51
|
László CF, Wu S. Mechanism of UV-induced IkappaBalpha-independent activation of NF-kappaB. Photochem Photobiol 2008; 84:1564-8. [PMID: 18627520 DOI: 10.1111/j.1751-1097.2008.00385.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear factor-kappa B (NF-kappaB) plays an important role in UV-induced skin tumorigenesis. Activation of NF-kappaB by UV-irradiation is composed of two phases. The early phase culminates with maximal levels of DNA binding ability at 4 h postirradiation and is dependent on translational inhibition. The late-phase activation of NF-kappaB occurs between 16 and 48 h post-irradiation and the mechanism is not clear due to the fact that NF-kappaB was activated in the presence of high level of IkappaBalpha. In this report, we provide evidence that without translational inhibition, the transcription of IkappaBalpha was induced by UV-irradiation. In the late-phase of UV-induced NF-kappaB activation, the IkappaBalpha depletion is the combined result of regulation at both transcriptional and translational levels. Neither ubiquitination nor proteasomal degradation have detectable attributions to IkappaBalpha breakdown. We also demonstrate that UV only induced phosphorylation of p65(S276), while tumor necrosis factor-alpha induced phosphorylation at both Ser276 and 536 sites of p65. Based upon our results, we propose a novel mechanism for translation-regulated IkappaBalpha depletion and MSK-mediated NF-kappaB activation at 24 h post-UV-irradiation.
Collapse
Affiliation(s)
- Csaba F László
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | | |
Collapse
|
52
|
Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, Wood MG, Learish R, Ohana RF, Urh M, Simpson D, Mendez J, Zimmerman K, Otto P, Vidugiris G, Zhu J, Darzins A, Klaubert DH, Bulleit RF, Wood KV. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 2008; 3:373-82. [PMID: 18533659 DOI: 10.1021/cb800025k] [Citation(s) in RCA: 1759] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have designed a modular protein tagging system that allows different functionalities to be linked onto a single genetic fusion, either in solution, in living cells, or in chemically fixed cells. The protein tag (HaloTag) is a modified haloalkane dehalogenase designed to covalently bind to synthetic ligands (HaloTag ligands). The synthetic ligands comprise a chloroalkane linker attached to a variety of useful molecules, such as fluorescent dyes, affinity handles, or solid surfaces. Covalent bond formation between the protein tag and the chloroalkane linker is highly specific, occurs rapidly under physiological conditions, and is essentially irreversible. We demonstrate the utility of this system for cellular imaging and protein immobilization by analyzing multiple molecular processes associated with NF-kappaB-mediated cellular physiology, including imaging of subcellular protein translocation and capture of protein--protein and protein--DNA complexes.
Collapse
Affiliation(s)
- Georgyi V. Los
- Promega Corporation, 2800 Woods Hollow Rd., Madison, Wisconsin 53711
| | - Lance P. Encell
- Promega Corporation, 2800 Woods Hollow Rd., Madison, Wisconsin 53711
| | - Mark G. McDougall
- Promega Biosciences Incorporated, 277 Granada Dr., San Luis Obispo, California 93401
| | | | - Natasha Karassina
- Promega Corporation, 2800 Woods Hollow Rd., Madison, Wisconsin 53711
| | - Chad Zimprich
- Promega Corporation, 2800 Woods Hollow Rd., Madison, Wisconsin 53711
| | - Monika G. Wood
- Promega Corporation, 2800 Woods Hollow Rd., Madison, Wisconsin 53711
| | - Randy Learish
- Promega Corporation, 2800 Woods Hollow Rd., Madison, Wisconsin 53711
| | | | - Marjeta Urh
- Promega Corporation, 2800 Woods Hollow Rd., Madison, Wisconsin 53711
| | - Dan Simpson
- Promega Corporation, 2800 Woods Hollow Rd., Madison, Wisconsin 53711
| | - Jacqui Mendez
- Promega Corporation, 2800 Woods Hollow Rd., Madison, Wisconsin 53711
| | - Kris Zimmerman
- Promega Corporation, 2800 Woods Hollow Rd., Madison, Wisconsin 53711
| | - Paul Otto
- Promega Corporation, 2800 Woods Hollow Rd., Madison, Wisconsin 53711
| | | | - Ji Zhu
- Promega Biosciences Incorporated, 277 Granada Dr., San Luis Obispo, California 93401
| | - Aldis Darzins
- Promega Corporation, 2800 Woods Hollow Rd., Madison, Wisconsin 53711
| | - Dieter H. Klaubert
- Promega Biosciences Incorporated, 277 Granada Dr., San Luis Obispo, California 93401
| | - Robert F. Bulleit
- Promega Corporation, 2800 Woods Hollow Rd., Madison, Wisconsin 53711
| | - Keith V. Wood
- Promega Corporation, 2800 Woods Hollow Rd., Madison, Wisconsin 53711
| |
Collapse
|
53
|
Vakkila J, Demarco RA, Lotze MT. Coordinate NF-κB and STAT1 Activation Promotes Development of Myeloid Type 1 Dendritic Cells. Scand J Immunol 2008; 67:260-9. [DOI: 10.1111/j.1365-3083.2007.02068.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
54
|
Abstract
Most systems biology approaches involve determining the structure of biological circuits using genomewide "-omic" analyses. Yet imaging offers the unique advantage of watching biological circuits function over time at single-cell resolution in the intact animal. Here, we discuss the power of integrating imaging tools with more conventional -omic approaches to analyze the biological circuits of microorganisms, plants, and animals.
Collapse
Affiliation(s)
- Sean G Megason
- Beckman Institute, Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
55
|
Deterministic and stochastic models of NFkappaB pathway. Cardiovasc Toxicol 2007; 7:215-34. [PMID: 17943462 DOI: 10.1007/s12012-007-9003-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Accepted: 09/26/2007] [Indexed: 12/20/2022]
Abstract
In the article, we discuss the state of art and perspectives in deterministic and stochastic models of NFkappaB regulatory module. The NFkappaB is a transcription factor controlling various immune responses including inflammation and apoptosis. It is tightly regulated by at least two negative feedback loops involving IkappaBalpha and A20. This mode of regulation results in nucleus-to-cytoplasm oscillations in NFkappaB localization, which induce subsequent waves of NFkappaB responsive genes. Single cell experiments carried by several groups provided comprehensive evidence that stochastic effects play an important role in NFkappaB regulation. From modeling point of view, living cells might be considered noisy or stochastic biochemical reactors. In eukaryotic cells, in which the number of protein or mRNA molecules is relatively large, stochastic effects primarily originate in regulation of gene activity. Transcriptional activity of a gene can be initiated by trans-activator molecules binding to the specific regulatory site(s) in the target gene. The stochastic event of gene activation is amplified by transcription and translation, since it results in a burst of mRNA molecules, and each copy of mRNA then serves as a template for numerous protein molecules. Another potential source of variability can be receptors activation. At low-dose stimulation, important in cell-to-cell signaling, the number of active receptors can be low enough to introduce substantial noise to downstream signaling. Stochastic modeling confirms the large variability in cell responses and shows that no cell behaves like an "average" cell. This high cell-to-cell variability can be one of the weapons of the immune defense. Such non-deterministic defense may be harder to overcome by relatively simple programs coded in viruses and other pathogens.
Collapse
|
56
|
Lipniacki T, Puszynski K, Paszek P, Brasier AR, Kimmel M. Single TNFalpha trimers mediating NF-kappaB activation: stochastic robustness of NF-kappaB signaling. BMC Bioinformatics 2007; 8:376. [PMID: 17925009 PMCID: PMC2222661 DOI: 10.1186/1471-2105-8-376] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 10/09/2007] [Indexed: 11/24/2022] Open
Abstract
Background The NF-κB regulatory network controls innate immune response by transducing variety of pathogen-derived and cytokine stimuli into well defined single-cell gene regulatory events. Results We analyze the network by means of the model combining a deterministic description for molecular species with large cellular concentrations with two classes of stochastic switches: cell-surface receptor activation by TNFα ligand, and IκBα and A20 genes activation by NF-κB molecules. Both stochastic switches are associated with amplification pathways capable of translating single molecular events into tens of thousands of synthesized or degraded proteins. Here, we show that at a low TNFα dose only a fraction of cells are activated, but in these activated cells the amplification mechanisms assure that the amplitude of NF-κB nuclear translocation remains above a threshold. Similarly, the lower nuclear NF-κB concentration only reduces the probability of gene activation, but does not reduce gene expression of those responding. Conclusion These two effects provide a particular stochastic robustness in cell regulation, allowing cells to respond differently to the same stimuli, but causing their individual responses to be unequivocal. Both effects are likely to be crucial in the early immune response: Diversity in cell responses causes that the tissue defense is harder to overcome by relatively simple programs coded in viruses and other pathogens. The more focused single-cell responses help cells to choose their individual fates such as apoptosis or proliferation. The model supports the hypothesis that binding of single TNFα ligands is sufficient to induce massive NF-κB translocation and activation of NF-κB dependent genes.
Collapse
Affiliation(s)
- Tomasz Lipniacki
- Institute of Fundamental Technological Research, Swietokrzyska 21, 00-049 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
57
|
Ihekwaba AEC, Wilkinson SJ, Waithe D, Broomhead DS, Li P, Grimley RL, Benson N. Bridging the gap between in silico and cell-based analysis of the nuclear factor-kappaB signaling pathway by in vitro studies of IKK2. FEBS J 2007; 274:1678-90. [PMID: 17313484 DOI: 10.1111/j.1742-4658.2007.05713.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previously, we have shown by sensitivity analysis, that the oscillatory behavior of nuclear factor (NF-kappaB) is coupled to free IkappaB kinase-2 (IKK2) and IkappaBalpha(IkappaBalpha), and that the phosphorylation of IkappaBalpha by IKK influences the amplitude of NF-kappaB oscillations. We have performed further analyses of the behavior of NF-kappaB and its signal transduction network to understand the dynamics of this system. A time lapse study of NF-kappaB translocation in 10,000 cells showed discernible oscillations in levels of nuclear NF-kappaB amongst cells when stimulated with interleukin (IL-1alpha), which suggests a small degree of synchronization amongst the cell population. When the kinetics for the phosphorylation of IkappaBalpha by IKK were measured, we found that the values for the affinity and catalytic efficiency of IKK2 for IkappaBalpha were dependent on assay conditions. The application of these kinetic parameters in our computational model of the NF-kappaB pathway resulted in significant differences in the oscillatory patterns of NF-kappaB depending on the rate constant value used. Hence, interpretation of in silico models should be made in the context of this uncertainty.
Collapse
|
58
|
Rogers JA, Fuseler JW. Regulation of NF-kappaB activation and nuclear translocation by exogenous nitric oxide (NO) donors in TNF-alpha activated vascular endothelial cells. Nitric Oxide 2007; 16:379-91. [PMID: 17374495 DOI: 10.1016/j.niox.2007.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 02/05/2007] [Accepted: 02/06/2007] [Indexed: 10/23/2022]
Abstract
Nitric oxide (NO) is a unique mediator which may promote or suppress inflammation. In this study, we examine the effect of exogenous NO on nuclear translocation of nuclear factor-kappa B (NF-kappaB) in quiescent human umbilical vein endothelial cells (HUVECs) subsequently activated by tumor necrosis factor-alpha (TNF-alpha), and in HUVECs previously activated by TNF-alpha, a model of vascular inflammation. Quiescent and activated HUVECs are exposed to exogenous NO donors of varying half-lives and the degree of NF-kappaB translocation into the nucleus determined by unique application of immunofluorescence image analysis in whole cells and correlative biochemical analysis of activated NF-kappaB proteins in the nucleus. NO donors with shorter half-lives are more effective in blocking the activation and translocation of NF-kappaB, when added to quiescent HUVECs prior to cellular activation by TNF-alpha. However, in previously activated HUVECs where NF-kappaB had relocated into the cytoplasm, addition of short half-life NO donors, but not TNF-alpha, induced re-translocation of NF-kappaB back into the nucleus sustaining the inflamed cell phenotype. These data suggest that NO as an inhibitor or activator of NF-kappaB may depend on the state of activation of vascular endothelial cells in which it contacts. Additionally, in activated cells, NO may modulate expression of NF-kappaB-dependent gene products, when cytokines are ineffective.
Collapse
Affiliation(s)
- Jennifer A Rogers
- Department of Cellular Biology and Anatomy, Louisiana State University-Health Science Center at Shreveport, Shreveport, LA 71130, USA
| | | |
Collapse
|
59
|
Shen H, Nelson G, Nelson DE, Kennedy S, Spiller DG, Griffiths T, Paton N, Oliver SG, White MR, Kell DB. Automated tracking of gene expression in individual cells and cell compartments. J R Soc Interface 2006; 3:787-94. [PMID: 17015304 PMCID: PMC1885368 DOI: 10.1098/rsif.2006.0137] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 05/22/2006] [Indexed: 11/12/2022] Open
Abstract
Many intracellular signal transduction processes involve the reversible translocation from the cytoplasm to the nucleus of transcription factors. The advent of fluorescently tagged protein derivatives has revolutionized cell biology, such that it is now possible to follow the location of such protein molecules in individual cells in real time. However, the quantitative analysis of the location of such proteins in microscopic images is very time consuming. We describe CellTracker, a software tool designed for the automated measurement of the cellular location and intensity of fluorescently tagged proteins. CellTracker runs in the MS Windows environment, is freely available (at http://www.dbkgroup.org/celltracker/), and combines automated cell tracking methods with powerful image-processing algorithms that are optimized for these applications. When tested in an application involving the nuclear transcription factor NF-kappaB, CellTracker is competitive in accuracy with the manual human analysis of such images but is more than 20 times faster, even on a small task where human fatigue is not an issue. This will lead to substantial benefits for time-lapse-based high-content screening.
Collapse
Affiliation(s)
- Hailin Shen
- School of Chemistry, The University of ManchesterFaraday Building, Sackville Street, PO Box 88, Manchester M60 1QD, UK
- Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre, The University of Manchester131 Princess Street, Manchester M1 7DN, UK
| | - Glyn Nelson
- Centre for Cell Imaging, School of Biological Sciences, University of LiverpoolBiosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - David E Nelson
- Centre for Cell Imaging, School of Biological Sciences, University of LiverpoolBiosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Stephnie Kennedy
- Centre for Cell Imaging, School of Biological Sciences, University of LiverpoolBiosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - David G Spiller
- Centre for Cell Imaging, School of Biological Sciences, University of LiverpoolBiosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Tony Griffiths
- School of Computer Science, The University of ManchesterOxford Road, Manchester M13 9PL, UK
| | - Norman Paton
- School of Computer Science, The University of ManchesterOxford Road, Manchester M13 9PL, UK
| | - Stephen G Oliver
- Faculty of Life Sciences, The University of ManchesterMichael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Michael R.H White
- Centre for Cell Imaging, School of Biological Sciences, University of LiverpoolBiosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Douglas B Kell
- School of Chemistry, The University of ManchesterFaraday Building, Sackville Street, PO Box 88, Manchester M60 1QD, UK
- Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre, The University of Manchester131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
60
|
Richards GR, Jack AD, Platts A, Simpson PB. Measurement and analysis of calcium signaling in heterogeneous cell cultures. Methods Enzymol 2006; 414:335-47. [PMID: 17110201 DOI: 10.1016/s0076-6879(06)14019-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
High-content imaging platforms capable of studying kinetic responses at a single-cell level have elevated kinetic recording techniques from labor-intensive low-throughput experiments to potential high-throughput screening assays. We have applied this technology to the investigation of heterogeneous cell cultures derived from primary neural tissue. The neuronal cultures mature into a coupled network and display spontaneous oscillations in intracellular calcium, which can be modified by the addition of pharmacological agents. We have developed algorithms to perform Fourier analysis and quantify both the degree of synchronization and the effects of modulators on the oscillations. Functional and phenotypic experiments can be combined using this approach. We have used post-hoc immunolabeling to identify subpopulations of cells in cocultures and to dissect the calcium responses of these cells from the population response. The combination of these techniques represents a powerful tool for drug discovery.
Collapse
Affiliation(s)
- Gillian R Richards
- The Neuroscience Research Centre, Merck Sharp and Dohme Research Laboratories, Essex, United Kingdom
| | | | | | | |
Collapse
|
61
|
Fuseler JW, Merrill DM, Rogers JA, Grisham MB, Wolf RE. Analysis and quantitation of NF-kappaB nuclear translocation in tumor necrosis factor alpha (TNF-alpha) activated vascular endothelial cells. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2006; 12:269-76. [PMID: 17481363 DOI: 10.1017/s1431927606060260] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 12/16/2005] [Indexed: 05/15/2023]
Abstract
Nuclear factor-kappa B (NF-kappaB) is a heterodimeric transcription factor typically composed of p50 and p65 subunits and is a pleiotropic regulator of various inflammatory and immune responses. In quiescent cells, p50/p65 dimers are sequestered in the cytoplasm bound to its inhibitors, the I-kappaBs, which prevent entry into the nucleus. Following cellular stimulation, the I-kappaBs are rapidly degraded, activating NF-kappaB. The active form of NF-kappaB rapidly translocates into the nucleus, binding to consensus sequences in the promoter/enhancer region of various genes, promoting their transcription. In human vascular endothelial cells activated with tumor necrosis factor-alpha, the activation and translocation of NF-kappaB is rapid, reaching maximal nuclear localization by 30 min. In this study, the appearance of NF-kappaB (p65 subunit, p65-NF-kappaB) in the nucleus visualized by immunofluorescence and quantified by morphometric image analysis (integrated optical density, IOD) is compared to the appearance of activated p65-NF-kappaB protein in the nucleus determined biochemically. The appearance of p65-NF-kappaB in the nucleus measured by fluorescence image analysis and biochemically express a linear correlation (R2 = 0.9477). These data suggest that localization and relative protein concentrations of NF-kappaB can be reliably determined from IOD measurements of the immunofluorescent labeled protein.
Collapse
Affiliation(s)
- John W Fuseler
- Department of Cell, Developmental Biology and Anatomy, University of South Carolina School of Medicine, 6439 Garner's Ferry Road, Columbia, SC 29209, USA.
| | | | | | | | | |
Collapse
|
62
|
Schütz S, Chemnitz J, Spillner C, Frohme M, Hauber J, Kehlenbach RH. Stimulated expression of mRNAs in activated T cells depends on a functional CRM1 nuclear export pathway. J Mol Biol 2006; 358:997-1009. [PMID: 16580684 DOI: 10.1016/j.jmb.2006.02.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 02/15/2006] [Accepted: 02/16/2006] [Indexed: 12/20/2022]
Abstract
In metazoans, the nuclear export of bulk mRNAs is mediated by the export receptor TAP, together with its binding partner p15. A number of viral mRNAs, including the unspliced and partially spliced mRNA species of the human immunodeficiency virus (HIV), however, use an alternative export route via the importin beta-related export receptor CRM1. This raises the question of whether a subset of cellular mRNAs might be exported by CRM1 as well. To identify such mRNAs, we performed a systematic screen in different cell lines, using representational difference analyses of cDNA (cDNA-RDA). In HeLa and Cl-4 cells no cellular transcripts could be identified as exported via CRM1. In contrast, we found a number of CRM1-dependent mRNAs in Jurkat T cells, most of which are induced during a T cell response. One of the identified gene products, the dendritic cell marker CD83, was analyzed in detail. CD83 expression depends on a functional CRM1 pathway in activated Jurkat T cells as well as in a heterologous expression system, independent of activation. Our results point to an important role of the CRM1-dependent export pathway for the expression of CD83 and other genes under conditions of T cell activation.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Antigens, CD/genetics
- Base Sequence
- Cell Line
- DNA, Complementary/genetics
- Gene Expression
- Genes, env
- HIV/genetics
- HeLa Cells
- Humans
- Immunoglobulins/genetics
- In Vitro Techniques
- Jurkat Cells
- Karyopherins/antagonists & inhibitors
- Karyopherins/metabolism
- Lymphocyte Activation/genetics
- Membrane Glycoproteins/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Exportin 1 Protein
- CD83 Antigen
Collapse
Affiliation(s)
- Sylvia Schütz
- University of Heidelberg, Department of Virology, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
63
|
Hetherington JPJ, Warner A, Seymour RM. Simplification and its consequences in biological modelling: conclusions from a study of calcium oscillations in hepatocytes. J R Soc Interface 2006; 3:319-31. [PMID: 16849241 PMCID: PMC1578742 DOI: 10.1098/rsif.2005.0101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2005] [Accepted: 10/11/2005] [Indexed: 11/12/2022] Open
Abstract
Systems Biology requires that biological modelling is scaled up from small components to system level. This can produce exceedingly complex models, which obscure understanding rather than facilitate it. The successful use of highly simplified models would resolve many of the current problems faced in Systems Biology. This paper questions whether the conclusions of simple mathematical models of biological systems are trustworthy. The simplification of a specific model of calcium oscillations in hepatocytes is examined in detail, and the conclusions drawn from this scrutiny generalized. We formalize our choice of simplification approach through the use of functional 'building blocks'. A collection of models is constructed, each a progressively more simplified version of a well-understood model. The limiting model is a piecewise linear model that can be solved analytically. We find that, as expected, in many cases the simpler models produce incorrect results. However, when we make a sensitivity analysis, examining which aspects of the behaviour of the system are controlled by which parameters, the conclusions of the simple model often agree with those of the richer model. The hypothesis that the simplified model retains no information about the real sensitivities of the unsimplified model can be very strongly ruled out by treating the simplification process as a pseudo-random perturbation on the true sensitivity data. We conclude that sensitivity analysis is, therefore, of great importance to the analysis of simple mathematical models in biology. Our comparisons reveal which results of the sensitivity analysis regarding calcium oscillations in hepatocytes are robust to the simplifications necessarily involved in mathematical modelling. For example, we find that if a treatment is observed to strongly decrease the period of the oscillations while increasing the proportion of the cycle during which cellular calcium concentrations are rising, without affecting the inter-spike or maximum calcium concentrations, then it is likely that the treatment is acting on the plasma membrane calcium pump.
Collapse
Affiliation(s)
- James P J Hetherington
- Centre for Mathematics and Physics in Life Sciences and Experimental Biology, University College London, London, UK.
| | | | | |
Collapse
|
64
|
Kell DB. Theodor Bücher Lecture. Metabolomics, modelling and machine learning in systems biology - towards an understanding of the languages of cells. Delivered on 3 July 2005 at the 30th FEBS Congress and the 9th IUBMB conference in Budapest. FEBS J 2006; 273:873-94. [PMID: 16478464 DOI: 10.1111/j.1742-4658.2006.05136.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The newly emerging field of systems biology involves a judicious interplay between high-throughput 'wet' experimentation, computational modelling and technology development, coupled to the world of ideas and theory. This interplay involves iterative cycles, such that systems biology is not at all confined to hypothesis-dependent studies, with intelligent, principled, hypothesis-generating studies being of high importance and consequently very far from aimless fishing expeditions. I seek to illustrate each of these facets. Novel technology development in metabolomics can increase substantially the dynamic range and number of metabolites that one can detect, and these can be exploited as disease markers and in the consequent and principled generation of hypotheses that are consistent with the data and achieve this in a value-free manner. Much of classical biochemistry and signalling pathway analysis has concentrated on the analyses of changes in the concentrations of intermediates, with 'local' equations - such as that of Michaelis and Menten v=(Vmax x S)/(S+K m) - that describe individual steps being based solely on the instantaneous values of these concentrations. Recent work using single cells (that are not subject to the intellectually unsupportable averaging of the variable displayed by heterogeneous cells possessing nonlinear kinetics) has led to the recognition that some protein signalling pathways may encode their signals not (just) as concentrations (AM or amplitude-modulated in a radio analogy) but via changes in the dynamics of those concentrations (the signals are FM or frequency-modulated). This contributes in principle to a straightforward solution of the crosstalk problem, leads to a profound reassessment of how to understand the downstream effects of dynamic changes in the concentrations of elements in these pathways, and stresses the role of signal processing (and not merely the intermediates) in biological signalling. It is this signal processing that lies at the heart of understanding the languages of cells. The resolution of many of the modern and postgenomic problems of biochemistry requires the development of a myriad of new technologies (and maybe a new culture), and thus regular input from the physical sciences, engineering, mathematics and computer science. One solution, that we are adopting in the Manchester Interdisciplinary Biocentre (http://www.mib.ac.uk/) and the Manchester Centre for Integrative Systems Biology (http://www.mcisb.org/), is thus to colocate individuals with the necessary combinations of skills. Novel disciplines that require such an integrative approach continue to emerge. These include fields such as chemical genomics, synthetic biology, distributed computational environments for biological data and modelling, single cell diagnostics/bionanotechnology, and computational linguistics/text mining.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry, Faraday Building, The University of Manchester, UK.
| |
Collapse
|
65
|
Mikenberg I, Widera D, Kaus A, Kaltschmidt B, Kaltschmidt C. TNF-alpha mediated transport of NF-kappaB to the nucleus is independent of the cytoskeleton-based transport system in non-neuronal cells. Eur J Cell Biol 2006; 85:529-36. [PMID: 16584809 DOI: 10.1016/j.ejcb.2006.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 02/09/2006] [Accepted: 02/13/2006] [Indexed: 11/25/2022] Open
Abstract
In unstimulated cells, proteins of the nuclear factor kappaB (NF-kappaB) transcription factor family are sequestered in the cytoplasm through interactions with IkappaB inhibitor proteins. Tumor necrosis factor alpha (TNF-alpha) activates the degradation of IkappaB-alpha and the nuclear import of cytoplasmic NF-kappaB. Nuclear localization of numerous cellular proteins is mediated by the ability of the cytoskeleton, usually microtubules, to direct their perinuclear accumulation. In a former study we have shown that activated NF-kappaB rapidly moves from distal processes in neurons towards the nucleus. The fast transport rate suggests the involvement of motor proteins in the transport of NF-kappaB. Here we address the question how NF-kappaB arrives at the nuclear membrane before import in non-neuronal cells, i.e., by diffusion alone or with the help of active transport mechanisms. Using confocal microscopy imaging and analysis of nuclear protein extracts, we show that NF-kappaB movement through the cytoplasm to the nucleus is independent of the cytoskeleton, in the three cell lines investigated here. Additionally we demonstrate that NF-kappaB p65 is not associated with the dynein/dynactin molecular motor complex. We propose that cells utilize two distinct mechanisms of NF-kappaB transport: (1) signaling via diffusion over short distances in non-neuronal cells and (2) transport via motor proteins that move along the cytoskeleton in neuronal processes where the distances between sites of NF-kappaB activation and nucleus can be vast.
Collapse
Affiliation(s)
- Ilja Mikenberg
- Institut für Neurobiochemie Universität Witten/Herdecke, Stockumer Str. 10, D-58448 Witten, Germany
| | | | | | | | | |
Collapse
|
66
|
Affiliation(s)
- Peter B Simpson
- Automated Imaging and Electrophysiology Group, Department of Molecular and Cellular Neuroscience, Neuroscience Research Centre, Merck Sharp & Dohme, Terlings Park, Harlow, Essex CM20 2QR, UK.
| | | |
Collapse
|
67
|
Ray JCJ, Kirschner DE. Requirement for multiple activation signals by anti-inflammatory feedback in macrophages. J Theor Biol 2006; 241:276-94. [PMID: 16460764 DOI: 10.1016/j.jtbi.2005.11.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 10/25/2005] [Accepted: 11/26/2005] [Indexed: 12/19/2022]
Abstract
Pathogen killing is one of the primary roles of macrophages, utilizing potent effectors such as nitric oxide (NO) and involving other cellular machinery including iron regulatory apparatus. Macrophages become strongly activated upon receipt of appropriate signaling with cytokines and pathogen-derived endotoxins. However, they must resist activation in the absence of decisive signaling due to the energetic demands of activation coupled with the toxic nature of effector molecules to surrounding tissues. We have developed a mathematical model of the modular biochemical network of macrophages involved with activation, pathogen killing and iron regulation. This model requires synergistic interaction of multiple activation signals to overcome the quiescent state. To achieve a trade-off between macrophage quiescence and activation, strong activation signals are modulated via negative regulation by NO. In this way a single activation signal is insufficient for complete activation. In addition, our results suggest that iron regulation is usually controlled by activation signals. However, under conditions of partial macrophage activation, exogenous iron levels play a key role in regulating NO production. This model will be useful for evaluating macrophage control of intracellular pathogens in addition to the biochemical mechanisms examined here.
Collapse
Affiliation(s)
- J Christian J Ray
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA
| | | |
Collapse
|
68
|
Friedrichsen S, Harper CV, Semprini S, Wilding M, Adamson AD, Spiller DG, Nelson G, Mullins JJ, White MRH, Davis JRE. Tumor necrosis factor-alpha activates the human prolactin gene promoter via nuclear factor-kappaB signaling. Endocrinology 2006; 147:773-81. [PMID: 16254029 PMCID: PMC1863827 DOI: 10.1210/en.2005-0967] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Pituitary function has been shown to be regulated by an increasing number of intrapituitary factors, including cytokines. Here we show that the important cytokine TNF-alpha activates prolactin gene transcription in pituitary GH3 cells stably expressing luciferase under control of 5 kb of the human prolactin promoter. Similar regulation of the endogenous rat prolactin gene by TNF-alpha in GH3 cells was confirmed using real-time PCR. Luminescence microscopy revealed heterogeneous dynamic response patterns of promoter activity in individual cells. In GH3 cells treated with TNF-alpha, Western blot analysis showed rapid inhibitory protein kappaB (IkappaBalpha) degradation and phosphorylation of p65. Confocal microscopy of cells expressing fluorescence-labeled p65 and IkappaBalpha fusion proteins showed transient cytoplasmic-nuclear translocation and subsequent oscillations in p65 localization and confirmed IkappaBalpha degradation. This was associated with increased nuclear factor kappaB (NF-kappaB)-mediated transcription from an NF-kappaB-responsive luciferase reporter construct. Disruption of NF-kappaB signaling by expression of dominant-negative variants of IkappaB kinases or truncated IkappaBalpha abolished TNF-alpha activation of the prolactin promoter, suggesting that this effect was mediated by NF-kappaB. TNF-alpha signaling was found to interact with other endocrine signals to regulate prolactin gene expression and is likely to be a major paracrine modulator of lactotroph function.
Collapse
Affiliation(s)
- Sönke Friedrichsen
- Endocrine Science Research Group School of Biological Sciences, University of Manchester, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Lipniacki T, Paszek P, Brasier AR, Luxon BA, Kimmel M. Stochastic regulation in early immune response. Biophys J 2006; 90:725-42. [PMID: 16284261 PMCID: PMC1367099 DOI: 10.1529/biophysj.104.056754] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2004] [Accepted: 09/12/2005] [Indexed: 11/18/2022] Open
Abstract
Living cells may be considered noisy or stochastic biochemical reactors. In eukaryotic cells, in which the number of protein or mRNA molecules is relatively large, the stochastic effects originate primarily in regulation of gene activity. Transcriptional activity of a gene can be initiated by transactivator molecules binding to the specific regulatory site(s) in the target gene. The stochasticity of activator binding and dissociation is amplified by transcription and translation, since target gene activation results in a burst of mRNAs molecules, and each copy of mRNA then serves as a template for numerous protein molecules. In this article, we reformulate our model of the NF-kappaB regulatory module to analyze a single cell regulation. Ordinary differential equations, used for description of fast reaction channels of processes involving a large number of molecules, are combined with a stochastic switch to account for the activity of the genes involved. The stochasticity in gene transcription causes simulated cells to exhibit large variability. Moreover, none of them behaves like an average cell. Although the average mRNA and protein levels remain constant before tumor necrosis factor (TNF) stimulation, and stabilize after a prolonged TNF stimulation, in any single cell these levels oscillate stochastically in the absence of TNF and keep oscillating under the prolonged TNF stimulation. However, in a short period of approximately 90 min, most cells are synchronized by the TNF signal, and exhibit similar kinetics. We hypothesize that this synchronization is crucial for proper activation of early genes controlling inflammation. Our theoretical predictions of single cell kinetics are supported by recent experimental studies of oscillations in NF-kappaB signaling made on single cells.
Collapse
Affiliation(s)
- Tomasz Lipniacki
- Institute of Fundamental Technological Research, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
70
|
Yue H, Brown M, Knowles J, Wang H, Broomhead DS, Kell DB. Insights into the behaviour of systems biology models from dynamic sensitivity and identifiability analysis: a case study of an NF-κB signalling pathway. ACTA ACUST UNITED AC 2006; 2:640-9. [PMID: 17216045 DOI: 10.1039/b609442b] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mathematical modelling offers a variety of useful techniques to help in understanding the intrinsic behaviour of complex signal transduction networks. From the system engineering point of view, the dynamics of metabolic and signal transduction models can always be described by nonlinear ordinary differential equations (ODEs) following mass balance principles. Based on the state-space formulation, many methods from the area of automatic control can conveniently be applied to the modelling, analysis and design of cell networks. In the present study, dynamic sensitivity analysis is performed on a model of the IkappaB-NF-kappaB signal pathway system. Univariate analysis of the Euclidean-form overall sensitivities shows that only 8 out of the 64 parameters in the model have major influence on the nuclear NF-kappaB oscillations. The sensitivity matrix is then used to address correlation analysis, identifiability assessment and measurement set selection within the framework of least squares estimation and multivariate analysis. It is shown that certain pairs of parameters are exactly or highly correlated to each other in terms of their effects on the measured variables. The experimental design strategy provides guidance on which proteins should best be considered for measurement such that the unknown parameters can be estimated with the best statistical precision. The whole analysis scheme we describe provides efficient parameter estimation techniques for complex cell networks.
Collapse
Affiliation(s)
- Hong Yue
- School of Chemistry, University of Manchester, Sackville St, Manchester, UK.
| | | | | | | | | | | |
Collapse
|
71
|
Kell DB. Metabolomics, machine learning and modelling: towards an understanding of the language of cells. Biochem Soc Trans 2005; 33:520-4. [PMID: 15916555 DOI: 10.1042/bst0330520] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In answering the question ‘Systems Biology – will it work?’ (which it self-evidently has already), it is appropriate to highlight advances in philosophy, in new technique development and in novel findings. In terms of philosophy, we see that systems biology involves an iterative interplay between linked activities – for instance, between theory and experiment, between induction and deduction and between measurements of parameters and variables – with more emphasis than has perhaps been common now being focused on the first in each of these pairs. In technique development, we highlight closed loop machine learning and its use in the optimization of scientific instrumentation, and the ability to effect high-quality and quasi-continuous optical images of cells. This leads to many important and novel findings. In the first case, these may involve new biomarkers for disease, whereas in the second case, we have determined that many biological signals may be frequency-rather than amplitude-encoded. This leads to a very different view of how signalling ‘works’ (equations such as that of Michaelis and Menten which use only amplitudes, i.e. concentrations, are inadequate descriptors), lays emphasis on the signal processing network elements that lie ‘downstream’ of what are traditionally considered the signals, and allows one simply to understand how cross-talk may be avoided between pathways which nevertheless use common signalling elements. The language of cells is much richer than we had supposed, and we are now well placed to decode it.
Collapse
Affiliation(s)
- D B Kell
- School of Chemistry, The University of Manchester, Faraday Building, Sackville Street, P.O. Box 88, Manchester M60 1QD, UK.
| |
Collapse
|
72
|
Paraoan L, Ratnayaka A, Spiller DG, Hiscott P, White MRH, Grierson I. Unexpected intracellular localization of the AMD-associated cystatin C variant. Traffic 2005; 5:884-95. [PMID: 15479453 DOI: 10.1111/j.1600-0854.2004.00230.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cystatin C is abundantly expressed by the retinal pigment epithelium (RPE) of the eye. Targeting of cystatin C to the Golgi apparatus and processing through the secretory pathway of RPE cells are dependent upon a 26-amino acid signal sequence of precursor cystatin C. A variant with an alanine (A) to threonine (T) mutation in the penultimate amino acid of the signal sequence (A25T) was recently correlated with increased risk of developing exudative age-related macular degeneration. The biochemical consequence of the A25T mutation upon targeting of the protein is reported here. Targeting and trafficking of full-length mutant (A25T) precursor cystatin C-enhanced green fluorescent protein fusion protein were studied in living, cultured retinal pigment epithelial and HeLa cells. Confocal microscopy studies were substantiated by immunodetection. In striking contrast to wild-type precursor cystatin C fusion protein conspicuously targeted to the Golgi apparatus, the threonine variant was associated principally with mitochondria. Some diffuse fluorescence was also observed throughout the cytoplasm and nucleus (but not nucleoli). Secretion of fusion protein derived from the threonine variant was reduced by approximately 50% compared with that of the wild-type cystatin C fusion protein. Expression of the variant fusion protein did not appear to impair expression or secretion of endogenous cystatin C.
Collapse
Affiliation(s)
- Luminita Paraoan
- Unit of Ophthalmology, Department of Medicine, Centre for Cell Imaging, School of Biological Sciences, University of Liverpool, UK.
| | | | | | | | | | | |
Collapse
|
73
|
Paszek P, Lipniacki T, Brasier AR, Tian B, Nowak DE, Kimmel M. Stochastic effects of multiple regulators on expression profiles in eukaryotes. J Theor Biol 2004; 233:423-33. [PMID: 15652150 DOI: 10.1016/j.jtbi.2004.10.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 10/04/2004] [Accepted: 10/19/2004] [Indexed: 11/22/2022]
Abstract
The stochastic nature of gene regulation still remains not fully understood. In eukaryotes, the stochastic effects are primarily attributable to the binary nature of genes, which are considered either switched "on" or "off" due to the action of the transcription factors binding to the promoter. In the time period when the gene is activated, bursts of mRNA transcript are produced. In the present paper, we investigate regulation of gene expression at the single cell level. We propose a mechanism of gene regulation, which is able to explain the observed distinct transcription profiles assuming the number of co-regulatory activities, without attempting to identify the specific proteins involved. The model is motivated by our experiments on NF-kappaB-dependent genes in HeLa cells. Our experimental data shows that NF-kappaB-dependent genes can be stratified into three characteristic groups according to their expression profiles: early, intermediate and late having maximum of expression at about 1, 3 and 6 h, respectively, from the beginning of TNF stimulation. We provide a tractable analytical approach, not only in the terms of expected expression profiles and their moments, which corresponds to the measurements on the cell population, but also in the terms of single cell behavior. Comparison between these two modes of description reveals that single cells behave qualitatively different from the cell population. This analysis provides insights useful for understanding of microarray experiments.
Collapse
Affiliation(s)
- Pawel Paszek
- Department of Statistics, Rice University, 6100 Main Street, MS-138, Houston, TX 77005, USA.
| | | | | | | | | | | |
Collapse
|
74
|
Nelson DE, Ihekwaba AEC, Elliott M, Johnson JR, Gibney CA, Foreman BE, Nelson G, See V, Horton CA, Spiller DG, Edwards SW, McDowell HP, Unitt JF, Sullivan E, Grimley R, Benson N, Broomhead D, Kell DB, White MRH. Oscillations in NF-kappaB signaling control the dynamics of gene expression. Science 2004; 306:704-8. [PMID: 15499023 DOI: 10.1126/science.1099962] [Citation(s) in RCA: 910] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Signaling by the transcription factor nuclear factor kappa B (NF-kappaB) involves its release from inhibitor kappa B (IkappaB) in the cytosol, followed by translocation into the nucleus. NF-kappaB regulation of IkappaBalpha transcription represents a delayed negative feedback loop that drives oscillations in NF-kappaB translocation. Single-cell time-lapse imaging and computational modeling of NF-kappaB (RelA) localization showed asynchronous oscillations following cell stimulation that decreased in frequency with increased IkappaBalpha transcription. Transcription of target genes depended on oscillation persistence, involving cycles of RelA phosphorylation and dephosphorylation. The functional consequences of NF-kappaB signaling may thus depend on number, period, and amplitude of oscillations.
Collapse
Affiliation(s)
- D E Nelson
- Centre for Cell Imaging, School of Biological Sciences, Bioscience Research Building, Crown Street, Liverpool, L69 7ZB, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Garside H, Stevens A, Farrow S, Normand C, Houle B, Berry A, Maschera B, Ray D. Glucocorticoid Ligands Specify Different Interactions with NF-κB by Allosteric Effects on the Glucocorticoid Receptor DNA Binding Domain. J Biol Chem 2004; 279:50050-9. [PMID: 15355994 DOI: 10.1074/jbc.m407309200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucocorticoids inhibit inflammation by acting through the glucocorticoid receptor (GR) and powerfully repressing NF-kappaB function. Ligand binding to the C-terminal of GR promotes the nuclear translocation of the receptor and binding to NF-kappaB through the GR DNA binding domain. We sought how ligand recognition influences the interaction between NF-kappaB and GR. Both dexamethasone (agonist) and RU486 (antagonist) promote efficient nuclear translocation, and we show occupancy of the same intranuclear compartment as NF-kappaB with both ligands. However, unlike dexamethasone, RU486 had negligible activity to inhibit NF-kappaB transactivation. This failure may stem from altered co-factor recruitment or altered interaction with NF-kappaB. Using both glutathione S-transferase pull-down and bioluminescence resonance energy transfer approaches, we identified a major glucocorticoid ligand effect on interaction between the GR and the p65 component of NF-kappaB, with RU486 inhibiting recruitment compared with dexamethasone. Using the bioluminescence resonance energy transfer assay, we found that RU486 efficiently recruited NCoR to the GR, unlike dexamethasone, which recruited SRC1. Therefore, RU486 promotes differential protein recruitment to both the C-terminal and DNA binding domain of the receptor. Importantly, using chromatin immunoprecipitation, we show that impaired interaction between GR and p65 with RU486 leads to reduced recruitment of the GR to the NF-kappaB-responsive region of the interleukin-8 promoter, again in contrast to dexamethasone that significantly increased GR binding. We demonstrate that ligand-induced conformation of the GR C-terminal has profound effects on the functional surface generated by the DNA binding domain of the GR. This has implications for understanding ligand-dependent interdomain communication.
Collapse
Affiliation(s)
- Helen Garside
- Centre for Molecular Medicine and Endocrine Sciences Research Group, Stopford Building, Faculty of Medicine, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
76
|
McCollum AT, Estus S. NGF acts via p75 low-affinity neurotrophin receptor and calpain inhibition to reduce UV neurotoxicity. J Neurosci Res 2004; 77:552-64. [PMID: 15264225 DOI: 10.1002/jnr.20184] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The relative roles of the high-affinity nerve growth factor (NGF) receptor, TrkA, and low-affinity p75 neurotrophin receptor (p75NTR) in neuronal survival are an active research area. We reported previously that UV treatment induces a calpain-dependent, delayed neuronal death. We show here that NGF inhibits this UV-induced cortical neuron death. Interestingly, NGF neuroprotection requires p75NTR. Because it has been reported that NGF binding to p75NTR leads to ceramide generation, we evaluated whether ceramide was also neuroprotective. We found that ceramide also inhibits UV toxicity, and that the actions of ceramide and NGF were not additive. Moreover, cycloheximide inhibited ceramide and NGF neuroprotection, suggesting that their actions require new protein synthesis. Consistent with this possibility, we found that NGF activates the expression of genes such as calbindin. Lastly, we explored the role of calpain in NGF actions. NGF and ceramide both reduced the level of calpain activation after UV treatment. This NGF effect was p75NTR dependent. Overall, we interpret these results as consistent with an NGF neuroprotective pathway wherein p75NTR activation leads sequentially to ceramide generation, new protein synthesis, and inhibition of calpain activation. Overall, these results provide insight into a p75NTR dependent pathway of NGF neuroprotection.
Collapse
Affiliation(s)
- Adrian T McCollum
- Department of Physiology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | | |
Collapse
|
77
|
Sée V, Rajala NKM, Spiller DG, White MRH. Calcium-dependent regulation of the cell cycle via a novel MAPK--NF-kappaB pathway in Swiss 3T3 cells. ACTA ACUST UNITED AC 2004; 166:661-72. [PMID: 15326199 PMCID: PMC2172420 DOI: 10.1083/jcb.200402136] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nuclear factor kappa B (NF-κB) has been implicated in the regulation of cell proliferation and transformation. We investigated the role of the serum-induced intracellular calcium increase in the NF-κB–dependent cell cycle progression in Swiss 3T3 fibroblasts. Noninvasive photoactivation of a calcium chelator (Diazo-2) was used to specifically disrupt the transient rise in calcium induced by serum stimulation of starved Swiss 3T3 cells. The serum-induced intracellular calcium peak was essential for subsequent NF-κB activation (measured by real-time imaging of the dynamic p65 and IκBα fluorescent fusion proteins), cyclin D1 (CD1) promoter-directed transcription (measured by real-time luminescence imaging of CD1 promoter-directed firefly luciferase activity), and progression to cell division. We further showed that the serum-induced mitogen-activated protein kinase (MAPK) phosphorylation is calcium dependent. Inhibition of the MAPK- but not the PtdIns3K-dependent pathway inhibited NF-κB signaling, and further, CD1 transcription and cell cycle progression. These data suggest that a serum-dependent calcium signal regulates the cell cycle via a MAPK–NF-κB pathway in Swiss 3T3 cells.
Collapse
Affiliation(s)
- Violaine Sée
- Centre for Cell Imaging, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, England, UK
| | | | | | | |
Collapse
|
78
|
Hellweg CE, Baumstark-Khan C, Horneck G. Generation of stably transfected Mammalian cell lines as fluorescent screening assay for NF-kappaB activation-dependent gene expression. ACTA ACUST UNITED AC 2004; 8:511-21. [PMID: 14567778 DOI: 10.1177/1087057103257204] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cellular stress protection responses lead to increased transcription of several genes via modulation of transcription factors. Activation of the Nuclear Factor kappaB (NF-kappaB) pathway as a possible antiapoptotic route represents one important cellular stress response. To identify conditions that are capable of modifying this pathway, a screening assay for detection of NF-kappaB-dependent gene activation using the reporter protein Enhanced Green Fluorescent Protein (EGFP) and its destabilized variant (d2EGFP) was developed. Human Embryonic Kidney (HEK/293) cells were stably transfected with a vector carrying EGFP or d2EGFP under control of a synthetic promoter containing 4 copies of the NF-kappaB response element. Treatment with tumor necrosis factor alpha (TNF-alpha) gave rise to substantial EGFP/d2EGFP expression in up to 90% of the cells and was therefore used to screen different stably transfected clones for induction of NF-kappaB-dependent gene expression. The time course of NF-kappaB activation leading to d2EGFP expression was measured in an oligonucleotide-based NF-kappaB-ELISA. NF-kappaB binding in-creased after 15-min incubation with TNF-alpha. In parallel, d2EGFP increased after 3 h and reached its maximum at 24 h. These results show (1) the time lag between NF-kappaB activation and d2EGFP transcription, translation, and protein folding and (2) the increased reporter gene expression after treatment with TNF-alpha to be caused by the activation of NF-kappaB. The detection of d2EGFP expression required FACS analysis or fluorescence microscopy, while EGFP could also be measured in the microplate reader, rendering the assay useful for high-throughput screening.
Collapse
Affiliation(s)
- Christine E Hellweg
- Radiation Biology, Institute of Aerospace Medicine, DLR, Linder Höhe, D-51170 Köln, Germany.
| | | | | |
Collapse
|
79
|
Varro A, Noble PJM, Pritchard DM, Kennedy S, Hart CA, Dimaline R, Dockray GJ. Helicobacter pyloriInduces Plasminogen Activator Inhibitor 2 in Gastric Epithelial Cells through Nuclear Factor-κB and RhoA. Cancer Res 2004; 64:1695-702. [PMID: 14996729 DOI: 10.1158/0008-5472.can-03-2399] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The gastric pathogen Helicobacter pylori is associated with a progression to gastric cancer. The specific targets of H. pylori that might influence this progression are still unclear. Previous studies indicated that the gastric hormone gastrin, which may be increased in H. pylori infection, stimulates gastric expression of plasminogen activator inhibitor (PAI)-2, which is an inhibitor of the urokinase plasminogen activator and has previously been shown to be increased in gastric adenocarcinoma. Here, we report that H. pylori also increases PAI-2 expression. In gastric biopsies of H. pylori-positive subjects there was increased PAI-2, including subjects with plasma gastrin concentrations in the normal range. PAI-2 was expressed mainly in chief and mucous cells. In a gastric cancer cell line (AGS), H. pylori increased PAI-2 expression, which was associated with inhibition of H. pylori-stimulated cell invasion and apoptosis. The induction of PAI-2 by H. pylori was mediated by release of interleukin-8 and activation of cyclooxygenase-2, and interestingly, gastrin stimulated PAI-2 expression by similar paracrine pathways. The activation of NFkappaB was required for interleukin-8 and cyclooxygenase-2 activation but did not occur in cells responding to these paracrine mediators. The data suggest that induction of PAI-2 is a specific target in H. pylori infection, mediated at least partly by paracrine factors; induction of PAI-2 inhibits cell invasion and apoptosis and is a candidate for influencing the progression to gastric cancer.
Collapse
Affiliation(s)
- Andrea Varro
- Physiological Laboratory, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
80
|
Meffert MK, Chang JM, Wiltgen BJ, Fanselow MS, Baltimore D. NF-kappa B functions in synaptic signaling and behavior. Nat Neurosci 2003; 6:1072-8. [PMID: 12947408 DOI: 10.1038/nn1110] [Citation(s) in RCA: 534] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Accepted: 06/24/2003] [Indexed: 12/25/2022]
Abstract
Ca(2+)-regulated gene transcription is essential to diverse physiological processes, including the adaptive plasticity associated with learning. We found that basal synaptic input activates the NF-kappa B transcription factor by a pathway requiring the Ca(2+)/calmodulin-dependent kinase CaMKII and local submembranous Ca(2+) elevation. The p65:p50 NF-kappa B form is selectively localized at synapses; p65-deficient mice have no detectable synaptic NF-kappa B. Activated NF-kappa B moves to the nucleus and could directly transmute synaptic signals into altered gene expression. Mice lacking p65 show a selective learning deficit in the spatial version of the radial arm maze. These observations suggest that long-term changes to adult neuronal function caused by synaptic stimulation can be regulated by NF-kappa B nuclear translocation and gene activation.
Collapse
Affiliation(s)
- Mollie K Meffert
- Division of Biology, MC204-31 California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
81
|
De Bosscher K, Vanden Berghe W, Haegeman G. The interplay between the glucocorticoid receptor and nuclear factor-kappaB or activator protein-1: molecular mechanisms for gene repression. Endocr Rev 2003; 24:488-522. [PMID: 12920152 DOI: 10.1210/er.2002-0006] [Citation(s) in RCA: 635] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The inflammatory response is a highly regulated physiological process that is critically important for homeostasis. A precise physiological control of inflammation allows a timely reaction to invading pathogens or to other insults without causing overreaction liable to damage the host. The cellular signaling pathways identified as important regulators of inflammation are the signal transduction cascades mediated by the nuclear factor-kappaB and the activator protein-1, which can both be modulated by glucocorticoids. Their use in the clinic includes treatment of rheumatoid arthritis, asthma, allograft rejection, and allergic skin diseases. Although glucocorticoids have been widely used since the late 1940s, the molecular mechanisms responsible for their antiinflammatory activity are still under investigation. The various molecular pathways proposed so far are discussed in more detail.
Collapse
Affiliation(s)
- Karolien De Bosscher
- Department of Molecular Biology, Ghent University, K. L. Ledeganckstraat 35, 9000 Gent, Belgium
| | | | | |
Collapse
|
82
|
Nelson G, Wilde GJC, Spiller DG, Kennedy SM, Ray DW, Sullivan E, Unitt JF, White MRH. NF-kappaB signalling is inhibited by glucocorticoid receptor and STAT6 via distinct mechanisms. J Cell Sci 2003; 116:2495-503. [PMID: 12734399 DOI: 10.1242/jcs.00461] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NF-kappaB transcription factors are involved in the cellular response to stress, and are regulated by inhibitor (IkappaB) proteins, which prevent NF-kappaB-mediated transcription by maintaining NF-kappaB in the cytoplasm. Proteins from other pathways are also known to regulate NF-kappaB negatively, notably the glucocorticoid receptor (GR) and IL-4-responsive STAT6. Both pathways were shown to inhibit NF-kappaB-mediated transcription, by expressing either STAT6 or GR and activating the respective pathways. Using fluorescent fusion proteins, we show that GR alters the timing of activated p65 NF-kappaB nuclear occupancy by increasing the export rate of p65 and is independent of whether GR is present as a dimer or monomer. Expression of STAT6 was also shown to alter p65 nuclear occupancy but appeared to affect the import rate and hence the overall maximal level of p65 translocation. Activating STAT6 with IL-4 prior to activating NF-kappaB significantly increased this inhibition. Investigation of IkappaBa showed that activated STAT6 inhibited TNFalpha-mediated IkappaBa phosphorylation and degradation, whereas GR activation did not alter IkappaBalphakinetics. This demonstrates a clear separation of two distinct mechanisms of inhibition by STAT6 and GR upon the NF-kappaB pathway.
Collapse
Affiliation(s)
- Glyn Nelson
- Biosciences Building, School of Biological Sciences, University of Liverpool, Crown Street, UK
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Nelson G, Wilde GJC, Spiller DG, Sullivan E, Unitt JF, White MRH. Dynamic analysis of STAT6 signalling in living cells. FEBS Lett 2002; 532:188-92. [PMID: 12459487 DOI: 10.1016/s0014-5793(02)03672-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Functional activity of N- and C-terminal fluorescent fusion proteins between STAT6 and EGFP was demonstrated through IL-4-dependent transcriptional activation and nuclear translocation. The N-terminal (EGFP-STAT6) fusion protein appeared to be more active than the C-terminal fusion. In HEK-293 cells both fusion proteins formed fluorescent nuclear foci following IL-4 stimulation, but in HeLa cells nuclear accumulation was homogeneous. Stimulation of the NF-kappaB pathway through TNFalpha treatment, or expression of p65-EGFP fusion protein, repressed both basal STAT6-dependent transcriptional activity and the extent of activation in response to IL-4. This indicates a novel mechanism of inhibition of STAT6 signalling by NF-kappaB activation.
Collapse
Affiliation(s)
- Glyn Nelson
- School of Biological Sciences, Life Sciences Building, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | | | | | | | | | | |
Collapse
|
84
|
Barken D, Wang CJ, Kearns J, Cheong R, Hoffmann A, Levchenko A. BCG inhibition of murine leudemia: local suppression and systemic tumor immunity require different doses. Science 1976; 308:52; author reply 52. [PMID: 15802586 PMCID: PMC2821939 DOI: 10.1126/science.1108198] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The quantitative relationship between bacillus Calmette-Guérin (BCG) and tumor cells which are optimal for suppressing the growth of tumor cells in BCG-tumor cell mixtures are detrimental to the development of a sustained, systemic tumor rejection immunity in the LSTRA murine leukemia.
Collapse
Affiliation(s)
| | | | - Jeff Kearns
- Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego
| | - Raymond Cheong
- The Whitaker Institute for Biomedical Engineering, Department of Biomedical Engineering, Johns Hopkins University
| | | | | |
Collapse
|