51
|
Abstract
Insulin is secreted into blood vessels from β cells of pancreatic islets in response to high blood glucose levels. Insulin stimulates an array of physiological responses in target tissues, including liver, skeletal muscle, and adipose tissue, thereby reducing the blood glucose level. Insulin-dependent glucose uptake in skeletal muscle and adipose tissue is primarily mediated by the redistribution of the glucose transporter type 4 from intracellular storage sites to the plasma membrane. Evidence for the participation of the Rho family GTPase Rac1 in glucose uptake signaling in skeletal muscle has emerged from studies using cell cultures and genetically engineered mice. Herein, recent progress in understanding the function and regulation of Rac1, especially the cross-talk with the protein kinase Akt2, is highlighted. In addition, the role for another Rho family member TC10 and its regulatory mechanism in adipocyte insulin signaling are described.
Collapse
Affiliation(s)
- Takaya Satoh
- Laboratory of Cell Biology; Department of Biological Science; Graduate School of Science; Osaka Prefecture University; Osaka, Japan
| |
Collapse
|
52
|
Sylow L, Kleinert M, Pehmøller C, Prats C, Chiu TT, Klip A, Richter EA, Jensen TE. Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance. Cell Signal 2014; 26:323-31. [DOI: 10.1016/j.cellsig.2013.11.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/01/2013] [Indexed: 11/16/2022]
|
53
|
Sun Y, Chiu TT, Foley KP, Bilan PJ, Klip A. Myosin Va mediates Rab8A-regulated GLUT4 vesicle exocytosis in insulin-stimulated muscle cells. Mol Biol Cell 2014; 25:1159-70. [PMID: 24478457 PMCID: PMC3967978 DOI: 10.1091/mbc.e13-08-0493] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Rab-GTPases are important molecular switches regulating intracellular vesicle traffic, and we recently showed that Rab8A and Rab13 are activated by insulin in muscle to mobilize GLUT4-containing vesicles to the muscle cell surface. Here we show that the unconventional motor protein myosin Va (MyoVa) is an effector of Rab8A in this process. In CHO-IR cell lysates, a glutathione S-transferase chimera of the cargo-binding COOH tail (CT) of MyoVa binds Rab8A and the related Rab10, but not Rab13. Binding to Rab8A is stimulated by insulin in a phosphatidylinositol 3-kinase-dependent manner, whereas Rab10 binding is insulin insensitive. MyoVa-CT preferentially binds GTP-locked Rab8A. Full-length green fluorescent protein (GFP)-MyoVa colocalizes with mCherry-Rab8A in perinuclear small puncta, whereas GFP-MyoVa-CT collapses the GTPase into enlarged perinuclear depots. Further, GFP-MyoVa-CT blocks insulin-stimulated translocation of exofacially myc-tagged GLUT4 to the surface of muscle cells. Mutation of amino acids in MyoVa-CT predicted to bind Rab8A abrogates both interaction with Rab8A (not Rab10) and inhibition of insulin-stimulated GLUT4myc translocation. Of importance, small interfering RNA-mediated MyoVa silencing reduces insulin-stimulated GLUT4myc translocation. Rab8A colocalizes with GLUT4 in perinuclear but not submembrane regions visualized by confocal total internal reflection fluorescence microscopy. Hence insulin signaling to the molecular switch Rab8A connects with the motor protein MyoVa to mobilize GLUT4 vesicles toward the muscle cell plasma membrane.
Collapse
Affiliation(s)
- Yi Sun
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | | | | | | | | |
Collapse
|
54
|
Abstract
GLUT4 is regulated by its intracellular localization. In the absence of insulin, GLUT4 is efficiently retained intracellularly within storage compartments in muscle and fat cells. Upon insulin stimulation (and contraction in muscle), GLUT4 translocates from these compartments to the cell surface where it transports glucose from the extracellular milieu into the cell. Its implication in insulin-regulated glucose uptake makes GLUT4 not only a key player in normal glucose homeostasis but also an important element in insulin resistance and type 2 diabetes. Nevertheless, how GLUT4 is retained intracellularly and how insulin acts on this retention mechanism is largely unclear. In this review, the current knowledge regarding the various molecular processes that govern GLUT4 physiology is discussed as well as the questions that remain.
Collapse
|
55
|
Abstract
Glucose is an important fuel for contracting muscle, and normal glucose metabolism is vital for health. Glucose enters the muscle cell via facilitated diffusion through the GLUT4 glucose transporter which translocates from intracellular storage depots to the plasma membrane and T-tubules upon muscle contraction. Here we discuss the current understanding of how exercise-induced muscle glucose uptake is regulated. We briefly discuss the role of glucose supply and metabolism and concentrate on GLUT4 translocation and the molecular signaling that sets this in motion during muscle contractions. Contraction-induced molecular signaling is complex and involves a variety of signaling molecules including AMPK, Ca(2+), and NOS in the proximal part of the signaling cascade as well as GTPases, Rab, and SNARE proteins and cytoskeletal components in the distal part. While acute regulation of muscle glucose uptake relies on GLUT4 translocation, glucose uptake also depends on muscle GLUT4 expression which is increased following exercise. AMPK and CaMKII are key signaling kinases that appear to regulate GLUT4 expression via the HDAC4/5-MEF2 axis and MEF2-GEF interactions resulting in nuclear export of HDAC4/5 in turn leading to histone hyperacetylation on the GLUT4 promoter and increased GLUT4 transcription. Exercise training is the most potent stimulus to increase skeletal muscle GLUT4 expression, an effect that may partly contribute to improved insulin action and glucose disposal and enhanced muscle glycogen storage following exercise training in health and disease.
Collapse
Affiliation(s)
- Erik A Richter
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
56
|
Tiam-1, a GEF for Rac1, plays a critical role in metformin-mediated glucose uptake in C2C12 cells. Cell Signal 2013; 25:2558-65. [PMID: 23993965 DOI: 10.1016/j.cellsig.2013.08.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/24/2013] [Indexed: 12/13/2022]
Abstract
Metformin is known to stimulate glucose uptake, but the mechanism for this action is not fully understood. In this study, AMPK activators (AICAR and metformin) increased the expression of T-lymphoma invasion and metastasis-inducing protein-1 (Tiam-1), a Rac1 specific guanine nucleotide exchange factor (GEF), mRNA and protein in skeletal muscle C2C12 cells. Metformin increases the serine-phosphorylation of Tiam-1 by AMPK and induces interaction between Tiam-1 and 14-3-3. Pharmacologic inhibition of AMPK blocks this interaction, indicating that 14-3-3 may be required for induction of Tiam-1 by AMPK. Metformin also increases the phosphorylation of p21-activated kinase 1 (PAK1), a direct downstream target of Rac1, dependent on AMPK. Tiam-1 is down-regulated at high glucose concentrations in cultured cells and in the db/db mouse model of hyperglycemia. Furthermore, Tiam-1 knock-down blocked metformin-induced increase in glucose uptake. These findings suggest that metformin promotes cellular glucose uptake in part through Tiam-1 induction.
Collapse
|
57
|
Sylow L, Jensen TE, Kleinert M, Højlund K, Kiens B, Wojtaszewski J, Prats C, Schjerling P, Richter EA. Rac1 signaling is required for insulin-stimulated glucose uptake and is dysregulated in insulin-resistant murine and human skeletal muscle. Diabetes 2013; 62:1865-75. [PMID: 23423567 PMCID: PMC3661612 DOI: 10.2337/db12-1148] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The actin cytoskeleton-regulating GTPase Rac1 is required for insulin-stimulated GLUT4 translocation in cultured muscle cells. However, involvement of Rac1 and its downstream signaling in glucose transport in insulin-sensitive and insulin-resistant mature skeletal muscle has not previously been investigated. We hypothesized that Rac1 and its downstream target, p21-activated kinase (PAK), are regulators of insulin-stimulated glucose uptake in mouse and human skeletal muscle and are dysregulated in insulin-resistant states. Muscle-specific inducible Rac1 knockout (KO) mice and pharmacological inhibition of Rac1 were used to determine whether Rac1 regulates insulin-stimulated glucose transport in mature skeletal muscle. Furthermore, Rac1 and PAK1 expression and signaling were investigated in muscle of insulin-resistant mice and humans. Inhibition and KO of Rac1 decreased insulin-stimulated glucose transport in mouse soleus and extensor digitorum longus muscles ex vivo. Rac1 KO mice showed decreased insulin and glucose tolerance and trended toward higher plasma insulin concentrations after intraperitoneal glucose injection. Rac1 protein expression and insulin-stimulated PAK(Thr423) phosphorylation were decreased in muscles of high fat-fed mice. In humans, insulin-stimulated PAK activation was decreased in both acute insulin-resistant (intralipid infusion) and chronic insulin-resistant states (obesity and diabetes). These findings show that Rac1 is a regulator of insulin-stimulated glucose uptake and a novel candidate involved in skeletal muscle insulin resistance.
Collapse
Affiliation(s)
- Lykke Sylow
- Molecular Physiology Group, Department of Nutrition, Exercise, and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E. Jensen
- Molecular Physiology Group, Department of Nutrition, Exercise, and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Kleinert
- Molecular Physiology Group, Department of Nutrition, Exercise, and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Højlund
- Diabetes Research Center, Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Bente Kiens
- Molecular Physiology Group, Department of Nutrition, Exercise, and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Wojtaszewski
- Molecular Physiology Group, Department of Nutrition, Exercise, and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Clara Prats
- Department of Biomedical Sciences, Center of Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik A. Richter
- Molecular Physiology Group, Department of Nutrition, Exercise, and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
- Corresponding author: Erik A. Richter,
| |
Collapse
|
58
|
Chiu TT, Sun Y, Koshkina A, Klip A. Rac-1 superactivation triggers insulin-independent glucose transporter 4 (GLUT4) translocation that bypasses signaling defects exerted by c-Jun N-terminal kinase (JNK)- and ceramide-induced insulin resistance. J Biol Chem 2013; 288:17520-31. [PMID: 23640896 DOI: 10.1074/jbc.m113.467647] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Insulin activates a cascade of signaling molecules, including Rac-1, Akt, and AS160, to promote the net gain of glucose transporter 4 (GLUT4) at the plasma membrane of muscle cells. Interestingly, constitutively active Rac-1 expression results in a hormone-independent increase in surface GLUT4; however, the molecular mechanism and significance behind this effect remain unresolved. Using L6 myoblasts stably expressing myc-tagged GLUT4, we found that overexpression of constitutively active but not wild-type Rac-1 sufficed to drive GLUT4 translocation to the membrane of comparable magnitude with that elicited by insulin. Stimulation of endogenous Rac-1 by Tiam1 overexpression elicited a similar hormone-independent gain in surface GLUT4. This effect on GLUT4 traffic could also be reproduced by acutely activating a Rac-1 construct via rapamycin-mediated heterodimerization. Strategies triggering Rac-1 "superactivation" (i.e. to levels above those attained by insulin alone) produced a modest gain in plasma membrane phosphatidylinositol 3,4,5-trisphosphate, moderate Akt activation, and substantial AS160 phosphorylation, which translated into GLUT4 translocation and negated the requirement for IRS-1. This unique signaling capacity exerted by Rac-1 superactivation bypassed the defects imposed by JNK- and ceramide-induced insulin resistance and allowed full and partial restoration of the GLUT4 translocation response, respectively. We propose that potent elevation of Rac-1 activation alone suffices to drive insulin-independent GLUT4 translocation in muscle cells, and such a strategy might be exploited to bypass signaling defects during insulin resistance.
Collapse
Affiliation(s)
- Tim Ting Chiu
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
59
|
Lee A, Hakuno F, Northcott P, Pessin JE, Adcock MR. Nexilin, a cardiomyopathy-associated F-actin binding protein, binds and regulates IRS1 signaling in skeletal muscle cells. PLoS One 2013; 8:e55634. [PMID: 23383252 PMCID: PMC3559603 DOI: 10.1371/journal.pone.0055634] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 01/03/2013] [Indexed: 01/11/2023] Open
Abstract
Insulin stimulates glucose uptake through a highly organized and complex process that involves movement of the glucose transporter 4 (GLUT4) from intracellular storage sites to the plasma membrane. Previous studies in L6 skeletal muscle cells have shown that insulin-induced activation and assembly of insulin receptor substrate 1 (IRS1) and p85α the regulatory subunit of the Type 1A phosphatidylinositol-3-kinase (PI3K), within remodeled actin-rich membrane structures is critical for downstream signalling mediating the translocation of GLUT4. The mechanism for localization within actin cytoskeletal scaffolds is not known, as direct interaction of IRS1 or p85α with F-actin has not been demonstrated. Here we show that nexilin, a F-actin binding protein implicated in the pathogenesis of familial dilated cardiomyopathies, preferentially binds to IRS1 over IRS2 to influence glucose transport in skeletal muscle cells. Nexilin stably associates with IRS1 under basal conditions in L6 myotubes and this complex is disassembled by insulin. Exposure of L6 myotubes to Latrunculin B disrupts the spatial patterning of nexilin and its transient association with IRS1. Functional silencing of nexilin has no effect on insulin-stimulated IRS1 tyrosine phosphorylation, however it enhances recruitment of p85α to IRS1 resulting in increased PI-3, 4, 5-P3 formation, coincident with enhanced AKT activation and glucose uptake. By contrast, overexpression of nexilin inhibits transmission of IRS1 signals to AKT. Based on these findings we propose that nexilin may tether IRS1 to actin-rich structures under basal conditions, confining IRS1 signaling to specific subcellular locations in the cell. Insulin-elicited release of this constraint may enhance the efficiency of IRS1/PI3K interaction and PI-3, 4, 5-P3 production at localized sites. Moreover, the selective binding of nexilin to IRS1 and not IRS2 may contribute to the differential specificity of IRS isoforms in the modulation of GLUT4 trafficking in skeletal muscle cells.
Collapse
Affiliation(s)
- Andrew Lee
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Fumihiko Hakuno
- Department of Animal Sciences and Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Paul Northcott
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey E. Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Maria Rozakis Adcock
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
60
|
Liu LZ, Cheung SCK, Lan LL, Ho SKS, Chan JCN, Tong PCY. Microtubule network is required for insulin-induced signal transduction and actin remodeling. Mol Cell Endocrinol 2013; 365:64-74. [PMID: 22996137 DOI: 10.1016/j.mce.2012.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/14/2012] [Accepted: 09/08/2012] [Indexed: 02/02/2023]
Abstract
Both microtubule and actin are required for insulin-induced glucose uptake. However, the roles of these two cytoskeletons and their relationship in insulin action still remain unclear. In this work, we examined the morphological change of microtubule/actin and their involvement in insulin signal transduction using rat skeletal muscle cells. Insulin rapidly led to microtubule clustering from ventral to dorsal surface of the cell. Microtubule filaments were rearranged to create space where new actin structures formed. Disruption of microtubule prevented insulin-induced actin remodeling and distal insulin signal transduction, with reduction in surface glucose transporter isoform 4 (GLUT4) and glucose uptake. Though microtubule mediated actin remodeling through PKCζ, reorganization of microtubule depended on tyrosine phosphorylation of insulin receptor, the mechanism is different from insulin-induced actin remodeling, which relied on the activity of PI3-kinase and PKCζ. We propose that microtubule network is required for insulin-induced signal transduction and actin remodeling in skeletal muscle cells.
Collapse
Affiliation(s)
- Li-Zhong Liu
- Department of Medicine and Therapeutics, Hong Kong Institute of Diabetes and Obesity, Li Ka Shing Institute of Health, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
61
|
Vu V, Bui P, Eguchi M, Xu A, Sweeney G. Globular adiponectin induces LKB1/AMPK-dependent glucose uptake via actin cytoskeleton remodeling. J Mol Endocrinol 2013; 51:155-65. [PMID: 23709749 DOI: 10.1530/jme-13-0059] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Previous studies have shown that many metabolic actions of adiponectin are mediated via the activation of AMP kinase and that adiponectin stimulates GLUT4 translocation and glucose uptake in the muscle. In this study, we demonstrate that adiponectin stimulates actin cytoskeleton remodeling, with increased phosphorylation of cofilin, and that blocking of cytoskeletal remodeling with cytochalasin D prevents adiponectin-stimulated AMPK phosphorylation in L6 myoblasts. LKB1 is an upstream kinase of AMPK, and we observed the colocalization of LKB1 with filamentous actin in response to adiponectin. Adiponectin-stimulated translocation of LKB1 from a nuclear to a cytoplasmic location to activate AMPK was also dependent on actin cytoskeleton remodeling. Cytoskeletal remodeling visualized by rhodamine-phalloidin immunofluorescence indicated that adiponectin-stimulated reorganization resulted in the formation membrane ruffles, which were also clearly visible by scanning electron microscopy in L6-GLUT4(myc) myoblasts. The stimulation of glucose uptake, but not of GLUT4-myc translocation to the cell surface, by adiponectin was also dependent on actin cytoskeleton remodeling. These results suggest that actin remodeling induced by adiponectin is essential for mediating LKB1/AMPK signaling and glucose uptake in skeletal muscle cells.
Collapse
Affiliation(s)
- Vivian Vu
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | | | | | | | | |
Collapse
|
62
|
Langlais P, Dillon JL, Mengos A, Baluch DP, Ardebili R, Miranda DN, Xie X, Heckmann BL, Liu J, Mandarino LJ. Identification of a role for CLASP2 in insulin action. J Biol Chem 2012; 287:39245-53. [PMID: 22992739 DOI: 10.1074/jbc.m112.394148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin stimulates the mobilization of glucose transporter 4 (GLUT4) storage vesicles to the plasma membrane, resulting in an influx of glucose into target tissues such as muscle and fat. We present evidence that CLIP-associating protein 2 (CLASP2), a protein previously unassociated with insulin action, is responsive to insulin stimulation. Using mass spectrometry-based protein identification combined with phosphoantibody immunoprecipitation in L6 myotubes, we detected a 4.8-fold increase of CLASP2 in the anti-phosphoserine immunoprecipitates upon insulin stimulation. Western blotting of CLASP2 immunoprecipitates with the phosphoantibody confirmed the finding that CLASP2 undergoes insulin-stimulated phosphorylation, and a number of novel phosphorylation sites were identified. Confocal imaging of L6 myotubes revealed that CLASP2 colocalizes with GLUT4 at the plasma membrane within areas of insulin-mediated cortical actin remodeling. CLASP2 is responsible for directing the distal end of microtubules to the cell cortex, and it has been shown that GLUT4 travels along microtubule tracks. In support of the concept that CLASP2 plays a role in the trafficking of GLUT4 at the cell periphery, CLASP2 knockdown by siRNA in L6 myotubes interfered with insulin-stimulated GLUT4 localization to the plasma membrane. Furthermore, siRNA mediated knockdown of CLASP2 in 3T3-L1 adipocytes inhibited insulin-stimulated glucose transport. We therefore propose a new model for CLASP2 in insulin action, where CLASP2 directs the delivery of GLUT4 to cell cortex landing zones important for insulin action.
Collapse
Affiliation(s)
- Paul Langlais
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona 85287, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Boguslavsky S, Chiu T, Foley KP, Osorio-Fuentealba C, Antonescu CN, Bayer KU, Bilan PJ, Klip A. Myo1c binding to submembrane actin mediates insulin-induced tethering of GLUT4 vesicles. Mol Biol Cell 2012; 23:4065-78. [PMID: 22918957 PMCID: PMC3469521 DOI: 10.1091/mbc.e12-04-0263] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
GLUT4-containing vesicles cycle between the plasma membrane and intracellular compartments. Insulin promotes GLUT4 exocytosis by regulating GLUT4 vesicle arrival at the cell periphery and its subsequent tethering, docking, and fusion with the plasma membrane. The molecular machinery involved in GLUT4 vesicle tethering is unknown. We show here that Myo1c, an actin-based motor protein that associates with membranes and actin filaments, is required for insulin-induced vesicle tethering in muscle cells. Myo1c was found to associate with both mobile and tethered GLUT4 vesicles and to be required for vesicle capture in the total internal reflection fluorescence (TIRF) zone beneath the plasma membrane. Myo1c knockdown or overexpression of an actin binding-deficient Myo1c mutant abolished insulin-induced vesicle immobilization, increased GLUT4 vesicle velocity in the TIRF zone, and prevented their externalization. Conversely, Myo1c overexpression immobilized GLUT4 vesicles in the TIRF zone and promoted insulin-induced GLUT4 exposure to the extracellular milieu. Myo1c also contributed to insulin-dependent actin filament remodeling. Thus we propose that interaction of vesicular Myo1c with cortical actin filaments is required for insulin-mediated tethering of GLUT4 vesicles and for efficient GLUT4 surface delivery in muscle cells.
Collapse
Affiliation(s)
- Shlomit Boguslavsky
- Cell Biology Program, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Role of RalA downstream of Rac1 in insulin-dependent glucose uptake in muscle cells. Cell Signal 2012; 24:2111-7. [PMID: 22820503 DOI: 10.1016/j.cellsig.2012.07.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 07/16/2012] [Indexed: 11/20/2022]
Abstract
The small GTPase RalA has been implicated in glucose uptake in insulin-stimulated adipocytes, although it remains unclear whether RalA has a similar role in insulin signaling in other types of cells. Recently, we have demonstrated that the Rho family GTPase Rac1 has a critical role in insulin-dependent glucose uptake in myoblast culture and mouse skeletal muscle. However, the mechanisms underlying Rac1-dependent glucose uptake, mostly mediated by the plasma membrane translocation of the glucose transporter GLUT4, remain largely unknown. The purpose of this study is to examine the involvement of RalA in Rac1 regulation of the translocation of GLUT4 to the plasma membrane in muscle cells. Ectopic expression of a constitutively activated RalA mutant indeed stimulated GLUT4 translocation, suggesting an important role of RalA also in muscle cells. GLUT4 translocation induced by constitutively activated mutation of Rac1 or more physiologically by upstream Rac1 regulators, such as phosphoinositide 3 kinase and the guanine nucleotide exchange factor FLJ00068, was abrogated when the expression of RalA was downregulated by RNA interference. The expression of constitutively activated Rac1, on the other hand, caused GTP loading and subcellular redistribution of RalA. Collectively, we propose a novel mechanism involving RalA for Rac1-mediated GLUT4 translocation in skeletal muscle cells.
Collapse
|
65
|
Nazari H, Khaleghian A, Takahashi A, Harada N, Webster NJG, Nakano M, Kishi K, Ebina Y, Nakaya Y. Cortactin, an actin binding protein, regulates GLUT4 translocation via actin filament remodeling. BIOCHEMISTRY (MOSCOW) 2012; 76:1262-9. [PMID: 22117553 DOI: 10.1134/s0006297911110083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Insulin regulates glucose uptake into fat and skeletal muscle cells by modulating the translocation of GLUT4 between the cell surface and interior. We investigated a role for cortactin, a cortical actin binding protein, in the actin filament organization and translocation of GLUT4 in Chinese hamster ovary (CHO-GLUT4myc) and L6-GLUT4myc myotube cells. Overexpression of wild-type cortactin enhanced insulin-stimulated GLUT4myc translocation but did not alter actin fiber formation. Conversely, cortactin mutants lacking the Src homology 3 (SH3) domain inhibited insulin-stimulated formation of actin stress fibers and GLUT4 translocation similar to the actin depolymerizing agent cytochalasin D. Wortmannin, genistein, and a PP1 analog completely blocked insulin-induced Akt phosphorylation, formation of actin stress fibers, and GLUT4 translocation indicating the involvement of both PI3-K/Akt and the Src family of kinases. The effect of these inhibitors was even more pronounced in the presence of overexpressed cortactin suggesting that the same pathways are involved. Knockdown of cortactin by siRNA did not inhibit insulin-induced Akt phosphorylation but completely inhibited actin stress fiber formation and glucose uptake. These results suggest that the actin binding protein cortactin is required for actin stress fiber formation in muscle cells and that this process is absolutely required for translocation of GLUT4-containing vesicles to the plasma membrane.
Collapse
Affiliation(s)
- H Nazari
- Department of Nutrition and Metabolism, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Wertheimer E, Gutierrez-Uzquiza A, Rosemblit C, Lopez-Haber C, Sosa MS, Kazanietz MG. Rac signaling in breast cancer: a tale of GEFs and GAPs. Cell Signal 2012; 24:353-362. [PMID: 21893191 PMCID: PMC3312797 DOI: 10.1016/j.cellsig.2011.08.011] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 08/20/2011] [Indexed: 11/28/2022]
Abstract
Rac GTPases, small G-proteins widely implicated in tumorigenesis and metastasis, transduce signals from tyrosine-kinase, G-protein-coupled receptors (GPCRs), and integrins, and control a number of essential cellular functions including motility, adhesion, and proliferation. Deregulation of Rac signaling in cancer is generally a consequence of enhanced upstream inputs from tyrosine-kinase receptors, PI3K or Guanine nucleotide Exchange Factors (GEFs), or reduced Rac inactivation by GTPase Activating Proteins (GAPs). In breast cancer cells Rac1 is a downstream effector of ErbB receptors and mediates migratory responses by ErbB1/EGFR ligands such as EGF or TGFα and ErbB3 ligands such as heregulins. Recent advances in the field led to the identification of the Rac-GEF P-Rex1 as an essential mediator of Rac1 responses in breast cancer cells. P-Rex1 is activated by the PI3K product PIP3 and Gβγ subunits, and integrates signals from ErbB receptors and GPCRs. Most notably, P-Rex1 is highly overexpressed in human luminal breast tumors, particularly those expressing ErbB2 and estrogen receptor (ER). The P-Rex1/Rac signaling pathway may represent an attractive target for breast cancer therapy.
Collapse
Affiliation(s)
- Eva Wertheimer
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Alvaro Gutierrez-Uzquiza
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Cinthia Rosemblit
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Cynthia Lopez-Haber
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Maria Soledad Sosa
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Marcelo G Kazanietz
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA.
| |
Collapse
|
67
|
Millioni R, Puricelli L, Iori E, Trevisan R, Tessari P. Skin fibroblasts as a tool for identifying the risk of nephropathy in the type 1 diabetic population. Diabetes Metab Res Rev 2012; 28:62-70. [PMID: 22218755 DOI: 10.1002/dmrr.1287] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Human fibroblasts in culture have been employed as an in vitro system to investigate some pathophysiological mechanisms of diabetes mellitus also associated with the development of diabetic nephropathy. In fact, there is increasing evidence that genetic factors either convey the risk of, or protect from, diabetic nephropathy and that the expression profiles and/or the behaviour of the cultured skin fibroblasts from type 1 diabetic patients could reflect these genetic influences. On the other hand, alterations could be attributable not only to changes in DNA sequence, but also to epigenetic factors. Our aim is to make a critical overview of the studies involving primary cultures of skin fibroblasts as tools to investigate the pathophysiology of diabetic nephropathy performed until now in this area. Cultured skin fibroblasts could be useful not only for the identification of patients at risk of developing diabetic renal disease, but also for a better understanding of the complex multifactorial mechanisms leading to the long-term complications in diabetes.
Collapse
Affiliation(s)
- Renato Millioni
- Department of Clinical and Experimental Medicine, Chair of Metabolism, University of Padova, Padova, Italy.
| | | | | | | | | |
Collapse
|
68
|
Brunetto EL, Teixeira SDS, Giannocco G, Machado UF, Nunes MT. T3 rapidly increases SLC2A4 gene expression and GLUT4 trafficking to the plasma membrane in skeletal muscle of rat and improves glucose homeostasis. Thyroid 2012; 22:70-9. [PMID: 22136156 DOI: 10.1089/thy.2010.0409] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Glucose transporter 4 (GLUT4) is highly expressed in muscle and fat tissue, where triiodothyronine (T(3)) induces solute carrier family 2 facilitated glucose transporter member 4 (SLC2A4) gene transcription. T(3) was also shown to rapidly increase glucose uptake in myocytes exposed to cycloheximide, indicating that it might act nongenomically to regulate GLUT4 availability. We tested this hypothesis by evaluating, in thyroidectomized rats (Tx rats), the acute and/or chronic T(3) effects on GLUT4 mRNA expression and polyadenylation, protein content, and trafficking to the plasma membrane (PM) in skeletal muscle, as well as on blood glucose disappearance rate (kITT) after insulin administration. METHODS Rats were surgically thyroidectomized and treated with T(3) (0.3 to 100 μg/100 g body weight) from 10 minutes to 5 days, and killed thereafter. Sham-operated (SO) rats were used as controls. Total RNA was extracted from the skeletal muscles (soleus [SOL] and extensorum digitalis longus [EDL]) and subjected to Northern blotting analysis using rat GLUT4 cDNA probe. Total protein was extracted and subjected to specific centrifugations for subcellular fractionation, and PM as well as microsomal (M) fractions were subjected to Western blotting analysis, using anti-GLUT4 antiserum as a probe. GLUT4 mRNA polyadenylation was examined by a rapid amplification of cDNA ends-poly(A) test (RACE-PAT). RESULTS Thyroidectomy reduced skeletal muscle GLUT4 mRNA, mRNA poly(A) tail length, protein content, and trafficking to the PM, as well as the kITT. The acute T(3) treatment rapidly (30 minutes) increased all these parameters compared with Tx rats. The 5-day T(3) treatment increased GLUT4 mRNA and protein expression, and restored GLUT4 trafficking to the PM and kITT to SO values. CONCLUSIONS The results presented here show for the first time that, in parallel to its transcriptional action on the SLC2A4 gene, T(3) exerts a rapid post-transcriptional effect on GLUT4 mRNA polyadenylation, which might increase transcript stability and translation efficiency, leading to the increased GLUT4 content and availability to skeletal muscle, as well as on GLUT4 translocation to the PM, improving the insulin sensitivity, as shown by the kITT.
Collapse
Affiliation(s)
- Erika Lia Brunetto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
69
|
Balamatsias D, Kong AM, Waters JE, Sriratana A, Gurung R, Bailey CG, Rasko JEJ, Tiganis T, Macaulay SL, Mitchell CA. Identification of P-Rex1 as a novel Rac1-guanine nucleotide exchange factor (GEF) that promotes actin remodeling and GLUT4 protein trafficking in adipocytes. J Biol Chem 2011; 286:43229-40. [PMID: 22002247 DOI: 10.1074/jbc.m111.306621] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Phosphoinositide 3-kinase (PI3K) signaling promotes the translocation of the glucose transporter, GLUT4, to the plasma membrane in insulin-sensitive tissues to facilitate glucose uptake. In adipocytes, insulin-stimulated reorganization of the actin cytoskeleton has been proposed to play a role in promoting GLUT4 translocation and glucose uptake, in a PI3K-dependent manner. However, the PI3K effectors that promote GLUT4 translocation via regulation of the actin cytoskeleton in adipocytes remain to be fully elucidated. Here we demonstrate that the PI3K-dependent Rac exchange factor, P-Rex1, enhances membrane ruffling in 3T3-L1 adipocytes and promotes GLUT4 trafficking to the plasma membrane at submaximal insulin concentrations. P-Rex1-facilitated GLUT4 trafficking requires a functional actin network and membrane ruffle formation and occurs in a PI3K- and Rac1-dependent manner. In contrast, expression of other Rho GTPases, such as Cdc42 or Rho, did not affect insulin-stimulated P-Rex1-mediated GLUT4 trafficking. P-Rex1 siRNA knockdown or expression of a P-Rex1 dominant negative mutant reduced but did not completely inhibit glucose uptake in response to insulin. Collectively, these studies identify a novel RacGEF in adipocytes as P-Rex1 that, at physiological insulin concentrations, functions as an insulin-dependent regulator of the actin cytoskeleton that contributes to GLUT4 trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Demis Balamatsias
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Wang Z, Oh E, Clapp DW, Chernoff J, Thurmond DC. Inhibition or ablation of p21-activated kinase (PAK1) disrupts glucose homeostatic mechanisms in vivo. J Biol Chem 2011; 286:41359-41367. [PMID: 21969371 DOI: 10.1074/jbc.m111.291500] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The p21-activated kinase PAK1 is implicated in tumorigenesis, and efforts to inhibit PAK1 signaling as a means to induce tumor cell apoptosis are underway. However, PAK1 has also been implicated as a positive effector of mechanisms in clonal pancreatic beta cells and skeletal myotubes that would be crucial to maintaining glucose homeostasis in vivo. Of relevance, human islets of Type 2 diabetic donors contained ~80% less PAK1 protein compared with non-diabetics, implicating PAK1 in islet signaling/scaffolding functions. Mimicking this, islets from PAK1(-/-) knock-out mice exhibited profound defects in the second/sustained-phase of insulin secretion. Reiteration of this specific defect by human islets treated with the PAK1 signaling inhibitor IPA3 revealed PAK1 signaling to be of primary functional importance. Analyses of human and mouse islet beta cell signaling revealed PAK1 activation to be 1) dependent upon Cdc42 abundance, 2) crucial for signaling downstream to activate ERK1/2, but 3) dispensable for cofilin phosphorylation. Importantly, the PAK1(-/-) knock-out mice were found to exhibit whole body glucose intolerance in vivo. Exacerbating this, the PAK1(-/-) knock-out mice also exhibited peripheral insulin resistance. Insulin resistance was coupled to ablation of insulin-stimulated GLUT4 translocation in skeletal muscle from PAK1(-/-) knock-out mice, and in sharp contrast to islet beta cells, skeletal muscle PAK1 loss was underscored by defective cofilin phosphorylation but normal ERK1/2 activation. Taken together, these data provide the first human islet and mammalian in vivo data unveiling the key and crucial roles for differential PAK1 signaling in the multi-tissue regulation of whole body glucose homeostasis.
Collapse
Affiliation(s)
- Zhanxiang Wang
- Basic Diabetes Group, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana 46202
| | - Eunjin Oh
- Basic Diabetes Group, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana 46202
| | - D Wade Clapp
- Basic Diabetes Group, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana 46202
| | | | - Debbie C Thurmond
- Basic Diabetes Group, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana 46202.
| |
Collapse
|
71
|
Chiu TT, Jensen TE, Sylow L, Richter EA, Klip A. Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle. Cell Signal 2011; 23:1546-54. [DOI: 10.1016/j.cellsig.2011.05.022] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 05/31/2011] [Indexed: 12/27/2022]
|
72
|
Qin DN, Zhu JG, Ji CB, Chunmei-Shi, Kou CZ, Zhu GZ, Zhang CM, Wang YP, Ni YH, Guo XR. Monoclonal antibody to six transmembrane epithelial antigen of prostate-4 influences insulin sensitivity by attenuating phosphorylation of P13K (P85) and Akt: possible mitochondrial mechanism. J Bioenerg Biomembr 2011; 43:247-55. [PMID: 21647634 DOI: 10.1007/s10863-011-9360-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 04/17/2011] [Indexed: 01/18/2023]
Abstract
We examined the effects of anti-six-transmembrane epithelial antigen of the prostate-4 (STEAP4) antibodies on glucose transport in mature adipocytes and determined the mechanism of insulin resistance in obesity. Western blotting was performed to determine STEAP4 expression, to assess translocation of insulin-sensitive glucose transporter 4 (GLUT4), and to measure phosphorylation and total protein content of insulin-signaling proteins. Confocal laser microscopy and flow cytometry were used to detect intracellular reactive oxygen species (ROS) and fluctuations in mitochondrial membrane potential (ΔΨ). ATP production was measured by using a luciferase-based luminescence assay kit. After the application of anti-STEAP4 antibodies at 0.002 mg/mL, adipocytes exhibited reduced insulin-stimulated glucose transport by attenuating the phosphorylation of IRS-1, PI3K (p85), and Akt. The antibodies also potentially increase the level of ROS and decrease cellular ATP production and ΔΨ. In conclusion, (i) STEAP4 regulates the function of IRS-1, PI3K, and Akt and decreases insulin-induced GLUT4 translocation and glucose uptake; (ii) ROS-related mitochondrial dysfunction may be related to a reduced IRS-1 correlation with the PI3K signaling pathway, leading to insulin resistance. These observations highlight the potential role of STEAP4 in glucose homeostasis and possibly in the pathophysiology of type 2 diabetes related to obesity and may provide new insights into the mechanisms of insulin resistance in obesity.
Collapse
Affiliation(s)
- Da-ni Qin
- Department of Pediatrics, Nanjing Maternal and Child Health Hospital of Nanjing Medical University, No.123 Tianfei Road, Nanjing, 210004, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Subcellular trafficking of the substrate transporters GLUT4 and CD36 in cardiomyocytes. Cell Mol Life Sci 2011; 68:2525-38. [PMID: 21547502 PMCID: PMC3134709 DOI: 10.1007/s00018-011-0690-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 04/01/2011] [Accepted: 04/12/2011] [Indexed: 12/16/2022]
Abstract
Cardiomyocytes use glucose as well as fatty acids for ATP production. These substrates are transported into the cell by glucose transporter 4 (GLUT4) and the fatty acid transporter CD36. Besides being located at the sarcolemma, GLUT4 and CD36 are stored in intracellular compartments. Raised plasma insulin concentrations and increased cardiac work will stimulate GLUT4 as well as CD36 to translocate to the sarcolemma. As so far studied, signaling pathways that regulate GLUT4 translocation similarly affect CD36 translocation. During the development of insulin resistance and type 2 diabetes, CD36 becomes permanently localized at the sarcolemma, whereas GLUT4 internalizes. This juxtaposed positioning of GLUT4 and CD36 is important for aberrant substrate uptake in the diabetic heart: chronically increased fatty acid uptake at the expense of glucose. To explain the differences in subcellular localization of GLUT4 and CD36 in type 2 diabetes, recent research has focused on the role of proteins involved in trafficking of cargo between subcellular compartments. Several of these proteins appear to be similarly involved in both GLUT4 and CD36 translocation. Others, however, have different roles in either GLUT4 or CD36 translocation. These trafficking components, which are differently involved in GLUT4 or CD36 translocation, may be considered novel targets for the development of therapies to restore the imbalanced substrate utilization that occurs in obesity, insulin resistance and diabetic cardiomyopathy.
Collapse
|
74
|
Cheung SC, Liu LZ, Lan LL, Liu QQ, Sun SS, Chan JC, Tong PC. Glucose lowering effect of transgenic human insulin-like growth factor-I from rice: in vitro and in vivo studies. BMC Biotechnol 2011; 11:37. [PMID: 21486461 PMCID: PMC3098155 DOI: 10.1186/1472-6750-11-37] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 04/12/2011] [Indexed: 12/13/2022] Open
Abstract
Background Human insulin-like growth factor-I (hIGF-I) is a growth factor which is highly resemble to insulin. It is essential for cell proliferation and has been proposed for treatment of various endocrine-associated diseases including growth hormone insensitivity syndrome and diabetes mellitus. In the present study, an efficient plant expression system was developed to produce biologically active recombinant hIGF-I (rhIGF-I) in transgenic rice grains. Results The plant-codon-optimized hIGF-I was introduced into rice via Agrobacterium-mediated transformation. To enhance the stability and yield of rhIGF-I, the endoplasmic reticulum-retention signal and glutelin signal peptide were used to deliver rhIGF-I to endoplasmic reticulum for stable accumulation. We found that only glutelin signal peptide could lead to successful expression of hIGF-I and one gram of hIGF-I rice grain possessed the maximum activity level equivalent to 3.2 micro molar of commercial rhIGF-I. In vitro functional analysis showed that the rice-derived rhIGF-I was effective in inducing membrane ruffling and glucose uptake on rat skeletal muscle cells. Oral meal test with rice-containing rhIGF-I acutely reduced blood glucose levels in streptozotocin-induced and Zucker diabetic rats, whereas it had no effect in normal rats. Conclusion Our findings provided an alternative expression system to produce large quantities of biologically active rhIGF-I. The provision of large quantity of recombinant proteins will promote further research on the therapeutic potential of rhIGF-I.
Collapse
Affiliation(s)
- Stanley Ck Cheung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
75
|
Foley K, Boguslavsky S, Klip A. Endocytosis, recycling, and regulated exocytosis of glucose transporter 4. Biochemistry 2011; 50:3048-61. [PMID: 21405107 DOI: 10.1021/bi2000356] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glucose transporter 4 (GLUT4) is responsible for the uptake of glucose into muscle and adipose tissues. Under resting conditions, GLUT4 is dynamically retained through idle cycling among selective intracellular compartments, from whence it undergoes slow recycling to the plasma membrane (PM). This dynamic retention can be released by command from intracellular signals elicited by insulin and other stimuli, which result in 2-10-fold increases in the surface level of GLUT4. Insulin-derived signals promote translocation of GLUT4 to the PM from a specialized compartment termed GLUT4 storage vesicles (GSV). Much effort has been devoted to the characterization of the intracellular compartments and dynamics of GLUT4 cycling and to the signals by which GLUT4 is sorted into, and recruited from, GSV. This review summarizes our understanding of intracellular GLUT4 traffic during its internalization from the membrane, its slow, constitutive recycling, and its regulated exocytosis in response to insulin. In spite of specific differences in GLUT4 dynamic behavior in adipose and muscle cells, the generalities of its endocytic and exocytic itineraries are consistent and an array of regulatory proteins that regulate each vesicular traffic event emerges from these cell systems.
Collapse
Affiliation(s)
- Kevin Foley
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M4G 1X8, Canada
| | | | | |
Collapse
|
76
|
Association of ARHGEF11 R1467H polymorphism with risk for type 2 diabetes mellitus and insulin resistance in Chinese population. Mol Biol Rep 2011; 38:2499-505. [DOI: 10.1007/s11033-010-0387-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 11/08/2010] [Indexed: 01/25/2023]
|
77
|
Jin QS, Kim SH, Piao SJ, Lim HA, Lee SY, Hong SB, Kim YS, Lee HJ, Nam M. R1467H Variants of Rho Guanine Nucleotide Exchange Factor 11 (ARHGEF11) are Associated with Type 2 Diabetes Mellitus in Koreans. KOREAN DIABETES JOURNAL 2010; 34:368-73. [PMID: 21246010 PMCID: PMC3021113 DOI: 10.4093/kdj.2010.34.6.368] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 09/28/2010] [Indexed: 01/22/2023]
Abstract
Background The human Rho guanine nucleotide exchange factor 11 (ARHGEF11) functions as an activator of Rho GTPases and is thought to influence insulin signaling. The R1467H variant of ARHGEF11 has been reported to be associated with susceptibility to type 2 diabetes mellitus (T2DM) in Western populations. Methods We investigated the effects of the R1467H variant on susceptibility to T2DM as well as related traits in a Korean population. We genotyped the R1467H (rs945508) of ARHGEF11 in 689 unrelated T2DM patients and 249 non-diabetic individuals and compared the clinical and biochemical characteristics according to different alleles. Results The H allele was significantly more frequent in T2DM cases than in controls (P = 0.037, 17.1% and 13.1%; respectively). H homozygocity was associated with a higher risk of T2DM compared to those with R/R or R/H genotype (odds ratio, 5.24; 95% confidence interval, 1.06 to 25.83; P = 0.042). The fasting plasma glucose, HbA1c, fasting insulin, HOMA2-IR and HOMA2-%β levels did not differ significantly between different genotypes. Conclusion Our study replicated associations of the ARHGEF11 polymorphism with increased risk of T2DM in a Korean population and thus supports previous data implicating a potential role of ARHGEF11 in the etiology of T2DM. Further studies revealing the underlying mechanism for this association are needed.
Collapse
Affiliation(s)
- Qing Song Jin
- Diabetes Clinical Research Center, Inha University Hospital, Incheon, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Zhao HL, Liu LZ, Sui Y, Ho SKS, Tam SK, Lai FMM, Chan JCN, Tong PCY. Fatty acids inhibit insulin-mediated glucose transport associated with actin remodeling in rat L6 muscle cells. Acta Diabetol 2010; 47:331-9. [PMID: 20848165 DOI: 10.1007/s00592-010-0225-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 09/05/2010] [Indexed: 12/18/2022]
Abstract
In skeletal muscle cells, insulin stimulates cytoskeleton actin remodeling to facilitate the translocation of glucose transporter GLUT4 to plasma membrane. Defect of insulin-induced GLUT4 translocation and actin remodeling may cause insulin resistance. Free fatty acids cause insulin resistance in skeletal muscle. The aim of this study was to investigate the effects of fatty acids on glucose transport and actin remodeling. Differentiated L6 muscle cells expressing c-myc epitope-tagged GLUT4 were treated with palmitic acid, linoleic acid and oleic acid. Surface GLUT4 and 2-deoxyglucose uptake were measured in parallel with the morphological imaging of actin remodeling and GLUT4 immunoreactivity with fluorescence, confocal and transmission electron microscopy. Differentiated L6 cells showed concentration responses of insulin-induced actin remodeling and glucose uptake. The ultrastructure of insulin-induced actin remodeling was cell projections clustered with actin and GLUT4. Acute and chronic treatment with the 3 fatty acids had no effect on insulin-induced actin remodeling and GLUT4 immunoreactivity. However, insulin-mediated glucose uptake significantly decreased by palmitic acid (25, 50, 75, 100 μmol/L), oleic acid (180, 300 μmol/L) and linoleic acid (120, 180, 300 μmol/L). Oleic acid (120, 300 μmol/L) and linoleic acid (300 μmol/L), but not palmitic acid, significantly decreased insulin-mediated GLUT4 translocation. These data suggest that fatty acids inhibit insulin-induced glucose transport associated with actin remodeling in L6 muscle cells.
Collapse
Affiliation(s)
- Hai-Lu Zhao
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Chiu TT, Patel N, Shaw AE, Bamburg JR, Klip A. Arp2/3- and cofilin-coordinated actin dynamics is required for insulin-mediated GLUT4 translocation to the surface of muscle cells. Mol Biol Cell 2010; 21:3529-39. [PMID: 20739464 PMCID: PMC2954118 DOI: 10.1091/mbc.e10-04-0316] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Insulin increases GLUT4 at the muscle cell surface, and this process requires actin remodeling. We show that a dynamic cycle of actin polymerization and severing is induced by insulin, governed by Arp2/3 and dephosphorylation of cofilin, respectively. The cycle is self-perpetuating and is essential for GLUT4 translocation. GLUT4 vesicles are actively recruited to the muscle cell surface upon insulin stimulation. Key to this process is Rac-dependent reorganization of filamentous actin beneath the plasma membrane, but the underlying molecular mechanisms have yet to be elucidated. Using L6 rat skeletal myoblasts stably expressing myc-tagged GLUT4, we found that Arp2/3, acting downstream of Rac GTPase, is responsible for the cortical actin polymerization evoked by insulin. siRNA-mediated silencing of either Arp3 or p34 subunits of the Arp2/3 complex abrogated actin remodeling and impaired GLUT4 translocation. Insulin also led to dephosphorylation of the actin-severing protein cofilin on Ser-3, mediated by the phosphatase slingshot. Cofilin dephosphorylation was prevented by strategies depolymerizing remodeled actin (latrunculin B or p34 silencing), suggesting that accumulation of polymerized actin drives severing to enact a dynamic actin cycling. Cofilin knockdown via siRNA caused overwhelming actin polymerization that subsequently inhibited GLUT4 translocation. This inhibition was relieved by reexpressing Xenopus wild-type cofilin-GFP but not the S3E-cofilin-GFP mutant that emulates permanent phosphorylation. Transferrin recycling was not affected by depleting Arp2/3 or cofilin. These results suggest that cofilin dephosphorylation is required for GLUT4 translocation. We propose that Arp2/3 and cofilin coordinate a dynamic cycle of actin branching and severing at the cell cortex, essential for insulin-mediated GLUT4 translocation in muscle cells.
Collapse
Affiliation(s)
- Tim Ting Chiu
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
80
|
Temporal analysis of mechanisms leading to stimulation of glucose uptake in skeletal muscle cells by an adipokine mixture derived from primary rat adipocytes. Int J Obes (Lond) 2010; 35:355-63. [PMID: 20697414 DOI: 10.1038/ijo.2010.160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The direct effects of adipokines on skeletal muscle metabolism have been well established. As the combinatorial effects of adipokine mixtures are likely to be of more physiological relevance, we used a coculture system of primary rat adipocytes and L6 skeletal muscle cells to examine the effects of adiponectin derived from primary rat adipocytes on rat skeletal muscle cells. RESULTS We showed that coculture with adipocytes stimulated glucose uptake in L6 cells within 30 min and this correlated with an increase of glucose transporter isoform 4 (GLUT4) localization to the plasma membrane. These effects were dependent on the reorganization of the actin cytoskeleton, demonstrated by rhodamine-labeled phalloidin immunofluorescence, as cytochalasin D attenuated the glucose uptake induced by adipocyte-conditioned media. Temporal analysis revealed that enhanced glucose uptake was maintained after 24 h of coculture, and this was attributed to an increase in both GLUT1 expression and the cell surface content of GLUT4. We established a role for adiponectin in mediating these effects as antibody-mediated neutralization attenuated the metabolic effects of adipocyte-conditioned media. Furthermore, compound C blocked these effects, suggesting an important role for AMPK. Importantly, when we compared the effects of full-length recombinant adiponectin with adipocyte-conditioned media, we confirmed that recombinant adiponectin was unable to stimulate glucose uptake in L6 cells despite having an important role in adipocyte-conditioned media. CONCLUSIONS Our results demonstrate the importance of examining the effects of adipokines in the context of physiologically relevant mixtures to accurately determine their metabolic effects on skeletal muscle.
Collapse
|
81
|
Lewis JP, Palmer ND, Ellington JB, Divers J, Ng MCY, Lu L, Langefeld CD, Freedman BI, Bowden DW. Analysis of candidate genes on chromosome 20q12-13.1 reveals evidence for BMI mediated association of PREX1 with type 2 diabetes in European Americans. Genomics 2010; 96:211-9. [PMID: 20650312 DOI: 10.1016/j.ygeno.2010.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 07/16/2010] [Accepted: 07/16/2010] [Indexed: 01/02/2023]
Abstract
Chromosome 20q12-q13.1 has been linked to type 2 diabetes (T2D) in multiple populations. We examined the influence of genes in this region on T2D and BMI in two European American case-control populations. SNPs were genotyped in 300 diabetic patients and 310 controls. A subset of 72 SNPs were further genotyped in 470 cases and 442 controls. All genes examined showed evidence of association with T2D in the initial sample (additive P-value [P(a)]=0.00090-0.045). SNPs near PREX1 were also associated in the second case-control population (P(a)=0.017-0.042). The combined analysis resulted in the same SNPs, among others, associated with T2D (P(a)=0.0013-0.041). Stratification analysis by T2D status showed that association with BMI was observed solely in cases (P(a)=0.0018-0.041). Mediation testing revealed that 30-40% of the effects of these SNPs on T2D were significantly mediated by BMI. SNPs near PREX1 may contribute to T2D susceptibility mediated through effects of adiposity in European Americans.
Collapse
Affiliation(s)
- Joshua P Lewis
- Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Ueda S, Kitazawa S, Ishida K, Nishikawa Y, Matsui M, Matsumoto H, Aoki T, Nozaki S, Takeda T, Tamori Y, Aiba A, Kahn CR, Kataoka T, Satoh T. Crucial role of the small GTPase Rac1 in insulin-stimulated translocation of glucose transporter 4 to the mouse skeletal muscle sarcolemma. FASEB J 2010; 24:2254-61. [PMID: 20203090 DOI: 10.1096/fj.09-137380] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Rho family GTPase Rac1 has been implicated in the regulation of glucose uptake in myoblast cell lines. However, no evidence for the role of Rac1 has been provided by a mouse model. The purpose of this study is to test the involvement of Rac1 in insulin action in mouse skeletal muscle. Intravenous administration of insulin indeed elicited Rac1 activation in gastrocnemius muscle, suggesting the involvement of Rac1 in this signaling pathway. We then examined whether insulin-stimulated translocation of the facilitative glucose transporter GLUT4 from its storage sites to the skeletal muscle sarcolemma depends on Rac1. We show that ectopic expression of constitutively activated Rac1, as well as intravenous administration of insulin, caused translocation of GLUT4 to the gastrocnemius muscle sarcolemma, as revealed by immunofluorescent staining of a transiently expressed exofacial epitope-tagged GLUT4 reporter. Of particular note, insulin-dependent, but not constitutively activated Rac1-induced, GLUT4 translocation was markedly suppressed in skeletal muscle-specific rac1-knockout mice compared to control mice. Immunogold electron microscopic analysis of endogenous GLUT4 gave similar results. Collectively, we propose a critical role of Rac1 in insulin-dependent GLUT4 translocation to the skeletal muscle sarcolemma, which has heretofore been predicted solely by cell culture studies.
Collapse
Affiliation(s)
- Shuji Ueda
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Affiliation(s)
- Debbie C Thurmond
- Departments of Pediatrics,Basic Diabetes Group of the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| |
Collapse
|
84
|
Bilan PJ, Samokhvalov V, Koshkina A, Schertzer JD, Samaan MC, Klip A. Direct and macrophage-mediated actions of fatty acids causing insulin resistance in muscle cells. Arch Physiol Biochem 2009; 115:176-90. [PMID: 19671019 DOI: 10.1080/13813450903079314] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Obesity is associated with insulin resistance and increased risk for developing type 2 diabetes. Enlarged adipocytes develop resistance to the anti-lipolytic action of insulin. Elevated levels of fatty acids in the plasma and interstitial fluids lead to whole-body insulin resistance by disrupting normal insulin-regulated glucose uptake and glycogen storage in skeletal muscle. A new understanding has been cultivated in the past 5 to 10 years that adipocytes and macrophages (resident or bone marrow-derived) in adipose tissue of obese animals and humans are activated in a pro-inflammatory capacity and secrete insulin resistance-inducing factors. However, only recently have fatty acids themselves been identified as agents that engage toll-like receptors of the innate immunity systems of macrophages, adipocytes and muscle cells to trigger pro-inflammatory responses. This review summarizes our observations that fatty acids evoke the release of pro-inflammatory factors from macrophages that consequently induce insulin resistance in muscle cells.
Collapse
Affiliation(s)
- Phillip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
85
|
Klip A. The many ways to regulate glucose transporter 4. Appl Physiol Nutr Metab 2009; 34:481-7. [PMID: 19448718 DOI: 10.1139/h09-047] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Glucose uptake into skeletal muscle is primarily mediated by glucose transporter 4 (GLUT4). The number of GLUT4 polypeptides at the surface of muscle cells rises rapidly in response to insulin, contraction, depolarization, or energy deprivation. However, distinct mechanisms underlie the gain in surface GLUT4 in each case. Insulin promotes its exocytosis to the membrane, regulating vesicle movement, tethering, docking, and fusion. In contrast, muscle contraction, depolarization, and energy demand reduce GLUT4 endocytosis. The signals involved in each case also differ. Insulin utilizes Akt, Rabs, and selective actin remodelling, whereas depolarization and energy deprivation engage AMP-activated protein kinase and Ca2+-dependent signals. GLUT4 internalizes via 2 major routes that involve dynamin, but only one requires clathrin. The clathrin-independent route is slowed down by energy deprivation, and is regulated by AMP-activated protein kinase. In addition to regulation of the exocytic and endocytic movement of GLUT4, glucose uptake is also modulated through changes in the transporter's intrinsic activity. The glycolytic enzymes glyceraldehyde-3-dehydrogenase and hexokinase II contribute to such regulation, through differential binding to GLUT4.
Collapse
Affiliation(s)
- Amira Klip
- Cell Biology Program, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
86
|
Compartmentalization and regulation of insulin signaling to GLUT4 by the cytoskeleton. VITAMINS AND HORMONES 2009; 80:193-215. [PMID: 19251039 DOI: 10.1016/s0083-6729(08)00608-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
One of the early events in the development of Type 2 diabetes appears to be an inhibition of insulin-mediated GLUT4 redistribution to the cell surface in tissues that express GLUT4. Understanding this process, and how it begins to breakdown in the development of insulin resistance is quite important as we face treatment and prevention of metabolic diseases. Over the past few years, and increasing number of laboratories have produced compelling data to demonstrate a role for both the actin and microtubule networks in the regulation of insulin-mediated GLUT4 redistribution to the cell surface. In this review, we explore this process from insulin-signal transduction to fusion of GLUT4 membrane vesicles, focusing on studies that have implicated a role for the cytoskeleton. We see from this body of work that both the actin network and the microtubule cytoskeleton play roles as targets of insulin action and effectors of insulin signaling leading to changes in GLUT4 redistribution to the cell surface and insulin-mediated glucose uptake.
Collapse
|
87
|
Coisy-Quivy M, Touzet O, Bourret A, Hipskind RA, Mercier J, Fort P, Philips A. TC10 controls human myofibril organization and is activated by the sarcomeric RhoGEF obscurin. J Cell Sci 2009; 122:947-56. [PMID: 19258391 DOI: 10.1242/jcs.040121] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The contractile activity of striated muscle depends on myofibrils that are highly ordered macromolecular complexes. The protein components of myofibrils are well characterized, but it remains largely unclear how signaling at the molecular level within the sarcomere and the control of assembly are coordinated. We show that the Rho GTPase TC10 appears during differentiation of human primary skeletal myoblasts and it is active in differentiated myotubes. We identify obscurin, a sarcomere-associated protein, as a specific activator of TC10. Indeed, TC10 binds directly to obscurin via its predicted RhoGEF motif. Importantly, we demonstrate that obscurin is a specific activator of TC10 but not the Rho GTPases Rac and Cdc42. Finally, we show that inhibition of TC10 activity by expression of a dominant-negative mutant or its knockdown by expression of specific shRNA block myofibril assembly. Our findings reveal a novel signaling pathway in human skeletal muscle that involves obscurin and the Rho GTPase TC10 and implicate this pathway in new sarcomere formation.
Collapse
|
88
|
Activation of the small GTPase Rac1 by a specific guanine-nucleotide-exchange factor suffices to induce glucose uptake into skeletal-muscle cells. Biol Cell 2008; 100:645-57. [PMID: 18482007 DOI: 10.1042/bc20070160] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND INFORMATION Insulin-stimulated glucose uptake into skeletal muscle is crucial for glucose homoeostasis, and depends on the recruitment of GLUT4 (glucose transporter 4) to the plasma membrane. Mechanisms underlying insulin-dependent GLUT4 translocation, particularly the role of Rho family GTPases, remain controversial. RESULTS In the present study, we show that constitutively active Rac1, but not other Rho family GTPases tested, induced GLUT4 translocation in the absence of insulin, suggesting that Rac1 activation is sufficient for GLUT4 translocation in muscle cells. Rac1 activation occurred in dorsal membrane ruffles of insulin-stimulated cells as revealed by a novel method to visualize activated Rac1 in situ. We further identified FLJ00068 as a GEF (guanine-nucleotide-exchange factor) responsible for this Rac1 activation. Indeed, constitutively active FLJ00068 caused Rac1 activation in dorsal membrane ruffles and GLUT4 translocation without insulin stimulation. Down-regulation of Rac1 or FLJ00068 by RNA interference, on the other hand, abrogated insulin-induced GLUT4 translocation. Basal, but not insulin-stimulated, activity of the serine/threonine kinase Akt was required for the induction of GLUT4 translocation by constitutively active Rac1 or FLJ00068. CONCLUSION Collectively, Rac1 activation specifically in membrane ruffles by the GEF FLJ00068 is sufficient for insulin induction of glucose uptake into skeletal-muscle cells.
Collapse
|
89
|
Carranza A, Musolino PL, Villar M, Nowicki S. Signaling cascade of insulin-induced stimulation of L-dopa uptake in renal proximal tubule cells. Am J Physiol Cell Physiol 2008; 295:C1602-9. [PMID: 18842830 DOI: 10.1152/ajpcell.00090.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The inward l-dihydroxyphenylalanine (L-dopa) transport supplies renal proximal tubule cells (PTCs) with the precursor for dopamine synthesis. We have previously described insulin-induced stimulation of L-dopa uptake into PTCs. In the present paper we examined insulin-related signaling pathways involved in the increase of l-dopa transport into isolated rat PTCs. Insulin (50-500 microU/ml) increased L-dopa uptake by PTCs, reaching the maximal increment (60% over the control) at 200 microU/ml. At this concentration, insulin also increased insulin receptor tyrosine phosphorylation. Both effects were abrogated by the tyrosine kinase inhibitor genistein (5 microM). In line, inhibition of the protein tyrosine phosphatase by pervanadate (0.2-100 microM) caused a concentration-dependent increase in both the uptake of L-dopa (up to 400%) and protein tyrosine phosphorylation. A synergistic effect between pervanadate and insulin on L-dopa uptake was observed only when threshold (0.2 microM), but not maximal (5 microM), concentrations of pervanadate were assayed. Insulin-induced stimulation of L-dopa uptake was also abolished by inhibition of phosphatidylinositol 3-kinase (PI3K; 100 nM wortmannin, and 25 microM LY-294002) and protein kinase C (PKC; 1 microM RO-318220). Insulin-induced activation of PKC-zeta was confirmed in vitro by its translocation from the cytosol to the membrane fraction, and in vivo by immunohistochemistry studies. Insulin caused a wortmannin-sensitive increase in Akt/protein kinase B (Akt/PKB) phosphorylation and a dose-dependent translocation of Akt/PKB to the membrane fraction. Our findings suggest that insulin activates PKC-zeta, and Akt/PKB downstream of PI3K, and that these pathways contribute to the insulin-induced increase of L-dopa uptake into PTCs.
Collapse
Affiliation(s)
- Andrea Carranza
- Centro de Investigaciones Endocrinológicas, Consejos Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
90
|
Bisht B, Dey CS. Focal Adhesion Kinase contributes to insulin-induced actin reorganization into a mesh harboring Glucose transporter-4 in insulin resistant skeletal muscle cells. BMC Cell Biol 2008; 9:48. [PMID: 18771597 PMCID: PMC2551595 DOI: 10.1186/1471-2121-9-48] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 09/04/2008] [Indexed: 01/04/2023] Open
Abstract
Background Focal Adhesion Kinase (FAK) is recently reported to regulate insulin resistance by regulating glucose uptake in C2C12 skeletal muscle cells. However, the underlying mechanism for FAK-mediated glucose transporter-4 translocation (Glut-4), responsible for glucose uptake, remains unknown. Recently actin remodeling was reported to be essential for Glut-4 translocation. Therefore, we investigated whether FAK contributes to insulin-induced actin remodeling and harbor Glut-4 for glucose transport and whether downregulation of FAK affects the remodeling and causes insulin resistance. Results To address the issue we employed two approaches: gain of function by overexpressing FAK and loss of function by siRNA-mediated silencing of FAK. We observed that overexpression of FAK induces actin remodeling in skeletal muscle cells in presence of insulin. Concomitant to this Glut-4 molecules were also observed to be present in the vicinity of remodeled actin, as indicated by the colocalization studies. FAK-mediated actin remodeling resulted into subsequent glucose uptake via PI3K-dependent pathway. On the other hand FAK silencing reduced actin remodeling affecting Glut-4 translocation resulting into insulin resistance. Conclusion The data confirms that FAK regulates glucose uptake through actin reorganization in skeletal muscle. FAK overexpression supports actin remodeling and subsequent glucose uptake in a PI3K dependent manner. Inhibition of FAK prevents insulin-stimulated remodeling of actin filaments resulting into decreased Glut-4 translocation and glucose uptake generating insulin resistance. To our knowledge this is the first study relating FAK, actin remodeling, Glut-4 translocation and glucose uptake and their interrelationship in generating insulin resistance.
Collapse
Affiliation(s)
- Bharti Bisht
- Signal Transduction Research Laboratory, Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar, Punjab, 160 062, India.
| | | |
Collapse
|
91
|
Ishikura S, Klip A. Muscle cells engage Rab8A and myosin Vb in insulin-dependent GLUT4 translocation. Am J Physiol Cell Physiol 2008; 295:C1016-25. [PMID: 18701652 DOI: 10.1152/ajpcell.00277.2008] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Insulin causes translocation of glucose transporter 4 (GLUT4) to the membrane of muscle and fat cells, a process requiring Akt activation. Two Rab-GTPase-activating proteins (Rab-GAP), AS160 and TBC1D1, were identified as Akt substrates. AS160 phosphorylation is required for insulin-stimulated GLUT4 translocation, but the participation of TBC1D1 on muscle cell GLUT4 is unknown. Moreover, there is controversy as to the AS160/TBC1D1 target Rabs in fat and muscle cells, and Rab effectors are unknown. Here we examined the effect of knockdown of AS160, TBC1D1, and Rabs 8A, 8B, 10, and 14 (in vitro substrates of AS160 and TBC1D1 Rab-GAP activities) on insulin-induced GLUT4 translocation in L6 muscle cells. Silencing AS160 or TBC1D1 increased surface GLUT4 in unstimulated cells but did not prevent insulin-induced GLUT4 translocation. Knockdown of Rab8A and Rab14, but not of Rab8B or Rab10, inhibited insulin-induced GLUT4 translocation. Furthermore, silencing Rab8A or Rab14 but not Rab8B or Rab10 restored the basal-state intracellular retention of GLUT4 impaired by AS160 or TBC1D1 knockdown. Lastly, overexpression of a fragment of myosin Vb, a recently identified Rab8A-interacting protein, inhibited insulin-induced GLUT4 translocation and altered the subcellular distribution of GTP-loaded Rab8A. These results support a model whereby AS160, Rab8A, and myosin Vb are required for insulin-induced GLUT4 translocation in muscle cells, potentially as part of a linear signaling cascade.
Collapse
Affiliation(s)
- Shuhei Ishikura
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | | |
Collapse
|
92
|
Randhawa VK, Ishikura S, Talior-Volodarsky I, Cheng AWP, Patel N, Hartwig JH, Klip A. GLUT4 vesicle recruitment and fusion are differentially regulated by Rac, AS160, and Rab8A in muscle cells. J Biol Chem 2008; 283:27208-19. [PMID: 18650435 DOI: 10.1074/jbc.m804282200] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Insulin increases glucose uptake into muscle by enhancing the surface recycling of GLUT4 transporters. In myoblasts, insulin signals bifurcate downstream of phosphatidylinositol 3-kinase into separate Akt and Rac/actin arms. Akt-mediated Rab-GAP AS160 phosphorylation and Rac/actin are required for net insulin gain of GLUT4, but the specific steps (vesicle recruitment, docking or fusion) regulated by Rac, actin dynamics, and AS160 target Rab8A are unknown. In L6 myoblasts expressing GLUT4myc, blocking vesicle fusion by tetanus toxin cleavage of VAMP2 impeded GLUT4myc membrane insertion without diminishing its build-up at the cell periphery. Conversely, actin disruption by dominant negative Rac or Latrunculin B abolished insulin-induced surface and submembrane GLUT4myc accumulation. Expression of non-phosphorylatable AS160 (AS160-4P) abrogated membrane insertion of GLUT4myc and partially reduced its cortical build-up, an effect magnified by selective Rab8A knockdown. We propose that insulin-induced actin dynamics participates in GLUT4myc vesicle retention beneath the membrane, whereas AS160 phosphorylation is essential for GLUT4myc vesicle-membrane docking/fusion and also contributes to GLUT4myc cortical availability through Rab8A.
Collapse
Affiliation(s)
- Varinder K Randhawa
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | |
Collapse
|
93
|
Talior-Volodarsky I, Randhawa VK, Zaid H, Klip A. Alpha-actinin-4 is selectively required for insulin-induced GLUT4 translocation. J Biol Chem 2008; 283:25115-25123. [PMID: 18617516 DOI: 10.1074/jbc.m801750200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Insulin induces GLUT4 translocation to the muscle cell surface. Using differential amino acid labeling and mass spectrometry, we observed insulin-dependent co-precipitation of actinin-4 (ACTN4) with GLUT4 (Foster, L. J., Rudich, A., Talior, I., Patel, N., Huang, X., Furtado, L. M., Bilan, P. J., Mann, M., and Klip, A. (2006) J. Proteome Res. 5, 64-75). ACTN4 links F-actin to membrane proteins, and actin dynamics are essential for GLUT4 translocation. We hypothesized that ACTN4 may contribute to insulin-regulated GLUT4 traffic. In L6 muscle cells insulin, but not platelet-derived growth factor, increased co-precipitation of ACTN4 with GLUT4. Small interfering RNA-mediated ACTN4 knockdown abolished the gain in surface-exposed GLUT4 elicited by insulin but not by platelet-derived growth factor, membrane depolarization, or mitochondrial uncoupling. In contrast, knockdown of alpha-actinin-1 (ACTN1) did not prevent GLUT4 translocation by insulin. GLUT4 colocalized with ACTN4 along the insulin-induced cortical actin mesh and ACTN4 knockdown prevented GLUT4-actin colocalization without impeding actin remodeling or Akt phosphorylation, maintaining GLUT4 in a tight perinuclear location. We propose that ACTN4 contributes to GLUT4 traffic, likely by tethering GLUT4 vesicles to the cortical actin cytoskeleton.
Collapse
Affiliation(s)
| | - Varinder K Randhawa
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hilal Zaid
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8
| | - Amira Klip
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
94
|
Insulin action on glucose transporters through molecular switches, tracks and tethers. Biochem J 2008; 413:201-15. [DOI: 10.1042/bj20080723] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Glucose entry into muscle cells is precisely regulated by insulin, through recruitment of GLUT4 (glucose transporter-4) to the membrane of muscle and fat cells. Work done over more than two decades has contributed to mapping the insulin signalling and GLUT4 vesicle trafficking events underpinning this response. In spite of this intensive scientific research, there are outstanding questions that continue to challenge us today. The present review summarizes the knowledge in the field, with emphasis on the latest breakthroughs in insulin signalling at the level of AS160 (Akt substrate of 160 kDa), TBC1D1 (tre-2/USP6, BUB2, cdc16 domain family member 1) and their target Rab proteins; in vesicle trafficking at the level of vesicle mobilization, tethering, docking and fusion with the membrane; and in the participation of the cytoskeleton to achieve optimal temporal and spatial location of insulin-derived signals and GLUT4 vesicles.
Collapse
|
95
|
Lipocalin-type prostaglandin D(2) synthase stimulates glucose transport via enhanced GLUT4 translocation. Prostaglandins Other Lipid Mediat 2008; 87:34-41. [PMID: 18619553 DOI: 10.1016/j.prostaglandins.2008.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 06/10/2008] [Accepted: 06/13/2008] [Indexed: 12/25/2022]
Abstract
Previously, we demonstrated that lipocalin-type prostaglandin D(2) synthase (L-PGDS) knockout mice become glucose intolerant and display signs of diabetic nephropathy and accelerated atherosclerosis. In the current study we sought to explain the link between L-PGDS and glucose tolerance. Using the insulin-sensitive rat skeletal muscle cell line, L6, we showed that L-PGDS could stimulate glucose transport approximately 2-fold as well as enhance insulin-stimulated glucose transport, as measured by 2-deoxy-[(3)H]-glucose uptake. The increased glucose transport was not attributed to increased GLUT4 production but rather the stimulation of GLUT4 translocation to the plasma membrane, a phenomenon that was lost when cells were cultured under hyperglycemic (20 mM) conditions or pretreated with wortmannin. There was however, an increase in GLUT1 expression as well as a 3-fold increase in hexokinase III expression, which was increased to nearly 5-fold in the presence of insulin, in response to L-PGDS at 20 mM glucose. In addition, adipocytes isolated from L-PGDS knockout mice were significantly less sensitive to insulin-stimulated glucose transport than wild-type. We conclude that L-PGDS, via production of prostaglandin D(2), is an important mediator of muscle and adipose glucose transport which is modulated by glycemic conditions and plays a significant role in the glucose intolerance associated with type 2 diabetes.
Collapse
|
96
|
Rapid activation of Akt2 is sufficient to stimulate GLUT4 translocation in 3T3-L1 adipocytes. Cell Metab 2008; 7:348-56. [PMID: 18396141 DOI: 10.1016/j.cmet.2008.02.008] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 12/24/2007] [Accepted: 02/14/2008] [Indexed: 01/10/2023]
Abstract
The serine/threonine kinase Akt2 has been implicated in insulin-regulated glucose uptake into muscle and fat cells by promoting the translocation of glucose transporter 4 (GLUT4) to the cell surface. However, it remains unclear whether activation of Akt2 is sufficient since a role for alternate signaling pathways has been proposed. Here we have engineered 3T3-L1 adipocytes to express a rapidly inducible Akt2 system based on drug-inducible heterodimerization. Addition of the dimerizer rapalog resulted in activation of Akt2 within 5 min, concomitant with phosphorylation of the Akt substrates AS160 and GSK3. Comparison with insulin stimulation revealed that the level of Akt2 activity observed with rapalog was within the physiological range, reducing the likelihood of off-target effects. Transient activation of Akt2 also increased glucose transport and GLUT4 translocation to the plasma membrane. These results show that activation of Akt2 is sufficient to stimulate GLUT4 translocation in 3T3-L1 adipocytes to an extent similar to insulin.
Collapse
|
97
|
Millioni R, Iori E, Puricelli L, Arrigoni G, Vedovato M, Trevisan R, James P, Tiengo A, Tessari P. Abnormal cytoskeletal protein expression in cultured skin fibroblasts from type 1 diabetes mellitus patients with nephropathy: A proteomic approach. Proteomics Clin Appl 2008; 2:492-503. [PMID: 21136853 DOI: 10.1002/prca.200780112] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Indexed: 01/06/2023]
Abstract
Diabetic nephropathy (DN) develops in about 40% of insulin-dependent type 1 diabetes mellitus (T1DM) patients, and is associated not only with diabetes duration and metabolic control, but also with a genetic predisposition. Constitutive alterations of cytoskeletal proteins may play a role in the development of DN. We investigated the expression of these proteins in cultured skin fibroblasts, obtained from long-term T1DM patients with and without DN but comparable metabolic control, and from matched healthy subjects, by means of 2-DE electrophoresis and MS-MALDI analyses. In T1DM with DN, compared to the other two groups, quantitative analyses revealed an altered expression of 17 spots (p<0.05-p<0.01), corresponding to 12 unique proteins. In T1DM with DN, beta-actin and three isoforms of tubulin beta-2 chain, tropomodulin-3, and LASP-1 were decreased, whereas two tubulin beta-4 chain isoforms, one alpha actinin-4 isoform, membrane-organizing extension spike protein (MOESIN), FLJ00279 (corresponding to a fragment of myosin heavy chain, non-muscle type A), vinculin, a tropomyosin isoform, and the macrophage capping protein were increased. A shift in caldesmon isoforms was also detected. These results demonstrate an association between DN and the constitutive expression of cytoskeleton proteins in cultured skin fibroblasts from T1DM with DN, which may retain pathophysiologycal implications.
Collapse
Affiliation(s)
- Renato Millioni
- Department of Clinical and Experimental Medicine, Chair of Metabolism, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Ishikura S, Koshkina A, Klip A. Small G proteins in insulin action: Rab and Rho families at the crossroads of signal transduction and GLUT4 vesicle traffic. Acta Physiol (Oxf) 2008; 192:61-74. [PMID: 18171430 DOI: 10.1111/j.1748-1716.2007.01778.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Insulin stimulates glucose uptake into muscle and adipose tissues through glucose transporter 4 (GLUT4). GLUT4 cycles between the intracellular compartments and the plasma membrane. GLUT4 traffic-regulating insulin signals are largely within the insulin receptor-insulin receptor substrate-phosphatidylinositol 3-kinase (IR-IRS-PI3K) axis. In muscle cells, insulin signal bifurcates downstream of the PI3K into one arm leading to the activation of the Ser/Thr kinases Akt and atypical protein kinase C, and another leading to the activation of Rho family protein Rac1 leading to actin remodelling. Activated Akt inactivates AS160, a GTPase-activating protein for Rab family small G proteins. Here we review the roles of Rab and Rho proteins, particularly Rab substrates of AS160 and Rac1, in insulin-stimulated GLUT4 traffic. We discuss: (1) how distinct steps in GLUT4 traffic may be regulated by discrete Rab proteins, and (2) the importance of Rac1 activation in insulin-induced actin remodelling in muscle cells, a key element for the net gain in surface GLUT4.
Collapse
Affiliation(s)
- S Ishikura
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | | | | |
Collapse
|
99
|
Pilch PF. The mass action hypothesis: formation of Glut4 storage vesicles, a tissue-specific, regulated exocytic compartment. Acta Physiol (Oxf) 2008; 192:89-101. [PMID: 18171432 DOI: 10.1111/j.1748-1716.2007.01788.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Insulin stimulates glucose uptake into the target tissues of fat and muscle by recruiting or translocating Glut4 glucose transport proteins to their functional location at the cell surface. In the basal state, Glut4 is sequestered intracellularly in several vesicular compartments, one of which has come to be known as Glut4 storage vesicles (GSVs). The GSVs represent a tissue-specific compartment that is an ultimate target of the insulin signalling cascade. Glut4 translocation has been extensively studied because of its intrinsic scientific importance to cell biology as well as its relevance to the pathology of type 2 diabetes mellitus. I review herein the ontogeny of GSVs and their composition as it relates to a tissue-specific, hormone-sensitive exocytic compartment and propose a mechanism for their formation.
Collapse
Affiliation(s)
- P F Pilch
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
100
|
Van Linthout S, Riad A, Dhayat N, Spillmann F, Du J, Dhayat S, Westermann D, Hilfiker-Kleiner D, Noutsias M, Laufs U, Schultheiss HP, Tschöpe C. Anti-inflammatory effects of atorvastatin improve left ventricular function in experimental diabetic cardiomyopathy. Diabetologia 2007; 50:1977-1986. [PMID: 17589825 DOI: 10.1007/s00125-007-0719-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2006] [Accepted: 04/20/2007] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS Emerging evidence suggests that statins exert beneficial effects beyond those predicted by their cholesterol-lowering actions. We investigated whether atorvastatin influences the development of left ventricular (LV) dysfunction, independently of cholesterol-lowering, in an experimental model of type 1 diabetes mellitus cardiomyopathy. METHODS Streptozotocin-induced diabetic rats were treated with atorvastatin (50 mg/kg daily, orally) or with vehicle for 6 weeks. LV function was analysed using tip-catheter measurements. Cardiac stainings of TNF-alpha, IL-1beta, intercellular adhesion molecule-1, vascular cellular adhesion molecule-1, CD11a/lymphocyte-associated antigen-1, CD11b/macrophage antigen alpha, CD18/beta2-integrin, ED1/CD68, collagen I and III, and Sirius Red were assessed by digital image analysis. Ras-related C3 botulinum toxin substrate (RAC1) and ras homologue gene family, member A (RHOA) activities were determined by RAC1 glutathione-S-transferase-p21-activated kinase and rhotekin pull-down assays, respectively. Cardiac lipid peroxides were measured by a colorimetric assay. The phosphorylation state of p38 mitogen-activated protein kinase (MAPK) and endothelial nitric oxide synthase (eNOS) protein production were analysed by western blot. RESULTS Diabetes was associated with induced cardiac stainings of TNF-alpha, IL-1beta, cellular adhesion molecules, increased leucocyte infiltration, macrophage residence and cardiac collagen content. In contrast, atorvastatin reduced both intramyocardial inflammation and myocardial fibrosis, resulting in improved LV function. This effect was paralleled with a normalisation of diabetes-induced RAC1 and RHOA activity, in the absence of LDL-cholesterol lowering. In addition, atorvastatin decreased diabetes-induced cardiac lipid peroxide levels and p38 MAPK phosphorylation by 1.3-fold (p < 0.05) and 3.2-fold (p < 0.0005), respectively, and normalised the reduced eNOS production caused by diabetes. CONCLUSIONS/INTERPRETATION These data indicate that atorvastatin, independently of its LDL-cholesterol-lowering capacity, reduces intramyocardial inflammation and myocardial fibrosis, resulting in improved LV function in an experimental model of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- S Van Linthout
- Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité-University Medicine Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - A Riad
- Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité-University Medicine Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - N Dhayat
- Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité-University Medicine Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - F Spillmann
- Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité-University Medicine Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - J Du
- Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité-University Medicine Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - S Dhayat
- Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité-University Medicine Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - D Westermann
- Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité-University Medicine Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | | | - M Noutsias
- Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité-University Medicine Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - U Laufs
- Department of Cardiology, University of Saarland, Homburg/Saar, Germany
| | - H-P Schultheiss
- Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité-University Medicine Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - C Tschöpe
- Department of Cardiology and Pneumology, Campus Benjamin Franklin, Charité-University Medicine Berlin, Hindenburgdamm 30, 12200, Berlin, Germany.
| |
Collapse
|