51
|
Chakraborty D, Gupta K, Biswas S. A mechanistic insight of phytoestrogens used for Rheumatoid arthritis: An evidence-based review. Biomed Pharmacother 2020; 133:111039. [PMID: 33254019 DOI: 10.1016/j.biopha.2020.111039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Assessment of the potential therapeutic benefits offered by naturally occurring phytoestrogens necessitate inspection of their potency and sites of action in impeding the chronic, systemic, autoimmune, joint destructing disorder Rheumatoid arthritis (RA). Possessing structural and functional similarity with human estrogen, phytoestrogen promisingly replaces the use of hormone therapy in eradicating RA symptoms with their anti-inflammatory, anti-oxidative, anti-proliferative, anti-angiogenesis, immunomodulatory, joint protection properties abolishing the harmful side effects of synthetic drugs. Scientific evidences revealed that use of phytoestrogens from different chemical categories including flavonoids, alkaloids, stilbenoids derived from different plant species manifest beneficial effects on RA through various cellular mechanisms including suppression of pro-inflammatory cytokines in particular tumor necrosis factor (TNF-α), interleukin(IL-6) and nuclear factor kappa B (NF-κB) and destructive metalloproteinases, inhibition of oxidative stress, suppressing inflammatory signalling pathways, attenuating osteoclastogenesis ameliorating cartilage degradation and bone erosion. This review summarizes the evidences of different phytoestrogen treatment and their pharmacological mechanisms in both in vitro and in vivo studies along with discussing clinical evaluations in RA patients showing phytoestrogen as a promising agent for RA therapy. Further investigations and more clinical trials are mandatory to clarify the utility of these plant derived compounds in RA prevention and in managing oestrogen deficient diseases in patients.
Collapse
Affiliation(s)
- Debolina Chakraborty
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Kriti Gupta
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India.
| | - Sagarika Biswas
- Department of Integrative and Functional Biology, CSIR - Institute of Genomics & Integrative Biology, Mall Road, Delhi, 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
52
|
Liu S, Pellman D. The coordination of nuclear envelope assembly and chromosome segregation in metazoans. Nucleus 2020; 11:35-52. [PMID: 32208955 PMCID: PMC7289584 DOI: 10.1080/19491034.2020.1742064] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 01/25/2023] Open
Abstract
The nuclear envelope (NE) is composed of two lipid bilayer membranes that enclose the eukaryotic genome. In interphase, the NE is perforated by thousands of nuclear pore complexes (NPCs), which allow transport in and out of the nucleus. During mitosis in metazoans, the NE is broken down and then reassembled in a manner that enables proper chromosome segregation and the formation of a single nucleus in each daughter cell. Defects in coordinating NE reformation and chromosome segregation can cause aberrant nuclear architecture. This includes the formation of micronuclei, which can trigger a catastrophic mutational process commonly observed in cancers called chromothripsis. Here, we discuss the current understanding of the coordination of NE reformation with chromosome segregation during mitotic exit in metazoans. We review differing models in the field and highlight recent work suggesting that normal NE reformation and chromosome segregation are physically linked through the timing of mitotic spindle disassembly.
Collapse
Affiliation(s)
- Shiwei Liu
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David Pellman
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
53
|
Kwon M, Leibowitz ML, Lee JH. Small but mighty: the causes and consequences of micronucleus rupture. Exp Mol Med 2020; 52:1777-1786. [PMID: 33230251 PMCID: PMC8080619 DOI: 10.1038/s12276-020-00529-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Micronuclei are small DNA-containing nuclear structures that are spatially isolated from the main nucleus. They are frequently found in pathologies, including cancer. It was recently shown that these nuclear structures are not only biomarkers of disease but also play an active role in tumor biology. Many consequences of micronucleus formation on tumor biology are dependent on the frequent and irreversible rupture of their nuclear envelopes, which results in the exposure of their DNA contents to the cytoplasm. In this review, we discuss models of defective nuclear envelope deposition on missegregated chromosomes that lead to nuclear envelope rupture. Furthermore, we expound upon the various downstream consequences of micronucleus nuclear envelope rupture on cells. These consequences include a massive DNA rearrangement phenomenon called chromothripsis and activation of the cGAS-STING innate immune signaling pathway, which can be a double-edged sword with tumorigenesis and tumor prevention functions. Although micronuclei are small structures, the impact they have on cells and their microenvironment is quite large. Micronuclei, which contain faulty chromosomes or chromosome fragments and occur outside the main cellular nucleus, are prone to rupturing, which leads to DNA changes that can drive tumor development. A team led by Mijung Kwon from Ewha Womans University in Seoul and Jae-Ho Lee of Ajou University School of Medicine in Suwon, both in South Korea, review how these micronuclei tend to burst, spilling their contents into the cell with devastating consequences. The chromosomes they contain break into tiny fragments and this broken DNA finds its way into the main nucleus, leading to chromosomal rearrangements that can permanently alter genomic function. The rupture of micronuclei also activates a part of the innate immune system that can promote cancer cell invasion and spread. Drugs targeting these processes could aid in the treatment of cancer.
Collapse
Affiliation(s)
- Mijung Kwon
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, Korea.
| | - Mitchell L Leibowitz
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Jae-Ho Lee
- Department of Biochemistry and Molecular Biology, Suwon, 16499, South Korea. .,Institute of Medical Science, Ajou University School of Medicine, Suwon, 16499, South Korea.
| |
Collapse
|
54
|
Jacquet K, Rodrigue MA, Richard DE, Lavoie JN. The adenoviral protein E4orf4: a probing tool to decipher mechanical stress-induced nuclear envelope remodeling in tumor cells. Cell Cycle 2020; 19:2963-2981. [PMID: 33103553 DOI: 10.1080/15384101.2020.1836441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The human adenovirus (Ad) type 2/5 early region 4 (E4) ORF4 protein (E4orf4) exerts a remarkable tumor cell-selective killing activity in mammalian cells. This indicates that E4orf4 can target tumor cell-defining features and is a unique tool to probe cancer cell vulnerabilities. Recently, we found that E4orf4, through an interaction with the polarity protein PAR3, subverts nuclear envelope (NE) remodeling processes in a tumor cell-selective manner. In this Perspective, we outline mechanical signals that modify nuclear dynamics and tumor cell behavior to highlight potential mechanisms for E4orf4's tumoricidal activity. Through an analysis of E4orf4's cellular targets, we define a protein subnetwork that comprises phosphatase systems interconnected to polarity protein hubs, which could contribute to enhanced NE plasticity. We infer that elucidating E4orf4's protein network at a functional level could uncover key mechanisms of NE remodeling that define the tumor cell phenotype.
Collapse
Affiliation(s)
- Kévin Jacquet
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada
| | - Marc-Antoine Rodrigue
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada
| | - Darren E Richard
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval , Québec, Canada.,Endocrinology and Nephrology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada
| | - Josée N Lavoie
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval , Québec, Canada
| |
Collapse
|
55
|
Abstract
The nuclear envelope is often depicted as a static barrier that regulates access between the nucleus and the cytosol. However, recent research has identified many conditions in cultured cells and in vivo in which nuclear membrane ruptures cause the loss of nuclear compartmentalization. These conditions include some that are commonly associated with human disease, such as migration of cancer cells through small spaces and expression of nuclear lamin disease mutations in both cultured cells and tissues undergoing nuclear migration. Nuclear membrane ruptures are rapidly repaired in the nucleus but persist in nuclear compartments that form around missegregated chromosomes called micronuclei. This review summarizes what is known about the mechanisms of nuclear membrane rupture and repair in both the main nucleus and micronuclei, and highlights recent work connecting the loss of nuclear integrity to genome instability and innate immune signaling. These connections link nuclear membrane rupture to complex chromosome alterations, tumorigenesis, and laminopathy etiologies.
Collapse
Affiliation(s)
- John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Emily M Hatch
- Division of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
| |
Collapse
|
56
|
Agarwal S, Smith M, De La Rosa I, Verba KA, Swartz P, Segura-Totten M, Mattos C. Development of a structure-analysis pipeline using multiple-solvent crystal structures of barrier-to-autointegration factor. Acta Crystallogr D Struct Biol 2020; 76:1001-1014. [DOI: 10.1107/s2059798320011341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/18/2020] [Indexed: 11/10/2022] Open
Abstract
The multiple-solvent crystal structure (MSCS) approach uses high concentrations of organic solvents to characterize the interactions and effects of solvents on proteins. Here, the method has been further developed and an MSCS data-handling pipeline is presented that uses the Detection of Related Solvent Positions (DRoP) program to improve data quality. DRoP is used to selectively model conserved water molecules, so that an advanced stage of structural refinement is reached quickly. This allows the placement of organic molecules more accurately and convergence on high-quality maps and structures. This pipeline was applied to the chromatin-associated protein barrier-to-autointegration factor (BAF), resulting in structural models with better than average statistics. DRoP and Phenix Structure Comparison were used to characterize the data sets and to identify a binding site that overlaps with the interaction site of BAF with emerin. The conserved water-mediated networks identified by DRoP suggested a mechanism by which water molecules are used to drive the binding of DNA. Normalized and differential B-factor analysis is shown to be a valuable tool to characterize the effects of specific solvents on defined regions of BAF. Specific solvents are identified that cause stabilization of functionally important regions of the protein. This work presents tools and a standardized approach for the analysis and comprehension of MSCS data sets.
Collapse
|
57
|
Guey B, Wischnewski M, Decout A, Makasheva K, Kaynak M, Sakar MS, Fierz B, Ablasser A. BAF restricts cGAS on nuclear DNA to prevent innate immune activation. Science 2020; 369:823-828. [PMID: 32792394 DOI: 10.1126/science.aaw6421] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 11/18/2019] [Accepted: 06/12/2020] [Indexed: 12/28/2022]
Abstract
The appearance of DNA in the cytosol is perceived as a danger signal that stimulates potent immune responses through cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS). How cells regulate the activity of cGAS toward self-DNA and guard against potentially damaging autoinflammatory responses is a fundamental biological question. Here, we identify barrier-to-autointegration factor 1 (BAF) as a natural opponent of cGAS activity on genomic self-DNA. We show that BAF dynamically outcompetes cGAS for DNA binding, hence prohibiting the formation of DNA-cGAS complexes that are essential for enzymatic activity. Upon acute loss of nuclear membrane integrity, BAF is necessary to restrict cGAS activity on exposed DNA. Our observations reveal a safeguard mechanism, distinct from physical separation, by which cells protect themselves against aberrant immune responses toward genomic DNA.
Collapse
Affiliation(s)
- Baptiste Guey
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland
| | - Marilena Wischnewski
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland
| | - Alexiane Decout
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland
| | | | - Murat Kaynak
- Institute of Mechanical Engineering, EPFL, Switzerland
| | | | - Beat Fierz
- Institute of Chemical Sciences and Engineering, EPFL, Switzerland
| | - Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland.
| |
Collapse
|
58
|
van Schaik T, Vos M, Peric-Hupkes D, Hn Celie P, van Steensel B. Cell cycle dynamics of lamina-associated DNA. EMBO Rep 2020; 21:e50636. [PMID: 32893442 PMCID: PMC7645246 DOI: 10.15252/embr.202050636] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
In mammalian interphase nuclei, more than one thousand large genomic regions are positioned at the nuclear lamina (NL). These lamina‐associated domains (LADs) are involved in gene regulation and may provide a backbone for the folding of interphase chromosomes. Little is known about the dynamics of LADs during interphase, in particular at the onset of G1 phase and during DNA replication. We developed an antibody‐based variant of the DamID technology (named pA‐DamID) that allows us to map and visualize genome–NL interactions with high temporal resolution. Application of pA‐DamID combined with synchronization and cell sorting experiments reveals that LAD–NL contacts are generally rapidly established early in G1 phase. However, LADs on the distal ~25 Mb of most chromosomes tend to contact the NL first and then gradually detach, while centromere‐proximal LADs accumulate gradually at the NL. Furthermore, our data indicate that S‐phase chromatin shows transiently increased lamin interactions. These findings highlight a dynamic choreography of LAD–NL contacts during interphase progression and illustrate the usefulness of pA‐DamID to study the dynamics of genome compartmentalization.
Collapse
Affiliation(s)
- Tom van Schaik
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mabel Vos
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daan Peric-Hupkes
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Patrick Hn Celie
- Protein Facility, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
59
|
Torras-Llort M, Medina-Giró S, Escudero-Ferruz P, Lipinszki Z, Moreno-Moreno O, Karman Z, Przewloka MR, Azorín F. A fraction of barrier-to-autointegration factor (BAF) associates with centromeres and controls mitosis progression. Commun Biol 2020; 3:454. [PMID: 32814801 PMCID: PMC7438335 DOI: 10.1038/s42003-020-01182-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 07/30/2020] [Indexed: 01/01/2023] Open
Abstract
Barrier-to-Autointegration Factor (BAF) is a conserved nuclear envelope (NE) component that binds chromatin and helps its anchoring to the NE. Cycles of phosphorylation and dephosphorylation control BAF function. Entering mitosis, phosphorylation releases BAF from chromatin and facilitates NE-disassembly. At mitotic exit, PP2A-mediated dephosphorylation restores chromatin binding and nucleates NE-reassembly. Here, we show that in Drosophila a small fraction of BAF (cenBAF) associates with centromeres. We also find that PP4 phosphatase, which is recruited to centromeres by CENP-C, prevents phosphorylation and release of cenBAF during mitosis. cenBAF is necessary for proper centromere assembly and accurate chromosome segregation, being critical for mitosis progression. Disrupting cenBAF localization prevents PP2A inactivation in mitosis compromising global BAF phosphorylation, which in turn leads to its persistent association with chromatin, delays anaphase onset and causes NE defects. These results suggest that, together with PP4 and CENP-C, cenBAF forms a centromere-based mechanism that controls chromosome segregation and mitosis progression.
Collapse
Affiliation(s)
- Mònica Torras-Llort
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona, Spain.
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Sònia Medina-Giró
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Paula Escudero-Ferruz
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Zoltan Lipinszki
- MTA SZBK Lendület Laboratory of Cell Cycle Regulation and Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Olga Moreno-Moreno
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Zoltan Karman
- MTA SZBK Lendület Laboratory of Cell Cycle Regulation and Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Marcin R Przewloka
- School of Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona, Spain.
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
60
|
Sears RM, Roux KJ. Diverse cellular functions of barrier-to-autointegration factor and its roles in disease. J Cell Sci 2020; 133:133/16/jcs246546. [PMID: 32817163 DOI: 10.1242/jcs.246546] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Barrier-to-autointegration factor (BAF; encoded by BANF1) is a small highly conserved, ubiquitous and self-associating protein that coordinates with numerous binding partners to accomplish several key cellular processes. By interacting with double-stranded DNA, histones and various other nuclear proteins, including those enriched at the nuclear envelope, BAF appears to be essential for replicating cells to protect the genome and enable cell division. Cellular processes, such as innate immunity, post-mitotic nuclear reformation, repair of interphase nuclear envelope rupture, genomic regulation, and the DNA damage and repair response have all been shown to depend on BAF. This Review focuses on the regulation of the numerous interactions of BAF, which underlie the mechanisms by which BAF accomplishes its essential cellular functions. We will also discuss how perturbation of BAF function may contribute to human disease.
Collapse
Affiliation(s)
- Rhiannon M Sears
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA.,Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Kyle J Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA .,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57069, USA
| |
Collapse
|
61
|
DNA unchained: two assays to discover and study inhibitors of the DNA clustering function of barrier-to-autointegration factor. Sci Rep 2020; 10:12301. [PMID: 32704141 PMCID: PMC7378220 DOI: 10.1038/s41598-020-69246-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/07/2020] [Indexed: 11/17/2022] Open
Abstract
The protein barrier-to-autointegration factor (BAF) and its interaction partners, the LEM (LAP2B, emerin, MAN1)-domain proteins, constitute a powerful cytoplasmic DNA defense mechanism. Invading DNA molecules are quickly bound by the BAF system and trapped in membrane compartments. This decreases the nuclear uptake of DNA from the cytoplasm. Inhibition of the BAF system is therefore expected to enhance the efficacy of non-viral DNA transfection agents. In this study, we introduced a protocol for the recombinant expression of soluble BAF and developed two ELISA-type assays to discover small molecule inhibitors of BAF-dependent DNA retention by high throughput screening (HTS). The proton pump inhibitor rabeprazole as well as three compounds of the Maybridge library were identified as inhibitors of the LEM-BAF-DNA interaction chain. The inhibition was based on adduct formation with BAF cysteine residues. An enhancing effect of the compounds on cell culture transfection, however, was not observed, which may be attributed to the reducing environment of the cytoplasm that prevents the adduct formation with BAF cysteine residues. The novel assays developed here can provide new tools to further study the biological functions of the BAF system, and may lead to the identification of suitable BAF inhibitors in future HTS campaigns.
Collapse
|
62
|
Guo X, Dai X, Wu X, Zhou T, Ni J, Xue J, Wang X. Understanding the birth of rupture-prone and irreparable micronuclei. Chromosoma 2020; 129:181-200. [PMID: 32671520 DOI: 10.1007/s00412-020-00741-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
Micronuclei are extra-nuclear bodies mainly derived from ana-telophase lagging chromosomes/chromatins (LCs) that are not incorporated into primary nuclei at mitotic exit. Unlike primary nuclei, most micronuclei are enclosed by nuclear envelope (NE) that is highly susceptible to spontaneous and irreparable rupture. Ruptured micronuclei act as triggers of chromothripsis-like chaotic chromosomal rearrangements and cGAS-mediated innate immunity and inflammation, raising the view that micronuclei play active roles in human aging and tumorigenesis. Thus, understanding the ways in which micronuclear envelope (mNE) goes awry acquires increased importance. Here, we review the data to present a general framework for this question. We firstly describe NE reassembly after mitosis and NE repair during interphase. Simultaneously, we briefly discuss how mNE is organized and how mNE rupture controls the fate of micronuclei and micronucleated cells. As a focus of this review, we highlight current knowledge about why mNE is rupture-prone and irreparable. For this, we survey observations from a series of elegant studies to provide a systematic overview. We conclude that the birth of rupture-prone and irreparable micronuclei may be the cumulative effects of their intracellular geographic origins, biophysical properties, and specific mNE features. We propose that DNA damage and immunogenicity in micronuclei increase stepwise from altered mNE components, mNE rupture, and refractory to repair. Throughout our discussion, we note interesting issues in mNE fragility that have yet to be resolved.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Xueqin Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Wu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Tao Zhou
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Juan Ni
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Jinglun Xue
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
63
|
Lusk CP, Ader NR. CHMPions of repair: Emerging perspectives on sensing and repairing the nuclear envelope barrier. Curr Opin Cell Biol 2020; 64:25-33. [PMID: 32105978 PMCID: PMC7371540 DOI: 10.1016/j.ceb.2020.01.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022]
Abstract
Understanding how the integrity of the nuclear membranes is protected against internal and external stresses is an emergent challenge. Work reviewed here investigated the mechanisms by which losses of nuclear-cytoplasmic compartmentalization are sensed and ameliorated. Fundamental to these is spatial control over interactions between the endosomal sorting complexes required for transport machinery and LAP2-emerin-MAN1 family inner nuclear membrane proteins, which together promote nuclear envelope sealing in interphase and at the end of mitosis. We suggest that the size of the nuclear envelope hole dictates the mechanism of its repair, with larger holes requiring barrier-to-autointegration factor and the potential triggering of a postmitotic nuclear envelope reassembly pathway in interphase. We also consider why these mechanisms fail at ruptured micronuclei. Together, this work re-emphasizes the need to understand how membrane flow and local lipid metabolism help ensure that the nuclear envelope is refractory to mechanical rupture yet fluid enough to allow its essential dynamics.
Collapse
Affiliation(s)
- C Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, 295 Congress Avenue, New Haven, CT, 06520, USA.
| | - Nicholas R Ader
- Department of Cell Biology, Yale School of Medicine, 295 Congress Avenue, New Haven, CT, 06520, USA
| |
Collapse
|
64
|
Young AM, Gunn AL, Hatch EM. BAF facilitates interphase nuclear membrane repair through recruitment of nuclear transmembrane proteins. Mol Biol Cell 2020; 31:1551-1560. [PMID: 32459568 PMCID: PMC7521799 DOI: 10.1091/mbc.e20-01-0009] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Nuclear membrane rupture during interphase occurs in a variety of cell contexts, both healthy and pathological. Membrane ruptures can be rapidly repaired, but these mechanisms are still unclear. Here we show barrier-to-autointegration factor (BAF), a nuclear envelope protein that shapes chromatin and recruits membrane proteins in mitosis, also facilitates nuclear membrane repair in interphase, in part through recruitment of the nuclear membrane proteins emerin and Lem-domain-containing protein 2 (LEMD2) to rupture sites. Characterization of GFP-BAF accumulation at nuclear membrane rupture sites confirmed BAF is a fast, accurate, and persistent mark of nucleus rupture whose kinetics are partially dictated by membrane resealing. BAF depletion significantly delayed nuclear membrane repair, with a larger effect on longer ruptures. This phenotype could be rescued by GFP-BAF, but not by a BAF mutant lacking the Lap2, emerin, Man1 (LEM)-protein binding domain. Depletion of the BAF interactors LEMD2 or emerin, and to a lesser extent lamin A/C, increased the duration of nucleus ruptures, consistent with LEM-protein binding being a key function of BAF during membrane repair. Overall our results suggest a model where BAF is critical for timely repair of large ruptures in the nuclear membrane, potentially by facilitating membrane attachment to the rupture site.
Collapse
Affiliation(s)
- Alexandra M Young
- Division of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Amanda L Gunn
- Division of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Emily M Hatch
- Division of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| |
Collapse
|
65
|
K6-linked SUMOylation of BAF regulates nuclear integrity and DNA replication in mammalian cells. Proc Natl Acad Sci U S A 2020; 117:10378-10387. [PMID: 32332162 PMCID: PMC7229763 DOI: 10.1073/pnas.1912984117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Barrier-to-autointegration factor (BAF) is a highly conserved protein in metazoans that has multiple functions during the cell cycle. We found that BAF is SUMOylated at K6, and that this modification is essential for its nuclear localization and function, including nuclear integrity maintenance and DNA replication. K6-linked SUMOylation of BAF promotes binding and interaction with lamin A/C to regulate nuclear integrity. K6-linked SUMOylation of BAF also supports BAF binding to DNA and proliferating cell nuclear antigen and regulates DNA replication. SENP1 and SENP2 catalyze the de-SUMOylation of BAF at K6. Disrupting the SUMOylation and de-SUMOylation cycle of BAF at K6 not only disturbs nuclear integrity, but also induces DNA replication failure. Taken together, our findings demonstrate that SUMOylation at K6 is an important regulatory mechanism that governs the nuclear functions of BAF in mammalian cells.
Collapse
|
66
|
Miyazaki K, Ichikawa Y, Saitoh N, Saitoh H. Three Types of Nuclear Envelope Assemblies Associated with Micronuclei. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/cellbio.2020.91002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
67
|
Abstract
Cellular membranes can form two principally different involutions, which either exclude or contain cytosol. The 'classical' budding reactions, such as those occurring during endocytosis or formation of exocytic vesicles, involve proteins that assemble on the cytosol-excluding face of the bud neck. Inverse membrane involution occurs in a wide range of cellular processes, supporting cytokinesis, endosome maturation, autophagy, membrane repair and many other processes. Such inverse membrane remodelling is mediated by a heteromultimeric protein machinery known as endosomal sorting complex required for transport (ESCRT). ESCRT proteins assemble on the cytosolic (or nucleoplasmic) face of the neck of the forming involution and cooperate with the ATPase VPS4 to drive membrane scission or sealing. Here, we review similarities and differences of various ESCRT-dependent processes, with special emphasis on mechanisms of ESCRT recruitment.
Collapse
|
68
|
Poleshko A, Smith CL, Nguyen SC, Sivaramakrishnan P, Wong KG, Murray JI, Lakadamyali M, Joyce EF, Jain R, Epstein JA. H3K9me2 orchestrates inheritance of spatial positioning of peripheral heterochromatin through mitosis. eLife 2019; 8:49278. [PMID: 31573510 PMCID: PMC6795522 DOI: 10.7554/elife.49278] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
Cell-type-specific 3D organization of the genome is unrecognizable during mitosis. It remains unclear how essential positional information is transmitted through cell division such that a daughter cell recapitulates the spatial genome organization of the parent. Lamina-associated domains (LADs) are regions of repressive heterochromatin positioned at the nuclear periphery that vary by cell type and contribute to cell-specific gene expression and identity. Here we show that histone 3 lysine 9 dimethylation (H3K9me2) is an evolutionarily conserved, specific mark of nuclear peripheral heterochromatin and that it is retained through mitosis. During mitosis, phosphorylation of histone 3 serine 10 temporarily shields the H3K9me2 mark allowing for dissociation of chromatin from the nuclear lamina. Using high-resolution 3D immuno-oligoFISH, we demonstrate that H3K9me2-enriched genomic regions, which are positioned at the nuclear lamina in interphase cells prior to mitosis, re-associate with the forming nuclear lamina before mitotic exit. The H3K9me2 modification of peripheral heterochromatin ensures that positional information is safeguarded through cell division such that individual LADs are re-established at the nuclear periphery in daughter nuclei. Thus, H3K9me2 acts as a 3D architectural mitotic guidepost. Our data establish a mechanism for epigenetic memory and inheritance of spatial organization of the genome.
Collapse
Affiliation(s)
- Andrey Poleshko
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Cheryl L Smith
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Son C Nguyen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Priya Sivaramakrishnan
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Karen G Wong
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Eric F Joyce
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Rajan Jain
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Penn Cardiovascular Institute and Institute of Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States.,Penn Cardiovascular Institute and Institute of Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
69
|
Samson C, Petitalot A, Celli F, Herrada I, Ropars V, Le Du MH, Nhiri N, Jacquet E, Arteni AA, Buendia B, Zinn-Justin S. Structural analysis of the ternary complex between lamin A/C, BAF and emerin identifies an interface disrupted in autosomal recessive progeroid diseases. Nucleic Acids Res 2019; 46:10460-10473. [PMID: 30137533 PMCID: PMC6212729 DOI: 10.1093/nar/gky736] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 08/02/2018] [Indexed: 01/22/2023] Open
Abstract
Lamins are the main components of the nucleoskeleton. Whereas their 3D organization was recently described using cryoelectron tomography, no structural data highlights how they interact with their partners at the interface between the inner nuclear envelope and chromatin. A large number of mutations causing rare genetic disorders called laminopathies were identified in the C-terminal globular Igfold domain of lamins A and C. We here present a first structural description of the interaction between the lamin A/C immunoglobulin-like domain and emerin, a nuclear envelope protein. We reveal that this lamin A/C domain both directly binds self-assembled emerin and interacts with monomeric emerin LEM domain through the dimeric chromatin-associated Barrier-to-Autointegration Factor (BAF) protein. Mutations causing autosomal recessive progeroid syndromes specifically impair proper binding of lamin A/C domain to BAF, thus destabilizing the link between lamin A/C and BAF in cells. Recent data revealed that, during nuclear assembly, BAF’s ability to bridge distant DNA sites is essential for guiding membranes to form a single nucleus around the mitotic chromosome ensemble. Our results suggest that BAF interaction with lamin A/C also plays an essential role, and that mutations associated with progeroid syndromes leads to a dysregulation of BAF-mediated chromatin organization and gene expression.
Collapse
Affiliation(s)
- Camille Samson
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Ambre Petitalot
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Florian Celli
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Isaline Herrada
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Virginie Ropars
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marie-Hélène Le Du
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Naïma Nhiri
- Institut de Chimie des Substances Naturelles, Université Paris Sud, Université Paris-Saclay, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, Université Paris Sud, Université Paris-Saclay, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Ana-Andrea Arteni
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Brigitte Buendia
- Unité de Biologie Fonctionnelle et Adaptative (BFA), CNRS UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Sophie Zinn-Justin
- Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- To whom correspondence should be addressed. Tel: +33 169083026;
| |
Collapse
|
70
|
Huguet F, Flynn S, Vagnarelli P. The Role of Phosphatases in Nuclear Envelope Disassembly and Reassembly and Their Relevance to Pathologies. Cells 2019; 8:cells8070687. [PMID: 31284660 PMCID: PMC6678589 DOI: 10.3390/cells8070687] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/20/2022] Open
Abstract
The role of kinases in the regulation of cell cycle transitions is very well established, however, over the past decade, studies have identified the ever-growing importance of phosphatases in these processes. It is well-known that an intact or otherwise non-deformed nuclear envelope (NE) is essential for maintaining healthy cells and any deviation from this can result in pathological conditions. This review aims at assessing the current understanding of how phosphatases contribute to the remodelling of the nuclear envelope during its disassembling and reformation after cell division and how errors in this process may lead to the development of diseases.
Collapse
Affiliation(s)
- Florentin Huguet
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Shane Flynn
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Paola Vagnarelli
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK.
| |
Collapse
|
71
|
Nuclear formation induced by DNA-conjugated beads in living fertilised mouse egg. Sci Rep 2019; 9:8461. [PMID: 31186495 PMCID: PMC6560220 DOI: 10.1038/s41598-019-44941-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/17/2019] [Indexed: 11/08/2022] Open
Abstract
Reformation of a functional nucleus at the end of mitosis is crucial for normal cellular activity. Reconstitution approaches using artificial beads in frog egg extracts have clarified the molecules required for nuclear formation in vitro. However, the spatiotemporal regulation of these components, which is required for the formation of a functional nucleus in living embryos, remains unknown. Here we demonstrate that exogenous DNA introduced in the form of DNA-conjugated beads induces the assembly of an artificial nucleus in living mouse cleavage-stage embryos. Live-cell imaging and immunofluorescence studies revealed that core histones and regulator of chromosome condensation 1 (RCC1) assembled on the DNA, suggesting that nucleosomes were formed. Electron microscopy showed that double-membrane structures, partly extended from annulate lamellae, formed around the beads. Nuclear pore complex-like structures indistinguishable from those of native nuclei were also formed, suggesting that this membranous structure resembled the normal nuclear envelope (NE). However, the reconstituted NE had no nuclear import activity, probably because of the absence of Ras-related nuclear protein (Ran). Thus, DNA is necessary for NE reassembly in mouse embryos but is insufficient to form a functional nucleus. This approach provides a new tool to examine factors of interest and their spatiotemporal regulation in nuclear formation.
Collapse
|
72
|
Ahn JH, Cho MG, Sohn S, Lee JH. Inhibition of PP2A activity by H 2O 2 during mitosis disrupts nuclear envelope reassembly and alters nuclear shape. Exp Mol Med 2019; 51:1-18. [PMID: 31164634 PMCID: PMC6548778 DOI: 10.1038/s12276-019-0260-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 11/02/2018] [Accepted: 11/14/2018] [Indexed: 01/01/2023] Open
Abstract
Many types of cancer cells exhibit abnormal nuclear shapes induced by various molecular changes. However, whether reactive oxygen species (ROS) induce nuclear deformation has not been fully addressed. Here, we show that hydrogen peroxide (H2O2) treatment induced concentration-dependent alterations in nuclear shape that were abolished by pretreatment with the antioxidant N-acetyl-L-cysteine or by catalase overexpression. Interestingly, treatment with H2O2 induced nuclear shape alterations significantly more frequently in mitotic cells than in asynchronous cells, suggesting that H2O2 mainly affects nuclear envelope disassembly and/or reassembly processes. Because protein phosphatase 2 A (PP2A) activity is reported to be involved in nuclear envelope reassembly during mitosis, we investigated the possible involvement of PP2A. Indeed, H2O2 reduced the activity of PP2A, an effect that was mimicked by the PP1 and PP2A inhibitor okadaic acid. Moreover, overexpression of PP2A but not PP1 or PP4 partially rescued H2O2-induced alterations in nuclear shape, indicating that the decrease in PP2A activity induced by H2O2 is specifically involved in the observed nuclear shape alterations. We further show that treatment of mitotic cells with H2O2 induced the mislocalization of BAF (barrier-to-autointegration factor), a substrate of PP2A, during telophase. This effect was associated with Lamin A/C mislocalization and was rescued by PP2A overexpression. Collectively, our findings suggest that H2O2 preferentially affects mitotic cells through PP2A inhibition, which induces the subsequent mislocalization of BAF and Lamin A/C during nuclear envelope reassembly, leading to the formation of an abnormal nuclear shape. A class of harmful chemical compounds produces morphological abnormalities in the nucleus that may help promote tumor growth. Reactive oxygen species (ROS) are DNA- and protein-damaging molecules that originate both from environmental contaminants and as a byproduct of cellular metabolism or stress. Jae-Ho Lee and colleagues at Ajou University, Suwon, South Korea have now identified a mechanism by which ROS can disrupt the shape and structure of the nucleus. They show that ROS exposure reduces the ativity of an enzyme called PP2A, which is required for the targeted recruitment of proteins that rebuild the membrane envelope surrounding the nucleus after cell division. Perturbations in this envelope can potentially contribute to damage to the chromosomal DNA within the nucleus, creating conditions that can trigger or accelerate the process of tumorigenesis.
Collapse
Affiliation(s)
- Ju-Hyun Ahn
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 443-721, South Korea.,Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 443-721, South Korea.,Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon, 443-721, South Korea
| | - Min-Guk Cho
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 443-721, South Korea.,Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 443-721, South Korea.,Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon, 443-721, South Korea
| | - Seonghyang Sohn
- Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon, 443-721, South Korea.,Department of Microbiology, Ajou University School of Medicine, Suwon, 443-721, South Korea
| | - Jae-Ho Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 443-721, South Korea. .,Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 443-721, South Korea. .,Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon, 443-721, South Korea.
| |
Collapse
|
73
|
Alvarado-Kristensson M, Rosselló CA. The Biology of the Nuclear Envelope and Its Implications in Cancer Biology. Int J Mol Sci 2019; 20:E2586. [PMID: 31137762 PMCID: PMC6566445 DOI: 10.3390/ijms20102586] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/07/2019] [Accepted: 05/25/2019] [Indexed: 12/18/2022] Open
Abstract
The formation of the nuclear envelope and the subsequent compartmentalization of the genome is a defining feature of eukaryotes. Traditionally, the nuclear envelope was purely viewed as a physical barrier to preserve genetic material in eukaryotic cells. However, in the last few decades, it has been revealed to be a critical cellular component in controlling gene expression and has been implicated in several human diseases. In cancer, the relevance of the cell nucleus was first reported in the mid-1800s when an altered nuclear morphology was observed in tumor cells. This review aims to give a current and comprehensive view of the role of the nuclear envelope on cancer first by recapitulating the changes of the nuclear envelope during cell division, second, by reviewing the role of the nuclear envelope in cell cycle regulation, signaling, and the regulation of the genome, and finally, by addressing the nuclear envelope link to cell migration and metastasis and its use in cancer prognosis.
Collapse
Affiliation(s)
- Maria Alvarado-Kristensson
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| | - Catalina Ana Rosselló
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07121 Palma de Mallorca, Spain.
- Lipopharma Therapeutics, Isaac Newton, 07121 Palma de Mallorca, Spain.
| |
Collapse
|
74
|
Dharmaraj T, Guan Y, Liu J, Badens C, Gaborit B, Wilson KL. Rare BANF1 Alleles and Relatively Frequent EMD Alleles Including 'Healthy Lipid' Emerin p.D149H in the ExAC Cohort. Front Cell Dev Biol 2019; 7:48. [PMID: 31024910 PMCID: PMC6459885 DOI: 10.3389/fcell.2019.00048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/19/2019] [Indexed: 01/05/2023] Open
Abstract
Emerin (EMD) and barrier to autointegration factor 1 (BANF1) each bind A-type lamins (LMNA) as fundamental components of nuclear lamina structure. Mutations in LMNA, EMD and BANF1 are genetically linked to many tissue-specific disorders including Emery-Dreifuss muscular dystrophy and cardiomyopathy (LMNA, EMD), lipodystrophy, insulin resistance and type 2 diabetes (LMNA) and progeria (LMNA, BANF1). To explore human genetic variation in these genes, we analyzed EMD and BANF1 alleles in the Exome Aggregation Consortium (ExAC) cohort of 60,706 unrelated individuals. We identified 13 rare heterozygous BANF1 missense variants (p.T2S, p.H7Y, p.D9N, p.S22R, p.G25E, p.D55N, p.D57Y, p.L63P, p.N70T, p.K72R, p.R75W, p.R75Q, p.G79R), and one homozygous variant (p.D9H). Several variants are known (p.G25E) or predicted (e.g., p.D9H, p.D9N, p.L63P) to perturb BANF1 and warrant further study. Analysis of EMD revealed two previously identified variants associated with adult-onset cardiomyopathy (p.K37del, p.E35K) and one deemed 'benign' in an Emery-Dreifuss patient (p.D149H). Interestingly p.D149H was the most frequent emerin variant in ExAC, identified in 58 individuals (overall allele frequency 0.06645%), of whom 55 were East Asian (allele frequency 0.8297%). Furthermore, p.D149H associated with four 'healthy' traits: reduced triglycerides (-0.336; p = 0.0368), reduced waist circumference (-0.321; p = 0.0486), reduced cholesterol (-0.572; p = 0.000346) and reduced LDL cholesterol (-0.599; p = 0.000272). These traits are distinct from LMNA-associated metabolic disorders and provide the first insight that emerin influences metabolism. We also identified one novel in-frame deletion (p.F39del) and 62 novel emerin missense variants, many of which were relatively frequent and potentially disruptive including p.N91S and p.S143F (∼0.041% and ∼0.034% of non-Finnish Europeans, respectively), p.G156S (∼0.39% of Africans), p.R204G (∼0.18% of Latinx), p.R207P (∼0.08% of South Asians) and p.R221L (∼0.15% of Latinx). Many novel BANF1 variants are predicted to disrupt dimerization or binding to DNA, histones, emerin or A-type lamins. Many novel emerin variants are predicted to disrupt emerin filament dynamics or binding to BANF1, HDAC3, A-type lamins or other partners. These new human variants provide a foundational resource for future studies to test the molecular mechanisms of BANF1 and emerin function, and to understand the link between emerin variant p.D149H and a 'healthy' lipid profile.
Collapse
Affiliation(s)
- Tejas Dharmaraj
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Youchen Guan
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Julie Liu
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | | | - Katherine L Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
75
|
Bilir Ş, Kojidani T, Mori C, Osakada H, Kobayashi S, Koujin T, Hiraoka Y, Haraguchi T. Roles of Nup133, Nup153 and membrane fenestrations in assembly of the nuclear pore complex at the end of mitosis. Genes Cells 2019; 24:338-353. [PMID: 30821042 DOI: 10.1111/gtc.12677] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/15/2019] [Accepted: 02/24/2019] [Indexed: 12/25/2022]
Abstract
Reassembly of the nuclear pore complex (NPC) at the end of mitosis is an important event for eukaryotic nuclear function. In this study, we examined the dynamic behaviors of the endoplasmic reticulum (ER) by "Live CLEM" imaging. In metaphase, numerous fenestrations on the ER membrane were observed around chromosomes. In telophase, these fenestrations became filled at the region attached to chromosomes, whereas they remained open at the region unattached to chromosomes, suggesting that NPC assembly takes place at fenestrations on the membrane. To determine the roles of nucleoporins in postmitotic NPC formation, we used artificial beads conjugated with anti-GFP antibody, which captures GFP-fused proteins on the beads when incorporated into cells. Live CLEM imaging of telophase cells containing Nup133-coated beads or Nup153-coated beads showed that Nup133 and Nup153, as the sole effector molecules, assembled the NPC-like structure on the membrane fenestrations. Indirect immunofluorescence staining of the Nup133-coated beads showed that Nup133 effectively assembled Nup107 and ELYS, whereas minimal assembly of Nup98 and Nup62 was observed; the Nup153-coated bead effectively assembled Nup98, Nup62 and Pom121, but assembled neither Nup107 nor ELYS. Our results suggest that Nup133 and Nup153 play different roles in assembling the NPC on membrane fenestrations.
Collapse
Affiliation(s)
- Şükriye Bilir
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology (NICT), Kobe, Japan
| | - Tomoko Kojidani
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology (NICT), Kobe, Japan.,Japan Women's University, Tokyo, Japan
| | - Chie Mori
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology (NICT), Kobe, Japan
| | - Hiroko Osakada
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology (NICT), Kobe, Japan
| | - Shouhei Kobayashi
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology (NICT), Kobe, Japan
| | - Takako Koujin
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology (NICT), Kobe, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology (NICT), Kobe, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.,Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology (NICT), Kobe, Japan
| |
Collapse
|
76
|
Dubińska-Magiera M, Kozioł K, Machowska M, Piekarowicz K, Filipczak D, Rzepecki R. Emerin Is Required for Proper Nucleus Reassembly after Mitosis: Implications for New Pathogenetic Mechanisms for Laminopathies Detected in EDMD1 Patients. Cells 2019; 8:E240. [PMID: 30871242 PMCID: PMC6468536 DOI: 10.3390/cells8030240] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/26/2019] [Accepted: 03/05/2019] [Indexed: 12/29/2022] Open
Abstract
Emerin is an essential LEM (LAP2, Emerin, MAN1) domain protein in metazoans and an integral membrane protein associated with inner and outer nuclear membranes. Mutations in the human EMD gene coding for emerin result in the rare genetic disorder: Emery⁻Dreifuss muscular dystrophy type 1 (EDMD1). This disease belongs to a broader group called laminopathies-a heterogeneous group of rare genetic disorders affecting tissues of mesodermal origin. EDMD1 phenotype is characterized by progressive muscle wasting, contractures of the elbow and Achilles tendons, and cardiac conduction defects. Emerin is involved in many cellular and intranuclear processes through interactions with several partners: lamins; barrier-to-autointegration factor (BAF), β-catenin, actin, and tubulin. Our study demonstrates the presence of the emerin fraction which associates with mitotic spindle microtubules and centrosomes during mitosis and colocalizes during early mitosis with lamin A/C, BAF, and membranes at the mitotic spindle. Transfection studies with cells expressing EGFP-emerin protein demonstrate that the emerin fusion protein fraction also localizes to centrosomes and mitotic spindle microtubules during mitosis. Transient expression of emerin deletion mutants revealed that the resulting phenotypes vary and are mutant dependent. The most frequent phenotypes include aberrant nuclear shape, tubulin network mislocalization, aberrant mitosis, and mislocalization of centrosomes. Emerin deletion mutants demonstrated different chromatin binding capacities in an in vitro nuclear assembly assay and chromatin-binding properties correlated with the strength of phenotypic alteration in transfected cells. Aberrant tubulin staining and microtubule network phenotype appearance depended on the presence of the tubulin binding region in the expressed deletion mutants. We believe that the association with tubulin might help to "deliver" emerin and associated membranes to decondensing chromatin. Preliminary analyses of cells from Polish patients with EDMD1 revealed that for several mutations thought to be null for emerin protein, a truncated emerin protein was present. We infer that the EDMD1 phenotype may be strengthened by the toxicity of truncated emerin expressed in patients with certain nonsense mutations in EMD.
Collapse
Affiliation(s)
- Magda Dubińska-Magiera
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wroclaw, Poland.
| | - Katarzyna Kozioł
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Magdalena Machowska
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Katarzyna Piekarowicz
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Daria Filipczak
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Ryszard Rzepecki
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
77
|
Cera I, Whitton L, Donohoe G, Morris DW, Dechant G, Apostolova G. Genes encoding SATB2-interacting proteins in adult cerebral cortex contribute to human cognitive ability. PLoS Genet 2019; 15:e1007890. [PMID: 30726206 PMCID: PMC6364870 DOI: 10.1371/journal.pgen.1007890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/12/2018] [Indexed: 12/16/2022] Open
Abstract
During CNS development, the nuclear protein SATB2 is expressed in superficial cortical layers and determines projection neuron identity. In the adult CNS, SATB2 is expressed in pyramidal neurons of all cortical layers and is a regulator of synaptic plasticity and long-term memory. Common variation in SATB2 locus confers risk of schizophrenia, whereas rare, de novo structural and single nucleotide variants cause severe intellectual disability and absent or limited speech. To characterize differences in SATB2 molecular function in developing vs adult neocortex, we isolated SATB2 protein interactomes at the two ontogenetic stages and identified multiple novel SATB2 interactors. SATB2 interactomes are highly enriched for proteins that stabilize de novo chromatin loops. The comparison between the neonatal and adult SATB2 protein complexes indicates a developmental shift in SATB2 molecular function, from transcriptional repression towards organization of chromosomal superstructure. Accordingly, gene sets regulated by SATB2 in the neocortex of neonatal and adult mice show limited overlap. Genes encoding SATB2 protein interactors were grouped for gene set analysis of human GWAS data. Common variants associated with human cognitive ability are enriched within the genes encoding adult but not neonatal SATB2 interactors. Our data support a shift in the function of SATB2 in cortex over lifetime and indicate that regulation of spatial chromatin architecture by the SATB2 interactome contributes to cognitive function in the general population.
Collapse
Affiliation(s)
- Isabella Cera
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Laura Whitton
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging, Cognition and Genomics (NICOG) Centre and NCBES Galway Neuroscience Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Gary Donohoe
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging, Cognition and Genomics (NICOG) Centre and NCBES Galway Neuroscience Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Derek W. Morris
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging, Cognition and Genomics (NICOG) Centre and NCBES Galway Neuroscience Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Galway, Ireland
| | - Georg Dechant
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Galina Apostolova
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
78
|
Iwamoto M, Fukuda Y, Osakada H, Mori C, Hiraoka Y, Haraguchi T. Identification of the evolutionarily conserved nuclear envelope proteins Lem2 and MicLem2 in Tetrahymena thermophila. Gene 2019; 721S:100006. [PMID: 32550543 PMCID: PMC7285967 DOI: 10.1016/j.gene.2019.100006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/18/2018] [Accepted: 01/11/2019] [Indexed: 11/26/2022]
Abstract
Lem2 family proteins, i.e. the LAP2-Emerin-MAN1 (LEM) domain-containing nuclear envelope proteins, are well-conserved from yeasts to humans, both of which belong to the Opisthokonta supergroup. However, whether their homologs are present in other eukaryotic phylogenies remains unclear. In this study, we identified two Lem2 homolog proteins, which we named as Lem2 and MicLem2, in a ciliate Tetrahymena thermophila belonging to the SAR supergroup. Lem2 was localized to the nuclear envelope of the macronucleus (MAC) and micronucleus (MIC), while MicLem2 was exclusively localized to the nuclear envelope of the MIC. Immunoelectron microscopy revealed that Lem2 in T. thermophila was localized to both the inner and outer nuclear envelopes of the MAC and MIC, while MicLem2 was mostly localized to the nuclear pores of the MIC. Molecular domain analysis using GFP-fused protein showed that the N-terminal and luminal domains, including the transmembrane segments, are responsible for nuclear envelope localization. During sexual reproduction, enrichment of Lem2 occurred in the nuclear envelopes of the MAC and MIC to be degraded, while MicLem2 was enriched in the nuclear envelope of the MIC that escaped degradation. These findings suggest the unique characteristics of Tetrahymena Lem2 proteins. Our findings provide insight into the evolutionary divergence of nuclear envelope proteins. Conserved nuclear envelope proteins Lem2 and MicLem2 are identified in Tetrahymena. Lem2 is localized to the nuclear envelope of the macronucleus and the micronucleus. MicLem2 is localized to the nuclear pore complex of the micronucleus. In sexual reproduction, Lem2 is enriched to the nuclei assigned to degradation. MicLem2 is enriched to the micronuclei that are escaped from degradation.
Collapse
Key Words
- BAF, barrier-to-autointegration factor
- DAPI, 4′,6‑diamidino‑2‑phenylindole
- DDW, double distilled water
- EDTA, ethylenediaminetetraacetic acid
- ER, endoplasmic reticulum
- GA, glutaraldehyde
- HeH domain
- HeH, helix-extension-helix
- LAP2, lamina associated polypeptide 2
- LEM domain
- LEM, LAP2-Emerin-MAN1
- MAC, macronucleus
- MIC, micronucleus
- MSC domain
- MSC, Man1-Src1p-C-terminal
- Man1
- Man1-Src1p-C-terminal domain
- NE, nuclear envelope
- NLS, nuclear localization signal
- NPC, nuclear pore complex
- Nuclear dimorphism
- Nuclear envelope
- ONM and INM, outer and inner nuclear membranes
- PB, phosphate buffer
- PBS, phosphate buffered saline
- Protist
- RRM, RNA recognition motif
- TM, transmembrane
Collapse
Affiliation(s)
- Masaaki Iwamoto
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Yasuhiro Fukuda
- Graduate School of Agricultural Science, Tohoku University, Osaki, 989-6711, Japan
| | - Hiroko Osakada
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Chie Mori
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Yasushi Hiraoka
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, Kobe 651-2492, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
79
|
Garapati HS, Mishra K. Comparative genomics of nuclear envelope proteins. BMC Genomics 2018; 19:823. [PMID: 30445911 PMCID: PMC6240307 DOI: 10.1186/s12864-018-5218-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/31/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nuclear envelope (NE) that encapsulates the nuclear genome is a double lipid bilayer with several integral and peripherally associated proteins. It is a characteristic feature of the eukaryotes and acts as a hub for a number of important nuclear events including transcription, repair, and regulated gene expression. The proteins associated with the nuclear envelope mediate the NE functions and maintain its structural integrity, which is crucial for survival. In spite of the importance of this structure, knowledge of the protein composition of the nuclear envelope and their function, are limited to very few organisms belonging to Opisthokonta and Archaeplastida supergroups. The NE composition is largely unknown in organisms outside these two supergroups. RESULTS In this study, we have taken a comparative sequence analysis approach to identify the NE proteome that is present across all five eukaryotic supergroups. We identified 22 proteins involved in various nuclear functions to be part of the core NE proteome. The presence of these proteins across eukaryotes, suggests that they are traceable to the Last Eukaryotic Common Ancestor (LECA). Additionally, we also identified the NE proteins that have evolved in a lineage specific manner and those that have been preserved only in a subset of organisms. CONCLUSIONS Our study identifies the conserved features of the nuclear envelope across eukaryotes and provides insights into the potential composition and the functionalities that were constituents of the LECA NE.
Collapse
Affiliation(s)
- Hita Sony Garapati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
80
|
Soeda S, Yamada-Nomoto K, Michiue T, Ohsugi M. RSK-MASTL Pathway Delays Meiotic Exit in Mouse Zygotes to Ensure Paternal Chromosome Stability. Dev Cell 2018; 47:363-376.e5. [DOI: 10.1016/j.devcel.2018.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 06/25/2018] [Accepted: 09/09/2018] [Indexed: 11/30/2022]
|
81
|
Mehsen H, Boudreau V, Garrido D, Bourouh M, Larouche M, Maddox PS, Swan A, Archambault V. PP2A-B55 promotes nuclear envelope reformation after mitosis in Drosophila. J Cell Biol 2018; 217:4106-4123. [PMID: 30309980 PMCID: PMC6279390 DOI: 10.1083/jcb.201804018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/17/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022] Open
Abstract
As a dividing cell exits mitosis and daughter cells enter interphase, many proteins must be dephosphorylated. The protein phosphatase 2A (PP2A) with its B55 regulatory subunit plays a crucial role in this transition, but the identity of its substrates and how their dephosphorylation promotes mitotic exit are largely unknown. We conducted a maternal-effect screen in Drosophila melanogaster to identify genes that function with PP2A-B55/Tws in the cell cycle. We found that eggs that receive reduced levels of Tws and of components of the nuclear envelope (NE) often fail development, concomitant with NE defects following meiosis and in syncytial mitoses. Our mechanistic studies using Drosophila cells indicate that PP2A-Tws promotes nuclear envelope reformation (NER) during mitotic exit by dephosphorylating BAF and suggests that PP2A-Tws targets additional NE components, including Lamin and Nup107. This work establishes Drosophila as a powerful model to further dissect the molecular mechanisms of NER and suggests additional roles of PP2A-Tws in the completion of meiosis and mitosis.
Collapse
Affiliation(s)
- Haytham Mehsen
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Vincent Boudreau
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada.,Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| | - Damien Garrido
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Mohammed Bourouh
- Department of Biology, University of Windsor, Windsor, Ontario, Canada
| | - Myreille Larouche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada.,Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| | - Paul S Maddox
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Andrew Swan
- Department of Biology, University of Windsor, Windsor, Ontario, Canada
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada .,Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
82
|
Liu S, Kwon M, Mannino M, Yang N, Renda F, Khodjakov A, Pellman D. Nuclear envelope assembly defects link mitotic errors to chromothripsis. Nature 2018; 561:551-555. [PMID: 30232450 PMCID: PMC6599625 DOI: 10.1038/s41586-018-0534-z] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/04/2018] [Indexed: 01/09/2023]
Abstract
Defects in the architecture or integrity of the nuclear envelope (NE) are associated with a variety of human diseases1. Micronuclei, one common nuclear aberration, are an origin for chromothripsis2, a catastrophic mutational process commonly observed in cancer3–5. Chromothripsis occurs after micronuclei spontaneously lose NE integrity, which generates chromosome fragmentation6. NE disruption exposes DNA to the cytoplasm and initiates innate immune proinflammatory signaling7. Despite its importance, the basis for the NE fragility of micronuclei has not been determined. Here, we demonstrate that micronuclei undergo defective NE assembly: Only “core” NE proteins8,9 assemble efficiently on lagging chromosomes whereas “non-core” NE proteins8,9, including nuclear pore complexes (NPCs), do not. Consequently, micronuclei fail to properly import key proteins necessary for NE and genome integrity. We show that spindle microtubules block NPC/non-core NE assembly on lagging chromosomes, causing an irreversible NE assembly defect. Accordingly, experimental manipulations that position missegregated chromosomes away from the spindle correct defective NE assembly, prevent spontaneous NE disruption, and suppress DNA damage in micronuclei. Thus, during mitotic exit in metazoan cells, chromosome segregation and NE assembly are only loosely coordinated by the timing of mitotic spindle disassembly. The absence of precise checkpoint controls may explain why errors during mitotic exit are frequent and often trigger catastrophic genome rearrangements4,5.
Collapse
Affiliation(s)
- Shiwei Liu
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Mijung Kwon
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Mark Mannino
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Nachen Yang
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Fioranna Renda
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - David Pellman
- Howard Hughes Medical Institute, Chevy Chase, MD, USA. .,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
83
|
Li J, Hu B, Fang L, Gao Y, Shi S, He H, Liu X, Yuan C. Barrier-to-autointegration factor 1: A novel biomarker for gastric cancer. Oncol Lett 2018; 16:6488-6494. [PMID: 30405787 PMCID: PMC6202538 DOI: 10.3892/ol.2018.9432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/26/2018] [Indexed: 12/30/2022] Open
Abstract
China is a country with a high incidence of gastric cancer (GC), where the GC incidence and the resultant mortality rates account for 50% of those worldwide. Surgical resection remains the primary treatment for GC. However, postoperative patients have a poor prognosis as the majority of patients present with metastases at the time of diagnosis. Therefore, the identification of novel treatment targets is required. The present study aimed to determine the effects of barrier-to-autointegration factor 1 (BANF1) on the clinical features and prognosis of GC, which may aid in discovering a novel tumor diagnostic biomarker and treatment target. The BANF1 gene expression profiles for normal and gastric tumor tissues were downloaded from the Gene Expression Omnibus GSE54129 data set to analyse the expression of BANF1 at the mRNA levels. Then, online survival analysis was performed using the GC database with the Kaplan-Meier Plotter (http://kmplot.com/analysis/) data. To examine the association between BANF1 and clinical features and prognosis, 132 postoperative GC pathological specimens were collected for immunohistochemical analyses. In the GSE54129 data sets, BANF1 expression at the mRNA level was significantly higher in the tumor tissue compared with that in the normal tissue. The same result was obtained in following the immunohistochemical analyses. In addition, BANF1 expression was associated with the patient age, tumor differentiation and infiltration depth. The survival time of BANF1 high-expression patients was shorter compared with that of the low-expression patients, and tumor differentiation status and tumor node metastasis stage were independent prognostic factors of the overall survival of patients with GC. The results of the present study suggest that BANF1 is associated with the clinical features and prognosis of GC. It may be a novel indicator of tumor prognosis and a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Junjun Li
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Bingbing Hu
- Department of Infectious Diseases, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Lei Fang
- Department of Pathology and Pathophysiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yang Gao
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Shuai Shi
- Department of Pathology and Pathophysiology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Haoyu He
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Xiaomei Liu
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Caijun Yuan
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
84
|
Itoh G, Ikeda M, Iemura K, Amin MA, Kuriyama S, Tanaka M, Mizuno N, Osakada H, Haraguchi T, Tanaka K. Lateral attachment of kinetochores to microtubules is enriched in prometaphase rosette and facilitates chromosome alignment and bi-orientation establishment. Sci Rep 2018; 8:3888. [PMID: 29497093 PMCID: PMC5832872 DOI: 10.1038/s41598-018-22164-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/19/2018] [Indexed: 01/08/2023] Open
Abstract
Faithful chromosome segregation is ensured by the establishment of bi-orientation; the attachment of sister kinetochores to the end of microtubules extending from opposite spindle poles. In addition, kinetochores can also attach to lateral surfaces of microtubules; called lateral attachment, which plays a role in chromosome capture and transport. However, molecular basis and biological significance of lateral attachment are not fully understood. We have addressed these questions by focusing on the prometaphase rosette, a typical chromosome configuration in early prometaphase. We found that kinetochores form uniform lateral attachments in the prometaphase rosette. Many transient kinetochore components are maximally enriched, in an Aurora B activity-dependent manner, when the prometaphase rosette is formed. We revealed that rosette formation is driven by rapid poleward motion of dynein, but can occur even in its absence, through slow kinetochore movements caused by microtubule depolymerization that is supposedly dependent on kinetochore tethering at microtubule ends by CENP-E. We also found that chromosome connection to microtubules is extensively lost when lateral attachment is perturbed in cells defective in end-on attachment. Our findings demonstrate that lateral attachment is an important intermediate in bi-orientation establishment and chromosome alignment, playing a crucial role in incorporating chromosomes into the nascent spindle.
Collapse
Affiliation(s)
- Go Itoh
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Masanori Ikeda
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Kenji Iemura
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Mohammed Abdullahel Amin
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sei Kuriyama
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Masamitsu Tanaka
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Natsuki Mizuno
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Hiroko Osakada
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe, 651-2492, Japan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe, 651-2492, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan
- Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan.
| |
Collapse
|
85
|
Sparvoli D, Richardson E, Osakada H, Lan X, Iwamoto M, Bowman GR, Kontur C, Bourland WA, Lynn DH, Pritchard JK, Haraguchi T, Dacks JB, Turkewitz AP. Remodeling the Specificity of an Endosomal CORVET Tether Underlies Formation of Regulated Secretory Vesicles in the Ciliate Tetrahymena thermophila. Curr Biol 2018; 28:697-710.e13. [PMID: 29478853 DOI: 10.1016/j.cub.2018.01.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/09/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022]
Abstract
In the endocytic pathway of animals, two related complexes, called CORVET (class C core vacuole/endosome transport) and HOPS (homotypic fusion and protein sorting), act as both tethers and fusion factors for early and late endosomes, respectively. Mutations in CORVET or HOPS lead to trafficking defects and contribute to human disease, including immune dysfunction. HOPS and CORVET are conserved throughout eukaryotes, but remarkably, in the ciliate Tetrahymena thermophila, the HOPS-specific subunits are absent, while CORVET-specific subunits have proliferated. VPS8 (vacuolar protein sorting), a CORVET subunit, expanded to 6 paralogs in Tetrahymena. This expansion correlated with loss of HOPS within a ciliate subgroup, including the Oligohymenophorea, which contains Tetrahymena. As uncovered via forward genetics, a single VPS8 paralog in Tetrahymena (VPS8A) is required to synthesize prominent secretory granules called mucocysts. More specifically, Δvps8a cells fail to deliver a subset of cargo proteins to developing mucocysts, instead accumulating that cargo in vesicles also bearing the mucocyst-sorting receptor Sor4p. Surprisingly, although this transport step relies on CORVET, it does not appear to involve early endosomes. Instead, Vps8a associates with the late endosomal/lysosomal marker Rab7, indicating that target specificity switching occurred in CORVET subunits during the evolution of ciliates. Mucocysts belong to a markedly diverse and understudied class of protist secretory organelles called extrusomes. Our results underscore that biogenesis of mucocysts depends on endolysosomal trafficking, revealing parallels with invasive organelles in apicomplexan parasites and suggesting that a wide array of secretory adaptations in protists, like in animals, depend on mechanisms related to lysosome biogenesis.
Collapse
Affiliation(s)
- Daniela Sparvoli
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | | | - Hiroko Osakada
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan
| | - Xun Lan
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Masaaki Iwamoto
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan
| | - Grant R Bowman
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Cassandra Kontur
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - William A Bourland
- Department of Biological Sciences, Boise State University, Boise, ID 83725-1515, USA
| | - Denis H Lynn
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jonathan K Pritchard
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Tokuko Haraguchi
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe 651-2492, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
86
|
Tsuchiya M, Ogawa H, Koujin T, Mori C, Osakada H, Kobayashi S, Hiraoka Y, Haraguchi T. p62/SQSTM1 promotes rapid ubiquitin conjugation to target proteins after endosome rupture during xenophagy. FEBS Open Bio 2018; 8:470-480. [PMID: 29511624 PMCID: PMC5832981 DOI: 10.1002/2211-5463.12385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/14/2018] [Accepted: 01/15/2018] [Indexed: 01/05/2023] Open
Abstract
Autophagy is a bulk degradation pathway, and selective autophagy to remove foreign entities is called xenophagy. The conjugation of ubiquitin to target pathogens is an important process in xenophagy but when and where this ubiquitination occurs remains unclear. Here, we analyzed the temporal sequence and subcellular location of ubiquitination during xenophagy using time‐lapse observations, with polystyrene beads mimicking invading pathogens. Results revealed accumulation of a ubiquitination marker around the beads within 3 min after endosome rupture. Recruitment of ubiquitin to the beads was significantly delayed in p62‐knockout murine embryonic fibroblast cells, and this delay was rescued by ectopic p62 expression. Ectopic expression of a phosphorylation‐mimicking p62 mutated at serine residue 405 (equivalent to human serine residue 403) rescued this delay, but its unphosphorylated form did not. These results indicate that ubiquitination mainly occurs after endosome rupture and suggest that p62, specifically the phosphorylated form, promotes ubiquitin conjugation to target proteins in xenophagy.
Collapse
Affiliation(s)
- Megumi Tsuchiya
- Graduate School of Frontier Biosciences Osaka University Suita Japan
| | - Hidesato Ogawa
- Graduate School of Frontier Biosciences Osaka University Suita Japan
| | - Takako Koujin
- Advanced ICT Research Institute Kobe National Institute of Information and Communications Technology Kobe Japan
| | - Chie Mori
- Advanced ICT Research Institute Kobe National Institute of Information and Communications Technology Kobe Japan
| | - Hiroko Osakada
- Advanced ICT Research Institute Kobe National Institute of Information and Communications Technology Kobe Japan
| | - Shouhei Kobayashi
- Advanced ICT Research Institute Kobe National Institute of Information and Communications Technology Kobe Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences Osaka University Suita Japan.,Advanced ICT Research Institute Kobe National Institute of Information and Communications Technology Kobe Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences Osaka University Suita Japan.,Advanced ICT Research Institute Kobe National Institute of Information and Communications Technology Kobe Japan
| |
Collapse
|
87
|
Otsuka S, Ellenberg J. Mechanisms of nuclear pore complex assembly - two different ways of building one molecular machine. FEBS Lett 2018; 592:475-488. [PMID: 29119545 PMCID: PMC6220763 DOI: 10.1002/1873-3468.12905] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/27/2017] [Accepted: 11/02/2017] [Indexed: 12/16/2022]
Abstract
The nuclear pore complex (NPC) mediates all macromolecular transport across the nuclear envelope. In higher eukaryotes that have an open mitosis, NPCs assemble at two points in the cell cycle: during nuclear assembly in late mitosis and during nuclear growth in interphase. How the NPC, the largest nonpolymeric protein complex in eukaryotic cells, self-assembles inside cells remained unclear. Recent studies have started to uncover the assembly process, and evidence has been accumulating that postmitotic and interphase NPC assembly use fundamentally different mechanisms; the duration, structural intermediates, and regulation by molecular players are different and different types of membrane deformation are involved. In this Review, we summarize the current understanding of these two modes of NPC assembly and discuss the structural and regulatory steps that might drive the assembly processes. We furthermore integrate understanding of NPC assembly with the mechanisms for rapid nuclear growth in embryos and, finally, speculate on the evolutionary origin of the NPC implied by the presence of two distinct assembly mechanisms.
Collapse
Affiliation(s)
- Shotaro Otsuka
- Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Jan Ellenberg
- Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| |
Collapse
|
88
|
Barrier-to-autointegration factor (BAF) involvement in prelamin A-related chromatin organization changes. Oncotarget 2017; 7:15662-77. [PMID: 26701887 PMCID: PMC4941268 DOI: 10.18632/oncotarget.6697] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/21/2015] [Indexed: 11/25/2022] Open
Abstract
Chromatin disorganization is one of the major alterations linked to prelamin A processing impairment. In this study we demonstrate that BAF is necessary to modulate prelamin A effects on chromatin structure. We show that when prelamin A and BAF cannot properly interact no prelamin A-dependent effects on chromatin occur; similar to what is observed in human Nestor Guillermo Progeria Syndrome cells harboring a BAF mutation, in HEK293 cells expressing a BAF mutant unable to bind prelamin A, or in siRNA mediated BAF-depleted HEK293 cells expressing prelamin A. BAF is necessary to induce histone trimethyl-H3K9 as well as HP1-alpha and LAP2-alpha nuclear relocalization in response to prelamin A accumulation. These findings are enforced by electron microscopy evaluations showing how the prelamin A-BAF interaction governs overall chromatin organization. Finally, we demonstrate that the LAP2-alpha nuclear localization defect observed in HGPS cells involves the progerin-BAF interaction, thus establishing a functional link between BAF and prelamin A pathological forms.
Collapse
|
89
|
Snyers L, Erhart R, Laffer S, Pusch O, Weipoltshammer K, Schöfer C. LEM4/ANKLE-2 deficiency impairs post-mitotic re-localization of BAF, LAP2α and LaminA to the nucleus, causes nuclear envelope instability in telophase and leads to hyperploidy in HeLa cells. Eur J Cell Biol 2017; 97:63-74. [PMID: 29254732 DOI: 10.1016/j.ejcb.2017.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 01/01/2023] Open
Abstract
The human LEM-domain protein family is involved in fundamental aspects of nuclear biology. The LEM-domain interacts with the barrier-to-autointegration factor (BAF), which itself binds DNA. LEM-domain proteins LAP2, emerin and MAN1 are proteins of the inner nuclear membrane; they have important functions: maintaining the integrity of the nuclear lamina and regulating gene expression at the nuclear periphery. LEM4/ANKLE-2 has been proposed to participate in nuclear envelope reassembly after mitosis and to mediate dephosphorylation of BAF through binding to phosphatase PP2A. Here, we used CRISPR/Cas9 to create several cell lines deficient in LEM4/ANKLE-2. By using time-lapse video microscopy, we show that absence of this protein severely compromises the post mitotic re-association of the nuclear proteins BAF, LAP2α and LaminA to chromosomes. These defects give rise to a strong mechanical instability of the nuclear envelope in telophase and to a chromosomal instability leading to increased number of hyperploid cells. Reintroducing LEM4/ANKLE-2 in the cells by transfection could efficiently restore the telophase association of BAF and LAP2α to the chromosomes. This rescue phenotype was abolished for N- or C-terminally truncated mutants that had lost the capacity to bind PP2A. We demonstrate also that, in addition to binding to PP2A, LEM4/ANKLE-2 binds BAF through its LEM-domain, providing further evidence for a generic function of this domain as a principal interactor of BAF.
Collapse
Affiliation(s)
- Luc Snyers
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, 1090, Austria.
| | - Renate Erhart
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, 1090, Austria
| | - Sylvia Laffer
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, 1090, Austria
| | - Oliver Pusch
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, 1090, Austria
| | - Klara Weipoltshammer
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, 1090, Austria
| | - Christian Schöfer
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, 1090, Austria
| |
Collapse
|
90
|
Affiliation(s)
- Tejas Dharmaraj
- Tejas Dharmaraj is in the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Katherine L Wilson
- Katherine L. Wilson is in the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
91
|
Elkhatib RA, Paci M, Boissier R, Longepied G, Auguste Y, Achard V, Bourgeois P, Levy N, Branger N, Mitchell MJ, Metzler-Guillemain C. LEM-domain proteins are lost during human spermiogenesis but BAF and BAF-L persist. Reproduction 2017; 154:387-401. [PMID: 28684548 DOI: 10.1530/rep-17-0358] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/10/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022]
Abstract
During spermiogenesis the spermatid nucleus is elongated, and dramatically reduced in size with protamines replacing histones to produce a highly compacted chromatin. After fertilisation, this process is reversed in the oocyte to form the male pronucleus. Emerging evidence, including the coordinated loss of the nuclear lamina (NL) and the histones, supports the involvement of the NL in spermatid nuclear remodelling, but how the NL links to the chromatin is not known. In somatic cells, interactions between the NL and the chromatin have been demonstrated: LEM-domain proteins and LBR interact with the NL and respectively, the chromatin proteins BAF and HP1. We therefore sought to characterise the lamina-chromatin interface during spermiogenesis, by investigating the localisation of six LEM-domain proteins, two BAF proteins and LBR, in human spermatids and spermatozoa. Using RT-PCR, IF and western blotting, we show that six of the proteins tested are present in spermatids: LEMD1, LEMD2 (a short isoform), ANKLE2, LAP2β, BAF and BAF-L, and three absent: Emerin, LBR and LEMD3. The full-length LEMD2 isoform, required for nuclear integrity in somatic cells, is absent. In spermatids, no protein localised to the nuclear periphery, but five were nucleoplasmic, receding towards the posterior nuclear pole as spermatids matured. Our study therefore establishes that the lamina-chromatin interface in human spermatids is radically distinct from that defined in somatic cells. In ejaculated spermatozoa, we detected only BAF and BAF-L, suggesting that they might contribute to the shaping of the spermatozoon nucleus and, after fertilisation, its transition to the male pronucleus.
Collapse
Affiliation(s)
| | - Marine Paci
- Aix Marseille UnivINSERM, GMGF, UMR_S 910, Marseille, France
- APHM Hôpital La ConceptionGynépôle, Laboratoire de Biologie de la Reproduction-CECOS, Marseille Cedex 5, France
| | - Romain Boissier
- APHM Hôpital La ConceptionService d'Urologie, Marseille Cedex 5, France
| | - Guy Longepied
- Aix Marseille UnivINSERM, GMGF, UMR_S 910, Marseille, France
| | - Yasmina Auguste
- Aix Marseille UnivINSERM, GMGF, UMR_S 910, Marseille, France
| | - Vincent Achard
- APHM Hôpital La ConceptionGynépôle, Laboratoire de Biologie de la Reproduction-CECOS, Marseille Cedex 5, France
- Aix-Marseille UnivUniv Avignon, CNRS, IRD, IMBE, UMR7263, Marseille France
| | | | - Nicolas Levy
- Aix Marseille UnivINSERM, GMGF, UMR_S 910, Marseille, France
| | - Nicolas Branger
- APHM Hôpital La ConceptionService d'Urologie, Marseille Cedex 5, France
| | | | - Catherine Metzler-Guillemain
- Aix Marseille UnivINSERM, GMGF, UMR_S 910, Marseille, France
- APHM Hôpital La ConceptionGynépôle, Laboratoire de Biologie de la Reproduction-CECOS, Marseille Cedex 5, France
| |
Collapse
|
92
|
Samwer M, Schneider MWG, Hoefler R, Schmalhorst PS, Jude JG, Zuber J, Gerlich DW. DNA Cross-Bridging Shapes a Single Nucleus from a Set of Mitotic Chromosomes. Cell 2017; 170:956-972.e23. [PMID: 28841419 PMCID: PMC5638020 DOI: 10.1016/j.cell.2017.07.038] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/12/2017] [Accepted: 07/24/2017] [Indexed: 01/23/2023]
Abstract
Eukaryotic cells store their chromosomes in a single nucleus. This is important to maintain genomic integrity, as chromosomes packaged into separate nuclei (micronuclei) are prone to massive DNA damage. During mitosis, higher eukaryotes disassemble their nucleus and release individualized chromosomes for segregation. How numerous chromosomes subsequently reform a single nucleus has remained unclear. Using image-based screening of human cells, we identified barrier-to-autointegration factor (BAF) as a key factor guiding membranes to form a single nucleus. Unexpectedly, nuclear assembly does not require BAF's association with inner nuclear membrane proteins but instead relies on BAF's ability to bridge distant DNA sites. Live-cell imaging and in vitro reconstitution showed that BAF enriches around the mitotic chromosome ensemble to induce a densely cross-bridged chromatin layer that is mechanically stiff and limits membranes to the surface. Our study reveals that BAF-mediated changes in chromosome mechanics underlie nuclear assembly with broad implications for proper genome function.
Collapse
Affiliation(s)
- Matthias Samwer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Maximilian W G Schneider
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Rudolf Hoefler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Philipp S Schmalhorst
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Julian G Jude
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
93
|
Birendra Kc, May DG, Benson BV, Kim DI, Shivega WG, Ali MH, Faustino RS, Campos AR, Roux KJ. VRK2A is an A-type lamin-dependent nuclear envelope kinase that phosphorylates BAF. Mol Biol Cell 2017. [PMID: 28637768 PMCID: PMC5555652 DOI: 10.1091/mbc.e17-03-0138] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
By the use of comparative BioID of nuclear envelope (NE) proteins lamin A and Sun2, as well as a minimal inner nuclear membrane targeting motif, VRK2 is identified as a novel constituent of the NE. A-type lamins retain the transmembrane kinase VRK2 at the NE, where it phosphorylates and regulates the nuclear mobility of BAF. The nuclear envelope (NE) is critical for numerous fundamental cellular functions, and mutations in several NE constituents can lead to a heterogeneous spectrum of diseases. We used proximity biotinylation to uncover new constituents of the inner nuclear membrane (INM) by comparative BioID analysis of lamin A, Sun2 and a minimal INM-targeting motif. These studies identify vaccinia-related kinase-2 (VRK2) as a candidate constituent of the INM. The transmembrane VRK2A isoform is retained at the NE by association with A-type lamins. Furthermore, VRK2A physically interacts with A-type, but not B-type, lamins. Finally, we show that VRK2 phosphorylates barrier to autointegration factor (BAF), a small and highly dynamic chromatin-binding protein, which has roles including NE reassembly, cell cycle, and chromatin organization in cells, and subtly alters its nuclear mobility. Together these findings support the value of using BioID to identify unrecognized constituents of distinct subcellular compartments refractory to biochemical isolation and reveal VRK2A as a transmembrane kinase in the NE that regulates BAF.
Collapse
Affiliation(s)
- Birendra Kc
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Danielle G May
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Benjamin V Benson
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Dae In Kim
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Winnie G Shivega
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Manaal H Ali
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Randolph S Faustino
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105
| | - Alexandre R Campos
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Kyle J Roux
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104 .,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105
| |
Collapse
|
94
|
Kaur H, Sparvoli D, Osakada H, Iwamoto M, Haraguchi T, Turkewitz AP. An endosomal syntaxin and the AP-3 complex are required for formation and maturation of candidate lysosome-related secretory organelles (mucocysts) in Tetrahymena thermophila. Mol Biol Cell 2017; 28:1551-1564. [PMID: 28381425 PMCID: PMC5449153 DOI: 10.1091/mbc.e17-01-0018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/22/2017] [Accepted: 03/28/2017] [Indexed: 12/14/2022] Open
Abstract
Lysosome-related organelles (LROs) are secretory organelles formed by convergence between secretory and endosomal trafficking pathways. In Tetrahymena, secretory vesicles that resemble dense core granules are a new class of LROs whose synthesis depends on a conserved syntaxin required for heterotypic fusion and AP-3 for maturation. The ciliate Tetrahymena thermophila synthesizes large secretory vesicles called mucocysts. Mucocyst biosynthesis shares features with dense core granules (DCGs) in animal cells, including proteolytic processing of cargo proteins during maturation. However, other molecular features have suggested relatedness to lysosome-related organelles (LROs). LROs, which include diverse organelles in animals, are formed via convergence of secretory and endocytic trafficking. Here we analyzed Tetrahymena syntaxin 7-like 1 (Stx7l1p), a Qa-SNARE whose homologues in other lineages are linked with vacuoles/LROs. Stx7l1p is targeted to both immature and mature mucocysts and is essential in mucocyst formation. In STX7L1-knockout cells, the two major classes of mucocyst cargo proteins localize independently, accumulating in largely nonoverlapping vesicles. Thus initial formation of immature mucocysts involves heterotypic fusion, in which a subset of mucocyst proteins is delivered via an endolysosomal compartment. Further, we show that subsequent maturation requires AP-3, a complex widely implicated in LRO formation. Knockout of the µ-subunit gene does not impede delivery of any known mucocyst cargo but nonetheless arrests mucocyst maturation. Our data argue that secretory organelles in ciliates may represent a new class of LROs and reveal key roles of an endosomal syntaxin and AP-3 in the assembly of this complex compartment.
Collapse
Affiliation(s)
- Harsimran Kaur
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Daniela Sparvoli
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Hiroko Osakada
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Masaaki Iwamoto
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
95
|
LaJoie D, Ullman KS. Coordinated events of nuclear assembly. Curr Opin Cell Biol 2017; 46:39-45. [PMID: 28189102 DOI: 10.1016/j.ceb.2016.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/22/2016] [Accepted: 12/30/2016] [Indexed: 12/01/2022]
Abstract
Each time a metazoan cell undergoes open mitosis, the nucleus is dismantled in order to partition DNA content to the daughter cells. After chromosomes separate, changes at the chromatin surface usher in reestablishment of nuclear architecture. Proteins destined for the nuclear envelope are attracted to chromatin and concomitantly recruit membrane. As nuclear envelope and protein constituents spread to coat chromatin, distinct regions emerge-some rich in rapid pore formation, others occupied by microtubules that remain attached to kinetochores. Microtubule connections present physical barriers that must be remodeled in order for the nuclear envelope to seal. Regions of the nascent nuclear envelope that are initially characterized by contrasting repertoires of nuclear envelope proteins rapidly coalesce as nuclei expand and enter interphase.
Collapse
Affiliation(s)
- Dollie LaJoie
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Katharine S Ullman
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
96
|
Abstract
As a compartment border, the nuclear envelope (NE) needs to serve as both a protective membrane shell for the genome and a versatile communication interface between the nucleus and the cytoplasm. Despite its important structural role in sheltering the genome, the NE is a dynamic and highly adaptable boundary that changes composition during differentiation, deforms in response to mechanical challenges, can be repaired upon rupture and even rapidly disassembles and reforms during open mitosis. NE remodelling is fundamentally involved in cell growth, division and differentiation, and if perturbed can lead to devastating diseases such as muscular dystrophies or premature ageing.
Collapse
|
97
|
Kisurina-Evgenieva OP, Sutiagina OI, Onishchenko GE. Biogenesis of Micronuclei. BIOCHEMISTRY (MOSCOW) 2017; 81:453-64. [PMID: 27297896 DOI: 10.1134/s0006297916050035] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The presence of micronuclei in a cell is an indicator of DNA damage and genetic instability. In this review, mechanisms of emergence of micronuclei, their functional activity, and pathways of elimination are discussed. It is supposed that morphological and functional varieties of micronuclei as well as their degradation pathways can be determined by the chromosomal material localized inside these cell structures.
Collapse
|
98
|
Monachino E, Spenkelink LM, van Oijen AM. Watching cellular machinery in action, one molecule at a time. J Cell Biol 2016; 216:41-51. [PMID: 27979907 PMCID: PMC5223611 DOI: 10.1083/jcb.201610025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 12/03/2022] Open
Abstract
Monachino et al. review recent developments in single-molecule biophysical approaches and the cell biological advances they allow. Single-molecule manipulation and imaging techniques have become important elements of the biologist’s toolkit to gain mechanistic insights into cellular processes. By removing ensemble averaging, single-molecule methods provide unique access to the dynamic behavior of biomolecules. Recently, the use of these approaches has expanded to the study of complex multiprotein systems and has enabled detailed characterization of the behavior of individual molecules inside living cells. In this review, we provide an overview of the various force- and fluorescence-based single-molecule methods with applications both in vitro and in vivo, highlighting these advances by describing their applications in studies on cytoskeletal motors and DNA replication. We also discuss how single-molecule approaches have increased our understanding of the dynamic behavior of complex multiprotein systems. These methods have shown that the behavior of multicomponent protein complexes is highly stochastic and less linear and deterministic than previously thought. Further development of single-molecule tools will help to elucidate the molecular dynamics of these complex systems both inside the cell and in solutions with purified components.
Collapse
Affiliation(s)
- Enrico Monachino
- Centre for Medical and Molecular Bioscience, Illawarra Health and Medical Research Institute and University of Wollongong, New South Wales 2522, Australia.,Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, Netherlands
| | - Lisanne M Spenkelink
- Centre for Medical and Molecular Bioscience, Illawarra Health and Medical Research Institute and University of Wollongong, New South Wales 2522, Australia.,Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, Netherlands
| | - Antoine M van Oijen
- Centre for Medical and Molecular Bioscience, Illawarra Health and Medical Research Institute and University of Wollongong, New South Wales 2522, Australia
| |
Collapse
|
99
|
Abstract
The nucleus is separated from the cytosol by the nuclear envelope, which is a double lipid bilayer composed of the outer nuclear membrane and the inner nuclear membrane. The intermediate filament proteins lamin A, lamin B, and lamin C form a network underlying the inner nuclear membrane. This proteinaceous network provides the nucleus with its strength, rigidity, and elasticity. Positioned within the inner nuclear membrane are more than 150 inner nuclear membrane proteins, many of which interact directly with lamins and require lamins for their inner nuclear membrane localization. Inner nuclear membrane proteins and the nuclear lamins define the nuclear lamina. These inner nuclear membrane proteins have tissue-specific expression and diverse functions including regulating cytoskeletal organization, nuclear architecture, cell cycle dynamics, and genomic organization. Loss or mutations in lamins and inner nuclear membrane proteins cause a wide spectrum of diseases. Here, I will review the functions of the well-studied nuclear lamina proteins and the diseases associated with loss or mutations in these proteins. © 2016 American Physiological Society. Compr Physiol 6:1655-1674, 2016.
Collapse
Affiliation(s)
- James M. Holaska
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, Pennsylvania, USA
| |
Collapse
|
100
|
Lee N, Kwon JH, Kim YB, Kim SH, Park SJ, Xu W, Jung HY, Kim KT, Wang HJ, Choi KY. Vaccinia-related kinase 1 promotes hepatocellular carcinoma by controlling the levels of cell cycle regulators associated with G1/S transition. Oncotarget 2016; 6:30130-48. [PMID: 26375549 PMCID: PMC4745786 DOI: 10.18632/oncotarget.4967] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 08/24/2015] [Indexed: 11/30/2022] Open
Abstract
We identified the specific role of vaccinia-related kinase 1 (VRK1) in the progression of hepatocellular carcinoma (HCC) and evaluated its therapeutic and prognostic potential. VRK1 levels were significantly higher in HCC cell lines than a normal hepatic cell line, and were higher in HCC than non-tumor tissue. VRK1 knockdown inhibited the proliferation of SK-Hep1, SH-J1 and Hep3B cells; moreover, depletion of VRK1 suppressed HCC tumor growth in vivo. We also showed that VRK1 knockdown increased the number of G1 arrested cells by decreasing cyclin D1 and p-Rb while upregulating p21 and p27, and that VRK1 depletion downregulated phosphorylation of CREB, a transcription factor regulating CCND1. Additionally, we found that luteolin, a VRK1 inhibitor, suppressed HCC growth in vitro and in vivo, and that the aberrant VRK1 expression correlated with poor prognostic features of HCC. High levels of VRK1 were associated with shorter overall and disease-free survival and higher recurrence rates. Taken together, our findings suggest VRK1 may act as a tumor promoter by controlling the level of cell cycle regulators associated with G1/S transition and could potentially serve as a therapeutic target and/or prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Namgyu Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | | | - Young Bae Kim
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
| | - Seong-Hoon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Sung Jin Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Weiguang Xu
- Department of Surgery, Ajou University School of Medicine, Suwon, Korea
| | - Hoe-Yune Jung
- Department of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea.,Department of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Hee Jung Wang
- Department of Surgery, Ajou University School of Medicine, Suwon, Korea
| | - Kwan Yong Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea.,Department of Integrative Biosciences & Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| |
Collapse
|