51
|
Denhez B, Rousseau M, Dancosst DA, Lizotte F, Guay A, Auger-Messier M, Côté AM, Geraldes P. Diabetes-Induced DUSP4 Reduction Promotes Podocyte Dysfunction and Progression of Diabetic Nephropathy. Diabetes 2019; 68:1026-1039. [PMID: 30862678 DOI: 10.2337/db18-0837] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/25/2019] [Indexed: 11/13/2022]
Abstract
Diabetic nephropathy (DN) remains the leading cause of end-stage renal disease. Hyperglycemia-induced podocyte dysfunction is a major contributor of renal function impairment in DN. Previous studies showed that activation of mitogen-activated protein kinase (MAPK) in diabetes promotes podocyte dysfunction and cell death. Dual specificity phosphatases (DUSPs) are a family of phosphatases mainly responsible for MAPK inhibition. In this study, we demonstrated that diabetes and high glucose exposure decreased DUSP4 expression in cultured podocytes and glomeruli. Diabetes-induced DUSP4 reduction enhanced p38 and c-Jun N-terminal kinase (JNK) activity and podocyte dysfunction. The overexpression of DUSP4 prevented the activation of p38, JNK, caspase 3/7 activity, and NADPH oxidase 4 expression induced by high glucose level exposure. Deletion of DUSP4 exacerbated albuminuria and increased mesangial expansion and glomerular fibrosis in diabetic mice. These morphological changes were associated with profound podocyte foot process effacement, cell death, and sustained p38 and JNK activation. Moreover, inhibition of protein kinase C-δ prevented DUSP4 expression decline and p38/JNK activation in the podocytes and renal cortex of diabetic mice. Analysis of DUSP4 expression in the renal cortex of patients with diabetes revealed that decreased DUSP4 mRNA expression correlated with reduced estimated glomerular filtration rate (<60 mL/min/1.73 m2). Thus, this study demonstrates that preserving DUSP4 expression could protect against podocyte dysfunction and preserve glomerular function in DN.
Collapse
Affiliation(s)
- Benoit Denhez
- Research Center of the CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marina Rousseau
- Research Center of the CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | - Farah Lizotte
- Research Center of the CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Andréanne Guay
- Research Center of the CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Mannix Auger-Messier
- Research Center of the CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Division of Cardiology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Anne Marie Côté
- Research Center of the CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Division of Nephrology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pedro Geraldes
- Research Center of the CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
52
|
Pérez-Sen R, Queipo MJ, Gil-Redondo JC, Ortega F, Gómez-Villafuertes R, Miras-Portugal MT, Delicado EG. Dual-Specificity Phosphatase Regulation in Neurons and Glial Cells. Int J Mol Sci 2019; 20:ijms20081999. [PMID: 31018603 PMCID: PMC6514851 DOI: 10.3390/ijms20081999] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 01/03/2023] Open
Abstract
Dual-specificity protein phosphatases comprise a protein phosphatase subfamily with selectivity towards mitogen-activated protein (MAP) kinases, also named MKPs, or mitogen-activated protein kinase (MAPK) phosphatases. As powerful regulators of the intensity and duration of MAPK signaling, a relevant role is envisioned for dual-specificity protein phosphatases (DUSPs) in the regulation of biological processes in the nervous system, such as differentiation, synaptic plasticity, and survival. Important neural mediators include nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) that contribute to DUSP transcriptional induction and post-translational mechanisms of DUSP protein stabilization to maintain neuronal survival and differentiation. Potent DUSP gene inducers also include cannabinoids, which preserve DUSP activity in inflammatory conditions. Additionally, nucleotides activating P2X7 and P2Y13 nucleotide receptors behave as novel players in the regulation of DUSP function. They increase cell survival in stressful conditions, regulating DUSP protein turnover and inducing DUSP gene expression. In general terms, in the context of neural cells exposed to damaging conditions, the recovery of DUSP activity is neuroprotective and counteracts pro-apoptotic over-activation of p38 and JNK. In addition, remarkable changes in DUSP function take place during the onset of neuropathologies. The restoration of proper DUSP levels and recovery of MAPK homeostasis underlie the therapeutic effect, indicating that DUSPs can be relevant targets for brain diseases.
Collapse
Affiliation(s)
- Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| | - María José Queipo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| | - Juan Carlos Gil-Redondo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| | - Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| | - María Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| | - Esmerilda G Delicado
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| |
Collapse
|
53
|
Modulation of YrdC promotes hepatocellular carcinoma progression via MEK/ERK signaling pathway. Biomed Pharmacother 2019; 114:108859. [PMID: 30978526 DOI: 10.1016/j.biopha.2019.108859] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/29/2022] Open
Abstract
Accumulating evidence suggested that YrdC involved in growth, telomere homeostasis, translation and the N6-threonylcarbamoylation (t6A) of tRNA was abnormally expressed in the progression of tumor. However, the role of YrdC in hepatocellular carcinoma remained elusive. Our study aimed to investigate the clinical significance and oncogenic phenotypes of YrdC in hepatocellular carcinoma, and to determine its related mechanism of this disease. With the usage of GEO datasets, we analyzed the expression of YrdC in hepatocellular carcinoma (HCC). Kaplan-Meier survival analysis was used to evaluate the prognostic significance of hepatocellular carcinoma patients in TCGA. Gain- and loss-of-function analyses in vitro of YrdC were also performed to evaluate its effects on oncogenic phenotypes and relevant signaling pathways. YrdC expression was not only dysregulated in hepatocellular carcinoma tissue but also related to the prognosis of patients with hepatocellular carcinoma. In addition, YrdC depletion suppressed the capability of proliferation, migration and invasion of huh7 cells, while there was opposite result for YrdC overexpression. Our data also unraveled that YrdC promoted the progression of HCC by activating MEK/ERK signaling pathways. Together, our findings indicated that YrdC was a potential prognosis marker for hepatocellular carcinoma, and therapeutic strategies targeting YrdC might hold promise in improving the treatment of hepatocellular carcinoma.
Collapse
|
54
|
Nunes-Xavier CE, Zaldumbide L, Aurtenetxe O, López-Almaraz R, López JI, Pulido R. Dual-Specificity Phosphatases in Neuroblastoma Cell Growth and Differentiation. Int J Mol Sci 2019; 20:ijms20051170. [PMID: 30866462 PMCID: PMC6429076 DOI: 10.3390/ijms20051170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022] Open
Abstract
Dual-specificity phosphatases (DUSPs) are important regulators of neuronal cell growth and differentiation by targeting proteins essential to neuronal survival in signaling pathways, among which the MAP kinases (MAPKs) stand out. DUSPs include the MAPK phosphatases (MKPs), a family of enzymes that directly dephosphorylate MAPKs, as well as the small-size atypical DUSPs, a group of low molecular-weight enzymes which display more heterogeneous substrate specificity. Neuroblastoma (NB) is a malignancy intimately associated with the course of neuronal and neuroendocrine cell differentiation, and constitutes the source of more common extracranial solid pediatric tumors. Here, we review the current knowledge on the involvement of MKPs and small-size atypical DUSPs in NB cell growth and differentiation, and discuss the potential of DUSPs as predictive biomarkers and therapeutic targets in human NB.
Collapse
Affiliation(s)
- Caroline E Nunes-Xavier
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Health Research Institute, Barakaldo, Bizkaia 48903, Spain.
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital HF Radiumhospitalet, Oslo 0424, Norway.
| | - Laura Zaldumbide
- Department of Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Bizkaia 48903, Spain.
| | - Olaia Aurtenetxe
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Health Research Institute, Barakaldo, Bizkaia 48903, Spain.
| | - Ricardo López-Almaraz
- Pediatric Oncology and Hematology, Cruces University Hospital, Barakaldo, Bizkaia 48903, Spain.
| | - José I López
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Health Research Institute, Barakaldo, Bizkaia 48903, Spain.
- Department of Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Bizkaia 48903, Spain.
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Health Research Institute, Barakaldo, Bizkaia 48903, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao 48011, Spain.
| |
Collapse
|
55
|
Ferguson BS, Nam H, Morrison RF. Dual-specificity phosphatases regulate mitogen-activated protein kinase signaling in adipocytes in response to inflammatory stress. Cell Signal 2019; 53:234-245. [DOI: 10.1016/j.cellsig.2018.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 01/14/2023]
|
56
|
Miras-Portugal MT, Queipo MJ, Gil-Redondo JC, Ortega F, Gómez-Villafuertes R, Gualix J, Delicado EG, Pérez-Sen R. P2 receptor interaction and signalling cascades in neuroprotection. Brain Res Bull 2018; 151:74-83. [PMID: 30593879 DOI: 10.1016/j.brainresbull.2018.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/27/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023]
Abstract
Nucleotides can contribute to the survival of different glial and neuronal models at the nervous system via activation of purinergic P2X and P2Y receptors. Their activation counteracts different proapoptotic events, such as excitotoxicity, mitochondrial impairment, oxidative stress and DNA damage, which concur to elicit cell loss in different processes of neurodegeneration and brain injury. Thus, it is frequent to find that different neuroprotective mediators converge in the activation of the same intracellular survival pathways to protect cells from death. The present review focuses on the role of P2Y1 and P2Y13 metabotropic receptors, and P2X7 ionotropic receptors to regulate the balance between survival and apoptosis. In particular, we analyze the intracellular pathways involved in the signaling of these nucleotide receptors to elicit survival, including calcium/PLC, PI3K/Akt/GSK3, MAPK cascades, and the expression of antioxidant and antiapoptotic genes. This review emphasizes the novel contribution of nucleotide receptors to maintain cell homeostasis through the regulation of MAP kinases and phosphatases. Unraveling the different roles found for nucleotide receptors in different models and cellular contexts may be crucial to delineate future therapeutic applications based on targeting nucleotide receptors for neuroprotection.
Collapse
Affiliation(s)
- Mª Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Mª José Queipo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Juan Carlos Gil-Redondo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Javier Gualix
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain
| | - Esmerilda G Delicado
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| | - Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain.
| |
Collapse
|
57
|
DUSP5 expression associates with poor prognosis in human neuroblastoma. Exp Mol Pathol 2018; 105:272-278. [DOI: 10.1016/j.yexmp.2018.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/23/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023]
|
58
|
Souvannaseng L, Hun LV, Baker H, Klyver JM, Wang B, Pakpour N, Bridgewater JM, Napoli E, Giulivi C, Riehle MA, Luckhart S. Inhibition of JNK signaling in the Asian malaria vector Anopheles stephensi extends mosquito longevity and improves resistance to Plasmodium falciparum infection. PLoS Pathog 2018; 14:e1007418. [PMID: 30496310 PMCID: PMC6264519 DOI: 10.1371/journal.ppat.1007418] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/18/2018] [Indexed: 11/18/2022] Open
Abstract
Malaria is a global health concern caused by infection with Plasmodium parasites. With rising insecticide and drug resistance, there is a critical need to develop novel control strategies, including strategies to block parasite sporogony in key mosquito vector species. MAPK signaling pathways regulated by extracellular signal-regulated kinases (ERKs) and the stress-activated protein kinases (SAPKs) c-Jun N-terminal kinases (JNKs) and p38 MAPKs are highly conserved across eukaryotes, including mosquito vectors of the human malaria parasite Plasmodium falciparum. Some of these pathways in mosquitoes have been investigated in detail, but the mechanisms of integration of parasite development and mosquito fitness by JNK signaling have not been elucidated. To this end, we engineered midgut-specific overexpression of MAPK phosphatase 4 (MKP4), which targets the SAPKs, and used two potent and specific JNK small molecule inhibitors (SMIs) to assess the effects of JNK signaling manipulations on Anopheles stephensi fecundity, lifespan, intermediary metabolism, and P. falciparum development. MKP4 overexpression and SMI treatment reduced the proportion of P. falciparum-infected mosquitoes and decreased oocyst loads relative to controls. SMI-treated mosquitoes exhibited no difference in lifespan compared to controls, whereas genetically manipulated mosquitoes exhibited extended longevity. Metabolomics analyses of SMI-treated mosquitoes revealed insights into putative resistance mechanisms and the physiology behind lifespan extension, suggesting for the first time that P. falciparum-induced JNK signaling reduces mosquito longevity and increases susceptibility to infection, in contrast to previously published reports, likely via a critical interplay between the invertebrate host and parasite for nutrients that play essential roles during sporogonic development. Malaria is a global health concern caused by infection with Plasmodium parasites. With rising insecticide and drug resistance, there is a critical need to develop novel control strategies. One strategy is to develop a Plasmodium-resistant mosquito through the manipulation of key signaling pathways and processes in the mosquito midgut, a critical tissue for parasite development. MAPK signaling pathways are highly conserved among eukaryotes and regulate development of the human malaria parasite Plasmodium falciparum in the mosquito vector. Here, we investigated how manipulation of Anopheles stephensi JNK signaling affects development of P. falciparum and key mosquito life history traits. We used multiple, complementary approaches to demonstrate that malaria parasite infection activates mosquito JNK signaling for its own benefit at a cost to host lifespan. Notably, these combined effects derive from networked signaling with other transduction pathways and alterations to intermediary metabolism in the mosquito host.
Collapse
Affiliation(s)
- Lattha Souvannaseng
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
- Department of Pathobiology, St. George's University, School of Veterinary Medicine, True Blue, St. George, Grenada, West Indies
| | - Lewis Vibul Hun
- Department of Entomology, University of Arizona, Tucson, AZ, United States of America
| | - Heather Baker
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
| | - John M. Klyver
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
| | - Bo Wang
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
| | - Nazzy Pakpour
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
| | - Jordan M. Bridgewater
- Department of Entomology, University of Arizona, Tucson, AZ, United States of America
| | - Eleonora Napoli
- Department of Molecular Biosciences, University of California, Davis, Davis, CA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, University of California, Davis, Davis, CA
- M.I.N.D. Institute, Sacramento, CA, United States of America
| | - Michael A. Riehle
- Department of Entomology, University of Arizona, Tucson, AZ, United States of America
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology and Department of Biological Sciences, University of Idaho, Moscow, ID, United States of America
- * E-mail:
| |
Collapse
|
59
|
Lv JM, Chen L, Gao Y, Huang H, Pan XW, Liu X, Chen M, Qu FJ, Li L, Wang JK, Cui XG, Xu DF. PPP5C promotes cell proliferation and survival in human prostate cancer by regulating of the JNK and ERK1/2 phosphorylation. Onco Targets Ther 2018; 11:5797-5809. [PMID: 30254472 PMCID: PMC6140725 DOI: 10.2147/ott.s161280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Prostate cancer (PCa) is one of the most common malignancies and a major leading cause of cancer-related deaths in males. And it is necessary to explore new molecular targets to enhance diagnosis and treatment level of the PCa. Serine/threonine protein phosphatase 5 (PPP5C) is a vital molecule that Involve in complex cell physiological activity. Purpose The objective of this study was to detecte the expression level of PPP5C in the tissue of prostate cancer patients and further discussed the PPP5C biological function and mechanisms on the PCa. Methods The expression level of PPP5C was analyzed by immunohistochemistry and ONCOM-INE datasets. Lentivirus-mediated short hairpin RNA (shRNA) was constructed to silence the expression of PPP5C in prostate cancer cell. Cell viability and proliferation were measured using MTT and colony formation, and the cell cycle and apoptosis was analyszed by flow cytometry. The changes of downstream protein level and protein phosphorylation level were detected by western blot. Results PPP5C was highly expressed in PCa tissue as analyzed by immunohistochemistry and ONCOMINE datasets. PPP5C Knockdown inhibited cell proliferation and colony formation in PCa cells. Flow cytometry analysis showed that DU145, PC3 and 22RV1 PCa cells deprived of PPP5C were arrested in G0/G1 phase and became apoptotic. Western blot analysis indicated that PPP5C knockdown could promote JNK and ERK phosphorylation. Conclusion Our study indicated that the PPP5C may become a new potential diagnostic biomarker and therapeutic target for the PCa.
Collapse
Affiliation(s)
- Jian-Min Lv
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China, .,Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.,Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 201805, China,
| | - Lu Chen
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China,
| | - Yi Gao
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China,
| | - Hai Huang
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China, .,Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.,Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 201805, China,
| | - Xiu-Wu Pan
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.,Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 201805, China,
| | - Xi Liu
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China,
| | - Ming Chen
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Fa-Jun Qu
- Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 201805, China,
| | - Lin Li
- Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 201805, China,
| | - Jun-Kai Wang
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xin-Gang Cui
- Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 201805, China, .,Department of Urinary Surgery, Gongli Hospital, Second Military Medical University, Shanghai 200135, China,
| | - Dan-Feng Xu
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China,
| |
Collapse
|
60
|
Hinton SD. The role of pseudophosphatases as signaling regulators. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:167-174. [PMID: 30077638 DOI: 10.1016/j.bbamcr.2018.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022]
Abstract
Pseudophosphatases are atypical members of the protein tyrosine phosphatase superfamily. Mutations within their catalytic signature motif render them catalytically inactive. Despite this lack of catalytic function, pseudophosphatases have been implicated in various diseases such as Charcot Marie-Tooth disorder, cancer, metabolic disorder, and obesity. Moreover, they have roles in various signaling networks such as spermatogenesis, apoptosis, stress response, tumorigenesis, and neurite differentiation. This review highlights the roles of pseudophosphatases as essential regulators in signaling cascades, providing insight into the function of these catalytically inactive enzymes.
Collapse
Affiliation(s)
- Shantá D Hinton
- Department of Biology, Integrated Science Center, College of William and Mary, Williamsburg, VA, USA.
| |
Collapse
|
61
|
Fan S, Wang Y, Wang C, Jin H, Wu Z, Lu J, Zhang Z, Sun C, Shan Q, Wu D, Zhuang J, Sheng N, Xie Y, Li M, Hu B, Fang J, Zheng Y, Qin W. Hepatocyte-specific deletion of LASS2 protects against diet-induced hepatic steatosis and insulin resistance. Free Radic Biol Med 2018; 120:330-341. [PMID: 29626628 DOI: 10.1016/j.freeradbiomed.2018.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023]
Abstract
Homo sapienslongevity assurance homolog 2 of yeast LAG1 (LASS2) is expressed mostly in human liver. Here, we explored roles of LASS2 in pathogenesis of hepatic steatosis. Hepatocyte-specific LASS2 knockout (LASS2-/-) mice were generated using Cre-LoxP system. LASS2-/- and wild-type (WT) mice were fed with chow or high-fat diet (HFD). We found LASS2-/- mice were resistant to HFD-induced hepatic steatosis and insulin resistance. In HFD-fed mice, LASS2 deficiency significantly inhibited p38 MAPK and ERK1/ERK2 signaling in mouse liver. This effect was mediated by a significant increase of V-ATPase activity and a decrease of ROS level. We also observed that elevated expression of LASS2 in mouse hepatocyte cell line AML12 obviously decreased V-ATPase activity and increased ROS level by activation of p38 MAPK and ERK1/ERK2 signaling. Our findings indicate that LASS2 plays an important role in the pathogenesis of diet-induced hepatic steatosis and is a potential novel target for prevention and intervention of liver diseases.
Collapse
Affiliation(s)
- Shaohua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Yanyan Wang
- Department of Medical Ultrasonics, The Affiliated First People's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Zheng Wu
- Department of Radiotherapy, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Zifeng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Chunhui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Dongmei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Juan Zhuang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Ning Sheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Ying Xie
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Mengqiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China
| | - Jingyuan Fang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Yuanlin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Xuzhou, Jiangsu 221116, China.
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China.
| |
Collapse
|
62
|
Kagoya Y, Nakatsugawa M, Saso K, Guo T, Anczurowski M, Wang CH, Butler MO, Arrowsmith CH, Hirano N. DOT1L inhibition attenuates graft-versus-host disease by allogeneic T cells in adoptive immunotherapy models. Nat Commun 2018; 9:1915. [PMID: 29765028 PMCID: PMC5954061 DOI: 10.1038/s41467-018-04262-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 04/11/2018] [Indexed: 12/24/2022] Open
Abstract
Adoptive T-cell therapy is a promising therapeutic approach for cancer patients. The use of allogeneic T-cell grafts will improve its applicability and versatility provided that inherent allogeneic responses are controlled. T-cell activation is finely regulated by multiple signaling molecules that are transcriptionally controlled by epigenetic mechanisms. Here we report that inhibiting DOT1L, a histone H3-lysine 79 methyltransferase, alleviates allogeneic T-cell responses. DOT1L inhibition reduces miR-181a expression, which in turn increases the ERK phosphatase DUSP6 expression and selectively ameliorates low-avidity T-cell responses through globally suppressing T-cell activation-induced gene expression alterations. The inhibition of DOT1L or DUSP6 overexpression in T cells attenuates the development of graft-versus-host disease, while retaining potent antitumor activity in xenogeneic and allogeneic adoptive immunotherapy models. These results suggest that DOT1L inhibition may enable the safe and effective use of allogeneic antitumor T cells by suppressing unwanted immunological reactions in adoptive immunotherapy.
Collapse
Affiliation(s)
- Yuki Kagoya
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada
| | - Munehide Nakatsugawa
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada
| | - Kayoko Saso
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada
| | - Tingxi Guo
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Mark Anczurowski
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Chung-Hsi Wang
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Marcus O Butler
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium and Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada
| | - Naoto Hirano
- Tumor Immunotherapy Program, Campbell Family Institute for Breast Cancer Research, Campbell Family Cancer Research Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada. .,Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
63
|
Gautam M, Bhattacharya I, Rai U, Majumdar SS. Hormone induced differential transcriptome analysis of Sertoli cells during postnatal maturation of rat testes. PLoS One 2018; 13:e0191201. [PMID: 29342173 PMCID: PMC5771609 DOI: 10.1371/journal.pone.0191201] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 12/30/2017] [Indexed: 11/18/2022] Open
Abstract
Sertoli cells (Sc) are unique somatic cells of testis that are the target of both FSH and testosterone (T) and regulate spermatogenesis. Although Sc of neonatal rat testes are exposed to high levels of FSH and T, robust differentiation of spermatogonial cells becomes conspicuous only after 11-days of postnatal age. We have demonstrated earlier that a developmental switch in terms of hormonal responsiveness occurs in rat Sc at around 12 days of postnatal age during the rapid transition of spermatogonia A to B. Therefore, such “functional maturation” of Sc, during pubertal development becomes prerequisite for the onset of spermatogenesis. However, a conspicuous difference in robust hormone (both T and FSH) induced gene expression during the different phases of Sc maturation restricts our understanding about molecular events necessary for the spermatogenic onset and maintenance. Here, using microarray technology, we for the first time have compared the differential transcriptional profile of Sc isolated and cultured from immature (5 days old), maturing (12 days old) and mature (60 days old) rat testes. Our data revealed that immature Sc express genes involved in cellular growth, metabolism, chemokines, cell division, MAPK and Wnt pathways, while mature Sc are more specialized expressing genes involved in glucose metabolism, phagocytosis, insulin signaling and cytoskeleton structuring. Taken together, this differential transcriptome data provide an important resource to reveal the molecular network of Sc maturation which is necessary to govern male germ cell differentiation, hence, will improve our current understanding of the etiology of some forms of idiopathic male infertility.
Collapse
Affiliation(s)
- Mukesh Gautam
- Department of Zoology, University of Delhi, Delhi, India
| | | | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi, India
| | - Subeer S. Majumdar
- Cellular Endocrinology Laboratory, National Institute of Immunology, New Delhi, India
- National Institute of Animal Biotechnology, Hyderabad, India
- * E-mail:
| |
Collapse
|
64
|
Queipo MJ, Gil-Redondo JC, Morente V, Ortega F, Miras-Portugal MT, Delicado EG, Pérez-Sen R. P2X7 Nucleotide and EGF Receptors Exert Dual Modulation of the Dual-Specificity Phosphatase 6 (MKP-3) in Granule Neurons and Astrocytes, Contributing to Negative Feedback on ERK Signaling. Front Mol Neurosci 2018; 10:448. [PMID: 29375309 PMCID: PMC5767727 DOI: 10.3389/fnmol.2017.00448] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/22/2017] [Indexed: 01/08/2023] Open
Abstract
Extracellular signal-regulated kinases 1 and 2 (ERK1/2) play a central role in the intracellular signaling of P2X7 nucleotide receptors in neurons and glial cells. Fine spatio-temporal tuning of mitogen-activated protein (MAP) kinases is essential to regulate their biological activity. MAP kinase phosphatases (MKPs) are dual specificity protein phosphatases (DUSPs) that dephosphorylate phosphothreonine and phosphotyrosine residues in MAP kinases. This study focuses on how DUSP, DUSP6/MKP3, a phosphatase specific for ERK1/2 is regulated by the P2X7 nucleotide receptor in cerebellar granule neurons and astrocytes. Stimulation with the specific P2X7 agonist, BzATP, or epidermal growth factor (EGF) (positive control for ERK activation) regulates the levels of DUSP6 in a time dependent manner. Both agonists promote a decline in DUSP6 protein, reaching minimal levels after 30 min yet recovering to basal levels after 1 h. The initial loss of protein occurs through proteasomal degradation, as confirmed in experiments with the proteasome inhibitor, MG-132. Studies carried out with Actinomycin D demonstrated that the enhanced transcription of the Dusp6 gene is responsible for recovering the DUSP6 protein levels. Interestingly, ERK1/2 proteins are involved in the biphasic regulation of the protein phosphatase, being required for both the degradation and the recovery phase. We show that direct Ser197 phosphorylation of DUSP6 by ERK1/2 proteins could be part of the mechanism regulating their cytosolic levels, at least in glial cells. Thus, the ERK1/2 activated by P2X7 receptors exerts positive feedback on these kinase’s own activity, promoting the degradation of one of their major inactivators in the cytosolic compartment, DUSP6, both in granule neurons and astrocytes. This feedback loop seems to function as a common universal mechanism to regulate ERK signaling in neural and non-neural cells.
Collapse
Affiliation(s)
- Mª José Queipo
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, Madrid, Spain
| | - Juan C Gil-Redondo
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, Madrid, Spain
| | - Verónica Morente
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, Madrid, Spain
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, Madrid, Spain
| | - Mª Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, Madrid, Spain
| | - Esmerilda G Delicado
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, Madrid, Spain
| | - Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, Madrid, Spain
| |
Collapse
|
65
|
Ahmad MK, Abdollah NA, Shafie NH, Yusof NM, Razak SRA. Dual-specificity phosphatase 6 (DUSP6): a review of its molecular characteristics and clinical relevance in cancer. Cancer Biol Med 2018; 15:14-28. [PMID: 29545965 PMCID: PMC5842331 DOI: 10.20892/j.issn.2095-3941.2017.0107] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are the main regulators of cellular proliferation, growth, and survival in physiological or pathological conditions. Aberrant MAPK signaling plays a pivotal role in carcinogenesis, which leads to development and progression of human cancer. Dual-specificity phosphatase 6 (DUSP6), a member of the MAPK phosphatase family, interacts with specifically targeted extracellular signal-regulated kinase 1/2 via negative feedback regulation in the MAPK pathway of mammalian cells. This phosphatase functions in a dual manner, pro-oncogenic or tumor-suppressive, depending on the type of cancer. To date, the tumor-suppressive role of DUSP6 has been demonstrated in pancreatic cancer, non-small cell lung cancer, esophageal squamous cell and nasopharyngeal carcinoma, and ovarian cancer. Its pro-oncogenic role has been observed in human glioblastoma, thyroid carcinoma, breast cancer, and acute myeloid carcinoma. Both roles of DUSP6 have been documented in malignant melanoma depending on the histological subtype of the cancer. Loss- or gain-of-function effects of DUSP6 in these cancers highlights the significance of this phosphatase in carcinogenesis. Development of methods that use the DUSP6 gene as a therapeutic target for cancer treatment or as a prognostic factor for diagnosis and evaluation of cancer treatment outcome has great potential. This review focuses on molecular characteristics of the DUSP6 gene and its role in cancers in the purview of development, progression, and cancer treatment outcome.
Collapse
Affiliation(s)
- Muhammad Khairi Ahmad
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang 13200, Malaysia
| | - Nur Ainina Abdollah
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang 13200, Malaysia
| | - Nurul Husna Shafie
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang 13200, Malaysia
| | - Narazah Mohd Yusof
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang 13200, Malaysia
| | - Siti Razila Abdul Razak
- Oncological and Radiological Sciences Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang 13200, Malaysia
| |
Collapse
|
66
|
Cheon SY, Chung KS, Roh SS, Cha YY, An HJ. Bee Venom Suppresses the Differentiation of Preadipocytes and High Fat Diet-Induced Obesity by Inhibiting Adipogenesis. Toxins (Basel) 2017; 10:toxins10010009. [PMID: 29295544 PMCID: PMC5793096 DOI: 10.3390/toxins10010009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023] Open
Abstract
Bee venom (BV) has been widely used in the treatment of certain immune-related diseases. It has been used for pain relief and in the treatment of chronic inflammatory diseases. Despite its extensive use, there is little documented evidence to demonstrate its medicinal utility against obesity. In this study, we demonstrated the inhibitory effects of BV on adipocyte differentiation in 3T3-L1 cells and on a high fat diet (HFD)-induced obesity mouse model through the inhibition of adipogenesis. BV inhibited lipid accumulation, visualized by Oil Red O staining, without cytotoxicity in the 3T3-L1 cells. Male C57BL/6 mice were fed either a HFD or a control diet for 8 weeks, and BV (0.1 mg/kg or 1 mg/kg) or saline was injected during the last 4 weeks. BV-treated mice showed a reduced body weight gain. BV was shown to inhibit adipogenesis by downregulating the expression of the transcription factors CCAAT/enhancer-binding proteins (C/EBPs) and the peroxisome proliferator-activated receptor gamma (PPARγ), using RT-qPCR and Western blotting. BV induced the phosphorylation of AMP-activated kinase (AMPK) and acetyl-CoA carboxylase (ACC) in the cell line and in obese mice. These findings demonstrate that BV mediates anti-obesity/differentiation effects by suppressing obesity-related transcription factors.
Collapse
Affiliation(s)
- Se-Yun Cheon
- Department of Pharmacology, College of Korean Medicine, Sang-ji University, Wonju-si, Gangwon-do 26339, Korea.
| | - Kyung-Sook Chung
- Catholic Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| | - Seong-Soo Roh
- Department of Herbology, College of Korean Medicine, Daegu Hanny University, Suseong-gu, Deagu 42158, Korea.
| | - Yun-Yeop Cha
- Department of Rehabilitation Medicine of Korean Medicine and Neuropsychiatry, College of Korean Medicine, Sang-ji University, Wonju-si, Gangwon-do 26339, Korea.
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sang-ji University, Wonju-si, Gangwon-do 26339, Korea.
| |
Collapse
|
67
|
Zega K, Jovanovic VM, Vitic Z, Niedzielska M, Knaapi L, Jukic MM, Partanen J, Friedel RH, Lang R, Brodski C. Dusp16 Deficiency Causes Congenital Obstructive Hydrocephalus and Brain Overgrowth by Expansion of the Neural Progenitor Pool. Front Mol Neurosci 2017; 10:372. [PMID: 29170629 PMCID: PMC5684737 DOI: 10.3389/fnmol.2017.00372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/26/2017] [Indexed: 12/22/2022] Open
Abstract
Hydrocephalus can occur in children alone or in combination with other neurodevelopmental disorders that are often associated with brain overgrowth. Despite the severity of these disorders, the molecular and cellular mechanisms underlying these pathologies and their comorbidity are poorly understood. Here, we studied the consequences of genetically inactivating in mice dual-specificity phosphatase 16 (Dusp16), which is known to negatively regulate mitogen-activated protein kinases (MAPKs) and which has never previously been implicated in brain development and disorders. Mouse mutants lacking a functional Dusp16 gene (Dusp16−/−) developed fully-penetrant congenital obstructive hydrocephalus together with brain overgrowth. The midbrain aqueduct in Dusp16−/− mutants was obstructed during mid-gestation by an expansion of neural progenitors, and during later gestational stages by neurons resulting in a blockage of cerebrospinal fluid (CSF) outflow. In contrast, the roof plate and ependymal cells developed normally. We identified a delayed cell cycle exit of neural progenitors in Dusp16−/− mutants as a cause of progenitor overproliferation during mid-gestation. At later gestational stages, this expanded neural progenitor pool generated an increased number of neurons associated with enlarged brain volume. Taken together, we found that Dusp16 plays a critical role in neurogenesis by balancing neural progenitor cell proliferation and neural differentiation. Moreover our results suggest that a lack of functional Dusp16 could play a central role in the molecular mechanisms linking brain overgrowth and hydrocephalus.
Collapse
Affiliation(s)
- Ksenija Zega
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Vukasin M Jovanovic
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Zagorka Vitic
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Magdalena Niedzielska
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Laura Knaapi
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Marin M Jukic
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Juha Partanen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Roland H Friedel
- Departments of Neuroscience and Neurosurgery, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Claude Brodski
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
68
|
Lu C, Liu X, Zhang CS, Gong H, Wu JW, Wang ZX. Structural and Dynamic Insights into the Mechanism of Allosteric Signal Transmission in ERK2-Mediated MKP3 Activation. Biochemistry 2017; 56:6165-6175. [PMID: 29077400 DOI: 10.1021/acs.biochem.7b00827] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mitogen-activated protein kinases (MAPKs) are key components of cellular signal transduction pathways, which are down-regulated by the MAPK phosphatases (MKPs). Catalytic activity of the MKPs is controlled both by their ability to recognize selective MAPKs and by allosteric activation upon binding to MAPK substrates. Here, we use a combination of experimental and computational techniques to elucidate the molecular mechanism for the ERK2-induced MKP3 activation. Mutational and kinetic study shows that the 334FNFM337 motif in the MKP3 catalytic domain is essential for MKP3-mediated ERK2 inactivation and is responsible for ERK2-mediated MKP3 activation. The long-term molecular dynamics (MD) simulations further reveal a complete dynamic process in which the catalytic domain of MKP3 gradually changes to a conformation that resembles an active MKP catalytic domain over the time scale of the simulation, providing a direct time-dependent observation of allosteric signal transmission in ERK2-induced MKP3 activation.
Collapse
Affiliation(s)
- Chang Lu
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University , Beijing 100084, PR China
| | - Xin Liu
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University , Beijing 100084, PR China
| | - Chen-Song Zhang
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University , Xiamen, Fujian 361005, PR China
| | - Haipeng Gong
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University , Beijing 100084, PR China
| | - Jia-Wei Wu
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University , Beijing 100084, PR China
| | - Zhi-Xin Wang
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University , Beijing 100084, PR China
| |
Collapse
|
69
|
Min K, Lawan A, Bennett AM. Loss of MKP-5 promotes myofiber survival by activating STAT3/Bcl-2 signaling during regenerative myogenesis. Skelet Muscle 2017; 7:21. [PMID: 29047406 PMCID: PMC5648478 DOI: 10.1186/s13395-017-0137-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The mitogen-activated protein kinases (MAPKs) have been shown to be involved in regulating myofiber survival. In skeletal muscle, p38 MAPK and JNK are negatively regulated by MAPK phosphatase-5 (MKP-5). During muscle regeneration, MKP-5 is downregulated, thereby promoting p38 MAPK/JNK signaling, and subsequent repair of damaged muscle. Mice lacking MKP-5 expression exhibit enhanced regenerative myogenesis. However, the effect of MKP-5 on myofiber survival during regeneration is unclear. METHODS To investigate whether MKP-5 is involved in myofiber survival, skeletal muscle injury was induced by cardiotoxin injection, and the effects on apoptosis were assessed by TUNEL assay in wild type and MKP-5-deficient mice. The contribution of MKP-5 to apoptotic signaling and its link to this pathway through mitochondrial function were determined in regenerating skeletal muscle of MKP-5-deficient mice. RESULTS We found that loss of MKP-5 in skeletal muscle resulted in improved myofiber survival. In response to skeletal muscle injury, loss of MKP-5 decreased activation of the mitochondrial apoptotic pathway involving the signal transducer and activator of transcription 3 (STAT3) and increased expression of the anti-apoptotic transcription factor Bcl-2. Skeletal muscle of MKP-5-deficient mice also exhibited an improved anti-oxidant capacity as a result of increased expression of catalase further contributing to myofiber survival by attenuating oxidative damage. CONCLUSIONS Taken together, these findings suggest that MKP-5 coordinates skeletal muscle regeneration by regulating mitochondria-mediated apoptosis. MKP-5 negatively regulates apoptotic signaling, and during regeneration, MKP-5 downregulation contributes to the restoration of myofiber survival. Finally, these results suggest that MKP-5 inhibition may serve as an important therapeutic target for the preservation of skeletal muscle survival in degenerative muscle diseases.
Collapse
Affiliation(s)
- Kisuk Min
- Department of Pharmacology, Yale University, New Haven, CT, 06520, USA
| | - Ahmed Lawan
- Department of Pharmacology, Yale University, New Haven, CT, 06520, USA
| | - Anton M Bennett
- Department of Pharmacology, Yale University, New Haven, CT, 06520, USA. .,Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
70
|
Chen T, Li J, Xu M, Zhao Q, Hou Y, Yao L, Zhong Y, Chou PC, Zhang W, Zhou P, Jiang Y. PKCε phosphorylates MIIP and promotes colorectal cancer metastasis through inhibition of RelA deacetylation. Nat Commun 2017; 8:939. [PMID: 29038521 PMCID: PMC5643311 DOI: 10.1038/s41467-017-01024-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 08/14/2017] [Indexed: 01/16/2023] Open
Abstract
EGFR signaling is implicated in NF-κB activation. However, the concrete mechanisms by which the core transducer of NF-κB signaling pathway, RelA/p65 is regulated under EGFR activation remains to be further clarified. Here, we show that EGF stimulation induces PKCε-dependent phosphorylation of migration and invasion inhibitory protein (MIIP) at Ser303; this phosphorylation promotes the interaction between MIIP and RelA in the nucleus, by which MIIP prevents histone deacetylase 6 (HDAC6)-mediated RelA deacetylation, and thus enhances transcriptional activity of RelA and facilitates tumor metastasis. Meanwhile PP1, which functions as a phosphatase, is found to mediate MIIP-S303 dephosphorylation and its expression level inversely correlates with metastatic capability of tumor cells. Moreover, clinical analyses indicate the level of MIIP-S303 phosphorylation correlates with colorectal cancer (CRC) metastasis and prognosis. These findings uncover an unidentified mechanism underlying the precise regulation of NF-κB by EGF, and highlight the critical role of nuclear MIIP in tumor metastasis.In colorectal cancer, EGFR signalling is implicated in metastasis. Here, the authors unravel a mechanism through which EGF stimulation induces MIIP phosphorylation, leading to MIIP interacting with RelA-this prevents RelA deactylation and enhances transcriptional activity, facilitating metastasis.
Collapse
Affiliation(s)
- Tao Chen
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jingjie Li
- The Institute of Cell Metabolism, Shanghai Key Laboratory of Pancreatic disease, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201620, China
| | - Meidong Xu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qin Zhao
- The Institute of Cell Metabolism, Shanghai Key Laboratory of Pancreatic disease, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201620, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Liqing Yao
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yunshi Zhong
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ping-Chieh Chou
- Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Wei Zhang
- Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA.
| | - Pinghong Zhou
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yuhui Jiang
- The Institute of Cell Metabolism, Shanghai Key Laboratory of Pancreatic disease, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201620, China.
| |
Collapse
|
71
|
Cho SSL, Han J, James SJ, Png CW, Weerasooriya M, Alonso S, Zhang Y. Dual-Specificity Phosphatase 12 Targets p38 MAP Kinase to Regulate Macrophage Response to Intracellular Bacterial Infection. Front Immunol 2017; 8:1259. [PMID: 29062315 PMCID: PMC5640881 DOI: 10.3389/fimmu.2017.01259] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/21/2017] [Indexed: 12/24/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascades are activated in innate immune cells such as macrophages upon the detection of microbial infection, critically regulating the expression of proinflammatory cytokines and chemokines such as TNF-α, IL-6, and MCP-1. As a result, activation of MAPKs is tightly regulated to ensure appropriate and adequate immune responses. Dual-specificity phosphatases (DUSPs) are a family of proteins which specifically dephosphorylates threonine and tyrosine residues essential for MAPK activation to negatively regulate their activation. DUSP12 is a member of atypical DUSPs that lack MAPK-binding domain. Its substrate and function in immune cells are unknown. In this study, we demonstrated that DUSP12 is able to interact with all the three groups of MAPKs, including extracellular signal-regulated protein kinase, JNK, and p38. To investigate the function of DUSP12 in macrophages in response to TLR activation and microbial infection, we established RAW264.7 cell lines stably overexpressing DUSP12 and found that overexpression of DUSP12 inhibited proinflammatory cytokine and chemokine production in response to TLR4 activation, heat-inactivated Mycobacterium tuberculosis stimulation as well as infections by intracellular bacteria including Listeria moncytogenesis and Mycobacterium bovis BCG by specifically inhibiting p38 and JNK. In addition, a scaffold protein known as signal transducing adaptor protein 2 (STAP2), was found to mediate the interaction between DUSP12 and p38. Thus, DUSP12 is a bona fide MAPK phosphatase, playing an important role in MAPK-regulated responses to bacterial infection. Our study provides a model where atypical DUSPs regulate MAPKs via scaffold, thereby regulating immune responses to microbial infection.
Collapse
Affiliation(s)
- Sharol Su Lei Cho
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore, Singapore.,Immunology Programme, Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Jian Han
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore, Singapore.,Immunology Programme, Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Sharmy J James
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore, Singapore.,Immunology Programme, Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Chin Wen Png
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore, Singapore.,Immunology Programme, Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Madhushanee Weerasooriya
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore, Singapore.,Immunology Programme, Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Sylvie Alonso
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore, Singapore.,Immunology Programme, Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore, Singapore.,Immunology Programme, Life Science Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
72
|
Pfuhlmann K, Pfluger PT, Schriever SC, Müller TD, Tschöp MH, Stemmer K. Dual specificity phosphatase 6 deficiency is associated with impaired systemic glucose tolerance and reversible weight retardation in mice. PLoS One 2017; 12:e0183488. [PMID: 28873424 PMCID: PMC5584967 DOI: 10.1371/journal.pone.0183488] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/03/2017] [Indexed: 01/09/2023] Open
Abstract
Here, we aimed to investigate the potential role of DUSP6, a dual specificity phosphatase, that specifically inactivates extracellular signal-regulated kinase (ERK), for the regulation of body weight and glucose homeostasis. We further assessed whether metabolic challenges affect Dusp6 expression in selected brain areas or white adipose tissue. Hypothalamic Dusp6 mRNA levels remained unchanged in chow-fed lean vs. high fat diet (HFD) fed obese C57Bl/6J mice, and in C57Bl/6J mice undergoing prolonged fasting or refeeding with fat free diet (FFD) or HFD. Similarly, Dusp6 expression levels were unchanged in selected brain regions of Lepob mice treated with 1 mg/kg of leptin for 6 days, compared to pair-fed or saline-treated Lepob controls. Dusp6 expression levels remained unaltered in vitro in primary adipocytes undergoing differentiation, but were increased in eWAT of HFD-fed obese C57Bl/6J mice, compared to chow-fed lean controls. Global chow-fed DUSP6 KO mice displayed reduced body weight and lean mass and slightly increased fat mass at a young age, which is indicative for early-age weight retardation. Subsequent exposure to HFD led to a significant increase in lean mass and body weight in DUSP6 deficient mice, compared to WT controls. Nevertheless, after 26 weeks of high-fat diet exposure, we observed comparable body weight, fat and lean mass in DUSP6 WT and KO mice, suggesting overall normal susceptibility to develop obesity. In line with the increased weight gain to compensate for early-age weight retardation, HFD-fed DUSP6 KO displayed increased expression levels of anabolic genes involved in lipid and cholesterol metabolism in the epididymal white adipose tissue (eWAT), compared to WT controls. Glucose tolerance was perturbed in both chow-fed lean or HFD-fed obese DUSP6 KO, compared to their respective WT controls. Overall, our data indicate that DUSP6 deficiency has limited impact on the regulation of energy metabolism, but impairs systemic glucose tolerance. Our data are in conflict to earlier reports that propose protection from diet-induced obesity and glucose intolerance in DUSP6 deficient mice. Reasons for the discrepancies remain elusive, but may entail differential genetic backgrounds, environmental factors such as the type and source of HFD, or alterations in the gut microbiome between facilities.
Collapse
Affiliation(s)
- Katrin Pfuhlmann
- Research Unit NeuroBiology of Diabetes, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Paul T. Pfluger
- Research Unit NeuroBiology of Diabetes, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sonja C. Schriever
- Research Unit NeuroBiology of Diabetes, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Timo D. Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Matthias H. Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Kerstin Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- * E-mail:
| |
Collapse
|
73
|
Mortensen OV, Larsen MB, Amara SG. MAP Kinase Phosphatase 3 (MKP3) Preserves Norepinephrine Transporter Activity by Modulating ERK1/2 Kinase-Mediated Gene Expression. Front Cell Neurosci 2017; 11:253. [PMID: 28878626 PMCID: PMC5572231 DOI: 10.3389/fncel.2017.00253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/08/2017] [Indexed: 12/03/2022] Open
Abstract
The norepinephrine transporter (NET) mediates the clearance of norepinephrine (NE) from the extracellular space and is a target of therapeutic antidepressants and psychostimulants. Previously we identified a MAP kinase phosphatase 3 (MKP3), as an important modulator of protein kinase C (PKC) mediated internalization of the related dopamine transporter (DAT). Here we show that MKP3 decreases PKC-mediated down regulation of NET expressed in PC12 cells. We demonstrate that this process involves a PKC-stimulated decrease of NET surface expression that is dependent on dynamin. Surprisingly, MAP kinase inhibitors have no effect on the PKC-mediated regulation of NET activity, suggesting that, like PKC-mediated regulation of the DAT, the acute activation of MAP kinases is not likely to be involved. To elucidate potential mechanisms we used a substrate trap-based assay to identify extracellular-signal-regulated kinase (ERK)1/2 as the predominant substrate of MKP3. Furthermore we also established that brief chemical stabilization of a modified destabilized MKP3 does not alter PKC-mediated down regulation of NET. Finally, the expression of a dominant negative version of H-Ras, an upstream activator of ERK1/2, abolishes phorbol 12-myristate 13-acetate (PMA)-mediated down regulation of NET in a manner similar to MKP3. Taken together we propose that chronic MKP3 expression regulates surface NET through the sustained inhibition of ERK1/2 MAP kinase signaling that alters gene expression in PC12 cells. This is supported by gene expression data from naïve and MKP3-expressing PC12 cells that reveal robust decreases in gene expression of several genes in the MKP3-tranfected cells. Interestingly, caveolin-1, a protein with a critical role in membrane protein trafficking is down regulated by MKP3 expression. We further show that selective silencing of the caveolin-1 gene in naïve PC12 cells attenuates PKC-mediated downregulation of NET activity, consistent with a potential role for caveolins in regulating NET surface expression. In summary, these results suggest that chronic MKP3 expression alters the expression of genes in PC12 cells that are involved in the regulation of NET surface expression.
Collapse
Affiliation(s)
- Ole V Mortensen
- Department of Pharmacology and Physiology, Drexel University College of MedicinePhiladelphia, PA, United States
| | - Mads B Larsen
- Department of Cell Biology and Physiology, University of Pittsburgh School of MedicinePittsburgh, PA, United States
| | - Susan G Amara
- National Institute of Mental HealthBethesda, MD, United States
| |
Collapse
|
74
|
Antagonistic Interactions between Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase and Retinoic Acid Receptor Signaling in Colorectal Cancer Cells. Mol Cell Biol 2017; 37:MCB.00012-17. [PMID: 28483913 DOI: 10.1128/mcb.00012-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/02/2017] [Indexed: 01/08/2023] Open
Abstract
Deregulated activation of RAS/extracellular signal-regulated kinase (ERK) signaling and defects in retinoic acid receptor (RAR) signaling are both implicated in many types of cancers. However, interrelationships between these alterations in regulating cancer cell fates have not been fully elucidated. Here, we show that RAS/ERK and RAR signaling pathways antagonistically interact with each other to regulate colorectal cancer (CRC) cell fates. We show that RAR signaling activation promotes spontaneous differentiation of CRC cells, while ERK activation suppresses it. Our microarray analyses identify genes whose expression levels are upregulated by RAR signaling. Notably, one of these genes, MKP4, encoding a member of dual-specificity phosphatases for mitogen-activated protein (MAP) kinases, mediates ERK inactivation upon RAR activation, thereby promoting the differentiation of CRC cells. Moreover, our results also show that RA induction of RAR target genes is suppressed by the ERK pathway activation. This suppression results from the inhibition of RAR transcriptional activity, which is shown to be mediated through an RIP140/histone deacetylase (HDAC)-mediated mechanism. These results identify antagonistic interactions between RAS/ERK and RAR signaling in the cell fate decision of CRC cells and define their underlying molecular mechanisms.
Collapse
|
75
|
Strength of ERK1/2 MAPK Activation Determines Its Effect on Myelin and Axonal Integrity in the Adult CNS. J Neurosci 2017; 36:6471-87. [PMID: 27307235 DOI: 10.1523/jneurosci.0299-16.2016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/10/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Myelin growth is a tightly regulated process driven by multiple signals. ERK1/2-MAPK signaling is an important regulator of myelin thickness. Because, in demyelinating diseases, the myelin formed during remyelination fails to achieve normal thickness, increasing ERK1/2 activity in oligodendrocytes is of obvious therapeutic potential for promoting efficient remyelination. However, other studies have suggested that increased levels of ERK1/2 activity could, in fact, have detrimental effects on myelinating cells. Because the strength, duration, or timing of ERK1/2 activation may alter the biological outcomes of cellular responses markedly, here, we investigated the effect of modulating ERK1/2 activity in myelinating cells using transgenic mouse lines in which ERK1/2 activation was upregulated conditionally in a graded manner. We found enhanced myelin gene expression and myelin growth in the adult CNS at both moderate and hyperactivated levels of ERK1/2 when upregulation commenced during developmental myelination or was induced later during adulthood in quiescent preexisting oligodendrocytes, after active myelination is largely terminated. However, a late onset of demyelination and axonal degeneration occurred at hyperelevated, but not moderately elevated, levels regardless of the timing of the upregulation. Similarly, myelin and axonal pathology occurred with elevated ERK1/2 activity in Schwann cells. We conclude that a fine tuning of ERK1/2 signaling strength is critically important for normal oligodendrocyte and Schwann cell function and that disturbance of this balance has negative consequences for myelin and axonal integrity in the long term. Therefore, therapeutic modulation of ERK1/2 activity in demyelinating disease or peripheral neuropathies must be approached with caution. SIGNIFICANCE STATEMENT ERK1/2-MAPK activation in oligodendrocytes and Schwann cells is an important signal for promoting myelin growth during developmental myelination. Here, we show that, when ERK1/2 are activated in mature quiescent oligodendrocytes during adulthood, new myelin growth is reinitiated even after active myelination is terminated, which has implications for understanding the mechanism underlying plasticity of myelin in adult life. Paradoxically, simply increasing the "strength" of ERK1/2 activation changed the biological outcome from beneficial to detrimental, adversely affecting myelin and axonal integrity in both the CNS and PNS. Therefore, this study highlights the complexity of ERK1/2-MAPK signaling in the context of oligodendrocyte and Schwann cell function in the adult animal and emphasizes the need to approach potential therapeutic modulation of ERK1/2 activity with caution.
Collapse
|
76
|
Hocsak E, Szabo V, Kalman N, Antus C, Cseh A, Sumegi K, Eros K, Hegedus Z, Gallyas F, Sumegi B, Racz B. PARP inhibition protects mitochondria and reduces ROS production via PARP-1-ATF4-MKP-1-MAPK retrograde pathway. Free Radic Biol Med 2017; 108:770-784. [PMID: 28457938 DOI: 10.1016/j.freeradbiomed.2017.04.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 04/13/2017] [Accepted: 04/16/2017] [Indexed: 12/01/2022]
Abstract
Oxidative stress induces DNA breaks and PARP-1 activation which initiates mitochondrial reactive oxygen species (ROS) production and cell death through pathways not yet identified. Here, we show the mechanism by which PARP-1 influences these processes via PARylation of activating transcription factor-4 (ATF4) responsible for MAP kinase phosphatase-1 (MKP-1) expression and thereby regulates MAP kinases. PARP inhibitor, or silencing, of PARP induced MKP-1 expression by ATF4-dependent way, and inactivated JNK and p38 MAP kinases. Additionally, it induced ATF4 expression and binding to cAMP-response element (CRE) leading to MKP-1 expression and the inactivation of MAP kinases. In contrast, PARP-1 activation induced the PARylation of ATF4 and reduced its binding to CRE sequence in vitro. CHIP-qPCR analysis showed that PARP inhibitor increased the ATF4 occupancy at the initiation site of MKP-1. In oxidative stress, PARP inhibition reduced ROS-induced cell death, suppressed mitochondrial ROS production and protected mitochondrial membrane potential on an ATF4 and MKP-1 dependent way. Basically identical results were obtained in WRL-68, A-549 and T24/83 human cell lines indicating that the aforementioned mechanism can be universal. Here, we provide the first description of PARP-1-ATF4-MKP-1-JNK/p38 MAPK retrograde pathway, which is responsible for the regulation of mitochondrial integrity, ROS production and cell death in oxidative stress, and may represent a new mechanism of PARP in cancer therapy since cancer stem cells development is JNK-dependent.
Collapse
Affiliation(s)
- Eniko Hocsak
- Departments of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary; Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Viktor Szabo
- Departments of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
| | - Nikoletta Kalman
- Departments of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
| | - Csenge Antus
- Departments of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
| | - Anna Cseh
- Departments of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
| | - Katalin Sumegi
- Departments of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
| | - Krisztian Eros
- Departments of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
| | - Zoltan Hegedus
- Departments of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary; Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ferenc Gallyas
- Departments of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary; Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary; Szentagothai Research Center, Pecs, Hungary
| | - Balazs Sumegi
- Departments of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary; Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary; Szentagothai Research Center, Pecs, Hungary
| | - Boglarka Racz
- Departments of Biochemistry and Medical Chemistry, University of Pecs, Medical School, Pecs, Hungary
| |
Collapse
|
77
|
Chen M, Lv JM, Ye JQ, Cui XG, Qu FJ, Chen L, Liu X, Pan XW, Li L, Huang H, Yang QW, Chen J, Wang LH, Gao Y, Xu DF. Disruption of serine/threonine protein phosphatase 5 inhibits tumorigenesis of urinary bladder cancer cells. Int J Oncol 2017; 51:39-48. [PMID: 28534961 PMCID: PMC5467789 DOI: 10.3892/ijo.2017.3997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/20/2017] [Indexed: 01/26/2023] Open
Abstract
Serine/threonine protein phosphatase 5 (PPP5C) is a member of the protein serine/threonine phosphatase family and has been shown to participate in multiple signaling cascades and tumor progression. We found that PPP5C was highly expressed in bladder cancer tissues compared to normal urothelial tissues, and positively correlated to tumor stages through ONCOMINE microarray data mining. Knockdown of PPP5C via a lentivirus-mediated short hairpin RNA (shRNA) markedly inhibited cell proliferation and colony formation. Flow cytometric analysis showed that PPP5C-deficient T24 and BT5637 bladder cancer cells were arrested in G0/G1 phase and induced apoptosis. In addition, tumor growth was inhibited in vivo in a xenograft nude mouse model. Further studies indicated that knockdown of PPP5C downregulated c-myc and CDK4, whereas upregulated p27, BAD and Beclin1. These results suggest that PPP5C is associated with bladder cancer (BCa) and plays an oncogenic role in the development and progression of bladder cancer.
Collapse
Affiliation(s)
- Ming Chen
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jian-Min Lv
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jian-Qing Ye
- Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 201805, P.R. China
| | - Xin-Gang Cui
- Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 201805, P.R. China
| | - Fa-Jun Qu
- Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 201805, P.R. China
| | - Lu Chen
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Xi Liu
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Xiu-Wu Pan
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Lin Li
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Hai Huang
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Qi-Wei Yang
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jie Chen
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Lin-Hui Wang
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Yi Gao
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Dan-Feng Xu
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
78
|
Huang X, Liao W, Huang Y, Jiang M, Chen J, Wang M, Lin H, Guan S, Liu J. Neuroprotective effect of dual specificity phosphatase 6 against glutamate-induced cytotoxicity in mouse hippocampal neurons. Biomed Pharmacother 2017; 91:385-392. [PMID: 28475917 DOI: 10.1016/j.biopha.2017.04.096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/01/2017] [Accepted: 04/20/2017] [Indexed: 12/31/2022] Open
Abstract
Dual specificity phosphatase 6 (DUSP6), a member of the dual specificity protein phosphatase subfamily, can inactivate ERK1/2. However, its possible role in glutamate-induced oxidative cytotoxicity effects is not clear.Here, we aimed to investigate whether DUSP6 was neuroprotective against glutamate-induced cytotoxicity in HT22 mouse hippocampal cells and primary cultured hippocampal neurons (pc-HNeu). HT22 and pc-HNeu cells were treated with varying concentrations of glutamate (from 0.05mM to 5.0mM) and DUSP6 protein expression were detected by western blotting. DUSP6-overexpressing HT22 and pc-HNeu cells were generated by transfection with DUSP6-overexpressing plasmid. The effects of DUSP6 overexpression on glutamate-induced cytotoxicity, cell death, cell apoptosis, and cell autophagy were determined by cell proliferation assays, flow cytometry, transmission electron microscopy, and western blotting. Glutamate treatment from 0.5mM to 5.0mM downregulated DUSP6 protein expression in both HT22 and pc-HNeu cells. DUSP6 overexpression ameliorated glutamate-induced cell death, apoptosis, and autophagy in both HT22 and pc-HNeu cells. Furthermore, ERK1/2 phosphorylation was decreased by DUSP6 overexpression. In conclusion, DUSP6 has neuroprotective effects against glutamate-induced cytotoxicity in HT22 and pc-HNeu cells. Targeting DUSP6 may be a useful strategy to prevent neuronal death in neurodegenerative diseases including AD.
Collapse
Affiliation(s)
- Xiaoyun Huang
- Department of Neurology, The Affiliated Houjie Hospital, Guangdong Medical University, 21 Hetian Road, Dongguan, 523945, PR China
| | - Wang Liao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, PR China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, PR China; Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, PR China
| | - Yihong Huang
- Department of Neurology, The Affiliated Houjie Hospital, Guangdong Medical University, 21 Hetian Road, Dongguan, 523945, PR China
| | - Mujun Jiang
- Department of Neurology, The First Affiliated Hospital, Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui 233004, PR China
| | - Jianjun Chen
- Department of Neurology, The Affiliated Houjie Hospital, Guangdong Medical University, 21 Hetian Road, Dongguan, 523945, PR China
| | - Mingxia Wang
- Department of Neurology, The Affiliated Houjie Hospital, Guangdong Medical University, 21 Hetian Road, Dongguan, 523945, PR China
| | - Han Lin
- Department of Neurology, The Affiliated Houjie Hospital, Guangdong Medical University, 21 Hetian Road, Dongguan, 523945, PR China
| | - Shaobing Guan
- Department of Neurology, The Affiliated Houjie Hospital, Guangdong Medical University, 21 Hetian Road, Dongguan, 523945, PR China
| | - Jun Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, PR China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, PR China; Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, PR China.
| |
Collapse
|
79
|
Antagonistic roles for STYX pseudophosphatases in neurite outgrowth. Biochem Soc Trans 2017; 45:381-387. [PMID: 28408478 DOI: 10.1042/bst20160273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/17/2017] [Accepted: 01/20/2017] [Indexed: 12/14/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are essential players in important neuronal signaling pathways including neuronal development, plasticity, survival, learning, and memory. The inactivation of MAPKs is tightly controlled by MAPK phosphatases (MKPs), which also are important regulators of these neuronal processes. Considering that MAPKs and MKPs are major players in neuronal signaling, it follows that their misregulation is pivotal in neurodegenerative diseases such as Alzheimer's, Huntington's, Parkinson's, and amyotrophic lateral sclerosis. In contrast, the actions of their noncatalytic homologs, or pseudoenzymes, have received minimal attention as important regulators in neuronal signaling pathways and relevant diseases. There is compelling evidence, however, that pseudophosphatases, such as STYX (phospho-serine-threonine/tyrosine-binding protein) and MAPK-STYX (MK-STYX), are integral signaling molecules in regulating pathways involved in neuronal developmental processes such as neurite outgrowth. Here, we discuss how the dynamics of MK-STYX in the stress response pathway imply that this unique member of the MKP subfamily has the potential to have a major role in neuronal signaling. We further compare the actions of STYX in preventing neurite-like outgrowths and MK-STYX in inducing neurite outgrowths. The roles of these pseudophosphatases in neurite outgrowth highlight their emergence as important candidates to investigate in neurodegenerative disorders and diseases.
Collapse
|
80
|
Dougherty JA, Kilbane Myers J, Khan M, Angelos MG, Chen CA. Dual-Specificity Phosphatase 4 Overexpression in Cells Prevents Hypoxia/Reoxygenation-Induced Apoptosis via the Upregulation of eNOS. Front Cardiovasc Med 2017; 4:22. [PMID: 28484701 PMCID: PMC5401890 DOI: 10.3389/fcvm.2017.00022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/31/2017] [Indexed: 12/20/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) signaling cascades regulate several cellular functions, including differentiation, proliferation, survival, and apoptosis. The duration and magnitude of phosphorylation of these MAPKs are decisive determinants of their physiological functions. Dual-specificity phosphatases exert kinetic control over these signaling cascades. Previously, we demonstrated that DUSP4−/− hearts sustain a larger infarct and have poor functional recovery, when isolated hearts were subjected to ischemia/reperfusion. Uncontrolled p38 activation and upregulation of Nox4 expression are the main effectors for this functional alteration. Here, dual-specificity phosphatase 4 (DUSP4) overexpression in endothelial cells was used to investigate the role of DUSP4 on the modulation of reactive oxygen species (ROS) generation and vascular function, when cells were subjected to hypoxia/reoxygenation (H/R) insult. Immunostaining with cleaved caspase-3 revealed that DUSP4 overexpression prevents caspase-3 activation and apoptosis after H/R. The beneficial effects occur via modulating p38 activity, increased NO bioavailability, and reduced oxidative stress. More importantly, DUSP4 overexpression upregulates eNOS protein expression (1.62 ± 0.33 versus 0.65 ± 0.16) during H/R-induced stress. NO is a critical small molecule involved in regulating vascular tone, vascular growth, platelet aggregation, and modulation of inflammation. The level of NO generation determined using DAF-2 fluorescence demonstrated that DUSP4 overexpression augments NO production and thus improves vascular function. The level of superoxide generated from cells after being subjected to H/R was determined using dihydroethidium-HPLC method. The results suggested that DUSP4 overexpression in cells decreases H/R-induced superoxide generation (1.56 ± 0.14 versus 1.19 ± 0.05) and thus reduces oxidant stress. This also correlates with the reduction in the total protein S-glutathionylation, an indicator of protein oxidation. These results further support our hypothesis that DUSP4 is an antioxidant gene and a key phosphatase in modulating MAPKs, especially p38, during oxidative stress, which regulates ROS generation and eNOS expression and thus protects against oxidant-induced injury or apoptosis. Overall, DUSP4 may serve as an excellent molecular target for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Julie A Dougherty
- Department of Emergency Medicine, College of Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Joanna Kilbane Myers
- Department of Emergency Medicine, College of Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Mahmood Khan
- Department of Emergency Medicine, College of Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Mark G Angelos
- Department of Emergency Medicine, College of Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Chun-An Chen
- Department of Emergency Medicine, College of Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
81
|
Archer CR, Robinson EL, Drawnel FM, Roderick HL. Endothelin-1 promotes hypertrophic remodelling of cardiac myocytes by activating sustained signalling and transcription downstream of endothelin type A receptors. Cell Signal 2017; 36:240-254. [PMID: 28412414 PMCID: PMC5486433 DOI: 10.1016/j.cellsig.2017.04.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/21/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023]
Abstract
G-protein coupled receptor (GPCR) mediated activation of the MAPK signalling cascade is a key pathway in the induction of hypertrophic remodelling of the heart – a response to pathological cues including hypertension and myocardial infarction. While levels of pro-hypertrophic hormone agonists of GPCRs increase during periods of greater workload to enhance cardiac output, hypertrophy does not necessarily result. Here we investigated the relationship between the duration of exposure to the pro-hypertrophic GPCR agonist endothelin-1 (ET-1) and the induction of hypertrophic remodelling in neonatal rat ventricular myocytes (NRVM) and in the adult rat heart in vivo. Notably, a 15 min pulse of ET-1 was sufficient to induce markers of hypertrophy that were present when measured at 24 h in vivo and 48 h in vitro. The persistence of ET-1 action was insensitive to ET type A receptor (ETA receptor) antagonism with BQ123. The extended effects of ET-1 were dependent upon sustained MAPK signalling and involved persistent transcription. Inhibitors of endocytosis however conferred sensitivity upon the hypertrophic response to BQ123, suggesting that endocytosis of ETA receptors following ligand binding preserves their active state by protection against antagonist. Contrastingly, α1 adrenergic-induced hypertrophic responses required the continued presence of agonist and were sensitive to antagonist. These studies shed new light on strategies to pharmacologically intervene in the action of different pro-hypertrophic mediators. Acute ET-1 exposure elicits a long-lasting cardiac myocyte hypertrophic response. ET-1 effects depend on persistent MAPK signalling and active transcription. ET-1 elicited hypertrophy is insensitive to subsequent ETA receptor antagonism. Endocytosis inhibition potentiates ET-1-induction of hypertrophy markers. Endocytosis inhibition sensitises effects of ET-1 to ETA receptor antagonist.
Collapse
Affiliation(s)
| | - Emma L Robinson
- Laboratory of Experimental Cardiology, Dept. of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, Herestraat 49, B-3000, Leuven, Belgium
| | - Faye M Drawnel
- The Babraham Institute, Babraham, Cambridge, CB22 3AT, UK
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Dept. of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, Herestraat 49, B-3000, Leuven, Belgium.
| |
Collapse
|
82
|
Perander M, Al-Mahdi R, Jensen TC, Nunn JAL, Kildalsen H, Johansen B, Gabrielsen M, Keyse SM, Seternes OM. Regulation of atypical MAP kinases ERK3 and ERK4 by the phosphatase DUSP2. Sci Rep 2017; 7:43471. [PMID: 28252035 PMCID: PMC5333157 DOI: 10.1038/srep43471] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/25/2017] [Indexed: 12/28/2022] Open
Abstract
The atypical MAP kinases ERK3 and ERK4 are activated by phosphorylation of a serine residue lying within the activation loop signature sequence S-E-G. However, the regulation of ERK3 and ERK4 phosphorylation and activity is poorly understood. Here we report that the inducible nuclear dual-specificity MAP kinase phosphatase (MKP) DUSP2, a known regulator of the ERK and p38 MAPKs, is unique amongst the MKP family in being able to bind to both ERK3 and ERK4. This interaction is mediated by a conserved common docking (CD) domain within the carboxyl-terminal domains of ERK3 and ERK4 and the conserved kinase interaction motif (KIM) located within the non-catalytic amino terminus of DUSP2. This interaction is direct and results in the dephosphorylation of ERK3 and ERK4 and the stabilization of DUSP2. In the case of ERK4 its ability to stabilize DUSP2 requires its kinase activity. Finally, we demonstrate that expression of DUSP2 inhibits ERK3 and ERK4-mediated activation of its downstream substrate MK5. We conclude that the activity of DUSP2 is not restricted to the classical MAPK pathways and that DUSP2 can also regulate the atypical ERK3/4-MK5 signalling pathway in mammalian cells.
Collapse
Affiliation(s)
- Maria Perander
- Department of Medical Biology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Rania Al-Mahdi
- Department of Pharmacy UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Thomas C Jensen
- Department of Pharmacy UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Jennifer A L Nunn
- Department of Pharmacy UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Hanne Kildalsen
- Department of Pharmacy UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Bjarne Johansen
- Department of Pharmacy UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Mads Gabrielsen
- Stress Response Laboratory, Division of Cancer Research, Jacqui Wood Cancer Centre, James Arrot Drive, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Stephen M Keyse
- Stress Response Laboratory, Division of Cancer Research, Jacqui Wood Cancer Centre, James Arrot Drive, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Ole-Morten Seternes
- Department of Pharmacy UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
83
|
Koo J, Wang S, Kang N, Hur SJ, Bahk YY. Induction of MAP kinase phosphatase 3 through Erk/MAP kinase activation in three oncogenic Ras (H-, K- and N-Ras)-expressing NIH/3T3 mouse embryonic fibroblast cell lines. BMB Rep 2017; 49:370-5. [PMID: 26818088 PMCID: PMC5032004 DOI: 10.5483/bmbrep.2016.49.7.256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 12/13/2022] Open
Abstract
Ras oncoproteins are small molecular weight GTPases known for their involvement in oncogenesis, which operate in a complex signaling network with multiple effectors. Approximately 25% of human tumors possess mutations in a member of this family. The Raf1/MEK/Erk1/2 pathway is one of the most intensively studied signaling mechanisms. Different levels of regulation account for the inactivation of MAP kinases by MAPK phosphatases in a cell type- and stimuli-dependent manner. In the present study, using three inducible Ras-expressing NIH/3T3 cell lines, we demonstrated that MKP3 upregulation requires the activation of the Erk1/2 pathway, which correlates with the shutdown of this pathway. We also demonstrated, by applying pharmacological inhibitors and effector mutants of Ras, that induction of MKP3 at the protein level is positively regulated by the oncogenic Ras/Raf/MEK/Erk1/2 signaling pathway. [BMB Reports 2016; 49(7): 370-375].
Collapse
Affiliation(s)
- JaeHyung Koo
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - Sen Wang
- Qiqihar Medical University, Qiqihar City, Heilongjiang Province, 161006, China
| | - NaNa Kang
- Department of Brain & Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Young Yil Bahk
- Department of Biotechnology, Konkuk University, Chungju 27478, Korea
| |
Collapse
|
84
|
Liu R, Molkentin JD. Regulation of cardiac hypertrophy and remodeling through the dual-specificity MAPK phosphatases (DUSPs). J Mol Cell Cardiol 2016; 101:44-49. [PMID: 27575022 PMCID: PMC5154921 DOI: 10.1016/j.yjmcc.2016.08.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 01/19/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) play a critical role in regulating cardiac hypertrophy and remodeling in response to increased workload or pathological insults. The spatiotemporal activities and inactivation of MAPKs are tightly controlled by a family of dual-specificity MAPK phosphatases (DUSPs). Over the past 2 decades, we and others have determined the critical role for selected DUSP family members in controlling MAPK activity in the heart and the ensuing effects on ventricular growth and remodeling. More specifically, studies from mice deficient for individual Dusp genes as well as heart-specific inducible transgene-mediated overexpression have implicated select DUSPs as essential signaling effectors in the heart that function by dynamically regulating the level, subcellular and temporal activities of the extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs) and p38 MAPKs. This review summarizes recent literature on the physiological and pathological roles of MAPK-specific DUSPs in regulating MAPK signaling in the heart and the effect on cardiac growth and remodeling.
Collapse
Affiliation(s)
- Ruijie Liu
- Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA; Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jeffery D Molkentin
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
85
|
Acetate Attenuates Lipopolysaccharide-Induced Nitric Oxide Production Through an Anti-Oxidative Mechanism in Cultured Primary Rat Astrocytes. Neurochem Res 2016; 41:3138-3146. [PMID: 27542961 DOI: 10.1007/s11064-016-2038-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/09/2016] [Accepted: 08/17/2016] [Indexed: 01/06/2023]
Abstract
The biomolecule acetate can be utilized for energy production, lipid synthesis, and several metabolic processes. Acetate supplementation reduces neuroglial activation in a model of neuroinflammation induced by intraventricular injection of lipopolysaccharide (LPS). To investigate the mechanisms underlying the anti-inflammatory effect of acetate on glial cells, we examined the effect of acetate on nitric oxide (NO) production, which was experimentally activated by LPS, in cultured primary rat astrocytes. Acetate attenuated the LPS-induced NO production in a dose-dependent manner, although cell viability was not affected. Acetate suppressed the phosphorylation of p38-mitogen-activated protein kinase 24 h after LPS treatment. Acetate decreased the LPS-induced production of intracellular reactive oxygen species (ROS) at 4-24 h concomitant with an increase in glutathione. Acetate rescued astrocytes from the hydrogen peroxide-induced cell death by reducing ROS levels. These findings suggest that attenuation of NO production by acetate may alleviate glial cell damage during neuroinflammation. Acetate may offer a glioprotective effect through an anti-oxidative mechanism.
Collapse
|
86
|
Han HM, Kim SJ, Kim JS, Kim BH, Lee HW, Lee YT, Kang KH. Ameliorative effects of Artemisia argyi Folium extract on 2,4‑dinitrochlorobenzene‑induced atopic dermatitis‑like lesions in BALB/c mice. Mol Med Rep 2016; 14:3206-14. [PMID: 27571702 PMCID: PMC5042749 DOI: 10.3892/mmr.2016.5657] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 07/21/2016] [Indexed: 12/13/2022] Open
Abstract
Artemisia argyi Folium has been used to treat skin diseases, including eczema and dermatitis, in South Korean medicine. The present study investigated the curative effects of Artemisia argyi Folium extract (AAFE) on 2,4‑dinitrochlorobenzene (DNCB)‑induced atopic dermatitis (AD)‑like skin lesions in a BALB/c mouse model. Briefly, the dorsal skin of the BALB/c mice was sensitized three times with DNCB, whereas the ears were challenged twice. Repeated treatment with DNCB induced AD‑like lesions. The effects of AAFE on AD‑like lesions were evaluated by clinical observation, histopathological analysis, immunohistochemistry and enzyme‑linked immunosorbent assay. In addition, reverse transcription‑polymerase chain reaction and western blotting were performed. Treatment with AAFE reduced AD‑like lesions, as determined by clinical observation, histopathological analysis, and detection of the serum levels of histamine, immunoglobulin E and cytokines. With regards to its mechanism of action, AAFE inhibited the phosphorylation of Lck/yes‑related novel tyrosine kinase (Lyn), spleen tyrosine kinase (Syk), mitogen‑activated protein kinases (MAPKs), phosphoinositide 3‑kinase (PI3K)/Akt and IκBα, which have essential roles in the production of various cytokines in lymph nodes. The suppressive activity of AAFE may be due to the inhibition of a series of immunopathological events, including the release of proinflammatory cytokines. The results of the present study strongly suggest that AAFE exerts an anti‑AD effect by inhibiting the Lyn, Syk, MAPKs, PI3K/Akt and IκBα pathways. Therefore, AAFE may be considered an effective herbal remedy for the treatment of AD.
Collapse
Affiliation(s)
- Hyoung-Min Han
- Department of Physiology, College of Korean Medicine, Dong‑Eui University, Busan 614‑851, Republic of Korea
| | - Seung-Ju Kim
- Department of Physiology, College of Korean Medicine, Dong‑Eui University, Busan 614‑851, Republic of Korea
| | - Jong-Sik Kim
- Department of Anatomy, College of Medicine, Kosin University, Busan 602‑703, Republic of Korea
| | - Bum Hoi Kim
- Department of Anatomy, College of Korean Medicine, Dong‑Eui University, Busan 614‑851, Republic of Korea
| | - Hai Woong Lee
- Department of Public Health, College of Korean Medicine, Dong‑Eui University, Busan 614‑851, Republic of Korea
| | - Yong Tae Lee
- Department of Physiology, College of Korean Medicine, Dong‑Eui University, Busan 614‑851, Republic of Korea
| | - Kyung-Hwa Kang
- Department of Physiology, College of Korean Medicine, Dong‑Eui University, Busan 614‑851, Republic of Korea
| |
Collapse
|
87
|
Wang J, Zhou JY, Kho D, Reiners JJ, Wu GS. Role for DUSP1 (dual-specificity protein phosphatase 1) in the regulation of autophagy. Autophagy 2016; 12:1791-1803. [PMID: 27459239 DOI: 10.1080/15548627.2016.1203483] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Accumulating evidence suggests that mitogen-activated protein kinases (MAPKs) regulate macroautophagy/autophagy. However, the involvement of dual-specificity protein phosphatases (DUSPs), endogenous inhibitors for MAPKs, in autophagy remains to be determined. Here we report that DUSP1/MKP-1, the founding member of the DUSP family, plays a critical role in regulating autophagy. Specifically, we demonstrate that DUSP1 knockdown by shRNA in human ovarian cancer CAOV3 cells and knockout in murine embryonic fibroblasts, increases both basal and rapamycin-increased autophagic flux. Overexpression of DUSP1 had the opposite effect. Importantly, knockout of Dusp1 promoted phosphorylation of ULK1 at Ser555, and BECN1/Beclin 1 at Ser15, and the association of PIK3C3/VPS34, ATG14, BECN1 and MAPK, leading to the activation of the autophagosome-initiating class III phosphatidylinositol 3-kinase (PtdIns3K) complex. Furthermore, knockdown and pharmacological inhibitor studies indicated that DUSP1-mediated suppression of autophagy reflected inactivation of the MAPK1-MAPK3 members of the MAPK family. Knockdown of DUSP1 sensitized CAOV3 cells to rapamycin-induced antigrowth activity. Moreover, CAOV3-CR cells, a line that had acquired cisplatin resistance, exhibited an elevated DUSP1 level and were refractory to rapamycin-induced autophagy and cytostatic effects. Knockdown of DUSP1 in CAOV3-CR cells restored sensitivity to rapamycin. Collectively, this work identifies a previously unrecognized role for DUSP1 in regulating autophagy and suggests that suppression of DUSP1 may enhance the therapeutic activity of rapamycin.
Collapse
Affiliation(s)
- Juan Wang
- a Molecular Therapeutics Program , Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit , MI , USA.,b Departments of Oncology and Pathology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Jun-Ying Zhou
- a Molecular Therapeutics Program , Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit , MI , USA.,b Departments of Oncology and Pathology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Dhonghyo Kho
- a Molecular Therapeutics Program , Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit , MI , USA.,b Departments of Oncology and Pathology , Wayne State University School of Medicine , Detroit , MI , USA
| | - John J Reiners
- a Molecular Therapeutics Program , Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit , MI , USA.,c Institute of Environmental Health Sciences, Wayne State University , Detroit , MI , USA
| | - Gen Sheng Wu
- a Molecular Therapeutics Program , Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit , MI , USA.,b Departments of Oncology and Pathology , Wayne State University School of Medicine , Detroit , MI , USA
| |
Collapse
|
88
|
Ayush O, Jin ZW, Kim HK, Shin YR, Im SY, Lee HK. Glutamine up-regulates MAPK phosphatase-1 induction via activation of Ca 2+→ ERK cascade pathway. Biochem Biophys Rep 2016; 7:10-19. [PMID: 28955885 PMCID: PMC5613282 DOI: 10.1016/j.bbrep.2016.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 11/25/2022] Open
Abstract
The non-essential amino acid L-glutamine (Gln) displays potent anti-inflammatory activity by deactivating p38 mitogen activating protein kinase and cytosolic phospholipase A2 via induction of MAPK phosphatase-1 (MKP-1) in an extracellular signal-regulated kinase (ERK)-dependent way. In this study, the mechanism of Gln-mediated ERK-dependency in MKP-1 induction was investigated. Gln increased ERK phosphorylation and activity, and phosphorylations of Ras, c-Raf, and MEK, located in the upstream pathway of ERK, in response to lipopolysaccharidein vitro and in vivo. Gln-induced dose-dependent transient increases in intracellular calcium ([Ca2+]i) in MHS macrophage cells. Ionomycin increased [Ca2+]i and activation of Ras → ERK pathway, and MKP-1 induction, in the presence, but not in the absence, of LPS. The Gln-induced pathways involving Ca2+→ MKP-1 induction were abrogated by a calcium blocker. Besides Gln, other amino acids including L-phenylalanine and l-cysteine (Cys) also induced Ca2+ response, activation of Ras → ERK, and MKP-1 induction, albeit to a lesser degree. Gln and Cys were comparable in suppression against 2, 4-dinitrofluorobenzene-induced contact dermatitis. Gln-mediated, but not Cys-mediated, suppression was abolished by MKP-1 small interfering RNA. These data indicate that Gln induces MKP-1 by activating Ca2+→ ERK pathway, which plays a key role in suppression of inflammatory reactions.
Collapse
Key Words
- AP-1, activating protein 1
- Ala, alanine
- Asp, aspartate
- BAPTA, 1,2-bis(o-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid tetraacetoxymethylester
- CD, contact dermatitis
- CaM, calmodulin
- CaR, Ca2+-sensing receptor
- DMSO, dimethyl sulfoxide
- DNFB, 1-fluoro-2,4-dinitrobenzene
- ERK, extracellular signal-regulated kinase
- ESR, ear swelling response
- Gln, L-glutamine
- Glu, glutamate
- Gly, glycine
- H&E, hematoxylin and eosin
- JNK, c-Jun N-terminal kinase
- L-Glutamine
- LPS, lipopolysaccharides
- MAPK Phosphatase-1
- MAPK, mitogen activated protein kinase
- MKP-1, MAPK phosphatase-1
- Mitogen-activated protein kinase
- PEI, polyethyleneimine
- Ras/c-Raf/MEK/ERK, extracellular-signal-regulated kinase
- [Ca2+]i, intracellular calcium concentration
- cPLA2, cytoplasmic phospholipase A2
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Otgonzaya Ayush
- Department of Dermatology, Medical University, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Zhe Wu Jin
- Department of Anatomy and Histology and Embryology, Yanbian University Medical College, YanJi City, Jilin Province, China
| | - Hae-Kyoung Kim
- Departments of Immunology and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Yu-Rim Shin
- Biofoods Story, Inc, 477 Jeonjucheon-seoro, Wansan-gu, Jeonju, Jeonbuk 560-821, Republic of Korea
| | - Suhn-Young Im
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Hern-Ku Lee
- Departments of Immunology and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
89
|
Broome DT, Datta NS. Mitogen-activated protein kinase phosphatase-1: function and regulation in bone and related tissues. Connect Tissue Res 2016; 57:175-89. [PMID: 27031422 DOI: 10.3109/03008207.2015.1125480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this review, we have highlighted work that has clearly demonstrated that mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1), a negative regulator of MAPKs, is an important signaling mediator in bone, muscle, and fat tissue homeostasis and differentiation. Further, we examined recent studies with particular focus on MKP-1 overexpression or deletion and its impact on tissues connected to bone. We also summarized regulation of MKP-1 by known skeletal regulators like parathyroid hormone (PTH)/PTH-related peptide (PTHrP) and bone morphogenic proteins. MKP-1's integration into the pathophysiological state of osteoporosis, osteoarthritis, rheumatoid arthritis, obesity, and muscular dystrophy are examined to emphasize possible involvement of MKP-1 both at the molecular level and in disease complications such as sarcopenia- or diabetes-related osteoporosis. We predict that understanding the mechanism of MKP-1-mediated signaling in bone-muscle-fat crosstalk will be a key in coordinating their activities and developing therapeutics to improve clinical outcomes for diseases associated with advanced age.
Collapse
Affiliation(s)
- David T Broome
- a Division of Endocrinology, Department of Internal Medicine , Wayne State University School of Medicine , Detroit , MI , USA
| | - Nabanita S Datta
- a Division of Endocrinology, Department of Internal Medicine , Wayne State University School of Medicine , Detroit , MI , USA
| |
Collapse
|
90
|
Low HB, Zhang Y. Regulatory Roles of MAPK Phosphatases in Cancer. Immune Netw 2016; 16:85-98. [PMID: 27162525 PMCID: PMC4853501 DOI: 10.4110/in.2016.16.2.85] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/04/2016] [Accepted: 03/15/2016] [Indexed: 12/28/2022] Open
Abstract
The mitogen-activated protein kinases (MAPKs) are key regulators of cell growth and survival in physiological and pathological processes. Aberrant MAPK signaling plays a critical role in the development and progression of human cancer, as well as in determining responses to cancer treatment. The MAPK phosphatases (MKPs), also known as dual-specificity phosphatases (DUSPs), are a family of proteins that function as major negative regulators of MAPK activities in mammalian cells. Studies using mice deficient in specific MKPs including MKP1/DUSP1, PAC-1/DUSP2, MKP2/DUSP4, MKP5/DUSP10 and MKP7/DUSP16 demonstrated that these molecules are important not only for both innate and adaptive immune responses, but also for metabolic homeostasis. In addition, the consequences of the gain or loss of function of the MKPs in normal and malignant tissues have highlighted the importance of these phosphatases in the pathogenesis of cancers. The involvement of the MKPs in resistance to cancer therapy has also gained prominence, making the MKPs a potential target for anti-cancer therapy. This review will summarize the current knowledge of the MKPs in cancer development, progression and treatment outcomes.
Collapse
Affiliation(s)
- Heng Boon Low
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore.; Immunology Programme, The Life Science Institute, National University of Singapore, Singapore 117597, Singapore
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore.; Immunology Programme, The Life Science Institute, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
91
|
A conserved motif in JNK/p38-specific MAPK phosphatases as a determinant for JNK1 recognition and inactivation. Nat Commun 2016; 7:10879. [PMID: 26988444 PMCID: PMC4802042 DOI: 10.1038/ncomms10879] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 01/28/2016] [Indexed: 02/06/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs), important in a large array of signalling pathways, are tightly controlled by a cascade of protein kinases and by MAPK phosphatases (MKPs). MAPK signalling efficiency and specificity is modulated by protein–protein interactions between individual MAPKs and the docking motifs in cognate binding partners. Two types of docking interactions have been identified: D-motif-mediated interaction and FXF-docking interaction. Here we report the crystal structure of JNK1 bound to the catalytic domain of MKP7 at 2.4-Å resolution, providing high-resolution structural insight into the FXF-docking interaction. The 285FNFL288 segment in MKP7 directly binds to a hydrophobic site on JNK1 that is near the MAPK insertion and helix αG. Biochemical studies further reveal that this highly conserved structural motif is present in all members of the MKP family, and the interaction mode is universal and critical for the MKP-MAPK recognition and biological function. The important MAPK family of signalling proteins is controlled by MAPK phosphatases (MKPs). Here, the authors report the structure of MKP7 bound to JNK1 and characterise the conserved MKP-MAPK interaction.
Collapse
|
92
|
Gopallawa I, Uhal BD. Angiotensin-(1-7)/mas inhibits apoptosis in alveolar epithelial cells through upregulation of MAP kinase phosphatase-2. Am J Physiol Lung Cell Mol Physiol 2016; 310:L240-8. [PMID: 26637635 PMCID: PMC4888557 DOI: 10.1152/ajplung.00187.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 12/02/2015] [Indexed: 11/22/2022] Open
Abstract
Earlier work from this laboratory showed that autocrine generation of angiotensin II and c-Jun-NH2-terminal kinase phosphorylation (p-JNK) are both required events in alveolar epithelial cell (AEC) apoptosis. Although earlier data showed that angiotensin-(1-7) [ANG-(1-7)] protects against AEC apoptosis, the pathways by which ANG-(1-7)/mas activation prevent JNK phosphorylation and apoptosis are poorly understood. Therefore, in the current study, it was theorized that ANG-(1-7) activates a mitogen-activated protein kinase phosphatase (MKP) and thereby reduces JNK phosphorylation to inhibit apoptosis and promote cell survival. This hypothesis was evaluated in the human A549 and mouse MLE12 AEC lines and primary cultures of human AECs. Cells were transfected with small-interfering RNAs, antisense oligonucleotides, or inhibitors specific for MKP-2 or mas, and were then assayed for phospho-JNK, caspase-9, loss of mitochondrial membrane potential, and nuclear fragmentation. Silencing of MKP-2 significantly prevented the blockade of all apoptotic markers by ANG-(1-7). Knockdown or blockade of mas receptor by antisense oligonucleotides or by the receptor antagonist A779, respectively, caused significant decreases in MKP-2, and simultaneously increased the apoptotic markers of caspase-9 activation and nuclear fragmentation. These data show that the ANG-(1-7)/mas pathway constitutively prevents JNK phosphorylation and apoptosis of AECs by maintaining activation of the JNK-selective phosphatase MKP-2, and further demonstrate the critical role of the ANG-(1-7) receptor mas in AEC survival.
Collapse
Affiliation(s)
- Indiwari Gopallawa
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan; and
| | - Bruce D Uhal
- Department of Physiology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
93
|
Toulouse A, Nolan YM. A role for mitogen-activated protein kinase phosphatase 1 (MKP1) in neural cell development and survival. Neural Regen Res 2016; 10:1748-9. [PMID: 26807102 PMCID: PMC4705779 DOI: 10.4103/1673-5374.169606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- André Toulouse
- Department of Anatomy and Neuroscience, University College Cork, Western Gateway Building, Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Western Gateway Building, Cork, Ireland
| |
Collapse
|
94
|
Barajas-Espinosa A, Basye A, Angelos MG, Chen CA. Modulation of p38 kinase by DUSP4 is important in regulating cardiovascular function under oxidative stress. Free Radic Biol Med 2015; 89:170-81. [PMID: 26184564 PMCID: PMC4684778 DOI: 10.1016/j.freeradbiomed.2015.07.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/04/2015] [Accepted: 07/09/2015] [Indexed: 11/23/2022]
Abstract
Over-activation of p38 is implicated in many cardiovascular diseases (CVDs), including myocardial infarction, hypertrophy, heart failure, and ischemic heart disease. Numerous therapeutic interventions for CVDs have been directed toward the inhibition of the p38 mitogen-activated protein kinase activation that contributes to the detrimental effect after ischemia/reperfusion (I/R) injuries. However, the efficacy of these treatments is far from ideal, as they lack specificity and are associated with high toxicity. Previously, we demonstrated that N-acetyl cysteine (NAC) pretreatment up-regulates DUSP4 expression in endothelial cells, regulating p38 and ERK1/2 activities, and thus providing a protective effect against oxidative stress. Here, endothelial cells under hypoxia/reoxygenation (H/R) insult and isolated heart I/R injury were used to investigate the role of DUSP4 in the modulation of the p38 pathway. In rat endothelial cells, DUSP4 is time-dependently degraded by H/R (0.25 ± 0.07-fold change of control after 2h H/R). Its degradation is closely associated with hyperphosphorylation of p38 (2.1 ± 0.36-fold change) and cell apoptosis, as indicated by the increase in cells immunopositive for cleaved caspase-3 (12.59 ± 3.38%) or TUNEL labeling (29.46 ± 3.75%). The inhibition of p38 kinase activity with 20 µM SB203580 during H/R prevents H/R-induced apoptosis, assessed via TUNEL (12.99 ± 1.89%). Conversely, DUSP4 gene silencing in endothelial cells augments their sensitivity to H/R-induced apoptosis (45.81 ± 5.23%). This sensitivity is diminished via the inhibition of p38 activity (total apoptotic cells drop to 17.47 ± 1.45%). Interestingly, DUSP4 gene silencing contributes to the increase in superoxide generation from cells. Isolated Langendorff-perfused mouse hearts were subjected to global I/R injury. DUSP4(-/-) hearts had significantly larger infarct size than WT. The increase in I/R-induced infarct in DUSP4(-/-) mice significantly correlates with reduced functional recovery (assessed by RPP%, LVDP%, HR%, and dP/dtmax) as well as lower CF% and a higher initial LVEDP. From immunoblotting analysis, it is evident that p38 is significantly overactivated in DUSP4(-/-) mice after I/R injury. The activation of cleaved caspase-3 is seen in both WT and DUSP4(-/-) I/R hearts. Infusion of a p38 inhibitor prior to ischemia and during the reperfusion improves both WT and DUSP4(-/-) cardiac function. Therefore, the identification of p38 kinase modulation by DUSP4 provides a novel therapeutic target for oxidant-induced diseases, especially myocardial infarction.
Collapse
Affiliation(s)
- Alma Barajas-Espinosa
- Department of Emergency Medicine and the Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus OH, 43210USA
| | - Ariel Basye
- Department of Emergency Medicine and the Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus OH, 43210USA
| | - Mark G Angelos
- Department of Emergency Medicine and the Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus OH, 43210USA
| | - Chun-An Chen
- Department of Emergency Medicine and the Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus OH, 43210USA.
| |
Collapse
|
95
|
Ferguson BS, Nam H, Stephens JM, Morrison RF. Mitogen-Dependent Regulation of DUSP1 Governs ERK and p38 Signaling During Early 3T3-L1 Adipocyte Differentiation. J Cell Physiol 2015; 231:1562-74. [PMID: 26566083 DOI: 10.1002/jcp.25248] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 11/10/2015] [Indexed: 01/22/2023]
Abstract
Knowledge concerning mechanisms that control proliferation and differentiation of preadipocytes is essential to our understanding of adipocyte hyperplasia and the development of obesity. Evidence has shown that temporal regulation of mitogen-activated protein kinase (MAPK) phosphorylation and dephosphorylation is critical for coupling extracellular stimuli to cellular growth and differentiation. Using differentiating 3T3-L1 preadipocytes as a model of adipocyte hyperplasia, we examined a role for dual-specificity phosphatase 1 (DUSP1) on the timely modulation of MAPK signaling during states of growth arrest, proliferation, and differentiation. Using real-time reverse transcription PCR (qRT-PCR), we report that DUSP1 is induced during early preadipocyte proliferation concomitant with ERK and p38 dephosphorylation. As deactivation of ERK and p38 is essential for the progression of adipocyte differentiation, we further showed that de novo mRNA synthesis was required for ERK and p38 dephosphorylation, suggesting a role for "inducible" phosphatases in regulating MAPK signaling. Pharmacological and genetic inhibition of DUSP1 markedly increased ERK and p38 phosphorylation during early adipocyte differentiation. Based on these findings, we postulated that loss of DUSP1 would block adipocyte hyperplasia. However, genetic loss of DUSP1 was not sufficient to prevent preadipocyte proliferation or differentiation, suggesting a role for other phosphatases in the regulation of adipogenesis. In support of this, qRT-PCR identified several MAPK-specific DUSPs induced during early (DUSP2, -4, -5, & -6), mid (DUSP4 & -16) and late (DUSP9) stages of adipocyte differentiation. Collectively, these data suggest an important role for DUSPs in regulating MAPK dephosphorylation, with an emphasis on DUSP1, during early adipogenesis.
Collapse
Affiliation(s)
- Bradley S Ferguson
- Department of Nutrition, The University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Heesun Nam
- Department of Nutrition, The University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Jacqueline M Stephens
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Ron F Morrison
- Department of Nutrition, The University of North Carolina at Greensboro, Greensboro, North Carolina
| |
Collapse
|
96
|
Liu J, Yang H, Bao F, Ao K, Zhang X, Zhang Y, Yang S. IBR5 Modulates Temperature-Dependent, R Protein CHS3-Mediated Defense Responses in Arabidopsis. PLoS Genet 2015; 11:e1005584. [PMID: 26451844 PMCID: PMC4599859 DOI: 10.1371/journal.pgen.1005584] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/16/2015] [Indexed: 12/18/2022] Open
Abstract
Plant responses to low temperature are tightly associated with defense responses. We previously characterized the chilling-sensitive mutant chs3-1 resulting from the activation of the Toll and interleukin 1 receptor-nucleotide binding-leucine-rich repeat (TIR-NB-LRR)-type resistance (R) protein harboring a C-terminal LIM (Lin-11, Isl-1 and Mec-3 domains) domain. Here we report the identification of a suppressor of chs3, ibr5-7 (indole-3-butyric acid response 5), which largely suppresses chilling-activated defense responses. IBR5 encodes a putative dual-specificity protein phosphatase. The accumulation of CHS3 protein at chilling temperatures is inhibited by the IBR5 mutation. Moreover, chs3-conferred defense phenotypes were synergistically suppressed by mutations in HSP90 and IBR5. Further analysis showed that IBR5, with holdase activity, physically associates with CHS3, HSP90 and SGT1b (Suppressor of the G2 allele of skp1) to form a complex that protects CHS3. In addition to the positive role of IBR5 in regulating CHS3, IBR5 is also involved in defense responses mediated by R genes, including SNC1 (Suppressor of npr1-1, Constitutive 1), RPS4 (Resistance to P. syringae 4) and RPM1 (Resistance to Pseudomonas syringae pv. maculicola 1). Thus, the results of the present study reveal a role for IBR5 in the regulation of multiple R protein-mediated defense responses. Resistance (R) genes play central roles in recognizing pathogens and triggering plant defense responses. CHS3 encodes a TIR-NB-LRR-type R protein harboring a C-terminal LIM domain. A point mutation in CHS3 activates the defense response under chilling stress. Here we identified and characterized ibr5-7, a mutant that suppresses the chilling-induced defense responses of chs3-1. We observed that the enhanced defense responses and cell death in the chs3-1 mutant are synergistically dependent on IBR5 and HSP90. IBR5 physically interacts with CHS3, forming a complex with SGT1b/ HSP90. Moreover, IBR5 is also involved in the R-gene resistance mediated by SNC1, RPS4 and RPM1. Thus, IBR5 plays key roles in regulating defense responses mediated by multiple R proteins.
Collapse
Affiliation(s)
- Jingyan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Center, China Agricultural University, Beijing, China
| | - Haibian Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Center, China Agricultural University, Beijing, China
| | - Fei Bao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Center, China Agricultural University, Beijing, China
| | - Kevin Ao
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Center, China Agricultural University, Beijing, China
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shuhua Yang
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
97
|
Almeida GT, Lage RCG, Anderson L, Venancio TM, Nakaya HI, Miyasato PA, Rofatto HK, Zerlotini A, Nakano E, Oliveira G, Verjovski-Almeida S. Synergy of Omeprazole and Praziquantel In Vitro Treatment against Schistosoma mansoni Adult Worms. PLoS Negl Trop Dis 2015; 9:e0004086. [PMID: 26402251 PMCID: PMC4581627 DOI: 10.1371/journal.pntd.0004086] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/25/2015] [Indexed: 01/01/2023] Open
Abstract
Background Treatment and morbidity control of schistosomiasis relies on a single drug, praziquantel (PZQ), and the selection of resistant worms under repeated treatment is a concern. Therefore, there is a pressing need to understand the molecular effects of PZQ on schistosomes and to investigate alternative or synergistic drugs against schistosomiasis. Methodology We used a custom-designed Schistosoma mansoni expression microarray to explore the effects of sublethal doses of PZQ on large-scale gene expression of adult paired males and females and unpaired mature females. We also assessed the efficacy of PZQ, omeprazole (OMP) or their combination against S. mansoni adult worms with a survival in vitro assay. Principal Findings We identified sets of genes that were affected by PZQ in paired and unpaired mature females, however with opposite gene expression patterns (up-regulated in paired and down-regulated in unpaired mature females), indicating that PZQ effects are heavily influenced by the mating status. We also identified genes that were similarly affected by PZQ in males and females. Functional analyses of gene interaction networks were performed with parasite genes that were differentially expressed upon PZQ treatment, searching for proteins encoded by these genes whose human homologs are targets of different drugs used for other diseases. Based on these results, OMP, a widely prescribed proton pump inhibitor known to target the ATP1A2 gene product, was chosen and tested. Sublethal doses of PZQ combined with OMP significantly increased worm mortality in vitro when compared with PZQ or OMP alone, thus evidencing a synergistic effect. Conclusions Functional analysis of gene interaction networks is an important approach that can point to possible novel synergistic drug candidates. We demonstrated the potential of this strategy by showing that PZQ in combination with OMP displayed increased efficiency against S. mansoni adult worms in vitro when compared with either drug alone. Schistosomiasis causes severe health problems in endemic areas of Africa, Southeast Asia, and Central and South America. Praziquantel is the drug of choice for treatment of at-risk populations; however, evolution of resistant worms under repeated treatment is of great concern. Combining praziquantel with another drug could not only increase efficacy of praziquantel, but also eventually hamper development of drug resistance. Our study reports the global praziquantel-induced transcriptional changes of Schistosoma mansoni adult worms in vitro, in the context of the mature female mating status (paired or unpaired). We identified sets of genes that were differentially affected in paired or unpaired mature females; we also identified genes that were similarly affected in males and females. Aiming to find possible new candidates to be tested as synergistic drugs, we used functional analysis of gene interaction networks to identify parasite genes whose expression was affected by praziquantel, and encode proteins whose human homologs are targets of different drugs already used to treat other diseases. This analysis suggested omeprazole, a widely prescribed drug, as a potential partner for praziquantel in a combination treatment. Finally, we demonstrated that this praziquantel-omeprazole combination resulted in increased worm lethality in vitro when compared with praziquantel or omeprazole alone.
Collapse
Affiliation(s)
- Giulliana T. Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Regina C. G. Lage
- Genomics and Computational Biology Group, Centro de Pesquisas René Rachou - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Leticia Anderson
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago M. Venancio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Helder I. Nakaya
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Adhemar Zerlotini
- Genomics and Computational Biology Group, Centro de Pesquisas René Rachou - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | | | - Guilherme Oliveira
- Genomics and Computational Biology Group, Centro de Pesquisas René Rachou - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
- Vale Technology Institute, Belém, Pará, Brazil
| | - Sergio Verjovski-Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Instituto Butantan, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
98
|
Seo H, Cho S. PTP Inhibitor V Inhibits Dual-specificity Phosphatase 22 (DUSP22) Activity. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Huiyun Seo
- College of Pharmacy; Chung-Ang University; Seoul 156-756 Republic of Korea
| | - Sayeon Cho
- College of Pharmacy; Chung-Ang University; Seoul 156-756 Republic of Korea
| |
Collapse
|
99
|
Park YJ, Lee JM, Shin SY, Kim YH. Constitutively active Ras negatively regulates Erk MAP kinase through induction of MAP kinase phosphatase 3 (MKP3) in NIH3T3 cells. BMB Rep 2015; 47:685-90. [PMID: 24602610 PMCID: PMC4345513 DOI: 10.5483/bmbrep.2014.47.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Indexed: 11/20/2022] Open
Abstract
The Ras/Raf/MEK/Erk signaling pathway is important for regulation of cell growth, proliferation, differentiation, survival, and apoptosis in response to a variety of extracellular stimuli. Lack of Erk MAPK activation is observed in several cancer cells despite active activation of Ras. However, little is known about the modulation of Erk1/2 activity by active Ras. Here, we show that overexpression of active H-Ras (H-RasG12R) in NIH3T3 fibroblasts impaired FGF2-induced Erk1/2 phosphorylation, as compared to wild-type cells. Northern blot analysis revealed that prolonged expression of active Ras increased MAP kinase phosphatase 3 (MKP3) mRNA expression, a negative regulator of Erk MAPK. Inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway abrogated active Ras-induced up-regulation of MKP3 expression, leading to the rescue of Erk1/2 phosphorylation. Our results demonstrated that the Ras/Raf/MEK/Erk signaling cascade is negatively regulated by the PI3K/Akt dependent transcriptional activation of the MKP3 gene.
Collapse
Affiliation(s)
- Young Jae Park
- Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea
| | - Jong Min Lee
- Department of Biological Sciences, College of Biological Science and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Soon Young Shin
- Department of Biological Sciences, College of Biological Science and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Young Ho Kim
- Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea
| |
Collapse
|
100
|
Mutlak M, Kehat I. Extracellular signal-regulated kinases 1/2 as regulators of cardiac hypertrophy. Front Pharmacol 2015; 6:149. [PMID: 26257652 PMCID: PMC4513555 DOI: 10.3389/fphar.2015.00149] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/09/2015] [Indexed: 11/28/2022] Open
Abstract
Cardiac hypertrophy results from increased mechanical load on the heart and through the actions of local and systemic neuro-humoral factors, cytokines and growth factors. These mechanical and neuroendocrine effectors act through stretch, G protein–coupled receptors and tyrosine kinases to induce the activation of a myriad of intracellular signaling pathways including the extracellular signal-regulated kinases 1/2 (ERK1/2). Since most stimuli that provoke myocardial hypertrophy also elicit an acute phosphorylation of the threonine-glutamate-tyrosine (TEY) motif within the activation loops of ERK1 and ERK2 kinases, resulting in their activation, ERKs have long been considered promotors of cardiac hypertrophy. Several mouse models were generated in order to directly understand the causal role of ERK1/2 activation in the heart. These models include direct manipulation of ERK1/2 such as overexpression, mutagenesis or knockout models, manipulations of upstream kinases such as MEK1 and manipulations of the phosphatases that dephosphorylate ERK1/2 such as DUSP6. The emerging understanding from these studies, as will be discussed here, is more complex than originally considered. While there is little doubt that ERK1/2 activation or the lack of it modulates the hypertrophic process or the type of hypertrophy that develops, it appears that not all ERK1/2 activation events are the same. While much has been learned, some questions remain regarding the exact role of ERK1/2 in the heart, the upstream events that result in ERK1/2 activation and the downstream effector in hypertrophy.
Collapse
Affiliation(s)
- Michael Mutlak
- The Rappaport Institute and the Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology , Haifa, Israel
| | - Izhak Kehat
- The Rappaport Institute and the Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology , Haifa, Israel ; Department of Cardiology and the Clinical Research Institute at Rambam, Rambam Medical Center , Haifa, Israel
| |
Collapse
|