51
|
Van Goor D, Hyland C, Schaefer AW, Forscher P. The role of actin turnover in retrograde actin network flow in neuronal growth cones. PLoS One 2012; 7:e30959. [PMID: 22359556 PMCID: PMC3281045 DOI: 10.1371/journal.pone.0030959] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 12/28/2011] [Indexed: 11/18/2022] Open
Abstract
The balance of actin filament polymerization and depolymerization maintains a steady state network treadmill in neuronal growth cones essential for motility and guidance. Here we have investigated the connection between depolymerization and treadmilling dynamics. We show that polymerization-competent barbed ends are concentrated at the leading edge and depolymerization is distributed throughout the peripheral domain. We found a high-to-low G-actin gradient between peripheral and central domains. Inhibiting turnover with jasplakinolide collapsed this gradient and lowered leading edge barbed end density. Ultrastructural analysis showed dramatic reduction of leading edge actin filament density and filament accumulation in central regions. Live cell imaging revealed that the leading edge retracted even as retrograde actin flow rate decreased exponentially. Inhibition of myosin II activity before jasplakinolide treatment lowered baseline retrograde flow rates and prevented leading edge retraction. Myosin II activity preferentially affected filopodial bundle disassembly distinct from the global effects of jasplakinolide on network turnover. We propose that growth cone retraction following turnover inhibition resulted from the persistence of myosin II contractility even as leading edge assembly rates decreased. The buildup of actin filaments in central regions combined with monomer depletion and reduced polymerization from barbed ends suggests a mechanism for the observed exponential decay in actin retrograde flow. Our results show that growth cone motility is critically dependent on continuous disassembly of the peripheral actin network.
Collapse
Affiliation(s)
- David Van Goor
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Callen Hyland
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Andrew W. Schaefer
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Paul Forscher
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
52
|
Ishihara D, Dovas A, Park H, Isaac BM, Cox D. The chemotactic defect in wiskott-Aldrich syndrome macrophages is due to the reduced persistence of directional protrusions. PLoS One 2012; 7:e30033. [PMID: 22279563 PMCID: PMC3261183 DOI: 10.1371/journal.pone.0030033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/09/2011] [Indexed: 01/16/2023] Open
Abstract
Wiskott-Aldrich syndrome protein (WASp) is an actin nucleation promoting factor that is required for macrophages to directionally migrate towards various chemoattractants. The chemotaxis defect of WASp-deficient cells and its activation by Cdc42 in vivo suggest that WASp plays a role in directional sensing, however, its precise role in macrophage chemotaxis is still unclear. Using shRNA-mediated downregulation of WASp in the murine monocyte/macrophage cell line RAW/LR5 (shWASp), we found that WASp was responsible for the initial wave of actin polymerization in response to global stimulation with CSF-1, which in Dictyostelium discoideum amoebae and carcinoma cells has been correlated with the ability to migrate towards chemoattractants. Real-time monitoring of shWASp cells, as well as WASp−/− bone marrow-derived macrophages (BMMs), in response to a CSF-1 gradient revealed that the protrusions from WASp-deficient cells were directional, showing intact directional sensing. However, the protrusions from WASp-deficient cells demonstrated reduced persistence compared to their respective control shRNA and wild-type cells. Further examination showed that tyrosine phosphorylation of WASp was required for both the first wave of actin polymerization following global CSF-1 stimulation and proper directional responses towards CSF-1. Importantly, the PI3K, Rac1 and WAVE2 proteins were incorporated normally in CSF-1 – elicited protrusions in the absence of WASp, suggesting that membrane protrusion driven by the WAVE2 complex signaling is intact. Collectively, these results suggest that WASp and its phosphorylation play critical roles in coordinating the actin cytoskeleton rearrangements necessary for the persistence of protrusions required for directional migration of macrophages towards CSF-1.
Collapse
Affiliation(s)
- Dan Ishihara
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Athanassios Dovas
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Haein Park
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Beth M. Isaac
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Dianne Cox
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
53
|
Abstract
beta-Actin mRNA is localized near the leading edge in several cell types where actin polymerization is actively promoting forward protrusion. The localization of the beta-actin mRNA near the leading edge is facilitated by a short sequence in the 3'UTR (untranslated region), the 'zipcode'. Localization of the mRNA at this region is important physiologically. Treatment of chicken embryo fibroblasts with antisense oligonucleotides complementary to the localization sequence (zipcode) in the 3'UTR leads to delocalization of beta-actin mRNA, alteration of cell phenotype and a decrease in cell motility. The dynamic image analysis system (DIAS) used to quantify movement of cells in the presence of sense and antisense oligonucleotides to the zipcode showed that net pathlength and average speed of antisense-treated cells were significantly lower than in sense-treated cells. This suggests that a decrease in persistence of direction of movement and not in velocity results from treatment of cells with zipcode-directed antisense oligonucleotides. We postulate that delocalization of beta-actin mRNA results in delocalization of nucleation sites and beta-actin protein from the leading edge followed by loss of cell polarity and directional movement. Hence the physiological consequences of beta-actin mRNA delocalization affect the stability of the cell phenotype.
Collapse
Affiliation(s)
- John Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|
54
|
Abstract
Phosphatidylinositol lipids generated through the action of phosphinositide 3-kinase (PI3K) are key mediators of a wide array of biological responses. In particular, their role in the regulation of cell migration has been extensively studied and extends to amoeboid as well as mesenchymal migration. Through the emergence of fluorescent probes that target PI3K products as well as the use of specific inhibitors and knockout technologies, the spatio-temporal distribution of PI3K products in chemotaxing cells has been shown to represent a key anterior polarity signal that targets downstream effectors to actin polymerization. In addition, through intricate cross-talk networks PI3K products have been shown to regulate signals that control posterior effectors. Yet, in more complex environments or in conditions where chemoattractant gradients are steep, a variety of cell types can still chemotax in the absence of PI3K signals. Indeed, parallel signal transduction pathways have been shown to coordinately regulate cell polarity and directed movement. In this chapter, we will review the current role PI3K products play in the regulation of directed cell migration in various cell types, highlight the importance of mathematical modeling in the study of chemotaxis, and end with a brief overview of other signaling cascades known to also regulate chemotaxis.
Collapse
Affiliation(s)
- Michael C Weiger
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bldg.37/Rm2066, 20892-4256, Bethesda, MD, USA
| | | |
Collapse
|
55
|
Martini M, Gnann A, Scheikl D, Holzmann B, Janssen KP. The candidate tumor suppressor SASH1 interacts with the actin cytoskeleton and stimulates cell-matrix adhesion. Int J Biochem Cell Biol 2011; 43:1630-40. [PMID: 21820526 DOI: 10.1016/j.biocel.2011.07.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 11/29/2022]
Abstract
SASH1, a member of the SLY-family of signal adapter proteins, is a candidate tumor suppressor in breast and colon cancer. Reduced expression of SASH1 is correlated with aggressive tumor growth, metastasis formation, and inferior prognosis. However, the biological role of SASH1 remains largely unknown. To unravel the function of SASH1, we have analyzed the intracellular localization of endogenous SASH1, and have generated structural SASH1 mutants. SASH1 localized to the nucleus as well as to the cytoplasm in epithelial cells. In addition, SASH1 was enriched in lamellipodia and membrane ruffles, where it co-distributed with the actin cytoskeleton. Moreover, we demonstrate a novel interaction of SASH1 with the oncoprotein cortactin, a known regulator of actin polymerization in lamellipodia. Enhanced SASH1 expression significantly increased the content of filamentous actin, leading to the formation of cell protrusions and elongated cell shape. This activity was mapped to the central, evolutionarily conserved domain of SASH1. Furthermore, expression of SASH1 inhibited cell migration and lead to increased cell adhesion to fibronectin and laminin, whereas knock-down of endogenous SASH1 resulted in significantly reduced cell-matrix adhesion. Taken together, our findings unravel for the first time a mechanistic role for SASH1 in tumor formation by regulating the adhesive and migratory behaviour of cancer cells.
Collapse
Affiliation(s)
- Melanie Martini
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | | | | | | | | |
Collapse
|
56
|
N-WASP regulates the epithelial junctional actin cytoskeleton through a non-canonical post-nucleation pathway. Nat Cell Biol 2011; 13:934-43. [DOI: 10.1038/ncb2290] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 06/03/2011] [Indexed: 12/20/2022]
|
57
|
Liu C, Miller H, Hui KL, Grooman B, Bolland S, Upadhyaya A, Song W. A balance of Bruton's tyrosine kinase and SHIP activation regulates B cell receptor cluster formation by controlling actin remodeling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:230-9. [PMID: 21622861 PMCID: PMC3119787 DOI: 10.4049/jimmunol.1100157] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The activation of the BCR, which initiates B cell activation, is triggered by Ag-induced self-aggregation and clustering of receptors at the cell surface. Although Ag-induced actin reorganization is known to be involved in BCR clustering in response to membrane-associated Ag, the underlying mechanism that links actin reorganization to BCR activation remains unknown. In this study, we show that both the stimulatory Bruton's tyrosine kinase (Btk) and the inhibitory SHIP-1 are required for efficient BCR self-aggregation. In Btk-deficient B cells, the magnitude of BCR aggregation into clusters and B cell spreading in response to an Ag-tethered lipid bilayer is drastically reduced, compared with BCR aggregation observed in wild-type B cells. In SHIP-1(-/-) B cells, although surface BCRs aggregate into microclusters, the centripetal movement and growth of BCR clusters are inhibited, and B cell spreading is increased. The persistent BCR microclusters in SHIP-1(-/-) B cells exhibit higher levels of signaling than merged BCR clusters. In contrast to the inhibition of actin remodeling in Btk-deficient B cells, actin polymerization, F-actin accumulation, and Wiskott-Aldrich symptom protein phosphorylation are enhanced in SHIP-1(-/-) B cells in a Btk-dependent manner. Thus, a balance between positive and negative signaling regulates the spatiotemporal organization of the BCR at the cell surface by controlling actin remodeling, which potentially regulates the signal transduction of the BCR. This study suggests a novel feedback loop between BCR signaling and the actin cytoskeleton.
Collapse
MESH Headings
- Actins/antagonists & inhibitors
- Actins/metabolism
- Agammaglobulinaemia Tyrosine Kinase
- Animals
- B-Lymphocyte Subsets/enzymology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/pathology
- Cell Movement/genetics
- Cell Movement/immunology
- Enzyme Activation/genetics
- Enzyme Activation/immunology
- Inositol Polyphosphate 5-Phosphatases
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Knockout
- Mice, Transgenic
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphoric Monoester Hydrolases/deficiency
- Phosphoric Monoester Hydrolases/genetics
- Phosphoric Monoester Hydrolases/metabolism
- Protein-Tyrosine Kinases/metabolism
- Protein-Tyrosine Kinases/physiology
- Receptors, Antigen, B-Cell/biosynthesis
- Receptors, Antigen, B-Cell/metabolism
- Wiskott-Aldrich Syndrome Protein/metabolism
Collapse
Affiliation(s)
- Chaohong Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Heather Miller
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - King Lam Hui
- Department of Physics, University of Maryland, College Park, MD 20742
| | - Brian Grooman
- Department of Physics, University of Maryland, College Park, MD 20742
| | - Silvia Bolland
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD 20852
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, MD 20742
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| |
Collapse
|
58
|
Oser M, Mader CC, Gil-Henn H, Magalhaes M, Bravo-Cordero JJ, Koleske AJ, Condeelis J. Specific tyrosine phosphorylation sites on cortactin regulate Nck1-dependent actin polymerization in invadopodia. J Cell Sci 2011; 123:3662-73. [PMID: 20971703 DOI: 10.1242/jcs.068163] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Invadopodia are matrix-degrading membrane protrusions in invasive carcinoma cells enriched in proteins that regulate actin polymerization. The on-off regulatory switch that initiates actin polymerization in invadopodia requires phosphorylation of tyrosine residues 421, 466, and 482 on cortactin. However, it is unknown which of these cortactin tyrosine phosphorylation sites control actin polymerization. We investigated the contribution of individual tyrosine phosphorylation sites (421, 466, and 482) on cortactin to the regulation of actin polymerization in invadopodia. We provide evidence that the phosphorylation of tyrosines 421 and 466, but not 482, is required for the generation of free actin barbed ends in invadopodia. In addition, these same phosphotyrosines are important for Nck1 recruitment to invadopodia via its SH2 domain, for the direct binding of Nck1 to cortactin in vitro, and for the FRET interaction between Nck1 and cortactin in invadopodia. Furthermore, matrix proteolysis-dependent tumor cell invasion is dramatically inhibited in cells expressing a mutation in phosphotyrosine 421 or 466. Together, these results identify phosphorylation of tyrosines 421 and 466 on cortactin as the crucial residues that regulate Nck1-dependent actin polymerization in invadopodia and tumor cell invasion, and suggest that specifically blocking either tyrosine 421 or 466 phosphorylation might be effective at inhibiting tumor cell invasion in vivo.
Collapse
Affiliation(s)
- Matthew Oser
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Liu J, Zhang D, Luo W, Yu Y, Yu J, Li J, Zhang X, Zhang B, Chen J, Wu XR, Rosas-Acosta G, Huang C. X-linked inhibitor of apoptosis protein (XIAP) mediates cancer cell motility via Rho GDP dissociation inhibitor (RhoGDI)-dependent regulation of the cytoskeleton. J Biol Chem 2011; 286:15630-40. [PMID: 21402697 DOI: 10.1074/jbc.m110.176982] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
X-linked inhibitor of apoptosis protein (XIAP) overexpression has been found to be associated with malignant cancer progression and aggression in individuals with many types of cancers. However, the molecular basis of XIAP in the regulation of cancer cell biological behavior remains largely unknown. In this study, we found that a deficiency of XIAP expression in human cancer cells by either knock-out or knockdown leads to a marked reduction in β-actin polymerization and cytoskeleton formation. Consistently, cell migration and invasion were also decreased in XIAP-deficient cells compared with parental wild-type cells. Subsequent studies demonstrated that the regulation of cell motility by XIAP depends on its interaction with the Rho GDP dissociation inhibitor (RhoGDI) via the XIAP RING domain. Furthermore, XIAP was found to negatively regulate RhoGDI SUMOylation, which might affect its activity in controlling cell motility. Collectively, our studies provide novel insights into the molecular mechanisms by which XIAP regulates cancer invasion and offer a further theoretical basis for setting XIAP as a potential prognostic marker and specific target for treatment of cancers with metastatic properties.
Collapse
Affiliation(s)
- Jinyi Liu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Lodyga M, Bai XH, Kapus A, Liu M. Adaptor protein XB130 is a Rac-controlled component of lamellipodia that regulates cell motility and invasion. J Cell Sci 2010; 123:4156-69. [DOI: 10.1242/jcs.071050] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
XB130 is a newly described cytosolic adaptor protein and tyrosine kinase substrate, involved in Src- and RET/PTC-dependent signaling. Although XB130 has been cloned as a homologue of actin-filament-associated protein (AFAP-110), its potential regulation by the actin skeleton and its putative roles in cytoskeleton regulation have not been addressed. Here, we show that XB130 (in contrast to AFAP-110) exhibited robust translocation to the cell periphery in response to various stimuli (including epidermal growth factor, wounding and expression of constitutively active Rac) that elicit lamellipodium formation. In stimulated cells, XB130 localized to the lamellipodial F-actin meshwork. Genetic and pharmacological data suggest that the key trigger for XB130 recruitment is the formation of the branched F-actin itself. Structure-function analysis revealed that both the XB130 N-terminus (167 amino acids) and C-terminus (63 amino acids) harbor crucial regions for its translocation to lamellipodia, whereas the PH domains and Src-targeted tyrosines are dispensable. Importantly, in TPC1 thyroid papillary carcinoma cells, silencing endogenous XB130 decreased the rate of wound closure, inhibited matrigel invasion, reduced lamellipodial persistence and slowed down spreading. Thus, XB130 is a novel Rac- and cytoskeleton-regulated and cytoskeleton-regulating adaptor protein that exhibits high affinity to lamellipodial (branched) F-actin and impacts motility and invasiveness of tumor cells.
Collapse
Affiliation(s)
- Monika Lodyga
- Toronto General Research Institute, University Health Network, Toronto, Ontario, M5G 1L7, Canada
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Institute of Medical Sciences, University of Toronto, Ontario M5G 1X8, Canada
| | - Xiao-hui Bai
- Toronto General Research Institute, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - András Kapus
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Institute of Medical Sciences, University of Toronto, Ontario M5G 1X8, Canada
- Department of Surgery, University of Toronto, Ontario M5G 1X8, Canada
| | - Mingyao Liu
- Toronto General Research Institute, University Health Network, Toronto, Ontario, M5G 1L7, Canada
- Institute of Medical Sciences, University of Toronto, Ontario M5G 1X8, Canada
- Department of Surgery, University of Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
61
|
Gu C, Yaddanapudi S, Weins A, Osborn T, Reiser J, Pollak M, Hartwig J, Sever S. Direct dynamin-actin interactions regulate the actin cytoskeleton. EMBO J 2010; 29:3593-606. [PMID: 20935625 PMCID: PMC2982766 DOI: 10.1038/emboj.2010.249] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 09/10/2010] [Indexed: 01/13/2023] Open
Abstract
The large GTPase dynamin assembles into higher order structures that are thought to promote endocytosis. Dynamin also regulates the actin cytoskeleton through an unknown, GTPase-dependent mechanism. Here, we identify a highly conserved site in dynamin that binds directly to actin filaments and aligns them into bundles. Point mutations in the actin-binding domain cause aberrant membrane ruffling and defective actin stress fibre formation in cells. Short actin filaments promote dynamin assembly into higher order structures, which in turn efficiently release the actin-capping protein (CP) gelsolin from barbed actin ends in vitro, allowing for elongation of actin filaments. Together, our results support a model in which assembled dynamin, generated through interactions with short actin filaments, promotes actin polymerization via displacement of actin-CPs.
Collapse
Affiliation(s)
- Changkyu Gu
- Nephrology Division, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Charlestown, MA, USA
| | - Suma Yaddanapudi
- Nephrology Division, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Charlestown, MA, USA
| | - Astrid Weins
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Teresia Osborn
- Translational Medicine Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Jochen Reiser
- Division of Nephrology and Hypertension, University of Miami, FL, USA
| | - Martin Pollak
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - John Hartwig
- Translational Medicine Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Sanja Sever
- Nephrology Division, Department of Medicine, Harvard Medical School and Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
62
|
Lin WH, Nebhan CA, Anderson BR, Webb DJ. Vasodilator-stimulated phosphoprotein (VASP) induces actin assembly in dendritic spines to promote their development and potentiate synaptic strength. J Biol Chem 2010; 285:36010-20. [PMID: 20826790 DOI: 10.1074/jbc.m110.129841] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dendritic spines are small actin-rich structures that receive the majority of excitatory synaptic input in the brain. The actin-based dynamics of spines are thought to mediate synaptic plasticity, which underlies cognitive processes, such as learning and memory. However, little is known about the molecular mechanisms that regulate actin dynamics in spines and synapses. In this study we show the multifunctional actin-binding protein vasodilator-stimulated phosphoprotein (VASP) regulates the density, size, and morphology of dendritic spines by inducing actin assembly in these structures. Knockdown of endogenous VASP by siRNA led to a significant decrease in the density of spines and synapses, whereas expression of siRNA-resistant VASP rescued this defect. The ability of VASP to modulate spine and synapse formation, maturation, and spine head enlargement is dependent on its actin binding Ena/VASP homology 2 (EVH2) domain and its EVH1 domain, which contributes to VASP localization to actin-rich structures. Moreover, VASP increases the amount of PSD-scaffolding proteins and the number of surface GluR1-containing α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) in spines. VASP knockdown results in a reduction in surface AMPAR density, suggesting a role for this protein in regulating synaptic strength. Consistent with this, VASP significantly enhances the retention of GluR1 in spines as determined by fluorescence recovery after photobleaching and increases AMPAR-mediated synaptic transmission. Collectively, our results suggest that actin polymerization and bundling by VASP are critical for spine formation, expansion, and modulating synaptic strength.
Collapse
Affiliation(s)
- Wan-Hsin Lin
- Department of Biological Sciences and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | |
Collapse
|
63
|
Marsick BM, Flynn KC, Santiago-Medina M, Bamburg JR, Letourneau PC. Activation of ADF/cofilin mediates attractive growth cone turning toward nerve growth factor and netrin-1. Dev Neurobiol 2010; 70:565-88. [PMID: 20506164 PMCID: PMC2908028 DOI: 10.1002/dneu.20800] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proper neural circuitry requires that growth cones, motile tips of extending axons, respond to molecular guidance cues expressed in the developing organism. However, it is unclear how guidance cues modify the cytoskeleton to guide growth cone pathfinding. Here, we show acute treatment with two attractive guidance cues, nerve growth factor (NGF) and netrin-1, for embryonic dorsal root ganglion and temporal retinal neurons, respectively, results in increased growth cone membrane protrusion, actin polymerization, and filamentous actin (F-actin). ADF/cofilin (AC) family proteins facilitate F-actin dynamics, and we found the inactive phosphorylated form of AC is decreased in NGF- or netrin-1-treated growth cones. Directly increasing AC activity mimics addition of NGF or netrin-1 to increase growth cone protrusion and F-actin levels. Extracellular gradients of NGF, netrin-1, and a cell-permeable AC elicit attractive growth cone turning and increased F-actin barbed ends, F-actin accumulation, and active AC in growth cone regions proximal to the gradient source. Reducing AC activity blunts turning responses to NGF and netrin. Our results suggest that gradients of NGF and netrin-1 locally activate AC to promote actin polymerization and subsequent growth cone turning toward the side containing higher AC activity.
Collapse
Affiliation(s)
- Bonnie M. Marsick
- Department of Neuroscience, University of Minnesota, Minneapolis MN 55455
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis MN 55455
| | - Kevin C. Flynn
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins CO 80521
| | | | - James R. Bamburg
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins CO 80521
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins
| | - Paul C. Letourneau
- Department of Neuroscience, University of Minnesota, Minneapolis MN 55455
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis MN 55455
| |
Collapse
|
64
|
Placental growth factor (PlGF) enhances breast cancer cell motility by mobilising ERK1/2 phosphorylation and cytoskeletal rearrangement. Br J Cancer 2010; 103:82-9. [PMID: 20551949 PMCID: PMC2905300 DOI: 10.1038/sj.bjc.6605746] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: During metastasis, cancer cells migrate away from the primary tumour and invade the circulatory system and distal tissues. The stimulatory effect of growth factors has been implicated in the migration process. Placental growth factor (PlGF), expressed by 30–50% of primary breast cancers, stimulates measurable breast cancer cell motility in vitro within 3 h. This implies that PlGF activates intracellular signalling kinases and cytoskeletal remodelling necessary for cellular migration. The PlGF-mediated motility is prevented by an Flt-1-antagonising peptide, BP-1, and anti-PlGF antibody. The purpose of this study was to determine the intracellular effects of PlGF and the inhibiting peptide, BP-1. Methods: Anti-PlGF receptor (anti-Flt-1) antibody and inhibitors of intracellular kinases were used for analysis of PlGF-delivered intracellular signals that result in motility. The effects of PlGF and BP-1 on kinase activation, intermediate filament (IF) protein stability, and the actin cytoskeleton were determined by immunohistochemistry, cellular migration assays, and immunoblots. Results: Placental growth factor stimulated phosphorylation of extracellular-regulated kinase (ERK)1/2 (pERK) in breast cancer cell lines that also increased motility. In the presence of PlGF, BP-1 decreased cellular motility, reversed ERK1/2 phosphorylation, and decreased nuclear and peripheral pERK1/2. ERK1/2 kinases are associated with rearrangements of the actin and IF components of the cellular cytoskeleton. The PlGF caused rearrangements of the actin cytoskeleton, which were blocked by BP-1. The PlGF also stabilised cytokeratin 19 and vimentin expression in MDA-MB-231 human breast cancer cells in the absence of de novo transcription and translation. Conclusions: The PlGF activates ERK1/2 kinases, which are associated with cellular motility, in breast cancer cells. Several of these activating events are blocked by BP-1, which may explain its anti-tumour activity.
Collapse
|
65
|
Zoudilova M, Min J, Richards HL, Carter D, Huang T, DeFea KA. beta-Arrestins scaffold cofilin with chronophin to direct localized actin filament severing and membrane protrusions downstream of protease-activated receptor-2. J Biol Chem 2010; 285:14318-29. [PMID: 20207744 PMCID: PMC2863192 DOI: 10.1074/jbc.m109.055806] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 02/11/2010] [Indexed: 01/17/2023] Open
Abstract
Protease-activated receptor-2 (PAR-2) mediates pro-inflammatory signals in a number of organs, including enhancing leukocyte recruitment to sites of injury and infection. At the cellular level, PAR-2 promotes activation of the actin filament-severing protein cofilin, which is crucial for the reorganization of the actin cytoskeleton and chemotaxis. These responses require the scaffolding functions of beta-arrestins; however, the mechanism by which beta-arrestins spatially regulate cofilin activity and the role of this pathway in primary cells has not been investigated. Here, using size-exclusion chromatography and co-immunoprecipitation, we demonstrate that PAR-2 promotes the formation of a complex containing beta-arrestins, cofilin, and chronophin (CIN) in primary leukocytes and cultured cells. Both association of cofilin with CIN and cell migration are inhibited in leukocytes from beta-arrestin-2(-/-) mice. We show that, in response to PAR-2 activation, beta-arrestins scaffold cofilin with its upstream activator CIN, to facilitate the localized generation of free actin barbed ends, leading to membrane protrusion. These studies suggest that a major role of beta-arrestins in chemotaxis is to spatially regulate cofilin activity to facilitate the formation of a leading edge, and that this pathway may be important for PAR-2-stimulated immune cell migration.
Collapse
Affiliation(s)
| | - Jungah Min
- From the Cell, Molecular, and Developmental Biology Program
| | - Heddie L. Richards
- Biomedical Sciences Division, University of California, Riverside, California 92521 and
| | | | - Timothy Huang
- the Department of Immunology, The Scripps Research Institute, La Jolla, California 92037
| | - Kathryn A. DeFea
- From the Cell, Molecular, and Developmental Biology Program
- Biomedical Sciences Division, University of California, Riverside, California 92521 and
| |
Collapse
|
66
|
Koivusalo M, Welch C, Hayashi H, Scott CC, Kim M, Alexander T, Touret N, Hahn KM, Grinstein S. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. ACTA ACUST UNITED AC 2010; 188:547-63. [PMID: 20156964 PMCID: PMC2828922 DOI: 10.1083/jcb.200908086] [Citation(s) in RCA: 702] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Inhibitors of Na+/H+ exchange proteins block macropinocytosis by lowering the pH near the plasma membrane, which in turn inhibits actin remodeling by Rho family GTPases. Macropinocytosis is differentiated from other types of endocytosis by its unique susceptibility to inhibitors of Na+/H+ exchange. Yet, the functional relationship between Na+/H+ exchange and macropinosome formation remains obscure. In A431 cells, stimulation by EGF simultaneously activated macropinocytosis and Na+/H+ exchange, elevating cytosolic pH and stimulating Na+ influx. Remarkably, although inhibition of Na+/H+ exchange by amiloride or HOE-694 obliterated macropinocytosis, neither cytosolic alkalinization nor Na+ influx were required. Instead, using novel probes of submembranous pH, we detected the accumulation of metabolically generated acid at sites of macropinocytosis, an effect counteracted by Na+/H+ exchange and greatly magnified when amiloride or HOE-694 were present. The acidification observed in the presence of the inhibitors did not alter receptor engagement or phosphorylation, nor did it significantly depress phosphatidylinositol-3-kinase stimulation. However, activation of the GTPases that promote actin remodelling was found to be exquisitely sensitive to the submembranous pH. This sensitivity confers to macropinocytosis its unique susceptibility to inhibitors of Na+/H+ exchange.
Collapse
Affiliation(s)
- Mirkka Koivusalo
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Wound Healing Assays in Well Plate—Coupled Microfluidic Devices with Controlled Parallel Flow. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.jala.2009.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The migratory or proliferative responses mounted by wounded cell monolayers are important to drug discovery and drug safety testing, as well as to basic research across a number of disciplines, including stem-cell biology, cell biology, ophthalmology, endocrinology, microbiology, oncology, and developmental biology. Scratch wounding by mechanical means is the golden standard to achieve an appropriate model system in which to study these cellular reactions. The scratch wounding technique is plagued by wound size irregularity, release of cytosolic contents along the wound edge, and difficulty in scaling up to higher throughput screening. To address these issues, we developed a microfluidic device coupled to a well plate in which wounds were produced enzymatically using highly controlled laminar flow streams. Within the device, epithelial cells were cultivated and exposed to different compounds. Proliferation and migration were characterized by bright-field microscopy. Resulting wound size was highly uniform compared with reported variability of manual scratch wounding. The protocol for wounding was fully automated using customized software, and response to wounding was followed in real time by microscopy.
Collapse
|
68
|
HUNK suppresses metastasis of basal type breast cancers by disrupting the interaction between PP2A and cofilin-1. Proc Natl Acad Sci U S A 2010; 107:2622-7. [PMID: 20133759 DOI: 10.1073/pnas.0914492107] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Metastasis leads to the death of most cancer patients, and basal breast cancer is the most aggressive breast tumor type. Metastasis involves a complex cell migration process dependent on cytoskeletal remodeling such that targeting such remodeling in tumor cells could be clinically beneficial. Here we show that Hormonally Up-regulated Neu-associated Kinase (HUNK) is dramatically down-regulated in tumor samples and cell lines derived from basal breast cancers. Reconstitution of HUNK expression in basal breast cancer cell lines blocked actin polymerization and reduced cell motility, resulting in decreased metastases in two in vivo murine cancer models. Mechanistically, HUNK overexpression sustained the constitutive phosphorylation and inactivation of cofilin-1 (CFL-1), thereby blocking the incorporation of new actin monomers into actin filaments. HUNK reconstitution in basal breast cancer cell lines prevented protein phosphatase 2-A (PP2A), a phosphatase putatively acting on CFL-1, from binding to CFL-1. Our investigation of HUNK suggests that the interaction between PP2A and CFL-1 may be a target for antimetastasis therapy, particularly for basal breast cancers.
Collapse
|
69
|
Brooks FJ, Carlsson AE. Actin polymerization overshoots induced by plus-end capping. Phys Biol 2010; 7:16008. [PMID: 20090191 DOI: 10.1088/1478-3975/7/1/016008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Transient polymerization beyond the steady state has been experimentally observed in in vitro actin polymerization time courses. These 'polymerization overshoots' have previously been described in terms of the time-dependent probabilities for binding distinct nucleotide hydrolysis states within subunits near the plus ends of actin filaments. We demonstrate a different type of overshoot dynamics where the plus-end contribution to polymerization steadily decreases relative to that of the minus end. This decrease occurs due to plus-end capping of an initial impulse of rapidly created actin filaments. We calculate the contribution of these dynamics to observed overshoot magnitudes using rate equations describing the concentration of polymerized actin. We find this contribution is highly sensitive to both initial filament concentration and plus-end capping rate. We develop an analytic formula that describes the magnitude of the overshoot as a function of these two key parameters. The overshoots we describe could be observed by current experimental methods for studying the effects of severing and branching mechanisms upon actin polymerization in the presence of plus-end capping and rapid nucleotide exchange. We also present a plausible cellular mechanism that could greatly amplify these overshoots in vivo.
Collapse
Affiliation(s)
- F J Brooks
- Department of Physics, Washington University in Saint Louis, One Brookings Drive, St Louis, MO 63130, USA.
| | | |
Collapse
|
70
|
Abstract
The dynamic nature of actin in cells manifests itself constantly. Polymerization near the cell edge is balanced by depolymerization in the interior, externally induced actin polymerization is followed by depolymerization, and spontaneous oscillations of actin at the cell periphery are frequently seen. I discuss how mathematical modeling relates quantitative measures of actin dynamics to the rates of underlying molecular level processes. The dynamic properties addressed include the rate of actin assembly at the leading edge of a moving cell, the disassembly rates of intracellular actin networks, the polymerization time course in externally stimulated cells, and spontaneous spatiotemporal patterns formed by actin. Although several aspects of actin assembly have been clarified by increasingly sophisticated models, our understanding of rapid actin disassembly is limited, and the origins of nonmonotonic features in externally stimulated actin polymerization remain unclear. Theory has generated several concrete, testable hypotheses for the origins of spontaneous actin waves and cell-edge oscillations. The development and use of more biomimetic systems applicable to the geometry of a cell will be key to obtaining a quantitative understanding of actin dynamics in cells.
Collapse
Affiliation(s)
- Anders E Carlsson
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA.
| |
Collapse
|
71
|
Oser M, Yamaguchi H, Mader CC, Bravo-Cordero JJ, Arias M, Chen X, Desmarais V, van Rheenen J, Koleske AJ, Condeelis J. Cortactin regulates cofilin and N-WASp activities to control the stages of invadopodium assembly and maturation. ACTA ACUST UNITED AC 2009; 186:571-87. [PMID: 19704022 PMCID: PMC2733743 DOI: 10.1083/jcb.200812176] [Citation(s) in RCA: 298] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Invadopodia are matrix-degrading membrane protrusions in invasive carcinoma cells. The mechanisms regulating invadopodium assembly and maturation are not understood. We have dissected the stages of invadopodium assembly and maturation and show that invadopodia use cortactin phosphorylation as a master switch during these processes. In particular, cortactin phosphorylation was found to regulate cofilin and Arp2/3 complex–dependent actin polymerization. Cortactin directly binds cofilin and inhibits its severing activity. Cortactin phosphorylation is required to release this inhibition so cofilin can sever actin filaments to create barbed ends at invadopodia to support Arp2/3-dependent actin polymerization. After barbed end formation, cortactin is dephosphorylated, which blocks cofilin severing activity thereby stabilizing invadopodia. These findings identify novel mechanisms for actin polymerization in the invadopodia of metastatic carcinoma cells and define four distinct stages of invadopodium assembly and maturation consisting of invadopodium precursor formation, actin polymerization, stabilization, and matrix degradation.
Collapse
Affiliation(s)
- Matthew Oser
- Department of Anatomy and Structural Biology and 2 Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Marshall TW, Aloor HL, Bear JE. Coronin 2A regulates a subset of focal-adhesion-turnover events through the cofilin pathway. J Cell Sci 2009; 122:3061-9. [PMID: 19654210 DOI: 10.1242/jcs.051482] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Coronins are conserved F-actin-binding proteins that are important for motility and actin dynamics. Unlike type I coronins, coronin 2A localizes to stress fibers and some focal adhesions, and is excluded from the leading edge. Depletion of coronin 2A in MTLn3 cells decreases cell motility and turnover of focal adhesions. Surprisingly, none of the pathways known to regulate focal-adhesion turnover are affected by depletion of coronin 2A. Depletion of coronin 2A does, however, increase phospho-cofilin, suggesting that misregulation of cofilin might affect adhesion dynamics. Slingshot-1L, a cofilin-activating phosphatase, localizes to focal adhesions and interacts with coronin 2A. Depletion of coronin 2A reduces cofilin activity at focal adhesions, as measured by barbed-end density and actin FRAP. In both fixed cells and live cells, cofilin localizes to the proximal end of some focal adhesions. Although expression of wild-type cofilin in coronin-2A-depleted cells has no major effect on focal-adhesion dynamics, expression of an active mutant of cofilin bypasses the defects in cell motility and focal-adhesion disassembly. These results implicate both coronin 2A and cofilin as factors that can regulate a subset of focal-adhesion-turnover events.
Collapse
Affiliation(s)
- Thomas W Marshall
- Lineberger Comprehensive Cancer Center and Department of Cell and Developmental Biology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
73
|
Liu Y, Wang J, Wu M, Wan W, Sun R, Yang D, Sun X, Ma D, Ying G, Zhang N. Down-regulation of 3-phosphoinositide-dependent protein kinase-1 levels inhibits migration and experimental metastasis of human breast cancer cells. Mol Cancer Res 2009; 7:944-54. [PMID: 19531564 DOI: 10.1158/1541-7786.mcr-08-0368] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High expression of 3-phosphoinositide-dependent protein kinase-1 (PDK1) has been detected in various invasive cancers. In the current study, we investigated its role in cancer cell migration and experimental metastasis. Down-regulation of PDK1 expression by small interference RNA markedly inhibited spontaneous migration and epidermal growth factor (EGF)-induced chemotaxis of human breast cancer cells. The defects were rescued by expressing wild-type PDK1. PDK1-depleted cells showed impaired EGF-induced actin polymerization and adhesion, probably due to a decrease in phosphorylation of LIM kinase/cofilin and integrin beta1. Confocal microscopy revealed that EGF induced cotranslocation of PDK1 with Akt and protein kinase Czeta (PKCzeta), regulators of LIM kinase, and integrin beta1. Furthermore, PDK1 depletion dampened EGF-induced phosphorylation and translocation of Akt and PKCzeta, suggesting that Akt and PKCzeta functioned downstream of PDK1 in the chemotactic signaling pathway. In severe combined immunodeficiency mice, PDK1-depleted human breast cancer cells formed more slowly growing tumors and were defective in extravasation to mouse lungs after i.v. injection. Our results indicate that PDK1 plays an important role in regulating the malignant behavior of breast cancer cells, including their motility, through activation of Akt and PKCzeta. Thus, PDK1, which increases its expression in cancer cells, can be used as a target for the development of novel therapies.
Collapse
Affiliation(s)
- Ying Liu
- Department of Chemical Biology, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Sharma S, Orlowski G, Song W. Btk regulates B cell receptor-mediated antigen processing and presentation by controlling actin cytoskeleton dynamics in B cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:329-39. [PMID: 19109164 PMCID: PMC2855895 DOI: 10.4049/jimmunol.182.1.329] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The high efficiency of Ag processing and presentation by B cells requires Ag-induced BCR signaling and actin cytoskeleton reorganization, although the underlying mechanism for such requirements remains elusive. In this study, we identify Bruton's tyrosine kinase (Btk) as a linker connecting BCR signaling to actin dynamics and the Ag transport pathway. Using xid mice and a Btk inhibitor, we show that BCR engagement increases actin polymerization and Wiskott-Aldrich syndrome protein activation in a Btk-dependent manner. Concurrently, we observe Btk-dependent increases in the levels of phosphatidylinositide-4,5-bisphosphate and phosphorylated Vav upon BCR engagement. The rate of BCR internalization, its movement to late endosomes, and efficiency of BCR-mediated Ag processing and presentation are significantly reduced in both xid and Btk inhibitor-treated B cells. Thus, Btk regulates actin dynamics and Ag transport by activating Wiskott-Aldrich syndrome protein via Vav and phosphatidylinositides. This represents a novel mechanism by which BCR-mediated signaling regulates BCR-mediated Ag processing and presentation.
Collapse
Affiliation(s)
- Shruti Sharma
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Gregory Orlowski
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| |
Collapse
|
75
|
Johnston SA, Bramble JP, Yeung CL, Mendes PM, Machesky LM. Arp2/3 complex activity in filopodia of spreading cells. BMC Cell Biol 2008; 9:65. [PMID: 19068115 PMCID: PMC2639383 DOI: 10.1186/1471-2121-9-65] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 12/09/2008] [Indexed: 11/29/2022] Open
Abstract
Background Cells use filopodia to explore their environment and to form new adhesion contacts for motility and spreading. The Arp2/3 complex has been implicated in lamellipodial actin assembly as a major nucleator of new actin filaments in branched networks. The interplay between filopodial and lamellipodial protrusions is an area of much interest as it is thought to be a key determinant of how cells make motility choices. Results We find that Arp2/3 complex localises to dynamic puncta in filopodia as well as lamellipodia of spreading cells. Arp2/3 complex spots do not appear to depend on local adhesion or on microtubules for their localisation but their inclusion in filopodia or lamellipodia depends on the activity of the small GTPase Rac1. Arp2/3 complex spots in filopodia are capable of incorporating monomeric actin, suggesting the presence of available filament barbed ends for polymerisation. Arp2/3 complex in filopodia co-localises with lamellipodial proteins such as capping protein and cortactin. The dynamics of Arp2/3 complex puncta suggests that they are moving bi-directionally along the length of filopodia and that they may be regions of lamellipodial activity within the filopodia. Conclusion We suggest that filopodia of spreading cells have regions of lamellipodial activity and that this activity affects the morphology and movement of filopodia. Our work has implications for how we understand the interplay between lamellipodia and filopodia and for how actin networks are generated spatially in cells.
Collapse
Affiliation(s)
- Simon A Johnston
- University of Birmingham School of Biosciences, Edgbaston, Birmingham, UK.
| | | | | | | | | |
Collapse
|
76
|
Philippar U, Roussos ET, Oser M, Yamaguchi H, Kim HD, Giampieri S, Wang Y, Goswami S, Wyckoff JB, Lauffenburger DA, Sahai E, Condeelis JS, Gertler FB. A Mena invasion isoform potentiates EGF-induced carcinoma cell invasion and metastasis. Dev Cell 2008; 15:813-28. [PMID: 19081071 PMCID: PMC2637261 DOI: 10.1016/j.devcel.2008.09.003] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/29/2008] [Accepted: 09/09/2008] [Indexed: 11/29/2022]
Abstract
The spread of cancer during metastatic disease requires that tumor cells subvert normal regulatory networks governing cell motility to invade surrounding tissues and migrate toward blood and lymphatic vessels. Enabled (Ena)/vasodilator-stimulated phosphoprotein (VASP) proteins regulate cell motility by controlling the geometry of assembling actin networks. Mena, an Ena/VASP protein, is upregulated in the invasive subpopulation of breast cancer cells. In addition, Mena is alternately spliced to produce an invasion isoform, Mena(INV). Here we show that Mena and Mena(INV) promote carcinoma cell motility and invasiveness in vivo and in vitro, and increase lung metastasis. Mena and Mena(INV) potentiate epidermal growth factor (EGF)-induced membrane protrusion and increase the matrix degradation activity of tumor cells. Interestingly, Mena(INV) is significantly more effective than Mena in driving metastases and sensitizing cells to EGF-dependent invasion and protrusion. Upregulation of Mena(INV) could therefore enable tumor cells to invade in response to otherwise benign EGF stimulus levels.
Collapse
Affiliation(s)
- Ulrike Philippar
- Massachusetts Institute of Technology, Koch Institute, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Frantz C, Barreiro G, Dominguez L, Chen X, Eddy R, Condeelis J, Kelly MJS, Jacobson MP, Barber DL. Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding. ACTA ACUST UNITED AC 2008; 183:865-79. [PMID: 19029335 PMCID: PMC2592832 DOI: 10.1083/jcb.200804161] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Newly generated actin free barbed ends at the front of motile cells provide sites for actin filament assembly driving membrane protrusion. Growth factors induce a rapid biphasic increase in actin free barbed ends, and we found both phases absent in fibroblasts lacking H(+) efflux by the Na-H exchanger NHE1. The first phase is restored by expression of mutant cofilin-H133A but not unphosphorylated cofilin-S3A. Constant pH molecular dynamics simulations and nuclear magnetic resonance (NMR) reveal pH-sensitive structural changes in the cofilin C-terminal filamentous actin binding site dependent on His133. However, cofilin-H133A retains pH-sensitive changes in NMR spectra and severing activity in vitro, which suggests that it has a more complex behavior in cells. Cofilin activity is inhibited by phosphoinositide binding, and we found that phosphoinositide binding is pH-dependent for wild-type cofilin, with decreased binding at a higher pH. In contrast, phosphoinositide binding by cofilin-H133A is attenuated and pH insensitive. These data suggest a molecular mechanism whereby cofilin acts as a pH sensor to mediate a pH-dependent actin filament dynamics.
Collapse
Affiliation(s)
- Christian Frantz
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Feigin ME, Muthuswamy SK. ErbB receptors and cell polarity: new pathways and paradigms for understanding cell migration and invasion. Exp Cell Res 2008; 315:707-16. [PMID: 19022245 DOI: 10.1016/j.yexcr.2008.10.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 10/19/2008] [Accepted: 10/20/2008] [Indexed: 12/25/2022]
Abstract
The ErbB family of receptor tyrosine kinases is involved in initiation and progression of a number of human cancers, and receptor activation or overexpression correlates with poor patient survival. Research over the past two decades has elucidated the molecular mechanisms underlying ErbB-induced tumorigenesis, which has resulted in the development of effective targeted therapies. ErbB-induced signal transduction cascades regulate a wide variety of cell processes, including cell proliferation, apoptosis, cell polarity, migration and invasion. Within tumors, disruption of these core processes, through cooperative oncogenic lesions, results in aggressive, metastatic disease. This review will focus on the ErbB signaling networks that regulate migration and invasion and identify a potential role for cell polarity pathways during cancer progression.
Collapse
Affiliation(s)
- Michael E Feigin
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
79
|
Kotadiya P, McMichael BK, Lee BS. High molecular weight tropomyosins regulate osteoclast cytoskeletal morphology. Bone 2008; 43:951-60. [PMID: 18674650 PMCID: PMC2633438 DOI: 10.1016/j.bone.2008.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 06/11/2008] [Accepted: 06/25/2008] [Indexed: 01/14/2023]
Abstract
Tropomyosins are coiled-coil dimers that bind to the major groove of F-actin and regulate its accessibility to actin-modifying proteins. Although approximately 40 tropomyosin isoforms have been identified in mammals, they can broadly be classified into two groups based on protein size, that is, high molecular weight and low molecular weight isoforms. Osteoclasts, which undergo rounds of polarization and depolarization as they progress through the resorptive cycle, possess an unusual and highly dynamic actin cytoskeleton. To further define some of the actin regulatory proteins involved in osteoclast activity, we previously performed a survey of tropomyosin isoforms in resting and resorbing osteoclasts. Osteoclasts were found to express two closely related tropomyosins of the high molecular weight type, which are not expressed in monocytic and macrophage precursors. These isoforms, Tm-2 and Tm-3, are not strongly associated with actin-rich adhesion structures, but are instead distributed diffusely throughout the cell. In this study, we found that Tm-2/3 expression occurs late in osteoclastogenesis and continues to increase as cells mature. Knockdown of these isoforms via RNA interference results in flattening and increased spreading of osteoclasts, accompanied by diminished motility and altered resorptive capacity. In contrast, overexpression of Tm-2, but not Tm-3, caused morphological changes that include decreased spreading of the cells and induction of actin patches or stress fiber-like actin filaments, also with effects on motility and resorption. Suppression of Tm-2/3 or overexpression of Tm-2 resulted in altered distribution of gelsolin and microfilament barbed ends. These data suggest that high molecular weight tropomyosins are expressed in fusing osteoclasts to regulate the cytoskeletal scaffolding of these large cells, due at least in part by moderating accessibility of gelsolin to these microfilaments.
Collapse
Affiliation(s)
- Preeyal Kotadiya
- Department of Physiology and Cell Biology, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| | | | | |
Collapse
|
80
|
Hirata H, Tatsumi H, Sokabe M. Mechanical forces facilitate actin polymerization at focal adhesions in a zyxin-dependent manner. J Cell Sci 2008; 121:2795-804. [DOI: 10.1242/jcs.030320] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We examined the effects of mechanical forces on actin polymerization at focal adhesions (FAs). Actin polymerization at FAs was assessed by introducing fluorescence-labeled actin molecules into permeabilized fibroblasts cultured on fibronectin. When cell contractility was inhibited by the myosin-II inhibitor blebbistatin, actin polymerization at FAs was diminished, whereas α5β1 integrin remained accumulated at FAs. This suggests that actin polymerization at FAs depends on mechanical forces. To examine the action of mechanical forces more directly, the blebbistatin-treated cells were subjected to a sustained uniaxial stretch, which induced actin polymerization at FAs. These results demonstrate the novel role of mechanical forces in inducing actin polymerization at FAs. To reveal the molecular mechanism underlying the force-induced actin polymerization at FAs, we examined the distribution of zyxin, a postulated actin-regulatory protein. Actin-polymerizing activity was strong at zyxin-rich FAs. Accumulation of zyxin at FAs was diminished by blebbistatin, whereas uniaxial stretching of the cells induced zyxin accumulation. Displacing endogenous zyxin from FAs by expressing the FA-targeting region of zyxin decreased the force-induced actin polymerization at FAs. These results suggest that zyxin is involved in mechanical-force-dependent facilitation of actin polymerization at FAs.
Collapse
Affiliation(s)
- Hiroaki Hirata
- Cell Mechanosensing Project, ICORP/SORST, Japan Science and Technology Agency, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan
- Department of Molecular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| | - Hitoshi Tatsumi
- Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Masahiro Sokabe
- Cell Mechanosensing Project, ICORP/SORST, Japan Science and Technology Agency, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan
- Department of Molecular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
- Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
81
|
Sarmiento C, Wang W, Dovas A, Yamaguchi H, Sidani M, El-Sibai M, Desmarais V, Holman HA, Kitchen S, Backer JM, Alberts A, Condeelis J. WASP family members and formin proteins coordinate regulation of cell protrusions in carcinoma cells. ACTA ACUST UNITED AC 2008; 180:1245-60. [PMID: 18362183 PMCID: PMC2290849 DOI: 10.1083/jcb.200708123] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We examined the role of the actin nucleation promoters neural Wiskott-Aldrich syndrome protein (N-WASP) and WAVE2 in cell protrusion in response to epidermal growth factor (EGF), a key regulator in carcinoma cell invasion. We found that WAVE2 knockdown (KD) suppresses lamellipod formation and increases filopod formation, whereas N-WASP KD has no effect. However, simultaneous KD of both proteins results in the formation of large jagged protrusions with lamellar properties and increased filopod formation. This suggests that another actin nucleation activity is at work in carcinoma cells in response to EGF. A mammalian Diaphanous–related formin, mDia1, localizes at the jagged protrusions in double KD cells. Constitutively active mDia1 recapitulated the phenotype, whereas inhibition of mDia1 blocked the formation of these protrusions. Increased RhoA activity, which stimulates mDia1 nucleation, was observed in the N-WASP/WAVE2 KD cells and was shown to be required for the N-WASP/WAVE2 KD phenotype. These data show that coordinate regulation between the WASP family and mDia proteins controls the balance between lamellar and lamellipodial protrusion activity.
Collapse
Affiliation(s)
- Corina Sarmiento
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
El-Sibai M, Pertz O, Pang H, Yip SC, Lorenz M, Symons M, Condeelis JS, Hahn KM, Backer JM. RhoA/ROCK-mediated switching between Cdc42- and Rac1-dependent protrusion in MTLn3 carcinoma cells. Exp Cell Res 2008; 314:1540-52. [PMID: 18316075 PMCID: PMC2677995 DOI: 10.1016/j.yexcr.2008.01.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 01/15/2008] [Accepted: 01/16/2008] [Indexed: 12/11/2022]
Abstract
Rho GTPases are versatile regulators of cell shape that act on the actin cytoskeleton. Studies using Rho GTPase mutants have shown that, in some cells, Rac1 and Cdc42 regulate the formation of lamellipodia and filopodia, respectively at the leading edge, whereas RhoA mediates contraction at the rear of moving cells. However, recent reports have described a zone of RhoA/ROCK activation at the front of cells undergoing motility. In this study, we use a FRET-based RhoA biosensor to show that RhoA activation localizes to the leading edge of EGF-stimulated cells. Inhibition of Rho or ROCK enhanced protrusion, yet markedly inhibited cell motility; these changes correlated with a marked activation of Rac-1 at the cell edge. Surprisingly, whereas EGF-stimulated protrusion in control MTLn3 cells is Rac-independent and Cdc42-dependent, the opposite pattern is observed in MTLn3 cells after inhibition of ROCK. Thus, Rho and ROCK suppress Rac-1 activation at the leading edge, and inhibition of ROCK causes a switch between Cdc42 and Rac-1 as the dominant Rho GTPase driving protrusion in carcinoma cells. These data describe a novel role for Rho in coordinating signaling by Rac and Cdc42.
Collapse
Affiliation(s)
- Mirvat El-Sibai
- Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Olivier Pertz
- Immunology, Scripps Research Institute, 10550 North Torrey Pines Road La Jolla, CA 92037, USA
| | - Huan Pang
- Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Shu-Chin Yip
- Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Mike Lorenz
- Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Marc Symons
- Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research at North Shore-LIJ, North Shore University Hospital, Manhasset, NY 11030, USA
| | - John S. Condeelis
- Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY10461
| | - Klaus M. Hahn
- Pharmacology, University of North Carolina School of Medicine CB7365, Chapel Hill, NC27599, USA
| | - Jonathan M. Backer
- Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
83
|
Yip SC, Eddy RJ, Branch AM, Pang H, Wu H, Yan Y, Drees BE, Neilsen PO, Condeelis J, Backer JM. Quantification of PtdIns(3,4,5)P(3) dynamics in EGF-stimulated carcinoma cells: a comparison of PH-domain-mediated methods with immunological methods. Biochem J 2008; 411:441-8. [PMID: 18215145 PMCID: PMC2915465 DOI: 10.1042/bj20071179] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Class IA PI3Ks (phosphoinositide 3-kinases) generate the secondary messenger PtdIns(3,4,5)P(3), which plays an important role in many cellular responses. The accumulation of PtdIns(3,4,5)P(3) in cell membranes is routinely measured using GFP (green fluorescent protein)-labelled PH (pleckstrin homology) domains. However, the kinetics of membrane PtdIns(3,4,5)P(3) synthesis and turnover as detected by PH domains have not been validated using an independent method. In the present study, we measured EGF (epidermal growth factor)-stimulated membrane PtdIns(3,4,5)P(3) production using a specific monoclonal anti-PtdIns(3,4,5)P(3) antibody, and compared the results with those obtained using PH-domain-dependent methods. Anti-PtdIns(3,4,5)P(3) staining rapidly accumulated at the leading edge of EGF-stimulated carcinoma cells. PtdIns(3,4,5)P(3) levels were maximal at 1 min, and returned to basal levels by 5 min. In contrast, membrane PtdIns(3,4,5)P(3) production, measured by the membrane translocation of an epitope-tagged (BTK)PH (PH domain of Bruton's tyrosine kinase), remained approx. 2-fold above basal level throughout 4-5 min of EGF stimulation. To determine the reason for this disparity, we measured the rate of PtdIns(3,4,5)P(3) hydrolysis by measuring the decay of the PtdIns(3,4,5)P(3) signal after LY294002 treatment of EGF-stimulated cells. LY294002 abolished anti-PtdIns(3,4,5)P(3) membrane staining within 10 s of treatment, suggesting that PtdIns(3,4,5)P(3) turnover occurs within seconds of synthesis. In contrast, (BTK)PH membrane recruitment, once initiated by EGF, was relatively insensitive to LY294002. These data suggest that sequestration of PtdIns(3,4,5)P(3) by PH domains may affect the apparent kinetics of PtdIns(3,4,5)P(3) accumulation and turnover; consistent with this hypothesis, we found that GRP-1 (general receptor for phosphoinositides 1) PH domains [which, like BTK, are specific for PtdIns(3,4,5)P(3)] inhibit PTEN (phosphatase and tensin homologue deleted on chromosome 10) dephosphorylation of PtdIns(3,4,5)P(3) in vitro. These data suggest that anti-PtdIns(3,4,5)P(3) antibodies are a useful tool to detect localized PtdIns(3,4,5)P(3), and illustrate the importance of using multiple approaches for the estimation of membrane phosphoinositides.
Collapse
Affiliation(s)
- Shu-Chin Yip
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Papakonstanti EA, Stournaras C. Cell responses regulated by early reorganization of actin cytoskeleton. FEBS Lett 2008; 582:2120-7. [PMID: 18325339 DOI: 10.1016/j.febslet.2008.02.064] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 02/21/2008] [Indexed: 01/20/2023]
Abstract
Microfilaments exist in a dynamic equilibrium between monomeric and polymerized actin and the ratio of monomers to polymeric forms is influenced by a variety of extracellular stimuli. The polymerization, depolymerization and redistribution of actin filaments are modulated by several actin-binding proteins, which are regulated by upstream signalling molecules. Actin cytoskeleton is involved in diverse cellular functions including migration, ion channels activity, secretion, apoptosis and cell survival. In this review we have outlined the role of actin dynamics in representative cell functions induced by the early response to extracellular stimuli.
Collapse
Affiliation(s)
- E A Papakonstanti
- Department of Biochemistry, Medical School, University of Crete, GR-71110, Heraklion-Voutes, Greece.
| | | |
Collapse
|
85
|
Abstract
Phosphoinositide 3-kinase (PI3K), PTEN and localized phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3] play key roles in chemotaxis, regulating cell motility by controlling the actin cytoskeleton in Dictyostelium and mammalian cells. PtdIns(3,4,5)P3, produced by PI3K, acts via diverse downstream signaling components, including the GTPase Rac, Arf-GTPases and the kinase Akt (PKB). It has become increasingly apparent, however, that chemotaxis results from an interplay between the PI3K-PTEN pathway and other parallel pathways in Dictyostelium and mammalian cells. In Dictyostelium, the phospholipase PLA2 acts in concert with PI3K to regulate chemotaxis, whereas phospholipase C (PLC) plays a supporting role in modulating PI3K activity. In adenocarcinoma cells, PLC and the actin regulator cofilin seem to provide the direction-sensing machinery, whereas PI3K might regulate motility.
Collapse
Affiliation(s)
- Verena Kölsch
- Section of Cell and Developmental Biology, Division of Biological Sciences, Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | - Pascale G. Charest
- Section of Cell and Developmental Biology, Division of Biological Sciences, Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | - Richard A. Firtel
- Section of Cell and Developmental Biology, Division of Biological Sciences, Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| |
Collapse
|
86
|
Rothschild BL, Shim AH, Ammer AG, Kelley LC, Irby KB, Head JA, Chen L, Varella-Garcia M, Sacks PG, Frederick B, Raben D, Weed SA. Cortactin overexpression regulates actin-related protein 2/3 complex activity, motility, and invasion in carcinomas with chromosome 11q13 amplification. Cancer Res 2007; 66:8017-25. [PMID: 16912177 DOI: 10.1158/0008-5472.can-05-4490] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carcinoma cell motility and invasion are prerequisites for tumor cell metastasis, which requires regulation of the actin cytoskeleton. Cortactin is an actin-related protein 2/3 (Arp2/3) complex-activating and filamentous (F)-actin-binding protein that is implicated in tumor cell motility and metastasis, partially by its ability to become tyrosine phosphorylated. Cortactin is encoded by the CTTN gene and maps to chromosome 11q13, a region amplified in many carcinomas, including head and neck squamous cell carcinoma (HNSCC). CTTN gene amplification is associated with lymph node metastasis and poor patient outcome, and cortactin overexpression enhances motility in tumor cells lacking 11q13 amplification. However, a direct link between increased motility and invasion has not been reported in tumor cells with chromosome 11q13 amplification and cortactin overexpression. In this study, we have examined the relationship between CTTN amplification and tumor cell motility in HNSCC. In 11 of 39 (28%) HNSCC cases, cortactin overexpression determined by immunohistochemistry correlates with lymph node metastasis and CTTN gene amplification. HNSCC cells containing cortactin gene amplification and protein overexpression display increased binding and activation of Arp2/3 complex, and were more motile and invasive than HNSCC cells lacking CTTN amplification. Down-regulation of cortactin expression in CTTN-amplified HNSCC cells by small interfering RNA impairs HNSCC motility and invasion. Treatment of HNSCC cells with the epidermal growth factor receptor inhibitor gefitinib inhibits HNSCC motility and down-regulates cortactin tyrosine phosphorylation. These data suggest that cortactin may be a valid prognostic and therapeutic marker for invasive and metastatic HNSCC and other carcinomas with 11q13 amplification.
Collapse
Affiliation(s)
- Brian L Rothschild
- Department of Craniofacial Biology, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
El-Sibai M, Nalbant P, Pang H, Flinn RJ, Sarmiento C, Macaluso F, Cammer M, Condeelis JS, Hahn KM, Backer JM. Cdc42 is required for EGF-stimulated protrusion and motility in MTLn3 carcinoma cells. J Cell Sci 2007; 120:3465-74. [PMID: 17855387 PMCID: PMC4066376 DOI: 10.1242/jcs.005942] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cdc42 plays a central role in regulating the actin cytoskeleton and maintaining cell polarity. Here, we show that Cdc42 is crucial for epidermal growth factor (EGF)-stimulated protrusion in MTLn3 carcinoma cells. When stimulated with EGF, carcinoma cells showed a rapid increase in activated Cdc42 that is primarily localized to the protruding edge of the cells. siRNA-mediated knockdown of Cdc42 expression caused a decrease in EGF-stimulated protrusion and reduced cell motility in time-lapse studies. These changes were correlated with a decrease in barbed-end formation and Arp2/3 localization at the cell edge, and a marked defect in actin filament branching, as revealed by rotary-shadowing scanning electron microscopy. Upstream of Arp2/3, Cdc42 knockdown inhibited EGF-stimulated activation of PI 3-kinase at early (within 1 minute) but not late (within 3 minutes) time points. Membrane targeting of N-WASP, WAVE2 and IRSp53 were also inhibited. Effects on WAVE2 were not owing to Rac1 inhibition, because WAVE2 recruitment is unaffected by Rac1 knockdown. Our data suggest that Cdc42 activation is crucial for the regulation of actin polymerization in carcinoma cells, and required for both EGF-stimulated protrusion and cell motility independently of effects on Rac.
Collapse
Affiliation(s)
- Mirvat El-Sibai
- Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Peri Nalbant
- Pharmacology, University of North Carolina School of Medicine CB7365, Chapel Hill, NC 27599, USA
| | - Huan Pang
- Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Rory J. Flinn
- Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Corina Sarmiento
- Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Frank Macaluso
- Analytical Imaging Facility, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Michael Cammer
- Analytical Imaging Facility, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - John S. Condeelis
- Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Klaus M. Hahn
- Pharmacology, University of North Carolina School of Medicine CB7365, Chapel Hill, NC 27599, USA
| | - Jonathan M. Backer
- Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Author for correspondence ()
| |
Collapse
|
88
|
Yip SC, El-Sibai M, Coniglio SJ, Mouneimne G, Eddy RJ, Drees BE, Neilsen PO, Goswami S, Symons M, Condeelis JS, Backer JM. The distinct roles of Ras and Rac in PI 3-kinase-dependent protrusion during EGF-stimulated cell migration. J Cell Sci 2007; 120:3138-46. [PMID: 17698922 PMCID: PMC4267689 DOI: 10.1242/jcs.005298] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cell migration involves the localized extension of actin-rich protrusions, a process that requires Class I phosphoinositide 3-kinases (PI 3-kinases). Both Rac and Ras have been shown to regulate actin polymerization and activate PI 3-kinase. However, the coordination of Rac, Ras and PI 3-kinase activation during epidermal growth factor (EGF)-stimulated protrusion has not been analyzed. We examined PI 3-kinase-dependent protrusion in MTLn3 rat adenocarcinoma cells. EGF-stimulated phosphatidyl-inositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)] levels showed a rapid and persistent response, as PI 3-kinase activity remained elevated up to 3 minutes. The activation kinetics of Ras, but not Rac, coincided with those of leading-edge PtdIns(3,4,5)P(3) production. Small interfering RNA (siRNA) knockdown of K-Ras but not Rac1 abolished PtdIns(3,4,5)P(3) production at the leading edge and inhibited EGF-stimulated protrusion. However, Rac1 knockdown did inhibit cell migration, because of the inhibition of focal adhesion formation in Rac1 siRNA-treated cells. Our data show that in EGF-stimulated MTLn3 carcinoma cells, Ras is required for both PtdIns(3,4,5)P(3) production and lamellipod extension, whereas Rac1 is required for formation of adhesive structures. These data suggest an unappreciated role for Ras during protrusion, and a crucial role for Rac in the stabilization of protrusions required for cell motility.
Collapse
Affiliation(s)
- Shu-Chin Yip
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mirvat El-Sibai
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Ghassan Mouneimne
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert J. Eddy
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | - Marc Symons
- Center for Oncology and Cell Biology, Institute for Medical Research at North Shore-LIJ, Manhasset, NY, USA
| | - John S. Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jonathan M. Backer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Author for correspondence ()
| |
Collapse
|
89
|
Liu Y, Sun R, Wan W, Wang J, Oppenheim JJ, Chen L, Zhang N. The involvement of lipid rafts in epidermal growth factor-induced chemotaxis of breast cancer cells. Mol Membr Biol 2007; 24:91-101. [PMID: 17453416 DOI: 10.1080/10929080600990500] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Metastasis is the major cause of morbidity and mortality in cancer. Recent studies reveal a role of chemotaxis in cancer cell metastasis. Epidermal growth factor receptors (EGFR) have potent chemotactic effects on human breast cancer cells. Lipid rafts, organized microdomain on plasma membranes, regulate the activation of many membrane receptors. In the current study, we investigated the role of lipid rafts in EGFR-mediated cancer cell chemotaxis. Our confocal microscopy results suggested that EGFR co-localized with GM1-positive rafts. Disrupting rafts with methyl-beta-cyclodextrin (mbetaCD) inhibited EGF-induced chemotaxis of human breast cancer cells. Supplementation with cholesterol reversed the inhibitory effects. Pretreatment with mbetaCD also impaired directional migration of cells in an in vitro "wound healing" assay, EGF-induced cell adhesion, actin polymerization, Akt phosphorylation and protein kinase Czeta (PKCzeta) translocation. Taken together, our study indicated that integrity of lipid rafts was critical in EGF-induced chemotaxis of human breast cancer cells.
Collapse
Affiliation(s)
- Ying Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
90
|
Chan MWC, Arora PD, McCulloch CA. Cyclosporin inhibition of collagen remodeling is mediated by gelsolin. Am J Physiol Cell Physiol 2007; 293:C1049-58. [PMID: 17615162 DOI: 10.1152/ajpcell.00027.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclosporin A (CsA) inhibits collagen remodeling by interfering with the collagen-binding step of phagocytosis. In rapidly remodeling connective tissues such as human periodontium this interference manifests as marked tissue overgrowth and loss of function. Previous data have shown that CsA inhibits integrin-induced release of Ca(2+) from internal stores, which is required for the binding step of collagen phagocytosis. Because gelsolin is a Ca(2+)-dependent actin-severing protein that mediates collagen phagocytosis, we determined whether gelsolin is a CsA target. Compared with vehicle controls, CsA treatment of wild-type mice increased collagen accumulation by 60% in periodontal tissues; equivalent increases were seen in vehicle-treated gelsolin-null mice. Collagen degradation by phagocytosis in cultured gelsolin wild-type fibroblasts was blocked by CsA, comparable to levels of vehicle-treated gelsolin-null fibroblasts. In wild-type cells treated with CsA, collagen binding was similar to that of gelsolin-null fibroblasts transfected with a gelsolin-severing mutant and treated with vehicle. CsA blocked collagen-induced Ca(2+) fluxes subjacent to bound collagen beads, gelsolin recruitment, and actin assembly at bead sites. CsA reduced gelsolin-dependent severing of actin in wild-type cells to levels similar to those in gelsolin-null fibroblasts. We conclude that CsA-induced accumulation of collagen in the extracellular matrix involves disruption of the actin-severing properties of gelsolin, thereby inhibiting the binding step of collagen phagocytosis.
Collapse
|
91
|
Abstract
Recent evidence indicates that metastatic capacity is an inherent feature of breast tumours and not a rare, late acquired event. This has led to new models of metastasis. The interpretation of expression-profiling data in the context of these new models has identified the cofilin pathway as a major determinant of metastasis. Recent studies indicate that the overall activity of the cofilin pathway, and not that of any single gene within the pathway, determines the invasive and metastatic phenotype of tumour cells. These results predict that inhibitors directed at the output of the cofilin pathway will have therapeutic benefit in combating metastasis.
Collapse
Affiliation(s)
- Weigang Wang
- Experimental Therapeutics, ImClone Systems Incorporated, New York, New York, USA
| | | | | |
Collapse
|
92
|
Kiuchi T, Ohashi K, Kurita S, Mizuno K. Cofilin promotes stimulus-induced lamellipodium formation by generating an abundant supply of actin monomers. ACTA ACUST UNITED AC 2007; 177:465-76. [PMID: 17470633 PMCID: PMC2064820 DOI: 10.1083/jcb.200610005] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cofilin stimulates actin filament disassembly and accelerates actin filament turnover. Cofilin is also involved in stimulus-induced actin filament assembly during lamellipodium formation. However, it is not clear whether this occurs by replenishing the actin monomer pool, through filament disassembly, or by creating free barbed ends, through its severing activity. Using photoactivatable Dronpa-actin, we show that cofilin is involved in producing more than half of all cytoplasmic actin monomers and that the rate of actin monomer incorporation into the tip of the lamellipodium is dependent on the size of this actin monomer pool. Finally, in cofilin-depleted cells, stimulus-induced actin monomer incorporation at the cell periphery is attenuated, but the incorporation of microinjected actin monomers is not. We propose that cofilin contributes to stimulus-induced actin filament assembly and lamellipodium extension by supplying an abundant pool of cytoplasmic actin monomers.
Collapse
Affiliation(s)
- Tai Kiuchi
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | | | | | | |
Collapse
|
93
|
Vitriol EA, Uetrecht AC, Shen F, Jacobson K, Bear JE. Enhanced EGFP-chromophore-assisted laser inactivation using deficient cells rescued with functional EGFP-fusion proteins. Proc Natl Acad Sci U S A 2007; 104:6702-7. [PMID: 17420475 PMCID: PMC1871849 DOI: 10.1073/pnas.0701801104] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chromophore-assisted laser inactivation (CALI) is a light-mediated technique that offers precise spatiotemporal control of protein inactivation, enabling better understanding of the protein's role in cell function. EGFP has been used effectively as a CALI chromophore, and its cotranslational attachment to the target protein avoids having to use exogenously added labeling reagents. A potential drawback to EGFP-CALI is that the CALI phenotype can be obscured by the endogenous, unlabeled protein that is not susceptible to light inactivation. Performing EGFP-CALI experiments in deficient cells rescued with functional EGFP-fusion proteins permits more complete loss of function to be achieved. Here, we present a modified lentiviral system for rapid and efficient generation of knockdown cell lines complemented with physiological levels of EGFP-fusion proteins. We demonstrate that CALI of EGFP-CapZbeta increases uncapped actin filaments, resulting in enhanced filament growth and the formation of numerous protrusive structures. We show that these effects are completely dependent upon knocking down the endogenous protein. We also demonstrate that CALI of EGFP-Mena in Mena/VASP-deficient cells stabilizes lamellipodial protrusions.
Collapse
Affiliation(s)
- Eric A. Vitriol
- *Department of Cell and Developmental Biology
- Lineberger Comprehensive Cancer Center, and
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599
| | - Andrea C. Uetrecht
- *Department of Cell and Developmental Biology
- Lineberger Comprehensive Cancer Center, and
| | - Feimo Shen
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599
| | - Ken Jacobson
- *Department of Cell and Developmental Biology
- Lineberger Comprehensive Cancer Center, and
- To whom correspondence may be addressed. E-mail: or
| | - James E. Bear
- *Department of Cell and Developmental Biology
- Lineberger Comprehensive Cancer Center, and
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
94
|
Abstract
A cell responds to a chemotactic signal by activating actin polymerization and forming a protrusion oriented towards the source. Recent work shows that the activity of cofilin, a protein that creates new barbed ends for actin filament elongation, amplifies and specifies the direction of the response in carcinoma cells.
Collapse
Affiliation(s)
- Sarah E Hitchcock-Degregori
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, New Jersey 08854-8021, USA.
| |
Collapse
|
95
|
Mouneimne G, DesMarais V, Sidani M, Scemes E, Wang W, Song X, Eddy R, Condeelis J. Spatial and temporal control of cofilin activity is required for directional sensing during chemotaxis. Curr Biol 2007; 16:2193-205. [PMID: 17113383 DOI: 10.1016/j.cub.2006.09.016] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 08/23/2006] [Accepted: 09/06/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND Previous work has led to the hypothesis that cofilin severing, as regulated by PLC, is involved in chemotactic sensing. We have tested this hypothesis by investigating whether activation of endogenous cofilin is spatially and temporally linked to sensing an EGF point source in carcinoma cells. RESULTS We demonstrate that inhibition of endogenous cofilin activity with either siRNA or overexpression of LIMK suppresses directional sensing in carcinoma cells. LIMK siRNA knockdown, which suppresses cofilin phosphorylation, and microinjection of S3C cofilin, a cofilin mutant that is constitutively active and not phosphorylated by LIMK, also inhibits directional sensing and chemotaxis. These results indicate that phosphorylation of cofilin by LIMK, in addition to cofilin activity, is required for chemotaxis. Cofilin activity concentrates rapidly at the newly formed leading edge facing the gradient, whereas cofilin phosphorylation increases throughout the cell. Quantification of these results indicates that the amplification of asymmetric actin polymerization required for protrusion toward the EGF gradient occurs at the level of cofilin but not at the level of PLC activation by EGFR. CONCLUSIONS These results indicate that local activation of cofilin by PLC and its global inactivation by LIMK phosphorylation combine to generate the local asymmetry of actin polymerization required for chemotaxis.
Collapse
Affiliation(s)
- Ghassan Mouneimne
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Baumgartner M, Sillman AL, Blackwood EM, Srivastava J, Madson N, Schilling JW, Wright JH, Barber DL. The Nck-interacting kinase phosphorylates ERM proteins for formation of lamellipodium by growth factors. Proc Natl Acad Sci U S A 2006; 103:13391-6. [PMID: 16938849 PMCID: PMC1569174 DOI: 10.1073/pnas.0605950103] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mammalian Ste20-like Nck-interacting kinase (NIK) and its orthologs Misshapen in Drosophila and Mig-15 in Caenorhabditis elegans have a conserved function in regulating cell morphology, although through poorly understood mechanisms. We report two previously unrecognized actions of NIK: regulation of lamellipodium formation by growth factors and phosphorylation of the ERM proteins ezrin, radixin, and moesin. ERM proteins regulate cell morphology and plasma membrane dynamics by reversibly anchoring actin filaments to integral plasma membrane proteins. In vitro assays show that NIK interacts directly with ERM proteins, binding their N termini and phosphorylating a conserved C-terminal threonine. In cells, NIK and phosphorylated ERM proteins localize at the distal margins of lamellipodia, and NIK activity is necessary for phosphorylation of ERM proteins induced by EGF and PDGF, but not by thrombin. Lamellipodium extension in response to growth factors is inhibited in cells expressing a kinase-inactive NIK, suppressed for NIK expression with siRNA oligonucleotides, or expressing ezrin T567A that cannot be phosphorylated. These data suggest that direct phosphorylation of ERM proteins by NIK constitutes a signaling mechanism controlling growth factor-induced membrane protrusion and cell morphology.
Collapse
Affiliation(s)
- Martin Baumgartner
- *Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143; and
| | - Amy L. Sillman
- *Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143; and
| | | | - Jyoti Srivastava
- *Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143; and
| | - Nikki Madson
- *Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143; and
| | | | | | - Diane L. Barber
- *Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
97
|
Shao D, Forge A, Munro PMG, Bailly M. Arp2/3 complex-mediated actin polymerisation occurs on specific pre-existing networks in cells and requires spatial restriction to sustain functional lamellipod extension. CELL MOTILITY AND THE CYTOSKELETON 2006; 63:395-414. [PMID: 16619224 PMCID: PMC7611918 DOI: 10.1002/cm.20131] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The classical Arp2/3-mediated dendritic network defines the cytoskeleton at the leading edge of crawling cells, and it is generally assumed that Arp2/3-mediated actin polymerization generates the force necessary to extend lamellipods. Our previous work suggested that successful lamellipod extension required not only free barbed ends for actin polymerization but also a proper ultrastructural organization of the cytoskeleton. To further explore the structural role of the Arp2/3 complex-mediated networks in lamellipod morphology and function, we performed a detailed analysis of the ultrastructure of the Arp2/3-mediated networks, using the WA domains of Scar and WASp to generate mislocalised Arp2/3 networks in vivo, and to reconstruct de novo Arp2/3-mediated actin nucleation and polymerization on extracted cytoskeletons. We present here evidence that spatially unrestricted Arp2/3-mediated networks are intrinsically three-dimensional and multilayered by nature and, as such, cannot sustain significant polarized extension. Furthermore, such networks polymerize only at preferred locations in extracted cells, corresponding to pre-existing Arp2/3 networks, suggesting that the specific molecular organization of the actin cytoskeleton, in terms of structure and/or biochemical composition, dictates the location of Arp2/3 complex-mediated actin polymerization. We propose that successful lamellipod extension depends not only on localized actin polymerization mediated through local signalling, but also on spatial restriction of the Arp2/3 complex-mediated nucleation of actin polymerization, both in terms of location within the cell and ultrastructural organization of the resulting network.
Collapse
Affiliation(s)
- D Shao
- Division of Cell Biology, UCL Institute of Ophthalmology, London, United Kingdom
| | | | | | | |
Collapse
|
98
|
Song X, Chen X, Yamaguchi H, Mouneimne G, Condeelis JS, Eddy RJ. Initiation of cofilin activity in response to EGF is uncoupled from cofilin phosphorylation and dephosphorylation in carcinoma cells. J Cell Sci 2006; 119:2871-81. [PMID: 16803871 DOI: 10.1242/jcs.03017] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been demonstrated that the actin-severing activity of cofilin can be downregulated by LIM kinase (LIMK)-dependent phosphorylation at residue Ser3. Chemotactic stimulation in various cell types induces cofilin dephosphorylation, suggesting that cofilin activation in these cells occurs by a dephosphorylation mechanism. However, resting metastatic carcinoma cells have the majority of their cofilin in a dephosphorylated but largely inactive state. Stimulation with epidermal growth factor (EGF) induces an increase in cofilin activity after 60 seconds together with an increase in phosphorylated cofilin (p-cofilin), indicating that cofilin dephosphorylation is not coupled to cofilin activation in these cells. Suppression of LIMK function by inhibiting Rho-associated protein kinase (ROCK) or LIMK siRNA inhibited the EGF-induced cofilin phosphorylation but had no effect on cofilin activity or cofilin-dependent lamellipod protrusion induced by EGF. Correlation analysis revealed that cofilin, p-cofilin and LIMK are not colocalized, and changes in the location of these proteins upon stimulation with EGF indicate that they are not functionally coupled. Phospholipase C, which has been implicated in cofilin activation following stimulation with EGF, does not regulate p-cofilin levels following stimulation with EGF. Therefore, our results do not support a model for the initial activation of cofilin by dephosphorylation in response to chemoattractant stimulation in metastatic carcinoma cells.
Collapse
Affiliation(s)
- Xiaoyan Song
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, F628, 1300 Morris Park Avenue, Bronx, New York, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
99
|
Hayes MJ, Shao D, Bailly M, Moss SE. Regulation of actin dynamics by annexin 2. EMBO J 2006; 25:1816-26. [PMID: 16601677 PMCID: PMC1456940 DOI: 10.1038/sj.emboj.7601078] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Accepted: 03/13/2006] [Indexed: 12/27/2022] Open
Abstract
Annexin 2 is a ubiquitous Ca(2+)-binding protein that is essential for actin-dependent vesicle transport. Here, we show that in spontaneously motile cells annexin 2 is concentrated in dynamic actin-rich protrusions, and that depletion of annexin 2 using siRNA leads to the accumulation of stress fibres and loss of protrusive and retractile activity. Cells co-expressing annexin 2-CFP and actin-YFP exhibit Ca(2+)-dependent fluorescense resonance energy transfer throughout the cytoplasm and in membrane ruffles and protrusions, suggesting that annexin 2 may directly interact with actin. This notion was supported by biochemical studies, in which we show that annexin 2 reduces the polymerisation rate of actin monomers in a dose-dependent manner. By measuring actin polymerisation rates in the presence of barbed-end and pointed-end cappers, we further demonstrate that annexin 2 specifically inhibits filament elongation at the barbed ends. These results show that annexin 2 has an essential role in maintaining the plasticity of the dynamic membrane-associated actin cytoskeleton, and that its activity in this context may be at least partly explained through direct interactions with polymerised and monomeric actin.
Collapse
Affiliation(s)
- Matthew J Hayes
- Division of Cell Biology, Institute of Ophthalmology, University College London, London, UK
| | - Dongmin Shao
- Division of Cell Biology, Institute of Ophthalmology, University College London, London, UK
| | - Maryse Bailly
- Division of Cell Biology, Institute of Ophthalmology, University College London, London, UK
| | - Stephen E Moss
- Division of Cell Biology, Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
100
|
Hillberg L, Zhao Rathje LS, Nyåkern-Meazza M, Helfand B, Goldman RD, Schutt CE, Lindberg U. Tropomyosins are present in lamellipodia of motile cells. Eur J Cell Biol 2006; 85:399-409. [PMID: 16524642 DOI: 10.1016/j.ejcb.2005.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 12/21/2005] [Accepted: 12/21/2005] [Indexed: 12/12/2022] Open
Abstract
This paper shows that high-molecular-weight tropomyosins (TMs), as well as shorter isoforms of this protein, are present in significant amounts in lamellipodia and filopodia of spreading normal and transformed cells. The presence of TM in these locales was ascertained by staining of cells with antibodies reacting with endogenous TMs and through the expression of hemaglutinin- and green fluorescent protein-tagged TM isoforms. The observations are contrary to recent reports suggesting the absence of TMs in regions,where polymerization of actin takes place, and indicate that the view of the role of TM in the formation of actin filaments needs to be significantly revised.
Collapse
Affiliation(s)
- Louise Hillberg
- Department of Cell Biology, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|