulfil their fundamental roles in energy metabolism, membrane synthesis and provision of lipid-derived signaling molecules. Although small LDs are observed in all types of eukaryotic cells, it is adipocytes that present the widest range of sizes up to the massive unilocular droplet of a white adipocyte. Our knowledge of the proteins and associated processes that control LD dynamics is improving. The dynamic expression of LD-associated proteins is vital for controlling LD biology and is most apparent during adipocyte differentiation. Recent findings on the molecular mechanisms of lipid droplet enlargement reveal the importance of distinct functional groups of proteins and phospholipids.
Collapse
Affiliation(s)
| | - Mark Christian
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
63
|
Salo VT, Belevich I, Li S, Karhinen L, Vihinen H, Vigouroux C, Magré J, Thiele C, Hölttä-Vuori M, Jokitalo E, Ikonen E. Seipin regulates ER-lipid droplet contacts and cargo delivery. EMBO J 2016; 35:2699-2716. [PMID: 27879284 PMCID: PMC5167346 DOI: 10.15252/embj.201695170] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/22/2016] [Accepted: 10/24/2016] [Indexed: 11/10/2022] Open
Abstract
Seipin is an endoplasmic reticulum (ER) membrane protein implicated in lipid droplet (LD) biogenesis and mutated in severe congenital lipodystrophy (BSCL2). Here, we show that seipin is stably associated with nascent ER–LD contacts in human cells, typically via one mobile focal point per LD. Seipin appears critical for such contacts since ER–LD contacts were completely missing or morphologically aberrant in seipin knockout and BSCL2 patient cells. In parallel, LD mobility was increased and protein delivery from the ER to LDs to promote LD growth was decreased. Moreover, while growing LDs normally acquire lipid and protein constituents from the ER, this process was compromised in seipin‐deficient cells. In the absence of seipin, the initial synthesis of neutral lipids from exogenous fatty acid was normal, but fatty acid incorporation into neutral lipids in cells with pre‐existing LDs was impaired. Together, our data suggest that seipin helps to connect newly formed LDs to the ER and that by stabilizing ER–LD contacts seipin facilitates the incorporation of protein and lipid cargo into growing LDs in human cells.
Collapse
Affiliation(s)
- Veijo T Salo
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Ilya Belevich
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Shiqian Li
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Leena Karhinen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Helena Vihinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Corinne Vigouroux
- Sorbonne Universités, UPMC Univ Paris 6, Inserm UMR_S938, Saint-Antoine Research Center, Institute of Cardiometabolism And Nutrition, AP-HP, Saint-Antoine Hospital Department of Molecular Biology and Genetics, Paris, France
| | - Jocelyne Magré
- l'Institut du Thorax, INSERM CNRS UNIV Nantes, Nantes, France
| | | | - Maarit Hölttä-Vuori
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Eija Jokitalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Elina Ikonen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland .,Minerva Foundation Institute for Medical Research, Helsinki, Finland
| |
Collapse
|
64
|
Cui J, Chen W, Liu J, Xu T, Zeng Y. Study on quantitative expression of PPARγ and ADRP in muscle and its association with intramuscular fat deposition of pig. SPRINGERPLUS 2016; 5:1501. [PMID: 27652074 PMCID: PMC5014771 DOI: 10.1186/s40064-016-3187-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 09/01/2016] [Indexed: 02/06/2023]
Abstract
Background Intramuscular fat (intramuscular fat, IMF) is one of the important traits of pork quality. How to reasonably improve the intramuscular fat content is the most focus researchers. Some possible regulation of intramuscular fat deposition of candidate genes to cause the attention of people. The objective of this study was to elucidate the relationship between peroxisome proliferator-activated receptor γ (PPARγ) and adipose differentiation-related protein (ADRP) mRNA expression and intramuscular fat (IMF) deposition in the muscle tissue of three breeds of pig: Laiwu (LW), Lulai Black (LL), and Large White (LY). Results qPCR analysis of the PPARγ and ADRP genes in the three breeds of pig revealed PPARγ and ADRP mRNA expression profiles of LW > LL > LY and LL > LW > LY, respectively. PPARγ mRNA expression was significantly and positively correlated with IMF deposition (p < 0.05). There were significant correlations between PPARγ and ADRP mRNA expression levels (p < 0.01). Conclusions These results suggest correlations between PPARγ and ADRP in fat deposition and regulation in pigs, PPARγ gene may be a main effector of IMF content and play an important role during adipocyte differentiation in pigs, thereby providing new information to further elucidate molecular mechanisms associated with intramuscular fat deposition in Laiwu pigs and provides new data for further molecular studies of mechanisms underlying intramuscular fat deposition in human obesity. The continued elucidation of specific genetic mechanisms between PPARγ and ADRP warrants further studies.
Collapse
Affiliation(s)
- Jingxiang Cui
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018 China.,Weifang University of Science and Technology, Shouguang, 262700 Shandong China
| | - Wei Chen
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018 China
| | - Jie Liu
- Weifang University of Science and Technology, Shouguang, 262700 Shandong China
| | - Tao Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Yongqing Zeng
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018 China
| |
Collapse
|
65
|
Mishra S, Khaddaj R, Cottier S, Stradalova V, Jacob C, Schneiter R. Mature lipid droplets are accessible to ER luminal proteins. J Cell Sci 2016; 129:3803-3815. [PMID: 27591256 DOI: 10.1242/jcs.189191] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/17/2016] [Indexed: 01/14/2023] Open
Abstract
Lipid droplets are found in most organisms where they serve to store energy in the form of neutral lipids. They are formed at the endoplasmic reticulum (ER) membrane where the neutral-lipid-synthesizing enzymes are located. Recent results indicate that lipid droplets remain functionally connected to the ER membrane in yeast and mammalian cells to allow the exchange of both lipids and integral membrane proteins between the two compartments. The precise nature of the interface between the ER membrane and lipid droplets, however, is still ill-defined. Here, we probe the topology of lipid droplet biogenesis by artificially targeting proteins that have high affinity for lipid droplets to inside the luminal compartment of the ER. Unexpectedly, these proteins still localize to lipid droplets in both yeast and mammalian cells, indicating that lipid droplets are accessible from within the ER lumen. These data are consistent with a model in which lipid droplets form a specialized domain in the ER membrane that is accessible from both the cytosolic and the ER luminal side.
Collapse
Affiliation(s)
- Shirish Mishra
- University of Fribourg, Department of Biology, Fribourg 1700, Switzerland
| | - Rasha Khaddaj
- University of Fribourg, Department of Biology, Fribourg 1700, Switzerland
| | - Stéphanie Cottier
- University of Fribourg, Department of Biology, Fribourg 1700, Switzerland
| | - Vendula Stradalova
- University of Fribourg, Department of Biology, Fribourg 1700, Switzerland
| | - Claire Jacob
- University of Fribourg, Department of Biology, Fribourg 1700, Switzerland
| | - Roger Schneiter
- University of Fribourg, Department of Biology, Fribourg 1700, Switzerland
| |
Collapse
|
66
|
Zhang Z, Cheng ZJ, Gan L, Zhang H, Wu FQ, Lin QB, Wang JL, Wang J, Guo XP, Zhang X, Zhao ZC, Lei CL, Zhu SS, Wang CM, Wan JM. OsHSD1, a hydroxysteroid dehydrogenase, is involved in cuticle formation and lipid homeostasis in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 249:35-45. [PMID: 27297988 DOI: 10.1016/j.plantsci.2016.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/06/2016] [Accepted: 05/08/2016] [Indexed: 05/11/2023]
Abstract
Cuticular wax, a hydrophobic layer on the surface of all aerial plant organs, has essential roles in plant growth and survival under various environments. Here we report a wax-deficient rice mutant oshsd1 with reduced epicuticular wax crystals and thicker cuticle membrane. Quantification of the wax components and fatty acids showed elevated levels of very-long-chain fatty acids (VLCFAs) and accumulation of soluble fatty acids in the leaves of the oshsd1 mutant. We determined the causative gene OsHSD1, a member of the short-chain dehydrogenase reductase family, through map-based cloning. It was ubiquitously expressed and responded to cold stress and exogenous treatments with NaCl or brassinosteroid analogs. Transient expression of OsHSD1-tagged green fluorescent protein revealed that OsHSD1 localized to both oil bodies and endoplasmic reticulum (ER). Dehydrogenase activity assays demonstrated that OsHSD1 was an NAD(+)/NADP(+)-dependent sterol dehydrogenase. Furthermore, OsHSD1 mutation resulted in faster protein degradation, but had no effect on the dehydrogenase activity. Together, our data indicated that OsHSD1 plays a specialized role in cuticle formation and lipid homeostasis, probably by mediating sterol signaling. This work provides new insights into oil-body associated proteins involved in wax and lipid metabolism.
Collapse
Affiliation(s)
- Zhe Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Zhi-Jun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Lu Gan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Fu-Qing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Qi-Bing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jiu-Lin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiu-Ping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Zhi-Chao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Cai-Lin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shan-Shan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Chun-Ming Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jian-Min Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
67
|
Meyers A, Del Rio ZP, Beaver RA, Morris RM, Weiskittel TM, Alshibli AK, Mannik J, Morrell-Falvey J, Dalhaimer P. Lipid Droplets Form from Distinct Regions of the Cell in the Fission Yeast Schizosaccharomyces pombe. Traffic 2016; 17:657-69. [PMID: 26990381 DOI: 10.1111/tra.12394] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 12/13/2022]
Abstract
Eukaryotic cells store cholesterol/sterol esters (SEs) and triacylglycerols (TAGs) in lipid droplets, which form from the contiguous endoplasmic reticulum (ER) network. However, it is not known if droplets preferentially form from certain regions of the ER over others. Here, we used fission yeast Schizosaccharomyces pombe cells where the nuclear and cortical/peripheral ER domains are distinguishable by light microscopy to show that SE-enriched lipid droplets form away from the nucleus at the cell tips, whereas TAG-enriched lipid droplets form around the nucleus. Sterols localize to the regions of the cells where droplets enriched in SEs are observed. TAG droplet formation around the nucleus appears to be a strong function of diacylglycerol (DAG) homeostasis with Cpt1p, which coverts DAG into phosphatidylcholine and phosphatidylethanolamine localized exclusively to the nuclear ER. Also, Dgk1p, which converts DAG into phosphatidic acid localized strongly to the nuclear ER over the cortical/peripheral ER. We also show that TAG more readily translocates from the ER to lipid droplets than do SEs. The results augment the standard lipid droplet formation model, which has SEs and TAGs flowing into the same nascent lipid droplet regardless of its biogenesis point in the cell.
Collapse
Affiliation(s)
- Alex Meyers
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA
| | - Zuania P Del Rio
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA
| | - Rachael A Beaver
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA
| | - Ryan M Morris
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA
| | - Taylor M Weiskittel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA
| | - Amany K Alshibli
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA
| | - Jaana Mannik
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jennifer Morrell-Falvey
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Paul Dalhaimer
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA.,Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA.,Institute of Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
68
|
Thiam AR, Forêt L. The physics of lipid droplet nucleation, growth and budding. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:715-22. [PMID: 27131867 DOI: 10.1016/j.bbalip.2016.04.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/05/2016] [Accepted: 04/22/2016] [Indexed: 11/25/2022]
Abstract
Lipid droplets (LDs) are intracellular oil-in-water emulsion droplets, covered by a phospholipid monolayer and mainly present in the cytosol. Despite their important role in cellular metabolism and growing number of newly identified functions, LD formation mechanism from the endoplasmic reticulum remains poorly understood. To form a LD, the oil molecules synthesized in the ER accumulate between the monolayer leaflets and induce deformation of the membrane. This formation process works through three steps: nucleation, growth and budding, exactly as in phase separation and dewetting phenomena. These steps involve sequential biophysical membrane remodeling mechanisms for which we present basic tools of statistical physics, membrane biophysics, and soft matter science underlying them. We aim to highlight relevant factors that could control LD formation size, site and number through this physics description. An emphasis will be given to a currently underestimated contribution of the molecular interactions between lipids to favor an energetically costless mechanism of LD formation.
Collapse
Affiliation(s)
- Abdou Rachid Thiam
- Laboratoire de Physique Statistique, École Normale Supérieure, PSL Research University, Université Paris Diderot Sorbonne Paris-Cité, Sorbonne Universités UPMC Univ Paris 06, CNRS, 24 rue Lhomond, 75005 Paris, France.
| | - Lionel Forêt
- Laboratoire de Physique Statistique, École Normale Supérieure, PSL Research University, Université Paris Diderot Sorbonne Paris-Cité, Sorbonne Universités UPMC Univ Paris 06, CNRS, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
69
|
Lipid droplet-associated proteins in atherosclerosis (Review). Mol Med Rep 2016; 13:4527-34. [PMID: 27082419 PMCID: PMC4878557 DOI: 10.3892/mmr.2016.5099] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/29/2016] [Indexed: 01/01/2023] Open
Abstract
Accumulation of atherosclerotic plaques in arterial walls leads to major cardiovascular diseases and stroke. Macrophages/foam cells are central components of atherosclerotic plaques, which populate the arterial wall in order to remove harmful modified low‑density lipoprotein (LDL) particles, resulting in the accumulation of lipids, mostly LDL‑derived cholesterol ester, in cytosolic lipid droplets (LDs). At present, LDs are recognized as dynamic organelles that govern cellular metabolic processes. LDs consist of an inner core of neutral lipids surrounded by a monolayer of phospholipids and free cholesterol, and contain LD‑associated proteins (LDAPs) that regulate LD functions. Foam cells are characterized by an aberrant accumulation of cytosolic LDs, and are considered a hallmark of atherosclerotic lesions through all stages of development. Previous studies have investigated the mechanisms underlying foam cell formation, aiming to discover therapeutic strategies that target foam cells and intervene against atherosclerosis. It is well established that LDAPs have a major role in the pathogenesis of metabolic diseases caused by dysfunction of lipid metabolism, and several studies have linked LDAPs to the development of atherosclerosis. In this review, several foam cell‑targeting pathways have been described, with an emphasis on the role of LDAPs in cholesterol mobilization from macrophages. In addition, the potential of LDAPs as therapeutic targets to prevent the progression and/or facilitate the regression of the disease has been discussed.
Collapse
|
70
|
Enjoji M, Kohjima M, Ohtsu K, Matsunaga K, Murata Y, Nakamuta M, Imamura K, Tanabe H, Iwashita A, Nagahama T, Yao K. Intracellular mechanisms underlying lipid accumulation (white opaque substance) in gastric epithelial neoplasms: A pilot study of expression profiles of lipid-metabolism-associated genes. J Gastroenterol Hepatol 2016; 31:776-81. [PMID: 26513060 DOI: 10.1111/jgh.13216] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/06/2015] [Accepted: 10/17/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIM White opaque substance (WOS) is a novel endoscopic finding in gastric neoplasms, indicating the intracellular accumulation of lipid droplets (LDs). However, gastric lipid metabolism has not been extensively investigated, even in normal mucosa. We investigated the expression profiles of lipid-metabolism-associated genes in gastric neoplasms. METHODS Thirty-four patients with early gastric cancer or adenoma were enrolled in this study. Paired biopsy samples from tumor and adjacent non-tumor areas were obtained and analyzed by real-time polymerase chain reaction. Endoscopically resected specimens were evaluated histopathologically. RESULTS Genes associated with β-oxidation (peroxisome proliferator-activated receptor α, carnitine palmitoyltransferase 1A, and hydroxyacyl-CoA dehydrogenase), lipoprotein excretion (apolipoprotein B, microsomal triglyceride transfer protein, and acyl-CoA:cholesterol acyltransferase 2), fatty acid transport (fatty acid-binding protein), construction of triglycerides in the endoplasmic reticulum (acyl-CoA:diacylglycerol acyltransferase 1), and LD degradation/lipolysis (comparative gene identification-58, adipose triglyceride lipase) were significantly downregulated in neoplasms compared with non-tumor areas. Pyruvate dehydrogenase lipoamide kinase isozyme 4 (negative regulator of glycolysis) and adipophilin (LD surface component) were also repressed. Conversely, expression levels of genes associated with de novo lipogenesis (sterol regulatory element-binding protein 1c, acyl-CoA:diacylglycerol acyltransferase 2) were significantly enhanced in neoplasms. There was no significant difference in gene expression levels between carcinomas and adenomas, or between WOS-positive and WOS-negative neoplasms. CONCLUSION Gene expression profiles in neoplasms suggest a predominance of lipid storage (lipogenesis/LD formation) over consumption (β-oxidation/excretion/lipolysis). Lipid accumulation and WOS in gastric epithelial neoplasms may be caused by impaired mitochondrial oxidation, lipoprotein excretion, and LD degradation.
Collapse
Affiliation(s)
- Munechika Enjoji
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Motoyuki Kohjima
- Department of Gastroenterology, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Kensei Ohtsu
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | | | - Yusuke Murata
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Makoto Nakamuta
- Department of Gastroenterology, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Kentaro Imamura
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Hiroshi Tanabe
- Department of Pathology, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Akinori Iwashita
- Department of Pathology, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Takashi Nagahama
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Kenshi Yao
- Department of Endoscopy, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| |
Collapse
|
71
|
Lin Y, Hou X, Shen WJ, Hanssen R, Khor VK, Cortez Y, Roseman AN, Azhar S, Kraemer FB. SNARE-Mediated Cholesterol Movement to Mitochondria Supports Steroidogenesis in Rodent Cells. Mol Endocrinol 2016; 30:234-47. [PMID: 26771535 DOI: 10.1210/me.2015-1281] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Vesicular transport involving soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins is known to be responsible for many major cellular activities. In steroidogenic tissues, chronic hormone stimulation results in increased expression of proteins involved in the steroidogenic pathway, whereas acute hormone stimulation prompts the rapid transfer of cholesterol to the inner mitochondrial membrane to be utilized as substrate for steroid hormone production. Several different pathways are involved in supplying cholesterol to mitochondria, but mobilization of stored cholesteryl esters appears to initially constitute the preferred source; however, the mechanisms mediating this cholesterol transfer are not fully understood. To study the potential contribution of SNARE proteins in steroidogenesis, we examined the expression levels of various SNARE proteins in response to hormone stimulation in steroidogenic tissues and cells and established an in vitro mitochondria reconstitution assay system to assess the contribution of various SNARE proteins on cholesterol delivery for steroidogenesis. Our results from reconstitution experiments along with knockdown studies in rat primary granulosa cells and in a Leydig cell line show that soluble N-ethylmaleimide sensitive factor attachment protein-α, synaptosomal-associated protein of 25 kDa, syntaxin-5, and syntaxin-17 facilitate the transport of cholesterol to mitochondria. Thus, although StAR is required for efficient cholesterol movement into mitochondria for steroidogenesis, specific SNAREs participate and are necessary to mediate cholesterol movement to mitochondria.
Collapse
Affiliation(s)
- Ye Lin
- Division of Endocrinology, Gerontology, and Metabolism (Y.L., X.H., W.-J.S., R.H., V.K.K., S.A., F.B.K.), Stanford University, and Veterans Affairs Palo Alto Health Care System (Y.L., X.H., W.-J.S., R.H., V.K.K., Y.C., A.N.R., S.A., F.B.K.), Palo Alto, California 94304
| | - Xiaoming Hou
- Division of Endocrinology, Gerontology, and Metabolism (Y.L., X.H., W.-J.S., R.H., V.K.K., S.A., F.B.K.), Stanford University, and Veterans Affairs Palo Alto Health Care System (Y.L., X.H., W.-J.S., R.H., V.K.K., Y.C., A.N.R., S.A., F.B.K.), Palo Alto, California 94304
| | - Wen-Jun Shen
- Division of Endocrinology, Gerontology, and Metabolism (Y.L., X.H., W.-J.S., R.H., V.K.K., S.A., F.B.K.), Stanford University, and Veterans Affairs Palo Alto Health Care System (Y.L., X.H., W.-J.S., R.H., V.K.K., Y.C., A.N.R., S.A., F.B.K.), Palo Alto, California 94304
| | - Ruth Hanssen
- Division of Endocrinology, Gerontology, and Metabolism (Y.L., X.H., W.-J.S., R.H., V.K.K., S.A., F.B.K.), Stanford University, and Veterans Affairs Palo Alto Health Care System (Y.L., X.H., W.-J.S., R.H., V.K.K., Y.C., A.N.R., S.A., F.B.K.), Palo Alto, California 94304
| | - Victor K Khor
- Division of Endocrinology, Gerontology, and Metabolism (Y.L., X.H., W.-J.S., R.H., V.K.K., S.A., F.B.K.), Stanford University, and Veterans Affairs Palo Alto Health Care System (Y.L., X.H., W.-J.S., R.H., V.K.K., Y.C., A.N.R., S.A., F.B.K.), Palo Alto, California 94304
| | - Yuan Cortez
- Division of Endocrinology, Gerontology, and Metabolism (Y.L., X.H., W.-J.S., R.H., V.K.K., S.A., F.B.K.), Stanford University, and Veterans Affairs Palo Alto Health Care System (Y.L., X.H., W.-J.S., R.H., V.K.K., Y.C., A.N.R., S.A., F.B.K.), Palo Alto, California 94304
| | - Ann N Roseman
- Division of Endocrinology, Gerontology, and Metabolism (Y.L., X.H., W.-J.S., R.H., V.K.K., S.A., F.B.K.), Stanford University, and Veterans Affairs Palo Alto Health Care System (Y.L., X.H., W.-J.S., R.H., V.K.K., Y.C., A.N.R., S.A., F.B.K.), Palo Alto, California 94304
| | - Salman Azhar
- Division of Endocrinology, Gerontology, and Metabolism (Y.L., X.H., W.-J.S., R.H., V.K.K., S.A., F.B.K.), Stanford University, and Veterans Affairs Palo Alto Health Care System (Y.L., X.H., W.-J.S., R.H., V.K.K., Y.C., A.N.R., S.A., F.B.K.), Palo Alto, California 94304
| | - Fredric B Kraemer
- Division of Endocrinology, Gerontology, and Metabolism (Y.L., X.H., W.-J.S., R.H., V.K.K., S.A., F.B.K.), Stanford University, and Veterans Affairs Palo Alto Health Care System (Y.L., X.H., W.-J.S., R.H., V.K.K., Y.C., A.N.R., S.A., F.B.K.), Palo Alto, California 94304
| |
Collapse
|
72
|
Urrutia RA, Kalinec F. Biology and pathobiology of lipid droplets and their potential role in the protection of the organ of Corti. Hear Res 2015; 330:26-38. [PMID: 25987503 PMCID: PMC5391798 DOI: 10.1016/j.heares.2015.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 12/20/2022]
Abstract
The current review article seeks to extend our understanding on the role of lipid droplets within the organ of Corti. In addition to presenting an overview of the current information about the origin, structure and function of lipid droplets we draw inferences from the collective body of knowledge about this cellular organelle to build a conceptual framework to better understanding their role in auditory function. This conceptual model considers that lipid droplets play a significant role in the synthesis, storage, and release of lipids and proteins for energetic use and/or modulating cell signaling pathways. We describe the role and mechanism by which LD play a role in human diseases, and we also review emerging data from our laboratory revealing the potential role of lipid droplets from Hensen cells in the auditory organ. We suggest that lipid droplets might help to develop rapidly and efficiently the resolution phase of inflammatory responses in the mammalian cochlea, preventing inflammatory damage of the delicate inner ear structures and, consequently, sensorineural hearing loss.
Collapse
Affiliation(s)
- Raul A Urrutia
- Epigenetics and Chromatin Dynamics Laboratory, Translational Epigenomic Program, Center for Individualized Medicine (CIM) Mayo Clinic, Rochester, MN 55905, USA
| | - Federico Kalinec
- Laboratory of Auditory Cell Biology, Department of Head & Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
73
|
Chua CEL, Tang BL. Role of Rab GTPases and their interacting proteins in mediating metabolic signalling and regulation. Cell Mol Life Sci 2015; 72:2289-304. [PMID: 25690707 PMCID: PMC11113524 DOI: 10.1007/s00018-015-1862-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 10/24/2022]
Abstract
The vesicular transport pathways, which shuttle materials to and from the cell surface and within the cell, and the metabolic (growth factor and nutrient) signalling pathways, which integrate a variety of extracellular and intracellular signals to mediate growth, proliferation or survival, are both important for cellular physiology. There is evidence to suggest that the transport and metabolic signalling pathways intersect-vesicular transport can affect the regulation of metabolic signals and vice versa. The Rab family GTPases regulate the specificity of vesicular transport steps in the cell. Together with their interacting proteins, Rabs would likely constitute the points of intersection between vesicular transport and metabolic signalling pathways. Examples of these points would include growth factor signalling, glucose and lipid metabolism, as well as autophagy. Many of these processes involve mechanistic/mammalian target of rapamycin (mTOR) complex 1 (mTORC1) in downstream cascades, or are regulated by TORC signalling. A general functionality of the vesicular transport processes controlled by the Rabs is also important for spatial and temporal regulation of the transmission of metabolic signals between the cell surface and the nucleus. In other cases, specific Rabs and their interacting proteins are known to function in recruiting metabolism-related proteins to target membranes, or may compete with other factors in the TORC signalling pathway as a means of metabolic regulation. We review and discuss herein examples of how Rabs and their interacting proteins can mediate metabolic signalling and regulation in cells.
Collapse
Affiliation(s)
- Christelle En Lin Chua
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, 8 Medical Drive, Singapore, 117597, Singapore,
| | | |
Collapse
|
74
|
Nishikawa K, Iwaya K, Kinoshita M, Fujiwara Y, Akao M, Sonoda M, Thiruppathi S, Suzuki T, Hiroi S, Seki S, Sakamoto T. Resveratrol increases CD68⁺ Kupffer cells colocalized with adipose differentiation-related protein and ameliorates high-fat-diet-induced fatty liver in mice. Mol Nutr Food Res 2015; 59:1155-70. [PMID: 25677089 DOI: 10.1002/mnfr.201400564] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/27/2014] [Accepted: 01/20/2015] [Indexed: 12/12/2022]
Abstract
SCOPE Resveratrol reportedly improves fatty liver. This study purposed to elucidate the effect of resveratrol on fatty liver in mice fed a high-fat (HF) diet, and to investigate the role of liver macrophages (Kupffer cells). METHODS AND RESULTS C57BL/6 mice were divided into three groups, receiving either a control diet, HF diet (50% fat), or HF supplemented with 0.2% resveratrol (HF + res) diet, for 8 weeks. Compared with the HF group, the HF + res group exhibited markedly attenuated fatty liver, and reduced lipid droplets (LDs) in hepatocytes. Proteomic analysis demonstrated that the most downregulated protein in the livers of the HF + res group was adipose differentiation-related protein (ADFP), which is a major constituent of LDs and reflects lipid accumulation in cells. The HF + res group exhibited greatly increased numbers of CD68(+) Kupffer cells with phagocytic activity. Immunohistochemistry showed that several CD68(+) Kupffer cells were colocalized with ADFP immunoreaction in the HF + res group. Additionally, the HF + res group demonstrated markedly decreased TNF-alpha production, which confirmed by both liver mononuclear cells stimulated by LPS in vitro and in situ hybridization analysis, compared with the HF group. CONCLUSION Resveratrol ameliorated fatty liver and increased CD68-positive Kupffer cells with downregulating ADFP expression.
Collapse
Affiliation(s)
| | - Keiichi Iwaya
- Department of Basic Pathology, National Defense Medical College, Saitama, Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Saitama, Japan
| | - Yoko Fujiwara
- Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Mai Akao
- Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Mariko Sonoda
- Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Suresh Thiruppathi
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Japan
| | - Takayoshi Suzuki
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Japan
| | - Sadayuki Hiroi
- Department of Laboratory Medicine, National Defense Medical College, Saitama, Japan
| | - Shuhji Seki
- Department of Immunology and Microbiology, National Defense Medical College, Saitama, Japan
| | - Toshihisa Sakamoto
- Department of Traumatology and Critical Care Medicine, National Defense Medical College, Saitama, Japan
| |
Collapse
|
75
|
Barbosa AD, Savage DB, Siniossoglou S. Lipid droplet-organelle interactions: emerging roles in lipid metabolism. Curr Opin Cell Biol 2015; 35:91-7. [PMID: 25988547 DOI: 10.1016/j.ceb.2015.04.017] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 01/02/2023]
Abstract
Cellular homeostasis depends on the precisely coordinated use of lipids as fuels for energy production, building blocks for membrane biogenesis or chemical signals for intra-cellular and inter-cellular communication. Lipid droplets (LDs) are universally conserved dynamic organelles that can store and mobilize fatty acids and other lipid species for their multiple cellular roles. Increasing evidence suggests that contact zones between LDs and other organelles play important roles in the trafficking of lipids and in the regulation of lipid metabolism. Here we review recent advances regarding the nature and functional relevance of interactions between LDs and other organelles-particularly the endoplasmic reticulum (ER), LDs, mitochondria and vacuoles-that highlight their importance for lipid metabolism.
Collapse
Affiliation(s)
- Antonio Daniel Barbosa
- Cambridge Institute for Medical Research, University of Cambridge, CB2 0XY Cambridge, United Kingdom
| | - David B Savage
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, United Kingdom
| | - Symeon Siniossoglou
- Cambridge Institute for Medical Research, University of Cambridge, CB2 0XY Cambridge, United Kingdom.
| |
Collapse
|
76
|
Weber-Boyvat M, Kentala H, Peränen J, Olkkonen VM. Ligand-dependent localization and function of ORP-VAP complexes at membrane contact sites. Cell Mol Life Sci 2015; 72:1967-87. [PMID: 25420878 PMCID: PMC11114005 DOI: 10.1007/s00018-014-1786-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/17/2014] [Accepted: 11/17/2014] [Indexed: 01/08/2023]
Abstract
Oxysterol-binding protein/OSBP-related proteins (ORPs) constitute a conserved family of sterol/phospholipid-binding proteins with lipid transporter or sensor functions. We investigated the spatial occurrence and regulation of the interactions of human OSBP/ORPs or the S. cerevisiae orthologs, the Osh (OSBP homolog) proteins, with their endoplasmic reticulum (ER) anchors, the VAMP-associated proteins (VAPs), by employing bimolecular fluorescence complementation and pull-down set-ups. The ORP-VAP interactions localize frequently at distinct subcellular sites, shown in several cases to represent membrane contact sites (MCSs). Using established ORP ligand-binding domain mutants and pull-down assays with recombinant proteins, we show that ORP liganding regulates the ORP-VAP association, alters the subcellular targeting of ORP-VAP complexes, or modifies organelle morphology. There is distinct protein specificity in the effects of the mutants on subcellular targeting of ORP-VAP complexes. We provide evidence that complexes of human ORP2 and VAPs at ER-lipid droplet interfaces regulate the hydrolysis of triglycerides and lipid droplet turnover. The data suggest evolutionarily conserved, complex ligand-dependent functions of ORP-VAP complexes at MCSs, with implications for cellular lipid homeostasis and signaling.
Collapse
Affiliation(s)
- Marion Weber-Boyvat
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Henriikka Kentala
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Johan Peränen
- Cell and Molecular Biology Program, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Vesa M. Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290 Helsinki, Finland
- Institute of Biomedicine, Anatomy, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
77
|
MacPherson REK, Peters SJ. Piecing together the puzzle of perilipin proteins and skeletal muscle lipolysis. Appl Physiol Nutr Metab 2015; 40:641-51. [PMID: 25971423 DOI: 10.1139/apnm-2014-0485] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The regulation of skeletal muscle lipolysis and fat oxidation is a complex process involving multiple proteins and enzymes. Emerging work indicates that skeletal muscle PLIN proteins likely play a role in the hydrolysis of triglycerides stored in lipid droplets and the passage of fatty acids to the mitochondria for oxidation. In adipocytes, PLIN1 regulates lipolysis by interacting with comparative gene identification-58 (CGI-58), an activator of adipose triglyceride lipase (ATGL). Upon lipolytic stimulation, PLIN1 is phosphorylated, releasing CGI-58 to activate ATGL and initiate triglyceride breakdown. The absence of PLIN1 in skeletal muscle leads us to believe that other PLIN family members undertake this role. The focus of this review is on the PLIN family proteins expressed in skeletal muscle: PLIN2, PLIN3, and PLIN5. To date, most studies involving these PLIN proteins have used nonmuscle tissues and cell cultures to determine their potential roles. Results from work in these models support a role for PLIN proteins in sequestering lipases during basal conditions and in potentially working together for lipase translocation and activity during lipolysis. In skeletal muscle, PLIN2 tends to mirror the lipid content and may play a role in lipid droplet growth and stability through lipase interactions on the lipid droplet surface, whereas the skeletal muscle roles of both PLIN3 and PLIN5 seem to be more complex because they are found not only on the lipid droplet, but also at the mitochondria. Clearly, further work is needed to fully understand the intricate mechanisms by which PLIN proteins contribute to skeletal muscle lipid metabolism.
Collapse
Affiliation(s)
- Rebecca E K MacPherson
- a Center for Bone and Muscle Health, Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.,b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sandra J Peters
- a Center for Bone and Muscle Health, Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
78
|
Steuwe C, Patel II, Ul-Hasan M, Schreiner A, Boren J, Brindle KM, Reichelt S, Mahajan S. CARS based label-free assay for assessment of drugs by monitoring lipid droplets in tumour cells. JOURNAL OF BIOPHOTONICS 2014; 7:906-13. [PMID: 24343869 DOI: 10.1002/jbio.201300110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/23/2013] [Accepted: 11/07/2013] [Indexed: 05/03/2023]
Abstract
Coherent anti-Stokes Raman scattering (CARS) is becoming an established tool for label-free multi-photon imaging based on molecule specific vibrations in the sample. The technique has proven to be particularly useful for imaging lipids, which are abundant in cells and tissues, including cytoplasmic lipid droplets (LD), which are recognized as dynamic organelles involved in many cellular functions. The increase in the number of lipid droplets in cells undergoing cell proliferation is a common feature in many neoplastic processes [1] and an increase in LD number also appears to be an early marker of drug-induced cell stress and subsequent apoptosis [3]. In this paper, a CARS-based label-free method is presented to monitor the increase in LD content in HCT116 colon tumour cells treated with the chemotherapeutic drugs Etoposide, Camptothecin and the protein kinase inhibitor Staurosporine. Using CARS, LDs can easily be distinguished from other cell components without the application of fluorescent dyes and provides a label-free non-invasive drug screening assay that could be used not only with cells and tissues ex vivo but potentially also in vivo.
Collapse
Affiliation(s)
- Christian Steuwe
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK; Institute of Life Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Pol A, Gross SP, Parton RG. Review: biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites. ACTA ACUST UNITED AC 2014; 204:635-46. [PMID: 24590170 PMCID: PMC3941045 DOI: 10.1083/jcb.201311051] [Citation(s) in RCA: 362] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipid droplets (LDs) are ubiquitous dynamic organelles that store and supply lipids in all eukaryotic and some prokaryotic cells for energy metabolism, membrane synthesis, and production of essential lipid-derived molecules. Interest in the organelle's cell biology has exponentially increased over the last decade due to the link between LDs and prevalent human diseases and the discovery of new and unexpected functions of LDs. As a result, there has been significant recent progress toward understanding where and how LDs are formed, and the specific lipid pathways that coordinate LD biogenesis.
Collapse
Affiliation(s)
- Albert Pol
- Equip de Compartiments Cellulars i Senyalització, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | | | | |
Collapse
|
80
|
Kassan A, Herms A, Fernández-Vidal A, Bosch M, Schieber NL, Reddy BJN, Fajardo A, Gelabert-Baldrich M, Tebar F, Enrich C, Gross SP, Parton RG, Pol A. Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. ACTA ACUST UNITED AC 2014; 203:985-1001. [PMID: 24368806 PMCID: PMC3871434 DOI: 10.1083/jcb.201305142] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acyl-CoA synthetase 3 is recruited early to lipid droplet assembly sites on the ER, where it is required for efficient lipid droplet nucleation and lipid storage. Control of lipid droplet (LD) nucleation and copy number are critical, yet poorly understood, processes. We use model peptides that shift from the endoplasmic reticulum (ER) to LDs in response to fatty acids to characterize the initial steps of LD formation occurring in lipid-starved cells. Initially, arriving lipids are rapidly packed in LDs that are resistant to starvation (pre-LDs). Pre-LDs are restricted ER microdomains with a stable core of neutral lipids. Subsequently, a first round of “emerging” LDs is nucleated, providing additional lipid storage capacity. Finally, in proportion to lipid concentration, new rounds of LDs progressively assemble. Confocal microscopy and electron tomography suggest that emerging LDs are nucleated in a limited number of ER microdomains after a synchronized stepwise process of protein gathering, lipid packaging, and recognition by Plin3 and Plin2. A comparative analysis demonstrates that the acyl-CoA synthetase 3 is recruited early to the assembly sites, where it is required for efficient LD nucleation and lipid storage.
Collapse
Affiliation(s)
- Adam Kassan
- Equip de Senyalització i Proliferació Cellular, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Miquel M, Trigui G, d’Andréa S, Kelemen Z, Baud S, Berger A, Deruyffelaere C, Trubuil A, Lepiniec L, Dubreucq B. Specialization of oleosins in oil body dynamics during seed development in Arabidopsis seeds. PLANT PHYSIOLOGY 2014; 164:1866-78. [PMID: 24515832 PMCID: PMC3982749 DOI: 10.1104/pp.113.233262] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/07/2014] [Indexed: 05/19/2023]
Abstract
Oil bodies (OBs) are seed-specific lipid storage organelles that allow the accumulation of neutral lipids that sustain plantlet development after the onset of germination. OBs are covered with specific proteins embedded in a single layer of phospholipids. Using fluorescent dyes and confocal microscopy, we monitored the dynamics of OBs in living Arabidopsis (Arabidopsis thaliana) embryos at different stages of development. Analyses were carried out with different genotypes: the wild type and three mutants affected in the accumulation of various oleosins (OLE1, OLE2, and OLE4), three major OB proteins. Image acquisition was followed by a detailed statistical analysis of OB size and distribution during seed development in the four dimensions (x, y, z, and t). Our results indicate that OB size increases sharply during seed maturation, in part by OB fusion, and then decreases until the end of the maturation process. In single, double, and triple mutant backgrounds, the size and spatial distribution of OBs are modified, affecting in turn the total lipid content, which suggests that the oleosins studied have specific functions in the dynamics of lipid accumulation.
Collapse
|
82
|
Koch B, Schmidt C, Daum G. Storage lipids of yeasts: a survey of nonpolar lipid metabolism in Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica. FEMS Microbiol Rev 2014; 38:892-915. [PMID: 24597968 DOI: 10.1111/1574-6976.12069] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/21/2014] [Accepted: 02/21/2014] [Indexed: 11/29/2022] Open
Abstract
Biosynthesis and storage of nonpolar lipids, such as triacylglycerols (TG) and steryl esters (SE), have gained much interest during the last decades because defects in these processes are related to severe human diseases. The baker's yeast Saccharomyces cerevisiae has become a valuable tool to study eukaryotic lipid metabolism because this single-cell microorganism harbors many enzymes and pathways with counterparts in mammalian cells. In this article, we will review aspects of TG and SE metabolism and turnover in the yeast that have been known for a long time and combine them with new perceptions of nonpolar lipid research. We will provide a detailed insight into the mechanisms of nonpolar lipid synthesis, storage, mobilization, and degradation in the yeast S. cerevisiae. The central role of lipid droplets (LD) in these processes will be addressed with emphasis on the prevailing view that this compartment is more than only a depot for TG and SE. Dynamic and interactive aspects of LD with other organelles will be discussed. Results obtained with S. cerevisiae will be complemented by recent investigations of nonpolar lipid research with Yarrowia lipolytica and Pichia pastoris. Altogether, this review article provides a comprehensive view of nonpolar lipid research in yeast.
Collapse
Affiliation(s)
- Barbara Koch
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | | | | |
Collapse
|
83
|
Dupont N, Chauhan S, Arko-Mensah J, Castillo EF, Masedunskas A, Weigert R, Robenek H, Proikas-Cezanne T, Deretic V. Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis. Curr Biol 2014; 24:609-20. [PMID: 24613307 DOI: 10.1016/j.cub.2014.02.008] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 12/06/2013] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Autophagy is a fundamental cell biological process whereby eukaryotic cells form membranes in the cytoplasm to sequester diverse intracellular targets. Although significant progress has been made in understanding the origins of autophagosomal organelles, the source of lipids that support autophagic membrane formation remain an important open question. RESULTS Here we show that lipid droplets as cellular stores of neutral lipids including triglycerides contribute to autophagic initiation. Lipid droplets, as previously shown, were consumed upon induction of autophagy by starvation. However, inhibition of autophagic maturation by blocking acidification or using dominant negative Atg4(C74A) that prohibits autophagosomal closure did not prevent disappearance of lipid droplets. Thus, lipid droplets continued to be utilized upon induction of autophagy, but not as autophagic substrates in a process referred to as lipophagy. We considered an alternative model whereby lipid droplets were consumed not as a part of lipophagy, but as a potential contributing source to the biogenesis of lipid precursors for nascent autophagosomes. We carried out a screen for a potential link between triglyceride mobilization and autophagy and identified a neutral lipase, PNPLA5, as being required for efficient autophagy. PNPLA5, which localized to lipid droplets, was needed for optimal initiation of autophagy. PNPLA5 was required for autophagy of diverse substrates, including degradation of autophagic adaptors, bulk proteolysis, mitochondrial quantity control, and microbial clearance. CONCLUSIONS Lipid droplets contribute to autophagic capacity by enhancing it in a process dependent on PNPLA5. Thus, neutral lipid stores are mobilized during autophagy to support autophagic membrane formation.
Collapse
Affiliation(s)
- Nicolas Dupont
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM 87131, USA; INEM, INSERM U1151, CNRS UMR8253, Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75014 Paris France
| | - Santosh Chauhan
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| | - John Arko-Mensah
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| | - Eliseo F Castillo
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM 87131, USA
| | - Andrius Masedunskas
- Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4340, USA
| | - Roberto Weigert
- Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4340, USA
| | - Horst Robenek
- Leibniz-Institute for Arteriosclerosis Research, University of Muenster, 48149 Münster, Germany
| | - Tassula Proikas-Cezanne
- Autophagy Laboratory, Department of Molecular Biology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Vojo Deretic
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM 87131, USA.
| |
Collapse
|
84
|
Suzuki R, Ito N, Uno Y, Nishii I, Kagiwada S, Okada S, Noguchi T. Transformation of lipid bodies related to hydrocarbon accumulation in a green alga, Botryococcus braunii (Race B). PLoS One 2013; 8:e81626. [PMID: 24339948 PMCID: PMC3855424 DOI: 10.1371/journal.pone.0081626] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/23/2013] [Indexed: 12/27/2022] Open
Abstract
The colonial microalga Botryococcus braunii accumulates large quantities of hydrocarbons mainly in the extracellular space; most other oleaginous microalgae store lipids in the cytoplasm. Botryococcus braunii is classified into three principal races (A, B, and L) based on the types of hydrocarbons. Race B has attracted the most attention as an alternative to petroleum by its higher hydrocarbon contents than the other races and its hydrocarbon components, botryococcenes and methylsqualenes, both can be readily converted into biofuels. We studied race B using fluorescence and electron microscopy, and clarify the stage when extracellular hydrocarbon accumulation occurs during the cell cycle, in a correlation with the behavior and structural changes of the lipid bodies and discussed development of the algal colony. New accumulation of lipids on the cell surface occurred after cell division in the basolateral region of daughter cells. While lipid bodies were observed throughout the cell cycle, their size and inclusions were dynamically changing. When cells began dividing, the lipid bodies increased in size and inclusions until the extracellular accumulation of lipids started. Most of the lipids disappeared from the cytoplasm concomitant with the extracellular accumulation, and then reformed. We therefore hypothesize that lipid bodies produced during the growth of B. braunii are related to lipid secretion. New lipids secreted at the cell surface formed layers of oil droplets, to a maximum depth of six layers, and fused to form flattened, continuous sheets. The sheets that combined a pair of daughter cells remained during successive cellular divisions and the colony increased in size with increasing number of cells.
Collapse
Affiliation(s)
- Reiko Suzuki
- Department of Biological Sciences, Nara Women's University, Nara, Nara, Japan
- Japan Science and Technology Agency-CREST, Chiyoda, Tokyo, Japan
| | - Naoko Ito
- Department of Biological Sciences, Nara Women's University, Nara, Nara, Japan
| | - Yuki Uno
- Department of Biological Sciences, Nara Women's University, Nara, Nara, Japan
| | - Ichiro Nishii
- Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Japan Science and Technology Agency-CREST, Chiyoda, Tokyo, Japan
| | - Satoshi Kagiwada
- Department of Biological Sciences, Nara Women's University, Nara, Nara, Japan
- Japan Science and Technology Agency-CREST, Chiyoda, Tokyo, Japan
| | - Sigeru Okada
- Department of Aquatic Biosciences, the University of Tokyo, Bunkyo, Tokyo, Japan
- Japan Science and Technology Agency-CREST, Chiyoda, Tokyo, Japan
| | - Tetsuko Noguchi
- Department of Biological Sciences, Nara Women's University, Nara, Nara, Japan
- Japan Science and Technology Agency-CREST, Chiyoda, Tokyo, Japan
- * E-mail:
| |
Collapse
|
85
|
Helle SC, Kanfer G, Kolar K, Lang A, Michel AH, Kornmann B. Organization and function of membrane contact sites. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - MOLECULAR CELL RESEARCH 2013. [DOI: 10.1016.j.bbamcr.2013.01.02810.1016/j.bbamcr.2013.01.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
86
|
Khaldoun SA, Emond-Boisjoly MA, Chateau D, Carrière V, Lacasa M, Rousset M, Demignot S, Morel E. Autophagosomes contribute to intracellular lipid distribution in enterocytes. Mol Biol Cell 2013; 25:118-32. [PMID: 24173715 PMCID: PMC3873883 DOI: 10.1091/mbc.e13-06-0324] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Delivery of alimentary lipids induces immediate autophagic response in enterocytes. Forming autophagosomes are recruited to the ER membrane, where they capture nascent lipid droplets and later fuse with lysosomes, illustrating for the first time the role of autophagy in neutral-lipid distribution in enterocytes. Enterocytes, the intestinal absorptive cells, have to deal with massive alimentary lipids upon food consumption. They orchestrate complex lipid-trafficking events that lead to the secretion of triglyceride-rich lipoproteins and/or the intracellular transient storage of lipids as lipid droplets (LDs). LDs originate from the endoplasmic reticulum (ER) membrane and are mainly composed of a triglyceride (TG) and cholesterol-ester core surrounded by a phospholipid and cholesterol monolayer and specific coat proteins. The pivotal role of LDs in cellular lipid homeostasis is clearly established, but processes regulating LD dynamics in enterocytes are poorly understood. Here we show that delivery of alimentary lipid micelles to polarized human enterocytes induces an immediate autophagic response, accompanied by phosphatidylinositol-3-phosphate appearance at the ER membrane. We observe a specific and rapid capture of newly synthesized LD at the ER membrane by nascent autophagosomal structures. By combining pharmacological and genetic approaches, we demonstrate that autophagy is a key player in TG targeting to lysosomes. Our results highlight the yet-unraveled role of autophagy in the regulation of TG distribution, trafficking, and turnover in human enterocytes.
Collapse
Affiliation(s)
- Salem Ait Khaldoun
- Centre de Recherche des Cordeliers, UMR S 872, Université Pierre et Marie Curie-Paris 6, Institut National de la Santé et de la Recherche Médicale, U 872 and UMR S 872, Université Paris Descartes-Paris 5, F-75006 Paris, France Laboratoire de Pharmacologie Cellulaire et Moléculaire, Ecole Pratique des Hautes Etudes, F-75006 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Gbelcová H, Svéda M, Laubertová L, Varga I, Vítek L, Kolář M, Strnad H, Zelenka J, Böhmer D, Ruml T. The effect of simvastatin on lipid droplets accumulation in human embryonic kidney cells and pancreatic cancer cells. Lipids Health Dis 2013; 12:126. [PMID: 23961716 PMCID: PMC3765626 DOI: 10.1186/1476-511x-12-126] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/11/2013] [Indexed: 01/09/2023] Open
Abstract
Background Statins (HMG-CoA reductase inhibitors) represent a major class of compounds for the treatment of hypercholesterolemia due to their ability to inhibit de novo cholesterol synthesis. In addition to their hypolipidemic effects, chemoprotective properties have been attributed to statins as well. These effects involve multiple mechanisms, which, however, are not known in detail. The aim of our study was to assess in non-malignant as well as cancer cells the impact of simvastatin on the amount of cytosolic lipid droplets (LDs) implicated in many biological processes including proliferation, inflammation, carcinogenesis, apoptosis, necrosis or growth arrest. Methods Human embryonic kidney cells HEK-293T and human pancreatic cancer cells MiaPaCa-2 were treated with simvastatin (6 and 12 μM) for 24 and 48 hours respectively. Neutral lipid probe Nile Red was used for detection of LDs by fluorescence microscopy. Cellular cholesterol content was determined by HPLC. Changes in expression of genes related to lipid metabolism in simvastatin-treated MiaPaCa-2 cells were examined by DNA microarray analysis. Validation of gene expression changes was performed using quantitative RT-PCR. Results The treatment of the cells with simvastatin increased their intracellular content of LDs in both non-malignant as well as cancer cells, partially due to the uptake of cholesterol and triacylglyceroles from medium; but in particular, due to enhanced synthesis of triacylglyceroles as proved by significant overexpression of genes related to de novo synthesis of triacylglyceroles and phospholipids. In addition, simvastatin also markedly influenced expression of genes directly affecting cell proliferation and signaling. Conclusions Simvastatin treatment led to accumulation of cytosolic LDs within the examined cells, a phenomenon which might contribute to the antiproliferative effects of statins.
Collapse
|
88
|
Abstract
LDs (lipid droplets) are metabolically highly active intracellular organelles. The lipid and protein profiles of LDs are cell-type-specific, and they undergo dynamic variation upon changes in the physiological state of a cell. It is well known that the main function of the LDs in adipocytes is to ensure energy supply and to maintain lipid homoeostasis in the body. In contrast, LDs in inflammatory cells have been implicated in eicosanoid biosynthesis, particularly under inflammatory conditions, thereby enabling them to regulate immune responses. Human mast cells are potent effector cells of the innate immune system, and the triacylglycerol (triglyceride) stores of their cytoplasmic LDs have been shown to contain large amounts of arachidonic acid, the main precursor of pro-inflammatory eicosanoids. In the present review, we discuss the current knowledge about the formation and function of LDs in inflammatory cells with specific emphasis on arachidonic acid and eicosanoid metabolism. On the basis of findings reported previously and our new observations, we propose a model in which lipolysis of LD-triacylglycerols provides arachidonic acid for lipid mediator generation in human mast cells.
Collapse
|
89
|
Heid H, Rickelt S, Zimbelmann R, Winter S, Schumacher H, Dörflinger Y. Lipid droplets, perilipins and cytokeratins--unravelled liaisons in epithelium-derived cells. PLoS One 2013; 8:e63061. [PMID: 23704888 PMCID: PMC3660578 DOI: 10.1371/journal.pone.0063061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 03/27/2013] [Indexed: 11/18/2022] Open
Abstract
Lipid droplets (LDs) are spherical accumulations of apolar lipids and other hydrophobic substances and are generally surrounded by a thin cortical layer of specific amphiphilic proteins (APs). These APs segregate the LDs from the mostly polar components of the cytoplasm. We have studied LDs in epithelium-derived cell cultures and in particular characterized proteins from the perilipin (PLIN) gene family - in mammals consisting of the proteins Perilipin, Adipophilin, TIP47, S3-12 and MLDP/OXPAT (PLIN 1-5). Using a large number of newly generated and highly specific mono- and polyclonal antibodies specific for individual APs, and using improved LD isolation methods, we have enriched and characterized APs in greater detail and purity. The majority of lipid-AP complexes could be obtained in the top layer fractions of density gradient centrifugation separations of cultured cells, but APs could also be detected in other fractions within such separations. The differently sized LD complexes were analyzed using various biochemical methods and mass spectrometry as well as immunofluorescence and electron- in particular immunoelectron-microscopy. Moreover, by immunoprecipitation, protein-protein binding assays and by immunoelectron microscopy we identified a direct linkage between LD-binding proteins and the intermediate-sized filaments (IF) cytokeratins 8 and 18 (also designated as keratins K8 and K18). Specifically, in gradient fractions of higher density supposedly containing small LDs, we received as co-precipitations cytidylyl-, palmitoyl- and cholesterol transferases and other specific enzymes involved in lipid metabolism. So far, common proteomic studies have used LDs from top layer fractions only and did not report on these transferases and other enzymes. In addition to findings of short alternating hydrophobic/hydrophilic segments within the PLIN protein family, we propose and discuss a model for the interaction of LD-coating APs with IF proteins.
Collapse
Affiliation(s)
- Hans Heid
- Helmholtz Group for Cell Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
90
|
Magné J, Aminoff A, Perman Sundelin J, Mannila MN, Gustafsson P, Hultenby K, Wernerson A, Bauer G, Listenberger L, Neville MJ, Karpe F, Borén J, Ehrenborg E. The minor allele of the missense polymorphism Ser251Pro in perilipin 2 (PLIN2) disrupts an α-helix, affects lipolysis, and is associated with reduced plasma triglyceride concentration in humans. FASEB J 2013; 27:3090-9. [PMID: 23603836 DOI: 10.1096/fj.13-228759] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Perilipin 2 (PLIN2) is the most abundant lipid droplet (LD)-associated protein in nonadipose tissue, and its expression correlates with intracellular lipid accumulation. Here we identified a missense polymorphism, Ser251Pro, that has major effect on protein structure and function, along with an influence on human plasma triglyceride concentration. The evolutionarily conserved Ser251Pro polymorphism was identified with the ClustalW program. Structure modeling using 3D-JigSaw and the Chimera package revealed that the Pro251 allele disrupts a predicted α-helix in PLIN2. Analyses of macrophages from individuals carrying Ser251Pro variants and human embryonic kidney 293 (HEK293) cells stably transfected with either of the alleles demonstrated that the Pro251 variant causes increased lipid accumulation and decreased lipolysis. Analysis of LD size distribution in stably transfected cells showed that the minor Pro251 allele resulted in an increased number of small LDs per cell and increased perilipin 3 protein expression levels as compared with cells carrying the major Ser251 allele. Genotyping of 2113 individuals indicated that the Pro251 variant is associated with decreased plasma triglyceride and very low-density lipoprotein concentrations. Altogether, these data provide the first evidence of a polymorphism in PLIN2 that affects PLIN2 function and may influence the development of metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Joëlle Magné
- Atherosclerosis Research Unit, Department of Medicine, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Dalhaimer P. Lipid droplet organelle distribution in populations of dividing cells studied by simulation. Phys Biol 2013; 10:036007. [DOI: 10.1088/1478-3975/10/3/036007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
92
|
Huang NL, Huang MD, Chen TLL, Huang AH. Oleosin of subcellular lipid droplets evolved in green algae. PLANT PHYSIOLOGY 2013; 161:1862-74. [PMID: 23391579 PMCID: PMC3613461 DOI: 10.1104/pp.112.212514] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 02/04/2013] [Indexed: 05/20/2023]
Abstract
In primitive and higher plants, intracellular storage lipid droplets (LDs) of triacylglycerols are stabilized with a surface layer of phospholipids and oleosin. In chlorophytes (green algae), a protein termed major lipid-droplet protein (MLDP) rather than oleosin on LDs was recently reported. We explored whether MLDP was present directly on algal LDs and whether algae had oleosin genes and oleosins. Immunofluorescence microscopy revealed that MLDP in the chlorophyte Chlamydomonas reinhardtii was associated with endoplasmic reticulum subdomains adjacent to but not directly on LDs. In C. reinhardtii, low levels of a transcript encoding an oleosin-like protein (oleolike) in zygotes-tetrads and a transcript encoding oleosin in vegetative cells transferred to an acetate-enriched medium were found in transcriptomes and by reverse transcription-polymerase chain reaction. The C. reinhardtii LD fraction contained minimal proteins with no detectable oleolike or oleosin. Several charophytes (advanced green algae) possessed low levels of transcripts encoding oleosin but not oleolike. In the charophyte Spirogyra grevilleana, levels of oleosin transcripts increased greatly in cells undergoing conjugation for zygote formation, and the LD fraction from these cells contained minimal proteins, two of which were oleosins identified via proteomics. Because the minimal oleolike and oleosins in algae were difficult to detect, we tested their subcellular locations in Physcomitrella patens transformed with the respective algal genes tagged with a Green Fluorescent Protein gene and localized the algal proteins on P. patens LDs. Overall, oleosin genes having weak and cell/development-specific expression were present in green algae. We present a hypothesis for the evolution of oleosins from algae to plants.
Collapse
|
93
|
Wilfling F, Wang H, Haas JT, Krahmer N, Gould TJ, Uchida A, Cheng JX, Graham M, Christiano R, Fröhlich F, Liu X, Buhman KK, Coleman RA, Bewersdorf J, Farese RV, Walther TC. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell 2013; 24:384-99. [PMID: 23415954 DOI: 10.1016/j.devcel.2013.01.013] [Citation(s) in RCA: 589] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 11/01/2012] [Accepted: 01/17/2013] [Indexed: 10/27/2022]
Abstract
Lipid droplets (LDs) store metabolic energy and membrane lipid precursors. With excess metabolic energy, cells synthesize triacylglycerol (TG) and form LDs that grow dramatically. It is unclear how TG synthesis relates to LD formation and growth. Here, we identify two LD subpopulations: smaller LDs of relatively constant size, and LDs that grow larger. The latter population contains isoenzymes for each step of TG synthesis. Glycerol-3-phosphate acyltransferase 4 (GPAT4), which catalyzes the first and rate-limiting step, relocalizes from the endoplasmic reticulum (ER) to a subset of forming LDs, where it becomes stably associated. ER-to-LD targeting of GPAT4 and other LD-localized TG synthesis isozymes is required for LD growth. Key features of GPAT4 ER-to-LD targeting and function in LD growth are conserved between Drosophila and mammalian cells. Our results explain how TG synthesis is coupled with LD growth and identify two distinct LD subpopulations based on their capacity for localized TG synthesis.
Collapse
Affiliation(s)
- Florian Wilfling
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Helle SCJ, Kanfer G, Kolar K, Lang A, Michel AH, Kornmann B. Organization and function of membrane contact sites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2526-41. [PMID: 23380708 DOI: 10.1016/j.bbamcr.2013.01.028] [Citation(s) in RCA: 348] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/18/2013] [Accepted: 01/21/2013] [Indexed: 11/16/2022]
Abstract
Membrane-bound organelles are a wonderful evolutionary acquisition of the eukaryotic cell, allowing the segregation of sometimes incompatible biochemical reactions into specific compartments with tailored microenvironments. On the flip side, these isolating membranes that crowd the interior of the cell, constitute a hindrance to the diffusion of metabolites and information to all corners of the cell. To ensure coordination of cellular activities, cells use a network of contact sites between the membranes of different organelles. These membrane contact sites (MCSs) are domains where two membranes come to close proximity, typically less than 30nm. Such contacts create microdomains that favor exchange between two organelles. MCSs are established and maintained in durable or transient states by tethering structures, which keep the two membranes in proximity, but fusion between the membranes does not take place. Since the endoplasmic reticulum (ER) is the most extensive cellular membrane network, it is thus not surprising to find the ER involved in most MCSs within the cell. The ER contacts diverse compartments such as mitochondria, lysosomes, lipid droplets, the Golgi apparatus, endosomes and the plasma membrane. In this review, we will focus on the common organizing principles underlying the many MCSs found between the ER and virtually all compartments of the cell, and on how the ER establishes a network of MCSs for the trafficking of vital metabolites and information. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
Affiliation(s)
- Sebastian C J Helle
- Institute of Biochemistry, ETH Zürich, HPM G16 Schafmattstrasse, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
95
|
Xu D, Gao Z, Li F, Fan X, Zhang X, Ye N, Mou S, Liang C, Li D. Detection and quantitation of lipid in the microalga Tetraselmis subcordiformis (Wille) Butcher with BODIPY 505/515 staining. BIORESOURCE TECHNOLOGY 2013; 127:386-390. [PMID: 23138061 DOI: 10.1016/j.biortech.2012.09.068] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/04/2012] [Accepted: 09/20/2012] [Indexed: 06/01/2023]
Abstract
BODIPY 505/515, a lipophilic bright green fluorescent dye was tested for lipid detection in the microalga Tetraselmis subcordiformis. A concentration of 0.28 μg ml(-1) and staining for 6 min was optimal. Lipid bodies stained with BODIPY505/515 had a characteristic green fluorescence. Their volumes were determined using the sphere volume formula. Lipid accumulation under different nitrogen concentrations was analyzed. With an increase in NaNO(3) concentration from 0 to 240 mg L(-1), the maximum algal concentration increased from 8.23 ± 0.62 (× 10(5) cells ml(-1)) to 1.61 ± 0.13 (×10(6) cells ml(-1)), while the maximum volume of intracellular neutral lipid decreased from 9.78 ± 1.77 μm(3) cell(-1) to 6.00 ± 0.59 μm(3) cell(-1). A comparison of the lipid contents measured by BODIPY 505/515 staining and the gravimetric method showed a positive correlation coefficient of R(2) = 0.93. BODIPY 505/515 staining is a promising method in lipid quantitation in T. subcordiformis.
Collapse
Affiliation(s)
- Dong Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
Neonates of most species depend on milk lipids for calories, fat-soluble vitamins, and bioactive lipid components for growth and development during the postnatal period. To meet neonatal nutrition and development needs, the mammary gland has evolved efficient mechanisms for synthesizing and secreting large quantities of lipid during lactation. Although the biochemical steps involved in milk lipid synthesis are understood, the identities of the genes mediating these steps and the molecular physiology of milk lipid production and secretion have only recently begun to be understood in detail through advances in mouse genetics, gene expression analysis, protein structural properties, and the cell biology of lipid metabolism. This review discusses emerging data about the molecular, cellular, and structural determinants of milk lipid synthesis and secretion within the context of physiological functions.
Collapse
Affiliation(s)
- James L McManaman
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Graduate Programs in Cell Biology, Stem Cells and Development, Molecular Biology and Reproductive Sciences, University of Colorado, School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
97
|
Bosma M, Hesselink MK, Sparks LM, Timmers S, Ferraz MJ, Mattijssen F, van Beurden D, Schaart G, de Baets MH, Verheyen FK, Kersten S, Schrauwen P. Perilipin 2 improves insulin sensitivity in skeletal muscle despite elevated intramuscular lipid levels. Diabetes 2012; 61:2679-90. [PMID: 22807032 PMCID: PMC3478528 DOI: 10.2337/db11-1402] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes is characterized by excessive lipid storage in skeletal muscle. Excessive intramyocellular lipid (IMCL) storage exceeds intracellular needs and induces lipotoxic events, ultimately contributing to the development of insulin resistance. Lipid droplet (LD)-coating proteins may control proper lipid storage in skeletal muscle. Perilipin 2 (PLIN2/adipose differentiation-related protein [ADRP]) is one of the most abundantly expressed LD-coating proteins in skeletal muscle. Here we examined the role of PLIN2 in myocellular lipid handling and insulin sensitivity by investigating the effects of in vitro PLIN2 knockdown and in vitro and in vivo overexpression. PLIN2 knockdown decreased LD formation and triacylglycerol (TAG) storage, marginally increased fatty-acid (FA) oxidation, and increased incorporation of palmitate into diacylglycerols and phospholipids. PLIN2 overexpression in vitro increased intramyocellular TAG storage paralleled with improved insulin sensitivity. In vivo muscle-specific PLIN2 overexpression resulted in increased LD accumulation and blunted the high-fat diet-induced increase in protein content of the subunits of the oxidative phosphorylation (OXPHOS) chain. Diacylglycerol levels were unchanged, whereas ceramide levels were increased. Despite the increased IMCL accumulation, PLIN2 overexpression improved skeletal muscle insulin sensitivity. We conclude that PLIN2 is essential for lipid storage in skeletal muscle by enhancing the partitioning of excess FAs toward TAG storage in LDs, thereby blunting lipotoxicity-associated insulin resistance.
Collapse
Affiliation(s)
- Madeleen Bosma
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Matthijs K.C. Hesselink
- Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Lauren M. Sparks
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Silvie Timmers
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Maria João Ferraz
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, the Netherlands
| | - Frits Mattijssen
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
| | - Denis van Beurden
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Gert Schaart
- Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Marc H. de Baets
- Department of Neuroscience, School of Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Fons K. Verheyen
- Department of Molecular Cell Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
| | - Patrick Schrauwen
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
- Corresponding author: Patrick Schrauwen,
| |
Collapse
|
98
|
Peled E, Pick U, Zarka A, Shimoni E, Leu S, Boussiba S. LIGHT-INDUCED OIL GLOBULE MIGRATION IN HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE). JOURNAL OF PHYCOLOGY 2012; 48:1209-19. [PMID: 27011280 DOI: 10.1111/j.1529-8817.2012.01210.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 06/27/2012] [Indexed: 05/16/2023]
Abstract
Astaxanthin-rich oil globules in Haematococcus pluvialis display rapid light-induced peripheral migration that is unique to this organism and serves to protect the photosynthetic system from excessive light. We observed rapid light-induced peripheral migration that is associated with chlorophyll fluorescence quenching, whereas the recovery was slow. A simple assay to follow globule migration, based on chlorophyll fluorescence level has been developed. Globule migration was induced by high intensity blue light, but not by high intensity red light. The electron transport inhibitor dichlorophenyl-dimethylurea did not inhibit globule migration, whereas the quinone analog (dibromo-methyl-isopropylbenzoquinone), induced globule migration even at low light. Actin microfilament-directed toxins, such as cytochalasin B and latrunculin A, inhibited the light-induced globule migration, whereas toxins against microtubules were ineffective. Electron microscopic (EM) imaging confirmed the cytoplasmic localization and peripheral migration of globules upon exposure to very high light (VHL). Scanning EM of freeze-fractured cells also revealed globules within cytoplasmic bridges traversing the chloroplast, presumably representing the pathway of migration. Close alignments of globules with endoplasmic reticulum (ER) membranes were also observed following VHL illumination. We propose that light-induced globule migration is regulated by the redox state of the photosynthetic electron transport system. Possible mechanisms of actin-based globule migration are discussed.
Collapse
Affiliation(s)
- Ehud Peled
- Microalgal Biotechnology Laboratory, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer, 84990, Israel
| | - Uri Pick
- Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Aliza Zarka
- Microalgal Biotechnology Laboratory, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer, 84990, Israel
| | - Eyal Shimoni
- Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Stefan Leu
- Microalgal Biotechnology Laboratory, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer, 84990, Israel
| | - Sammy Boussiba
- Microalgal Biotechnology Laboratory, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer, 84990, Israel
| |
Collapse
|
99
|
Cebo C, Lopez C, Henry C, Beauvallet C, Ménard O, Bevilacqua C, Bouvier F, Caillat H, Martin P. Goat α(s1)-casein genotype affects milk fat globule physicochemical properties and the composition of the milk fat globule membrane. J Dairy Sci 2012; 95:6215-29. [PMID: 22921619 DOI: 10.3168/jds.2011-5233] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 06/21/2012] [Indexed: 01/05/2023]
Abstract
Milk fat secretion is a complex process that initiates in the endoplasmic reticulum of the mammary epithelial cell by the budding of lipid droplets. Lipid droplets are finally released as fat globules in milk enveloped by the apical plasma membrane of the mammary epithelial cell. The milk fat globule membrane (MFGM) thus comprises membrane-specific proteins and polar lipids (glycerophospholipids and sphingolipids) surrounding a core of neutral lipids (mainly triacylglycerols and cholesterol esters). We have recently described major proteins of the MFGM in the goat and we have highlighted prominent differences between goats and bovine species, especially regarding lactadherin, a major MFGM protein. Here, we show that, in the goat species, the well-documented genetic polymorphism at the α(s1)-casein (CSN1S1) locus affects both structure and composition of milk fat globules. We first evidenced that both milk fat globule size and ζ-potential are related to the α(s1)-casein genotype. At midlactation, goats displaying strong genotypes for α(s1)-casein (A/A goats) produce larger fat globules than goats with a null genotype at the CSN1S1 locus (O/O goats). A linear relationship (R(2)=0.75) between fat content (g/kg) in the milk and diameter of fat globules (μm) was established. Moreover, we found significant differences with regard to MFGM composition (including both polar lipids and MFGM proteins) from goats with extreme genotype at the CSN1S1 locus. At midlactation, the amount of polar lipids is significantly higher in the MFGM from goats with null genotypes for α(s1)-casein (O/O goats; 5.97±0.11mg/g of fat; mean ± standard deviation) than in the MFGM from goats with strong genotypes for α(s1)-casein (A/A goats; 3.96±0.12mg/g of fat; mean ± standard deviation). Two MFGM-associated proteins, namely lactadherin and stomatin, are also significantly upregulated in the MFGM from goats with null genotype for α(s1)-casein at early lactation. Our findings are discussed with regard to techno-functional properties and nutritional value of goat milk. In addition, the genetic polymorphism in the goat species appears to be a tool to provide clues to the lipid secretion pathways in the mammary epithelial cell.
Collapse
Affiliation(s)
- C Cebo
- INRA, UMR1313 Unité Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Jiang W, Napoli JL. Reorganization of cellular retinol-binding protein type 1 and lecithin:retinol acyltransferase during retinyl ester biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1820:859-69. [PMID: 22498138 PMCID: PMC3366551 DOI: 10.1016/j.bbagen.2012.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 12/26/2022]
Abstract
BACKGROUND Cellular retinol-binding protein, type 1 (Crbp1), chaperones retinyl ester (RE) biosynthesis catalyzed by lecithin:retinol acyltransferase (LRAT). METHODS We monitored the subcellular loci of LRAT and Crbp1 before and during RE biosynthesis, and compared the results to diacylglycerol:acyltransferase type 2 (DGAT2) during triacylglycerol biosynthesis in three cell lines: COS7, CHO and HepG2. RESULTS Before initiation of RE biosynthesis, LRAT distributed throughout the endoplasmic reticulum (ER), similar to DGAT2, and Crpb1 localized with mitochondria associated membranes (MAM), surrounded by LRAT. Upon initiating RE biosynthesis in cells transfected with low amounts of vector to simulate physiological expression levels, Crpb1 remained with MAM, and both Crbp1 and MAM re-localized with LRAT. LRAT formed rings around the growing lipid droplets. LRAT activity was higher in these rings relative to the general ER. LRAT-containing rings colocalized with the lipid-droplet surface proteins, desnutrin/adipose triglyceride lipase and perilipin 2. Colocalization with lipid droplets required the 38 N-terminal amino acid residues of LRAT, and specifically K36 and R38. Formation of rings around the growing lipid droplets did not require functional microtubules. GENERAL SIGNIFICANCE These data indicate a relationship between LRAT and Crbp1 during RE biosynthesis in which MAM-associated Crpb1 and LRAT colocalize, and both surround the growing RE-containing lipid droplet. The N-terminus of LRAT, especially K36 and R38, is essential to colocalization with the lipid droplet.
Collapse
Affiliation(s)
- Weiya Jiang
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, College of Natural Resources, University of California, Berkeley, California 94720, USA
| | - Joseph L. Napoli
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, College of Natural Resources, University of California, Berkeley, California 94720, USA
| |
Collapse
|