51
|
Li H, Wu Q, Li T, Liu C, Xue L, Ding J, Shi Y, Fan D. The miR-17-92 cluster as a potential biomarker for the early diagnosis of gastric cancer: evidence and literature review. Oncotarget 2018; 8:45060-45071. [PMID: 28178677 PMCID: PMC5542167 DOI: 10.18632/oncotarget.15023] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/19/2017] [Indexed: 12/20/2022] Open
Abstract
Purpose Intestinal metaplasia is considered to be a pre-cancerous lesion of gastric cancer. The miR-17-92 cluster was previously reported to have clinical value in the prediction of cancer development. This study aimed to test the diagnostic value of miR-17-92 in gastric cancer and the intestinal metaplasia patients compared with the normal ones. Results The results showed that miR-17-92 members were over-expressed in the serum of both gastric cancer and intestinal metaplasia patients, compared with healthy controls. Serum miR-17-92 members could also distinguish patients with gastric cancer and intestinal metaplasia from healthy controls. Materials and Methods Serum miR-17-92 expression levels were detected using quantitative real-time PCR in 75 patients with gastric cancer, 104 patients with intestinal metaplasia and 38 healthy controls. The Receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) were then analyzed to test the efficacy of the miR-17-92 members in distinguishing gastric cancer, intestinal metaplasia and healthy controls. Conclusions In conclusion, the miR-17-92 cluster might be useful as a potential serum biomarker for the early detection of gastric cancer.
Collapse
Affiliation(s)
- Hong Li
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Qiong Wu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ting Li
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Changhao Liu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Lin Xue
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jie Ding
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yongquan Shi
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
52
|
MiR-23a transcriptional activated by Runx2 increases metastatic potential of mouse hepatoma cell via directly targeting Mgat3. Sci Rep 2018; 8:7366. [PMID: 29743543 PMCID: PMC5943354 DOI: 10.1038/s41598-018-25768-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/27/2018] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) and aberrant glycosylation both play important roles in tumor metastasis. In this study, the role of miR-23a in N-glycosylation and the metastasis of mouse hepatocellular carcinoma (HCC) cells was investigated. The miRNA expression array profiles that were confirmed by qPCR and Western blot analyses revealed higher miR-23a expression levels in Hca-P cells (with lymphatic metastasis potential) than in Hepa1-6 cells (with no lymphatic metastasis potential), while the expression of mannoside acetylglucosaminyltransferase 3 (Mgat3) was negatively associated with metastasis potential. Mgat3 is a key glycosyltransferase in the synthesis of the bisecting (β1,4GlcNAc branching) N-glycan structure. Bioinformatics analysis indicated that Mgat3 may be a target of miR-23a, and this hypothesis was verified by dual-luciferase reporter gene assays. Furthermore, we found that the transcription factor Runx2 can directly bind to the miR-23a gene promoter and promote its expression, as shown in dual-luciferase reporter gene assays and ChIP assays. Collectively, these results indicate that miR-23a might increase the metastatic potential of mouse HCC by affecting the branch formation of N-glycan chains presented on the cell surface through the targeting of the glycosyltransferase Mgat3. These findings may provide insight into the relationship between abnormal miRNA expression and aberrant glycosylation during tumor lymphatic metastasis.
Collapse
|
53
|
You W, Zhang X, Ji M, Yu Y, Chen C, Xiong Y, Liu Y, Sun Y, Tan C, Zhang H, Li J, Chen W, Li R. MiR-152-5p as a microRNA passenger strand special functions in human gastric cancer cells. Int J Biol Sci 2018; 14:644-653. [PMID: 29904279 PMCID: PMC6001653 DOI: 10.7150/ijbs.25272] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/08/2018] [Indexed: 12/23/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies with high mortality rate. MiR-152 may exert the function of tumor suppressor by regulating its target gene, including PIK3CA. Nevertheless, all of the described functions are referred explicitly to miR-152-3p, while miR-152-5p as a passenger strand is poorly realized and entirely ignored. We previously selected miR-152-5p as a candidate using cell migration inhibition screening for GC cells and predicted that miR-152-5p might also target PIK3CA. In this study, we found an abnormal proportion of miR-152-3p / miR-152-5p in GC (gastric cancer) tissues and cells and demonstrated that miR-152-5p had poorer stability in GC cells, revealing the possibility that miR-152-5p is abnormally "suppressed" in gastric cancer. We also investigated and confirmed the role of miR-152-5p in GC by a series of experiments, and found that miR-152-5p modulated cell viability, migration, invasion, and cell-cycle progression of human GC cells, and also inhibited tumor growth and metastasis in vivo partially by targeting PIK3CA. More interestingly, it was proved that miR-152-3p and miR-152-5p had synergistic effects on the inhibition of PIK3CA in GC cells. The results of this study suggest that miR-152-5p may act as a tumor suppressor in SGC-7901 gastric cancer cells via targeting PIK3CA. Further, the study provides a novel insight into the roles of miRNA* during carcinogenesis.
Collapse
Affiliation(s)
- Wendao You
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xing Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Mengyue Ji
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yang Yu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Chen Chen
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yujia Xiong
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yiting Liu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yibin Sun
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Chenhuan Tan
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | | | - Jie Li
- Genex Health Co., Ltd, Beijing, China
| | - Weichang Chen
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Rui Li
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
54
|
Narayan N, Bracken CP, Ekert PG. MicroRNA-155 expression and function in AML: An evolving paradigm. Exp Hematol 2018; 62:1-6. [PMID: 29601851 DOI: 10.1016/j.exphem.2018.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 02/07/2023]
Abstract
Acute myeloid leukemia (AML) arises when immature myeloid blast cells acquire multiple, recurrent genetic and epigenetic changes that result in dysregulated proliferation. Acute leukemia is the most common form of pediatric cancer, with AML accounting for ~20% of all leukemias in children. The genomic aberrations that drive AML inhibit myeloid differentiation and activate signal transduction pathways that drive proliferation. MicroRNAs, a class of small (~22 nucleotide) noncoding RNAs that posttranscriptionally suppress the expression of specifically targeted transcripts, are also frequently dysregulated in AML, which may prove useful for the purposes of disease classification, prognosis, and future therapeutic approaches. MicroRNA expression profiles are associated with patient prognosis and responses to standard chemotherapy, including predicting therapy resistance in AML. miR-155 is the primary focus of this review because it has been repeatedly associated with poorer survival across multiple cohorts of adult and pediatric AML. We discuss some novel features of miR-155 expression in AML, in particular how the levels of expression can critically influence function. Understanding the role of microRNAs in AML and the ways in which microRNA expression influences AML biology is one means to develop novel and more targeted therapies.
Collapse
Affiliation(s)
- Nisha Narayan
- Murdoch Childrens Research Institute, Parkville, 3052, Australia
| | - Cameron P Bracken
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Paul G Ekert
- Murdoch Childrens Research Institute, Parkville, 3052, Australia.
| |
Collapse
|
55
|
MicroRNAs as Novel Biomarkers of Deployment Status and Exposure to Polychlorinated Dibenzo-p-Dioxins/Dibenzofurans. J Occup Environ Med 2018; 58:S89-96. [PMID: 27501109 DOI: 10.1097/jom.0000000000000769] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To determine if service members deployed to locations with open air burn pits have different serum microRNA (miRNA) profiles after deployment compared with length-of-service matched, non-deployed individuals. We also tested for correlations between miRNA and serum levels of Polychlorinated Dibenzo-p-Dioxins/Dibenzofurans (PCDD/PCDFs). METHODS MiRNAs were isolated and quantified by PCR array. Groups were analyzed for differences in miRNA expression. Correlations between serum miRNA and PCDD/PCDFs were assessed with a linear regression model. RESULTS Several miRNAs were differentially expressed after deployment and a partially overlapping set of miRNAs were identified between deployed and non-deployed individuals. Significant correlations between miRNAs and PCDD/PCDFs were identified. CONCLUSIONS Serum miRNA levels show a link between deployment to locations with open burn pits and environmental exposures that can take place during deployment.
Collapse
|
56
|
Du WW, Yang W, Chen Y, Wu ZK, Foster FS, Yang Z, Li X, Yang BB. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J 2018; 38:1402-1412. [PMID: 26873092 DOI: 10.1093/eurheartj/ehw001] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 12/31/2015] [Indexed: 12/20/2022] Open
Abstract
Aims Circular RNAs are a subclass of non-coding RNAs detected within mammalian cells. This study was designed to test the roles of a circular RNA circ-Foxo3 in senescence using in vitro and in vivo approaches. Methods and results Using the approaches of molecular and cellular biology, we show that a circular RNA generated from a member of the forkhead family of transcription factors, Foxo3, namely circ-Foxo3, was highly expressed in heart samples of aged patients and mice, which was correlated with markers of cellular senescence. Doxorubicin-induced cardiomyopathy was aggravated by ectopic expression of circ-Foxo3 but was relieved by silencing endogenous circ-Foxo3. We also found that silencing circ-Foxo3 inhibited senescence of mouse embryonic fibroblasts and that ectopic expression of circ-Foxo3 induced senescence. We found that circ-Foxo3 was mainly distributed in the cytoplasm, where it interacted with the anti-senescent protein ID-1 and the transcription factor E2F1, as well as the anti-stress proteins FAK and HIF1α. Conclusion We conclude that ID-1, E2F1, FAK, and HIF1α interact with circ-Foxo3 and are retained in the cytoplasm and could no longer exert their anti-senescent and anti-stress roles, resulting in increased cellular senescence.
Collapse
Affiliation(s)
- William W Du
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, S-Wing Research Building, 2075 Bayview Ave, Toronto M4N 3M5, Canada
| | - Weining Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Yu Chen
- 2nd Department of Cardiac Surgery, The First Hospital, Sun Yet-Sen University, Guangzhou, China
| | - Zhong-Kai Wu
- 2nd Department of Cardiac Surgery, The First Hospital, Sun Yet-Sen University, Guangzhou, China
| | | | - Zhenguo Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, S-Wing Research Building, 2075 Bayview Ave, Toronto M4N 3M5, Canada
| | - Xiangmin Li
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, S-Wing Research Building, 2075 Bayview Ave, Toronto M4N 3M5, Canada.,State Key Laboratory of Applied Microbiology Southern China (The Ministry-Province Joint Development), Guangdong Institute of Microbiology, Guangzhou 510070, PR China
| | - Burton B Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, S-Wing Research Building, 2075 Bayview Ave, Toronto M4N 3M5, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| |
Collapse
|
57
|
Hussain MRM, Hoessli DC, Fang M. N-acetylgalactosaminyltransferases in cancer. Oncotarget 2018; 7:54067-54081. [PMID: 27322213 PMCID: PMC5288242 DOI: 10.18632/oncotarget.10042] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022] Open
Abstract
Aberrant mucin-type O-glycosylation by glycosyltransferases is a well-described hallmark of many cancers and is also associated with additional non-cancerous developmental and metabolic disorders. The current review focuses on N-acetylgalactosaminyltransferase genes (GALNTs) and proteins (GalNAcTs) to illustrate their importance in cancer biology. Aberrant O-glycosylation by GalNAcTs activates a wide range of proteins that carry out interactions of sessile and motile cells affecting organogenesis, responses to agonists and stimulating hyperproliferation and metastatisation of neoplastic cells. As genome-wide analyses have provided abundant clues regarding under- or over-expressed genes that characterize different types of cancers, GALNTs and their transferase products have attracted attention by being unexpected actors in neoplastic contexts. We intend to review the current knowledge on GALNTs and their encoded transferases in cancer and suggest what could be the significance of such information in cancer pathogenesis and management.
Collapse
Affiliation(s)
- Muhammad Ramzan Manwar Hussain
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Daniel C Hoessli
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
58
|
Chen RJ, Kuo HC, Cheng LH, Lee YH, Chang WT, Wang BJ, Wang YJ, Cheng HC. Apoptotic and Nonapoptotic Activities of Pterostilbene against Cancer. Int J Mol Sci 2018; 19:ijms19010287. [PMID: 29346311 PMCID: PMC5796233 DOI: 10.3390/ijms19010287] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/09/2018] [Accepted: 01/16/2018] [Indexed: 01/01/2023] Open
Abstract
Cancer is a major cause of death. The outcomes of current therapeutic strategies against cancer often ironically lead to even increased mortality due to the subsequent drug resistance and to metastatic recurrence. Alternative medicines are thus urgently needed. Cumulative evidence has pointed out that pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene, PS) has excellent pharmacological benefits for the prevention and treatment for various types of cancer in their different stages of progression by evoking apoptotic or nonapoptotic anti-cancer activities. In this review article, we first update current knowledge regarding tumor progression toward accomplishment of metastasis. Subsequently, we review current literature regarding the anti-cancer activities of PS. Finally, we provide future perspectives to clinically utilize PS as novel cancer therapeutic remedies. We, therefore, conclude and propose that PS is one ideal alternative medicine to be administered in the diet as a nutritional supplement.
Collapse
Affiliation(s)
- Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (R.-J.C.); (Y.-H.L.)
| | - Hsiao-Che Kuo
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng-Kung University, Tainan 70101, Taiwan; (H.-C.K.); (W.-T.C.)
| | - Li-Hsin Cheng
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Yu-Hsuan Lee
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (R.-J.C.); (Y.-H.L.)
| | - Wen-Tsan Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng-Kung University, Tainan 70101, Taiwan; (H.-C.K.); (W.-T.C.)
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Bour-Jr Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan 70101, Taiwan
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 707010, Taiwan
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40401, Taiwan
- Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
- Correspondence: (Y.-J.W.); (H.-C.C.); Tel.: +886-6-235-3535 (ext. 5804) (Y.-J.W.); +886-6-235-3535 (ext. 5544) (H.-C.C.); Fax: +886-6-275-2484 (Y.-J.W.)
| | - Hung-Chi Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng-Kung University, Tainan 70101, Taiwan; (H.-C.K.); (W.-T.C.)
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Correspondence: (Y.-J.W.); (H.-C.C.); Tel.: +886-6-235-3535 (ext. 5804) (Y.-J.W.); +886-6-235-3535 (ext. 5544) (H.-C.C.); Fax: +886-6-275-2484 (Y.-J.W.)
| |
Collapse
|
59
|
Li J, Lai Y, Ma J, Liu Y, Bi J, Zhang L, Chen L, Yao C, Lv W, Chang G, Wang S, Ouyang M, Wang W. miR-17-5p suppresses cell proliferation and invasion by targeting ETV1 in triple-negative breast cancer. BMC Cancer 2017; 17:745. [PMID: 29126392 PMCID: PMC5681773 DOI: 10.1186/s12885-017-3674-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/05/2017] [Indexed: 12/24/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is the malignancy with the worst outcome among all breast cancer subtypes. We reported that ETV1 is a significant oncogene in TNBC tumourigenesis. Consequently, investigating the critical regulatory microRNAs (miRNAs) of ETV1 may be beneficial for TNBC targeted therapy. Methods We performed in situ hybridization (ISH) and immunohistochemistry (IHC) to detect the location of miR-17-5p and ETV1 in TNBC patient samples, respectively. miR-17-5p expression in TNBC tissues and cell lines was assessed by quantitative real-time PCR (qRT-PCR). ETV1 expression was evaluated by qRT-PCR, western blotting and IHC. Cell Counting Kit-8 (CCK-8), colony formation, Transwell and wound closure assays were utilized to determine the TNBC cell proliferation and migration capabilities. In vivo tumour metastatic assays were performed in a zebra fish model. Results The abundance of miR-17-5p was significantly decreased in TNBC cell lines and clinical TNBC tissues. The miR-17-5p expression levels were closely correlated with tumour size (P < 0.05) and TNM stage (P < 0.05). By contrast, the expression of ETV1 was significantly up-regulated in TNBC cell lines and tissues. There is an inverse correlation between the expression status of miR-17-5p and ETV1 (r = −0.28, P = 3.88 × 10−3). Luciferase reporter assay confirmed that ETV1 was a direct target of miR-17-5p. Forced expression of miR-17-5p in MDA-MB-231 or BT549 cells significantly decreased ETV1 expression and suppressed cell proliferation, migration in vitro and tumour metastasis in vivo. However, rescuing the expression of ETV1 in the presence of miR-17-5p significantly recovered the cell phenotype. High miR-17-5p expression was associated with a significantly favourable prognosis, in either the ETV1-positive or ETV1-negative groups (log-rank test, P < 0.001; P < 0.001). Both univariate and multivariate analyses showed that miR-17-5p and ETV1 were independent risk factors in the prognosis of TNBC patient. Conclusions Our data indicate that miR-17-5p acts as a tumour suppressor in TNBC by targeting ETV1, and a low-abundance of miR-17-5p may be involved in the pathogenesis of TNBC. These findings indicate that miR-17-5p may be a therapeutic target for TNBC. Electronic supplementary material The online version of this article (10.1186/s12885-017-3674-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Li
- Laboratory of Department of Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China.,Department of Vascular, Thyroid and Breast Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yuanhui Lai
- Laboratory of Department of Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China.,Department of Vascular, Thyroid and Breast Surgery, Eastern Hospital of the First Affiliated Hospital of Sun Yat-sen University, 183 East Huangpu Road, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Jieyi Ma
- Laboratory of Department of Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yue Liu
- Centre for Cellular & Structural biology, School of Pharmaceutical Sciences of Sun Yat-Sen University, 132 East Waihuan Road, Guangzhou, Guangdong, People's Republic of China
| | - Jiong Bi
- Laboratory of Department of Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Longjuan Zhang
- Laboratory of Department of Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Lianzhou Chen
- Laboratory of Department of Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Chen Yao
- Department of Vascular, Thyroid and Breast Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Weiming Lv
- Department of Vascular, Thyroid and Breast Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Guangqi Chang
- Department of Vascular, Thyroid and Breast Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Shenming Wang
- Department of Vascular, Thyroid and Breast Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Mao Ouyang
- Department of Clinical Laboratory, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Wenjian Wang
- Laboratory of Department of Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China. .,Department of Vascular, Thyroid and Breast Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Rd II, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
60
|
Ren S, Xin Z, Xu Y, Xu J, Wang G. Construction and analysis of circular RNA molecular regulatory networks in liver cancer. Cell Cycle 2017; 16:2204-2211. [PMID: 28727484 DOI: 10.1080/15384101.2017.1346754] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Liver cancer is the sixth most prevalent cancer, and the third most frequent cause of cancer-related deaths. Circular RNAs (circRNAs), a kind of special endogenous ncRNAs, have been coming back to the forefront of cancer genomics research. In this study, we used a systems biology approach to construct and analyze the circRNA molecular regulatory networks in the context of liver cancer. We detected a total of 127 differentially expressed circRNAs and 3,235 differentially expressed mRNAs. We selected the top-5 upregulated circRNAs to construct a circRNA-miRNA-mRNA network. We enriched the pathways and gene ontology items and determined their participation in cancer-related pathways such as p53 signaling pathway and pathways involved in angiogenesis and cell cycle. Quantitative real-time PCR was performed to verify the top-five circRNAs. ROC analysis showed circZFR, circFUT8, circIPO11 could significantly distinguish the cancer samples, with an AUC of 0.7069, 0.7575, and 0.7103, respectively. Our results suggest the circRNA-miRNA-mRNA network may help us further understand the molecular mechanisms of tumor progression in liver cancer, and reveal novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Shuangchun Ren
- a The Key Laboratory for Bionics Engineering, Ministry of Education , College of Basic Medical Science, Jilin University , Changchun , China
| | - Zhuoyuan Xin
- a The Key Laboratory for Bionics Engineering, Ministry of Education , College of Basic Medical Science, Jilin University , Changchun , China
| | - Yinyan Xu
- a The Key Laboratory for Bionics Engineering, Ministry of Education , College of Basic Medical Science, Jilin University , Changchun , China
| | - Jianting Xu
- b Cancer Centre , First Hospital of Jilin University , Changchun , Jilin , China
| | - Guoqing Wang
- a The Key Laboratory for Bionics Engineering, Ministry of Education , College of Basic Medical Science, Jilin University , Changchun , China.,c The Key Laboratory of Zoonosis, Chinese Ministry of Education , Jilin University , Changchun , China
| |
Collapse
|
61
|
Lu D, Tang L, Zhuang Y, Zhao P. miR-17-3P regulates the proliferation and survival of colon cancer cells by targeting Par4. Mol Med Rep 2017; 17:618-623. [PMID: 29115593 DOI: 10.3892/mmr.2017.7863] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 09/01/2017] [Indexed: 11/05/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignancy worldwide. However, the pathogenesis by which CRC progression occurs remains to be elucidated. The present study investigated the role of miRNA (miR)‑17‑3P in the regulation of CRC cell survival. Firstly, miR‑17‑3P expression was aberrantly upregulated in human CRC tumor tissues compared with controls. Further results demonstrated that the proliferation capacity of human CRC SW480 and LoVo cells was significantly increased by an miR‑17‑3P specific mimic, and was inhibited by miR‑17‑3P silencing. Conversely, the apoptosis of human CRC cells was remarkably decreased by miR‑17‑3P mimic, and enhanced by miR‑17‑3P suppression compared with control. Additionally, it was observed that there was a potential binding site of miR‑17‑3P on the 3'‑untranslated region of Prostate apoptosis responde‑4 (Par4) and miR‑17‑3P may directly target Par4 mRNA. In human CRC cells, an miR‑17‑3P inhibitor significantly upregulated Par 4 expression, however the miR‑17‑3P mimic reduced Par4expression. Furthermore, Par4 expression exhibited an inhibitory effect on the proliferation of CRC cells transfected with miR‑17‑3P mimic, and exhibited a promoting role in the repressed apoptosis by miR‑17‑3P mimic. Inconclusion, the results of the present study demonstrated that miR‑17‑3P is important in CRC cell survival by targeting Par4, indicating a novel finding regarding human CRC progression.
Collapse
Affiliation(s)
- Debao Lu
- Department of General Surgery, Tianjin TEDA Hospital, Tianjin 300457, P.R. China
| | - Liang Tang
- Department of Colorectal Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300202, P.R. China
| | - Yan Zhuang
- Department of Colorectal Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300202, P.R. China
| | - Peng Zhao
- Department of Colorectal Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300202, P.R. China
| |
Collapse
|
62
|
Li X, Xu-Monette ZY, Yi S, Dabaja BS, Manyam GC, Westin J, Fowler N, Miranda RN, Zhang M, Ferry JA, Medeiros LJ, Harris NL, Young KH. Primary Bone Lymphoma Exhibits a Favorable Prognosis and Distinct Gene Expression Signatures Resembling Diffuse Large B-Cell Lymphoma Derived From Centrocytes in the Germinal Center. Am J Surg Pathol 2017; 41:1309-1321. [PMID: 28817403 DOI: 10.1097/pas.0000000000000923] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Primary bone (PB) diffuse large B-cell lymphoma (DLBCL) is rare and has a favorable prognosis, but the underlying biological mechanisms remain unknown. In this study we analyzed the clinicopathologic features of 160 patients with PB-DLBCL in comparison with 499 nonosseous DLBCL. Compared with patients with nonosseous DLBCL and secondary involvement of bone by DLBCL, PB-DLBCL patients less frequently had elderly age, B-symptoms, elevated serum lactate dehydrogenase levels, and high International Prognostic Index at diagnosis, more frequently had germinal center (GC) subtype (approximately 90%) and complete remission, and had significantly better survival. The 5-year progression-free and overall survival rates of PB-DLBCL patients were 80% and 93%, respectively, superior to both GC B-cell-like (GCB) and activated B cell-like subtypes of DLBCL. Further stratifying nonosseous DLBCL cell-of-origin subtypes by clinical factors showed that PB-DLBCL had similar survival rates as the centrocyte-origin (CC) subtype of DLBCL-GCB classified by the B-cell-associated gene signature algorithm. To better understand the favorable outcome of PB-DLBCL patients, gene expression profiling and microRNA profiling were performed in a small subset of PB-DLBCL. The gene expression profiles of PB-DLBCL resembled those of nonosseous DLBCL-GCB-CC, but were distinct from other DLBCL cell-of-origin especially the centroblast-origin (CB) subtype. Compared with DLBCL-GCB-CB, PB-DLBCL and DLBCL-GCB-CC also had much higher levels of miR-125a-3p, miR-34-3p, and miR-155-5p, and significantly lower levels of miR-17-5p and miR-17-3p. These results demonstrated that PB-DLBCL is clinically distinct, and the cell-of-origin of PB-DLBCL stems from centrocytes in the GC, that are biologically attributed for the favorable prognosis of PB-DLBCL.
Collapse
Affiliation(s)
- Xin Li
- *Department of Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, China Departments of †Hematopathology ‡Radiation Oncology §Bioinformatics and Computational Biology ∥Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center #Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX ¶Department of Pathology, Harvard University Medical School, Boston, MA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Wu H, Chen J, Li D, Liu X, Li L, Wang K. MicroRNA-30e Functions as a Tumor Suppressor in Cervical Carcinoma Cells through Targeting GALNT7. Transl Oncol 2017; 10:876-885. [PMID: 28926745 PMCID: PMC5622994 DOI: 10.1016/j.tranon.2017.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/13/2017] [Accepted: 08/18/2017] [Indexed: 12/17/2022] Open
Abstract
Cervical cancer is the third most common cancer in women worldwide. However, the underlying mechanism of occurrence and development of cervical cancer is obscure. In this study, we observed that miR-30e was downregulated in clinical cervical cancer tissues and cervical cancer cells. Next, overexpression of miR-30e reduced the cervical cancer cell growth through MTT, colony formation, EdU, and Transwell assay in SiHa and Caski cells. Subsequently, UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase 7 (GALNT7) was identified as a potential miR-30e target by bioinformatics analysis. Moreover, we showed that miR-30e was able to bind to the 3′UTR of GALNT7 by luciferase reporter assay. In addition, the mRNA and protein levels of GALNT7 in cervical cancer cells were downregulated by miR-30e. And we validated that downregulation of GALNT7 repressed the proliferation of SiHa and Caski cells by MTT, colony formation, and Transwell assay. We identified that the restoration of GALNT7 expression was able to counteract the effect of miR-30e on cell proliferation of cervical cancer cells. Furthermore, we found that the expression levels of GALNT7 were frequently upregulated and negatively correlative to those of miR-30e in cervical cancer tissues. In addition, we validated that restoration of GALNT7 rescued the miR-30e–suppressed growth of cervical cancer xenografts in vivo. In conclusion, the current results suggest that miR-30e may function as tumor suppressors in cervical cancer through downregulation of GALNT7. Both miR-30e and its novel target, GALNT7, may play an important role in the process of cervical cancer.
Collapse
Affiliation(s)
- Huijuan Wu
- Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China
| | - Jun Chen
- Department of Gynaecology and Obstetrics of Affiliated Hospital of Logistics University of PAP, Tianjin, 300162, PR China
| | - Dan Li
- Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China
| | - Xiangyu Liu
- Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China
| | - Lei Li
- Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China
| | - Ke Wang
- Department of Gynecological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| |
Collapse
|
64
|
Awan FM, Naz A, Obaid A, Ikram A, Ali A, Ahmad J, Naveed AK, Janjua HA. MicroRNA pharmacogenomics based integrated model of miR-17-92 cluster in sorafenib resistant HCC cells reveals a strategy to forestall drug resistance. Sci Rep 2017; 7:11448. [PMID: 28904393 PMCID: PMC5597599 DOI: 10.1038/s41598-017-11943-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/31/2017] [Indexed: 12/27/2022] Open
Abstract
Among solid tumors, hepatocellular carcinoma (HCC) emerges as a prototypical therapy-resistant tumor. Considering the emerging sorafenib resistance crisis in HCC, future studies are urgently required to overcome resistance. Recently noncoding RNAs (ncRNAs) have emerged as significant regulators in signalling pathways involved in cancer drug resistance and pharmacologically targeting these ncRNAs might be a novel stratagem to reverse drug resistance. In the current study, using a hybrid Petri net based computational model, we have investigated the harmonious effect of miR-17-92 cluster inhibitors/mimics and circular RNAs on sorafenib resistant HCC cells in order to explore potential resistance mechanisms and to identify putative targets for sorafenib-resistant HCC cells. An integrated model was developed that incorporates seven miRNAs belonging to miR-17-92 cluster (hsa-miR-17-5p, hsa-miR-17-3p, hsa-miR-19a, hsa-miR-19b, hsa-miR-18a, hsa-miR-20a and hsa-miR-92) and crosstalk of two signaling pathways (EGFR and IL-6) that are differentially regulated by these miRNAs. The mechanistic connection was proposed by the correlation between members belonging to miR-17-92 cluster and corresponding changes in the protein levels of their targets in HCC, specifically those targets that have verified importance in sorafenib resistance. Current findings uncovered potential pathway features, underlining the significance of developing modulators of this cluster to combat drug resistance in HCC.
Collapse
Affiliation(s)
- Faryal Mehwish Awan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Anam Naz
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Ayesha Obaid
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Aqsa Ikram
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Amjad Ali
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Jamil Ahmad
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Abdul Khaliq Naveed
- Islamic International Medical College (IIMC), Riphah International University, Rawalpindi, Pakistan
| | - Hussnain Ahmed Janjua
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan.
| |
Collapse
|
65
|
Zeng Y, Du WW, Wu Y, Yang Z, Awan FM, Li X, Yang W, Zhang C, Yang Q, Yee A, Chen Y, Yang F, Sun H, Huang R, Yee AJ, Li RK, Wu Z, Backx PH, Yang BB. A Circular RNA Binds To and Activates AKT Phosphorylation and Nuclear Localization Reducing Apoptosis and Enhancing Cardiac Repair. Theranostics 2017; 7:3842-3855. [PMID: 29109781 PMCID: PMC5667408 DOI: 10.7150/thno.19764] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/01/2017] [Indexed: 02/06/2023] Open
Abstract
As central nodes in cardiomyocyte signaling, nuclear AKT appears to play a cardio-protective role in cardiovascular disease. Here we describe a circular RNA, circ-Amotl1 that is highly expressed in neonatal human cardiac tissue, and potentiates AKT-enhanced cardiomyocyte survival. We hypothesize that circ-Amotl1 binds to PDK1 and AKT1, leading to AKT1 phosphorylation and nuclear translocation. In primary cardiomyocytes, epithelial cells, and endothelial cells, we found that forced circ-Amotl1 expression increased the nuclear fraction of pAKT. We further detected increased nuclear pAKT in circ-Amotl1-treated hearts. In vivo, circ-Amotl1 expression was also found to be protective against Doxorubicin (Dox)-induced cardiomyopathy. Putative PDK1- and AKT1-binding sites were then identified in silico. Blocking oligonucleotides could reverse the effects of exogenous circ-Amotl1. We conclude that circ-Amotl1 physically binds to both PDK1 and AKT1, facilitating the cardio-protective nuclear translocation of pAKT.
Collapse
Affiliation(s)
- Yan Zeng
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Cardiovascular Medicine, Second Xiangya Hospital of Central South University, 139 Middle Ren-Min Road, Changsha, Hunan, P.R. China 410011, China
| | - William W. Du
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Yingya Wu
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Zhenguo Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Faryal Mehwish Awan
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Xiangmin Li
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Weining Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Chao Zhang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Qi Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Albert Yee
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Yu Chen
- The First Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fenghua Yang
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, Guangdong, China
| | - Huan Sun
- Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Ren Huang
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, Guangdong, China
| | - Albert J Yee
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Ren-Ke Li
- Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Zhongkai Wu
- The First Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Peter H Backx
- Toronto General Research Institute, University Health Network, Toronto, Canada
- Department of Biology, York University, Toronto, Canada
| | - Burton B Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| |
Collapse
|
66
|
Lee H, Zhang D, Wu J, Otterbein LE, Jin Y. Lung Epithelial Cell-Derived Microvesicles Regulate Macrophage Migration via MicroRNA-17/221-Induced Integrin β 1 Recycling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:1453-1464. [PMID: 28674181 PMCID: PMC5561736 DOI: 10.4049/jimmunol.1700165] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/11/2017] [Indexed: 12/26/2022]
Abstract
Robust lung inflammation is one of the prominent features in the pathogenesis of acute lung injury (ALI). Macrophage migration and recruitment are often seen at the early stage of lung inflammatory responses to noxious stimuli. Using an acid inhalation-induced lung injury model, we explored the mechanisms by which acid exposure initiates macrophage recruitment and migration during development of ALI. The lung epithelium comprises a large surface area and functions as a first-line defense against noxious insults. We found that acid exposure induced a remarkable microvesicle (MV) release from lung epithelium as detected in bronchoalveolar lavage fluid. Significantly elevated RNA, rather than protein, was found in these epithelium-derived MVs after acid and included several highly elevated microRNAs, including microRNA (miR)-17 and miR-221. Acid-induced epithelial MV release promoted macrophage migration in vitro and recruitment into the lung in vivo and required, in part, MV shuttling of miR-17 and/or miR-221. Mechanistically, acid-induced epithelial MV miR-17/221 promoted β1 integrin recycling and presentation back onto the surface of macrophages, in part via a Rab11-mediated pathway. Integrin β1 is known to play an essential role in regulating macrophage migration. Taken together, acid-induced ALI results in epithelial MV shuttling of miR-17/221 that in turn modulates macrophage β1 integrin recycling, promoting macrophage recruitment and ultimately contributing to lung inflammation.
Collapse
Affiliation(s)
- Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118; and
| | - Duo Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118; and
| | - Jingxuan Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118; and
| | - Leo E Otterbein
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118; and
| |
Collapse
|
67
|
Brandão BB, Guerra BA, Mori MA. Shortcuts to a functional adipose tissue: The role of small non-coding RNAs. Redox Biol 2017; 12:82-102. [PMID: 28214707 PMCID: PMC5312655 DOI: 10.1016/j.redox.2017.01.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 01/30/2017] [Indexed: 12/20/2022] Open
Abstract
Metabolic diseases such as type 2 diabetes are a major public health issue worldwide. These diseases are often linked to a dysfunctional adipose tissue. Fat is a large, heterogenic, pleiotropic and rather complex tissue. It is found in virtually all cavities of the human body, shows unique plasticity among tissues, and harbors many cell types in addition to its main functional unit - the adipocyte. Adipose tissue function varies depending on the localization of the fat depot, the cell composition of the tissue and the energy status of the organism. While the white adipose tissue (WAT) serves as the main site for triglyceride storage and acts as an important endocrine organ, the brown adipose tissue (BAT) is responsible for thermogenesis. Beige adipocytes can also appear in WAT depots to sustain heat production upon certain conditions, and it is becoming clear that adipose tissue depots can switch phenotypes depending on cell autonomous and non-autonomous stimuli. To maintain such degree of plasticity and respond adequately to changes in the energy balance, three basic processes need to be properly functioning in the adipose tissue: i) adipogenesis and adipocyte turnover, ii) metabolism, and iii) signaling. Here we review the fundamental role of small non-coding RNAs (sncRNAs) in these processes, with focus on microRNAs, and demonstrate their importance in adipose tissue function and whole body metabolic control in mammals.
Collapse
Affiliation(s)
- Bruna B Brandão
- Program in Molecular Biology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Beatriz A Guerra
- Program in Molecular Biology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Marcelo A Mori
- Program in Molecular Biology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, Brazil.
| |
Collapse
|
68
|
Bobbili MR, Mader RM, Grillari J, Dellago H. OncomiR-17-5p: alarm signal in cancer? Oncotarget 2017; 8:71206-71222. [PMID: 29050357 PMCID: PMC5642632 DOI: 10.18632/oncotarget.19331] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022] Open
Abstract
Soon after microRNAs entered the stage as novel regulators of gene expression, they were found to regulate -and to be regulated by- the development, progression and aggressiveness of virtually all human types of cancer. Therefore, miRNAs in general harbor a huge potential as diagnostic and prognostic markers as well as potential therapeutic targets in cancer. The miR-17-92 cluster was found to be overexpressed in many human cancers and to promote unrestrained cell growth, and has therefore been termed onco-miR-1. In addition, its expression is often dysregulated in many other diseases. MiR-17-5p, its most prominent member, is an essential regulator of fundamental cellular processes like proliferation, autophagy and apoptosis, and its deficiency is neonatally lethal in the mouse. Many cancer types are associated with elevated miR-17-5p expression, and the degree of overexpression might correlate with cancer aggressiveness and responsiveness to chemotherapeutics - suggesting miR-17-5p to be an alarm signal. Liver, gastric or colorectal cancers are examples where miR-17-5p has been observed exclusively as an oncogene, while, in other cancer types, like breast, prostate and lung cancer, the role of miR-17-5p is not as clear-cut, and it might also act as tumor-suppressor. However, in all cancer types studied so far, miR-17-5p has been found at elevated levels in the circulation. In this review, we therefore recapitulate the current state of knowledge about miR-17-5p in the context of cancer, and suggest that elevated miR-17-5p levels in the plasma might be a sensitive and early alarm signal for cancer ('alarmiR'), albeit not a specific alarm for a specific type of tumor.
Collapse
Affiliation(s)
- Madhusudhan Reddy Bobbili
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Robert M Mader
- Department of Medicine I, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
| | - Johannes Grillari
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria.,Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria.,Evercyte GmbH, Vienna, Austria
| | - Hanna Dellago
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria.,TAmiRNA GmbH, Vienna, Austria
| |
Collapse
|
69
|
Epigenetic Bases of Aberrant Glycosylation in Cancer. Int J Mol Sci 2017; 18:ijms18050998. [PMID: 28481247 PMCID: PMC5454911 DOI: 10.3390/ijms18050998] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
In this review, the sugar portions of glycoproteins, glycolipids, and glycosaminoglycans constitute the glycome, and the genes involved in their biosynthesis, degradation, transport and recognition are referred to as “glycogenes“. The extreme complexity of the glycome requires the regulatory layer to be provided by the epigenetic mechanisms. Almost all types of cancers present glycosylation aberrations, giving rise to phenotypic changes and to the expression of tumor markers. In this review, we discuss how cancer-associated alterations of promoter methylation, histone methylation/acetylation, and miRNAs determine glycomic changes associated with the malignant phenotype. Usually, increased promoter methylation and miRNA expression induce glycogene silencing. However, treatment with demethylating agents sometimes results in silencing, rather than in a reactivation of glycogenes, suggesting the involvement of distant methylation-dependent regulatory elements. From a therapeutic perspective aimed at the normalization of the malignant glycome, it appears that miRNA targeting of cancer-deranged glycogenes can be a more specific and promising approach than the use of drugs, which broad target methylation/acetylation. A very specific type of glycosylation, the addition of GlcNAc to serine or threonine (O-GlcNAc), is not only regulated by epigenetic mechanisms, but is an epigenetic modifier of histones and transcription factors. Thus, glycosylation is both under the control of epigenetic mechanisms and is an integral part of the epigenetic code.
Collapse
|
70
|
Verdoorn KS, Matsuura C, Borges JP. Exercise for cardiac health and regeneration: killing two birds with one stone. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:S13. [PMID: 28567395 DOI: 10.21037/atm.2017.03.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- K S Verdoorn
- Physiology Department, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Cristiane Matsuura
- Department of Pharmacology and Psychobiology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Pereira Borges
- Physical Education and Sports Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
71
|
MicroRNA Metabolism and Dysregulation in Amyotrophic Lateral Sclerosis. Mol Neurobiol 2017; 55:2617-2630. [PMID: 28421535 DOI: 10.1007/s12035-017-0537-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/07/2017] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are a subset of endogenous, small, non-coding RNA molecules involved in the post-transcriptional regulation of eukaryotic gene expression. Dysregulation in miRNA-related pathways in the central nervous system (CNS) is associated with severe neuronal injury and cell death, which can lead to the development of neurodegenerative disorders, such as amyotrophic lateral sclerosis (ALS). ALS is a fatal adult onset disease characterized by the selective loss of upper and lower motor neurons. While the pathogenesis of ALS is still largely unknown, familial ALS forms linked to TAR DNA-binding protein 43 (TDP-43) and fused in sarcoma (FUS) gene mutations, as well as sporadic forms, display changes in several steps of RNA metabolism, including miRNA processing. Here, we review the current knowledge about miRNA metabolism and biological functions and their crucial role in ALS pathogenesis with an in-depth analysis on different pathways. A more precise understanding of miRNA involvement in ALS could be useful not only to elucidate their role in the disease etiopathogenesis but also to investigate their potential as disease biomarkers and novel therapeutic targets.
Collapse
|
72
|
Hou W, Song L, Zhao Y, Liu Q, Zhang S. Inhibition of Beclin-1-Mediated Autophagy by MicroRNA-17-5p Enhanced the Radiosensitivity of Glioma Cells. Oncol Res 2017; 25:43-53. [PMID: 28081732 PMCID: PMC7840760 DOI: 10.3727/096504016x14719078133285] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The role of miRNAs in the radiosensitivity of glioma cells and the underlying mechanism is still far from clear. In the present study, we detected six downregulated and seven upregulated miRNAs in the serum after radiotherapy compared with paired serum samples before radiotherapy via miRNA panel PCR. Among these, miR-17-5p was highly reduced (fold change = −4.21). Further, we validated the levels of miR-17-5p in all serum samples with qRT-PCR. In addition, statistical analysis suggested that a reduced miR-17-5P level was positively associated with advanced clinical stage of glioma, incidence of relapse, and tumor differentiation. Moreover, we provided evidence that irradiation markedly activated autophagy and decreased miR-17-5p in the glioma cell line. Further, we demonstrated that irradiation-induced autophagy activation was mediated by beclin-1, and downregulation of beclin-1 via siRNA significantly abolished the irradiation-activated autophagy. Interestingly, we demonstrated that miR-17-5p could directly target beclin-1 via luciferase gene reporter assay. Exotic expression of miRNA-17-5p decreased autophagy activity in vitro. In nude mice, miRNA-17-5p upregulation sensitized the xenograft tumor to irradiation and suppressed irradiation-induced autophagy. Finally, pharmacal inhibition of autophagy markedly enhanced the cytotoxicity of irradiation in RR-U87 cells.
Collapse
|
73
|
Luginbühl J, Sivaraman DM, Shin JW. The essentiality of non-coding RNAs in cell reprogramming. Noncoding RNA Res 2017; 2:74-82. [PMID: 30159423 PMCID: PMC6096403 DOI: 10.1016/j.ncrna.2017.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/03/2017] [Accepted: 04/11/2017] [Indexed: 02/07/2023] Open
Abstract
In mammals, short (mi-) and long non-coding (lnc) RNAs are immensely abundant and they are proving to be more functional than ever before. Particularly in cell reprogramming, non-coding RNAs are essential to establish the pluripotent network and are indispensable to reprogram somatic cells to pluripotency. Through systematic screening and mechanistic studies, diverse functional features of both miRNA and lncRNAs have emerged as either scaffolds, inhibitors, or co-activators, necessary to orchestrate the intricacy of gene regulation. Furthermore, the collective characterizations of both miRNA and lncRNA reveal their interdependency (e.g. sequestering the function of the other) to modulate cell reprogramming. This review broadly explores the regulatory processes of cell reprogramming - with key functional examples in neuronal and cardiac differentiations - in the context of both short and long non-coding RNAs.
Collapse
Affiliation(s)
| | | | - Jay W. Shin
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, 230-0045 Japan
| |
Collapse
|
74
|
Liu L, Xiong Y, Xi W, Wang J, Qu Y, Lin Z, Chen X, Yao J, Xu J, Guo J. Prognostic role of N-Acetylgalactosaminyltransferase 10 in metastatic renal cell carcinoma. Oncotarget 2017; 8:14995-15003. [PMID: 28122358 PMCID: PMC5362461 DOI: 10.18632/oncotarget.14786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/11/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND AND PURPOSE A previous study demonstrated that GALNT10 affects the sensitivity of cancer cells to tyrosine kinase inhibitor (TKI) therapy. The aim of this study was to assess whether GALNT10 holds a prognostic role in metastatic renal cell carcinoma (mRCC) patients treated with TKI agents. RESULTS GALNT10 had no statistical correlation with any other clinicopathological parameters except for route of gaining samples (P = 0.001) and Heng's risk stratification (P = 0.011). Patients with high level of GALNT10 had significantly shorter overall survival (OS) (P < 0.001) and progression-free survival (PFS) (P = 0.002). Importantly, this relationship existed in OS and PFS analyses in sunitinib-treated patients and in OS analyses in sorafenib-treated patients (P = 0.024). In contrast to sorafenib group, percentage of partial response (PR) and stable disease (SD) were higher in sunitinib group, while percentage of progression disease (PD) was much lower. Univariate and multivariate analyses identified that GALNT10 was an independent prognostic factor for OS (HR = 1.938, P = 0.014), not for PFS (HR = 1.532, P = 0.065), in mRCC. Incorporating it into Heng's risk model could sharpen its efficacy in distinguishing patients with potential higher risk. MATERIALS AND METHODS We retrospectively enrolled 138 mRCC patients treated with sunitinib or sorafenib at Zhongshan Hospital, Shanghai, China. A total of 111 valid cases were finally applied for analyses. CONCLUSIONS These findings suggest that GALNT10 could be applied as a prognostic marker for OS in mRCC patients.
Collapse
Affiliation(s)
- Li Liu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Xiong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Xi
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yang Qu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhiyuan Lin
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiang Chen
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiaxi Yao
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
75
|
Tavakoli R, Vakilian S, Langroudi L, Arefian E, Sahmani M, Soleimani M, Jamshidi-Adegani F. The role of miR-17-92 cluster in the expression of tumor suppressor genes in unrestricted somatic stem cells. Biologicals 2017; 46:143-147. [PMID: 28222938 DOI: 10.1016/j.biologicals.2017.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/02/2017] [Accepted: 02/08/2017] [Indexed: 01/20/2023] Open
Abstract
The miR-17-92 cluster consisted of seven miRNAs (mir-17-5p, -17-3p, -18a, -19a, -20a, -19b-1, and -92a-1). Previous studies have shown this cluster has been over-expressed in several cancers. The aim of this study was to evaluate the over-expression impacts of miR-17-92 on stem cells. In the current work, the effect of miR-17-92 cluster which was cloned in Lentiviral vector has been investigated on unrestricted somatic stem cells (USSCs). Tumor suppressor genes (p53, p15, RBL1, SMAD2, SMAD4, and MAPK-1) expression, especially p53, was considerably reduced. These data show the potential of miR-17-92 for oncogenesis regulation in stem cells. In conclusion, the role of miR-17-92 in USSCs may provide a better understanding of its function in tumorigenesis and for the possible use in cell therapy of the anti-mir-17-92 cluster.
Collapse
Affiliation(s)
| | | | | | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mehdi Sahmani
- Department of Clinical Biochemistry, Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Jamshidi-Adegani
- Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Science, Qazvin, Iran.
| |
Collapse
|
76
|
Capra E, Turri F, Lazzari B, Cremonesi P, Gliozzi TM, Fojadelli I, Stella A, Pizzi F. Small RNA sequencing of cryopreserved semen from single bull revealed altered miRNAs and piRNAs expression between High- and Low-motile sperm populations. BMC Genomics 2017; 18:14. [PMID: 28052756 PMCID: PMC5209821 DOI: 10.1186/s12864-016-3394-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/07/2016] [Indexed: 01/01/2023] Open
Abstract
Background Small RNAs present in bovine ejaculate can be linked to sperm abnormalities and fertility disorders. At present, quality parameters routinely used in semen evaluation are not fully reliable to predict bull fertility. In order to provide additional quality measurements for cryopreserved semen used for breeding, a method based on deep sequencing of sperm microRNA (miRNA) and Piwi-interacting RNA (piRNA) from individual bulls was developed. To validate our method, two populations of spermatozoa isolated from high and low motile fractions separated by Percoll were sequenced, and their small RNAs content characterized. Results Sperm cells from frozen thawed semen samples of 4 bulls were successfully separated in two fractions. We identified 83 miRNAs and 79 putative piRNAs clusters that were differentially expressed in both fractions. Gene pathways targeted by 40 known differentially expressed miRNAs were related to apoptosis. Dysregulation of miR-17-5p, miR-26a-5p, miR-486-5p, miR-122-5p, miR-184 and miR-20a-5p was found to target three pathways (PTEN, PI3K/AKT and STAT). Conclusions Small RNAs sequencing data obtained from single bulls are consistent with previous findings. Specific miRNAs are differentially represented in low versus high motile sperm, suggesting an alteration of cell functions and increased germ cell apoptosis in the low motile fraction. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3394-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- E Capra
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Einstein, 26900, Lodi, Italy
| | - F Turri
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Einstein, 26900, Lodi, Italy
| | - B Lazzari
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Einstein, 26900, Lodi, Italy.,Parco Tecnologico Padano, via Einstein, 26900, Lodi, Italy
| | - P Cremonesi
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Einstein, 26900, Lodi, Italy
| | - T M Gliozzi
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Einstein, 26900, Lodi, Italy
| | - I Fojadelli
- Parco Tecnologico Padano, via Einstein, 26900, Lodi, Italy
| | - A Stella
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Einstein, 26900, Lodi, Italy.,Parco Tecnologico Padano, via Einstein, 26900, Lodi, Italy
| | - F Pizzi
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Einstein, 26900, Lodi, Italy.
| |
Collapse
|
77
|
Wang G, Mao BJ. Mechanisms for microRNAs in pathogenesis of hepatocellular carcinoma and challenges in their clinical application. Shijie Huaren Xiaohua Zazhi 2016; 24:4430-4437. [DOI: 10.11569/wcjd.v24.i33.4430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly tumors worldwide, and it seriously endangers the health of people in China. Hepatocarcinogenesis is an extremely complex process that involves many risk factors. MicroRNAs (miRNAs) are a group of small, short and non-coding RNAs, and approximately one-third of human genes are regulated by miRNAs, which play important roles in tumor cell proliferation, cell cycle and apoptosis as well as tumor invasion, metastasis, and angiogenesis. Numerous studies have shown that miRNAs have a close relationship with hepatocarcinogenesis. In addition, miRNAs play a significant role in the diagnosis and therapy of HCC. In this review, we discuss the recent advances in the understanding of signaling pathways that are related to miRNAs in hepatocarcinogenesis, and the challenges faced in the clinical application of miRNAs.
Collapse
|
78
|
Profiling of microRNAs in AML cells following overexpression or silencing of the VEGF gene. Oncol Lett 2016; 13:105-110. [PMID: 28123529 PMCID: PMC5245128 DOI: 10.3892/ol.2016.5412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 10/19/2016] [Indexed: 12/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is a disease of the hematopoietic progenitor cells associated with heterogeneous clonal proliferation. Vascular endothelial growth factor (VEGF) and its receptors play important roles in the regulation of angiogenesis during physiological and pathological processes. It is thought that AML cells have an autocrine VEGF pathway that contributes to the development and progression of AML. In addition, growing evidence has suggested that numerous microRNAs are involved in AML. The present study aimed to investigate the relationship between VEGF dysregulation and microRNA profiles in AML cells and patients. VEGF-overexpressing and VEGF-knockdown leukemia cells were constructed and changes in the patterns of microRNA expression were analyzed using a microRNA array. Subsequently, mononuclear cells from the blood of patients with AML showing high or low expression levels of VEGF were obtained and were used to assess the patterns of microRNA expression by reverse transcription-quantitative polymerase chain reaction. The results of the present study suggested that downregulation of VEGF markedly altered the profile of microRNAs in AML cells, while upregulation of VEGF did not. Examination of clinical samples from patients with AML showed that several microRNAs were closely associated with the expression level of VEGF, including miR-20a, miR-93, miR-16-5p, miR-17-5p, miR-124-5p and miR-17-3p. These results suggested that VEGF may be a pivotal protein that can both receive and initiate signals in leukemia cells.
Collapse
|
79
|
Hasan HF, Abdel-Rafei MK, Galal SM. Diosmin attenuates radiation-induced hepatic fibrosis by boosting PPAR-γ expression and hampering miR-17-5p-activated canonical Wnt-β-catenin signaling. Biochem Cell Biol 2016; 95:400-414. [PMID: 28177765 DOI: 10.1139/bcb-2016-0142] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Liver fibrosis is one of the major complications from upper right quadrant radiotherapy. MicroRNA-17-5p (miR-17-5p) is hypothesized to act as a regulator of hepatic stellate cell (HSCs) activation by activation of the canonical Wnt-β-catenin pathway. Diosmin (Dios), a citrus bioflavonoid, is known to possess potent antioxidant, anti-inflammatory, and anti-apoptotic properties. PURPOSE To explore the molecular mechanisms that underlie radiation-induced liver fibrosis, and to evaluate the possible influence of Dios on the miR-17-5p-Wnt-β-catenin signaling axis during fibrogenesis provoked by irradiation (IRR) in rats. Also, the effect of Dios on hepatic peroxisome proliferator activated receptor-γ (PPAR-γ) expression as a regulator for HSC activation was considered. METHODS We administered 100 mg·(kg body mass)-1·day-1 (per oral) of Dios were administered to IRR-exposed rats (overall dose of 12 Gy on 6 fractions of 2 Gy each) for 6 successive weeks. RESULTS Data analysis revealed that Dios treatment mitigated oxidative stress, enhanced antioxidant defenses, alleviated hepatic inflammatory responses, abrogated pro-fibrogenic cytokines, and stimulated PPAR-γ expression. Dios treatment repressed the miR-17-5p activated Wnt-β-catenin signaling induced by IRR. Moreover, Dios treatment restored the normal hepatic architecture and reversed pathological alterations induced by IRR. CONCLUSION We hypothesize that the stimulation of PPAR-γ expression and interference with miR-17-5p activated Wnt-β-catenin signaling mediates the antifibrotic properties of Dios.
Collapse
Affiliation(s)
- Hesham Farouk Hasan
- a Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, PO Box 29, Nasr City, Cairo, Egypt
| | - Mohamed Khairy Abdel-Rafei
- a Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, PO Box 29, Nasr City, Cairo, Egypt
| | - Shereen Mohamed Galal
- b Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, PO Box 29, Nasr City, Cairo, Egypt
| |
Collapse
|
80
|
Yu F, Lu Z, Huang K, Wang X, Xu Z, Chen B, Dong P, Zheng J. MicroRNA-17-5p-activated Wnt/β-catenin pathway contributes to the progression of liver fibrosis. Oncotarget 2016; 7:81-93. [PMID: 26637809 PMCID: PMC4807984 DOI: 10.18632/oncotarget.6447] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/22/2015] [Indexed: 01/02/2023] Open
Abstract
Aberrant Wnt/β-catenin pathway contributes to the development of liver fibrosis. MicroRNAs (MiRNAs) are found to act as regulators of the activation of hepatic stellate cell (HSC) in liver fibrosis. However, whether miRNAs activate Wnt/β-catenin pathway in activated HSCs during liver fibrosis is largely unknown. In this study, we found that Salvianolic acid B (Sal B) treatment significantly inhibited liver fibrosis in CCl4-treated rats, HSC-T6 cells and rat primary HSCs, resulting in the suppression of type I collagen and alpha-smooth muscle actin. Also, Sal B suppressed HSC activation and cell proliferation in vitro. Interestingly, Sal B treatment induced the inactivation of Wnt/β-catenin pathway, with an increase in P-β-catenin and Wnt inhibitory factor 1 (WIF1). We demonstrated that the anti-fibrotic effects caused by Sal B were, at least in part, via WIF1. Moreover, our study revealed that miR-17-5p was reduced in vivo and in vitro after Sal B treatment. As confirmed by luciferase activity assays, WIF1 was a direct target of miR-17-5p. Notably, the suppression of HSCs induced by Sal B was almost inhibited by miR-17-5p mimics. Collectively, we demonstrated that miR-17-5p activates Wnt/β-catenin pathway to result in HSC activation through inhibiting WIF1 expression.
Collapse
Affiliation(s)
- Fujun Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongqiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kate Huang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ziqiang Xu
- Institute of Organ Transplantation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bicheng Chen
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peihong Dong
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianjian Zheng
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
81
|
Genomics of human fatty liver disease reveal mechanistically linked lipid droplet-associated gene regulations in bland steatosis and nonalcoholic steatohepatitis. Transl Res 2016; 177:41-69. [PMID: 27376874 DOI: 10.1016/j.trsl.2016.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/13/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common disorder hallmarked by excessive lipid deposits. Based on our recent research on lipid droplet (LD) formation in hepatocytes, we investigated LD-associated gene regulations in NAFLD of different grades, that is, steatosis vs steatohepatitis by comparing liver biopsies from healthy controls (N = 13) and NAFLD patients (N = 102). On average, more than 700 differentially expressed genes (DEGs) were identified of which 146 are mechanistically linked to LD formation. We identified 51 LD-associated DEGs frequently regulated in patient samples (range ≥5 to ≤102) with the liver-receptor homolog-1(NR5A2), that is, a key regulator of cholesterol metabolism being commonly repressed among 100 patients examined. With bland steatosis, notable regulations involved hypoxia-inducible lipid droplet-associated-protein and diacylglycerol-O-acyltransferase-2 renowned for their role in LD-growth. Conversely, nonalcoholic steatohepatitis-associated DEGs coded for epidermal growth factor receptor and TLR4 signaling with decreased expression of the GTPase Rab5 and the lipid phosphohydrolase PPAP2B thus highlighting adaptive responses to inflammation, LDL-mediated endocytosis and lipogenesis, respectively. Studies with steatotic primary human hepatocyte cultures demonstrated induction of LD-associated PLIN2, CIDEC, DNAAF1, whereas repressed expression of CPT1A, ANGPTL4, and PKLR informed on burdened mitochondrial metabolism. Equally, repressed expression of the B-lymphocyte chemoattractant CXCL13 and STAT4 as well as induced FGF21 evidenced amelioration of steatosis-related inflammation. In-vitro/in-vivo patient sample comparisons confirmed C-reactive protein, SOCS3, NR5A2, and SOD2 as commonly regulated. Lastly, STRING network analysis highlighted potential "druggable" targets with PLIN2, CIDEC, and hypoxia-inducible lipid droplet-associated-protein being confirmed by immunofluorescence microscopy. In conclusion, steatosis and steatohepatitis specific gene regulations informed on the pathogenesis of NAFLD to broaden the perspective of targeted therapies.
Collapse
|
82
|
Bracken CP, Scott HS, Goodall GJ. A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet 2016; 17:719-732. [DOI: 10.1038/nrg.2016.134] [Citation(s) in RCA: 529] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
83
|
Epigenetic silencing of miR-19a-3p by cold atmospheric plasma contributes to proliferation inhibition of the MCF-7 breast cancer cell. Sci Rep 2016; 6:30005. [PMID: 27445062 PMCID: PMC4956745 DOI: 10.1038/srep30005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/28/2016] [Indexed: 12/29/2022] Open
Abstract
Cold atmospheric plasma (CAP) has been proposed as a useful cancer treatment option after showing higher induction of cell death in cancer cells than in normal cells. Although a few studies have contributed to elucidating the molecular mechanism by which CAP differentially inhibits cancer cell proliferation, no results are yet to be reported related to microRNA (miR). In this study, miR-19a-3p (miR-19a) was identified as a mediator of the cell proliferation-inhibitory effect of CAP in the MCF-7 breast cancer cell. CAP treatment of MCF-7 induced hypermethylation at the promoter CpG sites and downregulation of miR-19a, which was known as an oncomiR. The overexpression of miR-19a in MCF-7 increased cell proliferation, and CAP deteriorated the effect. The target genes of miR-19a, such as ABCA1 and PTEN, that had been suppressed by miR recovered their expression through CAP treatment. In addition, an inhibitor of reactive oxygen species that is produced by CAP suppressed the effect of CAP on cell proliferation. Taken together, the present study, to the best of authors’ knowledge, is the first to identify the involvement of a miR, which is dysregulated by the CAP and results in the anti-proliferation effect of CAP on cancer cells.
Collapse
|
84
|
Biswas S, Hazra S, Chattopadhyay S. Identification of conserved miRNAs and their putative target genes in Podophyllum hexandrum (Himalayan Mayapple). ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.plgene.2016.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
85
|
Tarasov VA, Makhotkin MA, Shin EF, Boiko NV, Tyutyakina MG, Chikunov IE, Naboka AV, Mashkarina AN, Kirpii AA, Matishov DG. Change in the selection of microRNA strands during DNA damage induction. DOKL BIOCHEM BIOPHYS 2016; 467:99-101. [PMID: 27193708 DOI: 10.1134/s160767291602006x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Indexed: 11/22/2022]
Abstract
It was first shown that DNA damage induction in mitomycin C-treated HeLa cells leads to a change in the selection of 5p and 3p microRNA duplex strands in the formation of the RNA-induced silencing complex (RISC).
Collapse
Affiliation(s)
- V A Tarasov
- Institute of Arid Zones, Southern Scientific Center, Russian Academy of Sciences, pr. Chekhova 41, Rostov-on-Don, 3444006, Russia
| | - M A Makhotkin
- Institute of Arid Zones, Southern Scientific Center, Russian Academy of Sciences, pr. Chekhova 41, Rostov-on-Don, 3444006, Russia.
| | - E F Shin
- Institute of Arid Zones, Southern Scientific Center, Russian Academy of Sciences, pr. Chekhova 41, Rostov-on-Don, 3444006, Russia
| | - N V Boiko
- Institute of Arid Zones, Southern Scientific Center, Russian Academy of Sciences, pr. Chekhova 41, Rostov-on-Don, 3444006, Russia
| | - M G Tyutyakina
- Institute of Arid Zones, Southern Scientific Center, Russian Academy of Sciences, pr. Chekhova 41, Rostov-on-Don, 3444006, Russia
| | - I E Chikunov
- Institute of Arid Zones, Southern Scientific Center, Russian Academy of Sciences, pr. Chekhova 41, Rostov-on-Don, 3444006, Russia
| | - A V Naboka
- Institute of Arid Zones, Southern Scientific Center, Russian Academy of Sciences, pr. Chekhova 41, Rostov-on-Don, 3444006, Russia
| | - A N Mashkarina
- Institute of Arid Zones, Southern Scientific Center, Russian Academy of Sciences, pr. Chekhova 41, Rostov-on-Don, 3444006, Russia
| | | | - D G Matishov
- Institute of Arid Zones, Southern Scientific Center, Russian Academy of Sciences, pr. Chekhova 41, Rostov-on-Don, 3444006, Russia
| |
Collapse
|
86
|
Liu L, Yang J, Zhu X, Li D, Lv Z, Zhang X. Long noncoding RNA H19 competitively binds miR-17-5p to regulate YES1 expression in thyroid cancer. FEBS J 2016; 283:2326-39. [PMID: 27093644 DOI: 10.1111/febs.13741] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/26/2016] [Accepted: 04/18/2016] [Indexed: 12/29/2022]
Abstract
The long noncoding RNA H19 is overexpressed in many cancers and acts as an oncogene. Here, we investigated the role of H19 in thyroid carcinogenesis and its relation to microRNA miR-17-5p and its target gene YES1. H19 expression was higher in tumor samples and in thyroid cancer cell lines than nontumor tissues and normal thyroid cells. H19 knockdown and ectopic expression in the TPC-1 and NIM thyroid cancer cell lines showed that overexpression of H19 promoted proliferation, migration, and invasion, whereas H19 knockdown reduced cell viability and invasion and induced growth arrest in vitro and in vivo. H19 was identified as a target of miR-17-5p, by Dual-Luciferase Reporter assays and RNA-binding protein immunoprecipitation assays. H19 antagonized the function of miR-17-5p on upregulation of its target YES1 and inhibited miR-17-5p-induced cell cycle progression. Our results suggest that H19 functions as a competitive endogenous RNA (ceRNA) by acting as a sink for miR-17-5p, revealing a potential ceRNA regulatory network involving H19 and miR-17-5p with a role in the modulation of YES1 expression. This mechanism may contribute to a better understanding of thyroid cancer pathogenesis and provide new insights into the treatment of this disease.
Collapse
Affiliation(s)
- Lin Liu
- Department of Nuclear Medicine, Shanghai Tenth people's hospital, Tongji university, Shanghai, China.,Department of institution of Interventional and Vascular surgery, Tongji university, Shanghai, China
| | - Jian Yang
- Department of Nuclear Medicine, Changhai hospital, The Second Military Medical University, Shanghai, China
| | - Xuchao Zhu
- Department of Nuclear Medicine, Shanghai Tenth people's hospital, Tongji university, Shanghai, China
| | - Dan Li
- Department of Nuclear Medicine, Shanghai Tenth people's hospital, Tongji university, Shanghai, China
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth people's hospital, Tongji university, Shanghai, China
| | - Xiaoping Zhang
- Department of Nuclear Medicine, Shanghai Tenth people's hospital, Tongji university, Shanghai, China.,Department of institution of Interventional and Vascular surgery, Tongji university, Shanghai, China
| |
Collapse
|
87
|
Abstract
Small evolutionarily conserved noncoding RNAs, microRNAs (miRNAs), regulate gene expression either by translational repression or by mRNA degradation in mammals. miRNAs play functional roles in diverse physiological and pathological processes. miRNA processing is accurately regulated through multifarious factors. The canonical miRNA processing pathway consists of four sequential steps: (a) miRNA gene is transcribed into primary miRNA (pri-miRNA) mainly by RNA polymerase II; (b) pri-miRNA is processed into precursor miRNA (pre-miRNA) through microprocessor complex; (c) pre-miRNA is exported from the nucleus to the cytoplasm with the assistance of Exportin 5 (EXP5/XP05) protein; and (d) pre-miRNA is further processed into mature miRNA via Dicer. Emerging evidence has also demonstrated that some miRNAs undergo alternative processing pathways. Dysregulation of miRNA processing is closely related to tumorigenesis. Here, we review the current advances in the knowledge of miRNA processing and briefly discuss its impact on human cancers.
Collapse
Affiliation(s)
- Shuai Jiang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Wei Yan
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
88
|
Du WW, Yang W, Xuan J, Gupta S, Krylov SN, Ma X, Yang Q, Yang BB. Reciprocal regulation of miRNAs and piRNAs in embryonic development. Cell Death Differ 2016; 23:1458-70. [PMID: 26990662 DOI: 10.1038/cdd.2016.27] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 11/13/2015] [Accepted: 12/17/2015] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) and piwi-interacting RNAs (piRNAs) are two classes of small noncoding RNAs, both of which play roles in regulating tissue development. It is unknown whether these distinct classes of noncoding RNAs can regulate one another. Here we show that ectopic expression of miR-17 inhibited mouse fertility and early embryonic development. Specifically, we found that the piRNA amplification loop was repressed by miR-17-5p, leading to increased levels of transposition mutagenesis. This occurred by suppressing the amplification loop of piRNAs with an identical 5' sequence and by targeting Mili/Miwi2, an essential component of the piRNA amplification loop, and the DNA methyltransferase, Dnmt3a. We also found that increased levels of piRNAs could compete with miRNAs for target binding, resulting in increased expression of Dnmt3a and Mili. Increased Dnmt3a levels could in turn block miR-17-5p expression, while increased Mili expression could accelerate piRNA amplification and inhibit transposon generation, favoring embryonic development. We report for the first time the reciprocal regulation between miRNAs and piRNAs in mouse embryonic development.
Collapse
Affiliation(s)
- W W Du
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - W Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - J Xuan
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - S Gupta
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - S N Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - X Ma
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Q Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - B B Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
89
|
Chia J, Goh G, Bard F. Short O-GalNAc glycans: regulation and role in tumor development and clinical perspectives. Biochim Biophys Acta Gen Subj 2016; 1860:1623-39. [PMID: 26968459 DOI: 10.1016/j.bbagen.2016.03.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND While the underlying causes of cancer are genetic modifications, changes in cellular states mediate cancer development. Tumor cells display markedly changed glycosylation states, of which the O-GalNAc glycans called the Tn and TF antigens are particularly common. How these antigens get over-expressed is not clear. The expression levels of glycosylation enzymes fail to explain it. SCOPE OF REVIEW We describe the regulation of O-GalNAc glycosylation initiation and extension with emphasis on the initiating enzymes ppGalNAcTs (GALNTs), and introduce the GALA pathway--a change in GALNTs compartmentation within the secretory pathway that regulates Tn levels. We discuss the roles of O-GalNAc glycans and GALNTs in tumorigenic processes and finally consider diagnostic and therapeutic perspectives. MAJOR CONCLUSIONS Contrary to a common hypothesis, short O-glycans in tumors are not the result of an incomplete glycosylation process but rather reveal the activation of regulatory pathways. Surprisingly, high Tn levels reveal a major shift in the O-glycoproteome rather than a shortening of O-glycans. These changes are driven by membrane trafficking events. GENERAL SIGNIFICANCE Many attempts to use O-glycans for biomarker, antibody and therapeutic vaccine development have been made, but suffer limitations including poor sensitivity and/or specificity that may in part derive from lack of a mechanistic understanding. Deciphering how short O-GalNAc glycans are regulated would open new perspectives to exploit this biology for therapeutic usage. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Joanne Chia
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Germaine Goh
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Frederic Bard
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore; Department of Biochemistry, National University of Singapore, 21 Lower Kent Ridge, Road, 119077, Singapore.
| |
Collapse
|
90
|
Wang W, Zhang L, Zheng K, Zhang X. miR-17-5p promotes the growth of osteosarcoma in a BRCC2-dependent mechanism. Oncol Rep 2016; 35:1473-82. [PMID: 26750490 DOI: 10.3892/or.2016.4542] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/12/2015] [Indexed: 11/05/2022] Open
Abstract
MicroRNA-17-5p has been proven upregulated in many human malignancies and correlated with tumor progression. However, its expression and clinical significance in osteosarcoma is still unclear. Thus, the aim of the present study was to explore the effects of miR-17-5p in osteosarcoma tumorigenesis and development. The expression level of miR-17-5p was quantified by quantitative real-time reverse-transcriptase-polymerase chain reaction in primary osteosarcoma tissues and osteosarcoma cell lines. MTT, Transwell and matrigel assays were used to test the proliferation, migration and invasion of miR-17-5p transfection osteosarcoma cells, and a mouse model was used to investigate tumorigenesis. The expression levels of miR-17-5p in osteosarcoma tissues were significantly higher than those in corresponding non-cancerous bone tissues. In addition, miR-17-5p upregulation more frequently occurred in osteosarcoma specimens with advanced clinical stage, positive distant metastasis and poor response to neo-adjuvant chemotherapy. After miR-17-5p transfection, cell proliferation, migration, invasion and tumorigenesis in the osteosarcoma cells were significantly promoted. We further demonstrated that BRCC2 is a direct target of miR-17-5p. These findings indicate that miR-17-5p may act not only as a novel diagnostic and prognostic marker, but also as a potential target for molecular therapy of osteosarcoma.
Collapse
Affiliation(s)
- Wei Wang
- Department of Bone Soft Surgery, Liaoning Provincial Tumor Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Liang Zhang
- Department of Thoracic Surgery, Liaoning Provincial Tumor Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Ke Zheng
- Department of Bone Soft Surgery, Liaoning Provincial Tumor Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Xiaojing Zhang
- Department of Bone Soft Surgery, Liaoning Provincial Tumor Hospital, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
91
|
Chen J, Zhao X, Li X, Wu Y. Calycosin induces apoptosis by the regulation of ERβ/miR-17 signaling pathway in human colorectal cancer cells. Food Funct 2016. [PMID: 26215320 DOI: 10.1039/c5fo00374a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Prior studies have suggested that a high intake of isoflavonoids is associated with a protective effect against hormone-related cancers, such as colorectal cancer (CRC). Calycosin, a main component of isoflavones, has been shown to suppress the growth of hormone-dependent tumors through an ERβ-mediated signaling pathway. However, the effects of calycosin on CRC remain unclear. In this study, we aimed to investigate the anti-tumor activities of calycosin on CRC and its potential mechanism. HCT-116 cells were treated with calycosin. Cell proliferation, apoptosis and invasiveness were measured by MTT assay, flow cytometry and transwell invasion assay, respectively. mRNA levels of ER beta (ERβ) and miR-17 were quantified by real-time PCR. Protein expressions of ERβ and phosphatase and tensin homolog deleted on chromosome ten (PTEN) were determined by western blotting. We found that calycosin significantly induced apoptosis, and inhibited proliferation and invasiveness of HCT-116 cells in a dose-dependent manner. In addition, ERβ expression significantly increased in calycosin-treated HCT-116 cells, followed by a decrease of miR-17, and up-regulation of PTEN. Our results indicate that calycosin has an inhibitory effect on CRC, which might be obtained by ERβ-mediated regulation of miR-17 and PTEN expression.
Collapse
Affiliation(s)
- Jian Chen
- School of Basic Medical Sciences, Guilin Medical University, Guilin 541004, China
| | | | | | | |
Collapse
|
92
|
Nakamura S, Horie M, Daidoji T, Honda T, Yasugi M, Kuno A, Komori T, Okuzaki D, Narimatsu H, Nakaya T, Tomonaga K. Influenza A Virus-Induced Expression of a GalNAc Transferase, GALNT3, via MicroRNAs Is Required for Enhanced Viral Replication. J Virol 2016; 90:1788-801. [PMID: 26637460 PMCID: PMC4734006 DOI: 10.1128/jvi.02246-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/25/2015] [Indexed: 02/03/2023] Open
Abstract
UNLABELLED Influenza A virus (IAV) affects the upper and lower respiratory tracts and rapidly induces the expression of mucins, which are common O-glycosylated proteins, on the epithelial surfaces of the respiratory tract. Although mucin production is associated with the inhibition of virus transmission as well as characteristic clinical symptoms, little is known regarding how mucins are produced on the surfaces of respiratory epithelial cells and how they affect IAV replication. In this study, we found that two microRNAs (miRNAs), miR-17-3p and miR-221, which target GalNAc transferase 3 (GALNT3) mRNA, are rapidly downregulated in human alveolar basal epithelial cells during the early stage of IAV infection. We demonstrated that the expression of GALNT3 mRNA is upregulated in an IAV replication-dependent fashion and leads to mucin production in bronchial epithelial cells. A lectin microarray analysis revealed that the stable expression of GALNT3 by human alveolar basal epithelial cells induces mucin-type O-glycosylation modifications similar to those present in IAV-infected cells, suggesting that GALNT3 promotes mucin-type O-linked glycosylation in IAV-infected cells. Notably, analyses using short interfering RNAs and miRNA mimics showed that GALNT3 knockdown significantly reduces IAV replication. Furthermore, IAV replication was markedly decreased in embryonic fibroblast cells obtained from galnt3-knockout mice. Interestingly, IAV-infected galnt3-knockout mice exhibited high mortality and severe pathological alterations in the lungs compared to those of wild-type mice. Our results demonstrate not only the molecular mechanism underlying rapid mucin production during IAV infection but also the contribution of O-linked glycosylation to the replication and propagation of IAV in lung cells. IMPORTANCE Viral infections that affect the upper or lower respiratory tracts, such as IAV, rapidly induce mucin production on the epithelial surfaces of respiratory cells. However, the details of how mucin-type O-linked glycosylation is initiated by IAV infection and how mucin production affects viral replication have not yet been elucidated. In this study, we show that levels of two miRNAs that target the UDP-GalNAc transferase GALNT3 are markedly decreased during the early stage of IAV infection, resulting in the upregulation of GALNT3 mRNA. We also demonstrate that the expression of GALNT3 initiates mucin production and affects IAV replication in infected cells. This is the first report demonstrating the mechanism underlying the miRNA-mediated initiation of mucin-type O-glycosylation in IAV-infected cells and its role in viral replication. Our results have broad implications for understanding IAV replication and suggest a strategy for the development of novel anti-influenza approaches.
Collapse
Affiliation(s)
- Shoko Nakamura
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto, Japan Department of Tumor Viruses, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Horie
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Tomo Daidoji
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomoyuki Honda
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Mayo Yasugi
- Laboratory of Veterinary Public Health, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Atsushi Kuno
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Toshihisa Komori
- Department of Cell Biology, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Daisuke Okuzaki
- DNA-Chip Development Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hisashi Narimatsu
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Takaaki Nakaya
- Laboratory of Veterinary Public Health, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Keizo Tomonaga
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto, Japan Department of Tumor Viruses, Graduate School of Medicine, Kyoto University, Kyoto, Japan Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
93
|
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 2016; 44:2846-58. [PMID: 26861625 PMCID: PMC4824104 DOI: 10.1093/nar/gkw027] [Citation(s) in RCA: 1288] [Impact Index Per Article: 143.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 01/11/2016] [Indexed: 02/07/2023] Open
Abstract
Most RNAs generated by the human genome have no protein-coding ability and are termed non-coding RNAs. Among these include circular RNAs, which include exonic circular RNAs (circRNA), mainly found in the cytoplasm, and intronic RNAs (ciRNA), predominantly detected in the nucleus. The biological functions of circular RNAs remain largely unknown, although ciRNAs have been reported to promote gene transcription, while circRNAs may function as microRNA sponges. We demonstrate that the circular RNA circ-Foxo3 was highly expressed in non-cancer cells and were associated with cell cycle progression. Silencing endogenous circ-Foxo3 promoted cell proliferation. Ectopic expression of circ-Foxo3 repressed cell cycle progression by binding to the cell cycle proteins cyclin-dependent kinase 2 (also known as cell division protein kinase 2 or CDK2) and cyclin-dependent kinase inhibitor 1 (or p21), resulting in the formation of a ternary complex. Normally, CDK2 interacts with cyclin A and cyclin E to facilitate cell cycle entry, while p21works to inhibit these interactions and arrest cell cycle progression. The formation of this circ-Foxo3-p21-CDK2 ternary complex arrested the function of CDK2 and blocked cell cycle progression.
Collapse
Affiliation(s)
- William W Du
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, M4N 3M5, Canada Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, Canada
| | - Weining Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, M4N 3M5, Canada
| | - Elizabeth Liu
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, M4N 3M5, Canada Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, Canada
| | - Zhenguo Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, M4N 3M5, Canada Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, Canada
| | - Preet Dhaliwal
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, M4N 3M5, Canada Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, Canada
| | - Burton B Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, M4N 3M5, Canada Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, Canada
| |
Collapse
|
94
|
Li L, He L, Zhao JL, Xiao J, Liu M, Li X, Tang H. MiR-17-5p up-regulates YES1 to modulate the cell cycle progression and apoptosis in ovarian cancer cell lines. J Cell Biochem 2016; 116:1050-9. [PMID: 25561420 DOI: 10.1002/jcb.25060] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/18/2014] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that participate in the regulation of gene expression. Although many studies have demonstrated the involvement of miR-17-5p in different cancers, little is known to its function in ovarian cancer. In this study, we demonstrated that overexpression of miR-17-5p was able to enhance cell proliferation by promoting G1/S transition of the cell cycle and suppressing apoptosis in ES-2 and OVCAR3 cell lines, whereas inhibition of miR-17-5p yielded the reverse phenotype. YES1 was identified as a novel target gene of miR-17-5p. Moreover, miR-17-5p was found to directly bind to the 3'UTR of YES1 mRNA and up-regulated its expression. Furthermore, knockdown of YES1 led to the suppression of proliferation and induced cell cycle arrest in ES-2 and OVCAR3 cells. Ectopic expression of YES1 was able to reverse the effects of miR-17-5p inhibition. Collectively, our results indicated that miR-17-5p might play a role in human ovarian cancer by up-regulating YES1 expression. J. Cell. Biochem. 116: 1050-1059, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lan Li
- Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University, Tianjin, 300070, China; Maternity and Child Healthcare Hospital, Anyang City, Henan Province, 455000, China
| | | | | | | | | | | | | |
Collapse
|
95
|
Wang Y, Tian Y. miRNA for diagnosis and clinical implications of human hepatocellular carcinoma. Hepatol Res 2016; 46:89-99. [PMID: 26284466 DOI: 10.1111/hepr.12571] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/12/2015] [Accepted: 08/10/2015] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies, as a result of being asymptomatic at early stage, subsequent late clinical confirmation and poor prognosis. It is urgent to search more accurate biomarkers for diagnosing early HCC and predicting prognosis. Many factors participate in liver carcinogenesis, including dysregulation of miRNA. miRNA were endogenously expressed non-coding single-stranded small RNA with 19-25 nucleotides. Accumulating evidences have showed that miRNA from circulation and solitary tumors may be useful to classify the differentiation degree and stages of HCC, detect the hepatitis B/C virus-related HCC, and predict the survival rate after surgical resection or orthotopic liver transplantation. In this review, we summarize dysregulated miRNA, their roles in diagnosis and clinical implications of HCC.
Collapse
Affiliation(s)
- Yurong Wang
- Core Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Yaping Tian
- Core Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
96
|
Abstract
Solid tumors require angiogenesis to grow beyond 2 mm in size. In most cases, tumor cells undergo angiogenic switch and secrete substances that are required for generation of new capillary sprouting from existing blood vessels. Tumor angiogenesis is driven by a complex interplay between pro-angiogenic (VEGF/VEGFR, PDGF/PDGFR) and anti-angiogenic factors (TSP-1/TSP-2) within the tumor microenvironment. In addition, control of tissue remodeling and degradation by matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) contribute to tumor angiogenesis. Furthermore, tumor suppressors or oncogenes that control cellular motility and maintain or promote hypoxia (HIFs and MYC) are also actively playing roles in tumor angiogenesis. Noncoding RNAs (ncRNAs), including microRNAs, are a novel class of regulatory molecules that control the gene expression in a posttranscriptional manner. MicroRNAs regulate important physiological processes, such as proliferation, apoptosis, and differentiation, as well as pathological conditions including oncogenesis. Accumulating evidence suggests that microRNAs directly modulate the process of angiogenesis by targeting important angiogenic factors and signaling molecules. Understanding the molecular mechanism behind the regulation of angiogenesis by microRNAs is important due to their therapeutic potential which may lead to improving outcome for cancer patients. Besides, ncRNAs with a regulatory role in angiogenesis, such as long noncoding RNAs (lncRNAs), have been identified in the genome. However, the mechanisms of the vast majority of lncRNAs are currently unknown. For the few lncRNAs characterized at the functional level, accumulating evidence shows that they play important roles in malignant diseases. The function and mechanism in angiogenesis will be described in this chapter.
Collapse
|
97
|
Jin YY, Andrade J, Wickstrom E. Non-Specific Blocking of miR-17-5p Guide Strand in Triple Negative Breast Cancer Cells by Amplifying Passenger Strand Activity. PLoS One 2015; 10:e0142574. [PMID: 26629823 PMCID: PMC4667903 DOI: 10.1371/journal.pone.0142574] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/24/2015] [Indexed: 12/18/2022] Open
Abstract
Conventional wisdom holds that only one of the two strands in a micro ribonucleic acid (miRNA) precursor duplex is selected as the active miRNA guide strand. The complementary miRNA passenger strand, however, is thought to be inactive. High levels of the oncogenic miRNA (oncomiR) guide strand called miR-17-5p is overexpressed in triple negative breast cancer (TNBC) and can inhibit ribosomal translation of tumor suppressor gene mRNAs, such as programmed cell death 4 (PDCD4) or phosphatase and tensin homolog (PTEN). We hypothesized that knocking down the oncogenic microRNA (oncomiR) miR-17-5p might restore the expression levels of PDCD4 and PTEN tumor suppressor proteins, illustrating a route to oligonucleotide therapy of TNBC. Contrary to conventional wisdom, antisense knockdown of oncomiR miR-17-5p guide strand reduced PDCD4 and PTEN proteins by 1.8±0.3 fold in human TNBC cells instead of raising them. Bioinformatics analysis and folding energy calculations revealed that mRNA targets of miR-17-5p guide strand, such as PDCD4 and PTEN, could also be regulated by miR-17-3p passenger strand. Due to high sequence homology between the antisense molecules and miR-17-3p passenger strand, as well as the excess binding sites for the passenger strand on the 3’UTR of PDCD4 and PTEN mRNAs, introducing a miR-17-3p DNA-LNA mimic to knock down miR-17-5p reduced PDCD4 and PTEN protein expression instead of raising them. Our results imply that therapeutic antisense sequences against miRNAs should be designed to target the miRNA strand with the greatest number of putative binding sites in the target mRNAs, while minimizing affinity for the minor strand.
Collapse
Affiliation(s)
- Yuan-Yuan Jin
- Biochemistry & Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Jade Andrade
- Chemistry, Haverford College, Haverford, Pennsylvania, United States of America
| | - Eric Wickstrom
- Biochemistry & Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
98
|
Zambrano T, Hirata RDC, Hirata MH, Cerda Á, Salazar LA. Altered microRNome Profiling in Statin-Induced HepG2 Cells: A Pilot Study Identifying Potential new Biomarkers Involved in Lipid-Lowering Treatment. Cardiovasc Drugs Ther 2015; 29:509-518. [PMID: 26602562 DOI: 10.1007/s10557-015-6627-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Statins are widely prescribed drugs to manage hypercholesterolemia. Despite they are considered effective lipid-lowering agents, significant inter-individual variability has been reported in relation to drug response. Among the reasons explaining this variation, genetic factors are known to partially contribute. Nonetheless, poor evidence exists regarding epigenetic factors involved. METHODS We investigated if atorvastatin can modulate the cholesterol related miR-33 family. Furthermore, we analyzed the microRNA expression profiles in HepG2 cells treated for 24 hours with atorvastatin or simvastatin using a microarray platform. RESULTS Our results indicate that atorvastatin does not influence the expression of the miR-33 family. In addition, microarray examination revealed that atorvastatin modulated thirteen miRs, whilst simvastatin only affected two miRs. All significantly modulated miRs after simvastastin therapy were also modulated by atorvastatin. In addition, four novel miRs with previously unreported functions were identified as statin-modulated. CONCLUSION We identified several novel miRs affected by statin treatment. Additional research is needed to determine the biological significance of differentially expressed miRs identified in statins-induced HepG2 cells.
Collapse
Affiliation(s)
- Tomás Zambrano
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.,School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Rosario D C Hirata
- School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Mario H Hirata
- School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Álvaro Cerda
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.,School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile. .,Centro de Biología Molecular & Farmacogenética, Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile.
| |
Collapse
|
99
|
The pseudogene TUSC2P promotes TUSC2 function by binding multiple microRNAs. Nat Commun 2015; 5:2914. [PMID: 24394498 PMCID: PMC3896787 DOI: 10.1038/ncomms3914] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/11/2013] [Indexed: 01/16/2023] Open
Abstract
Various non-coding regions of the genome, once presumed to be ‘junk’ DNA, have recently been found to be transcriptionally active. In particular, pseudogenes are now known to have important biological roles. Here we report that transcripts of the two tumour suppressor candidate-2 pseudogenes (TUSC2P), found on chromosomes X and Y, are homologous to the 3′-UTR of their corresponding protein coding transcript, TUSC2. TUSC2P and the TUSC2 3′-UTR share many common miRNA-binding sites, including miR-17, miR-93, miR-299-3p, miR-520a, miR-608 and miR-661. We find that ectopic expression of TUSC2P and the TUSC2 3′-UTR inhibits cell proliferation, survival, migration, invasion and colony formation, and increases tumour cell death. By interacting with endogenous miRNAs, TUSC2P and TUSC2 3′-UTR arrest the functions of these miRNAs, resulting in increased translation of TUSC2. The TUSC2P and TUSC2 3′-UTR could thus be used as combinatorial miRNA inhibitors and might have clinical applications. Non-coding RNAs have recently emerged as crucial regulators of gene expression. Here Rutnam et al. identify a pseudogene complementary to the 3′-UTR of the TUSC2 tumour suppressor that regulates TUSC2 levels by acting as a decoy for endogenous microRNAs and thereby inhibits tumorigenesis.
Collapse
|
100
|
Abstract
Non-coding RNAs have gained increasing attention, as their physiological and pathological functions are being gradually uncovered. MicroRNAs are the most well-studied ncRNAs, which play essential roles in translational repression and mRNA degradation. In contrast, long non-coding RNAs are distinguished from other small/short non-coding RNAs by length and regulate chromatin remodeling, gene transcription and posttranscriptional modifications. Recently, circular RNAs have emerged as endogenous, abundant, conserved and stable in mammalian cells. It has been demonstrated that circular RNAs can function as miRNA sponges. Other possible biological functions of circular RNAs are still under investigation. In this review, the biogenesis and biological functions of the three major types of ncRNAs, including miRNAs, lncRNAs and circRNAs, are overviewed. In addition, the role of ncRNAs in human diseases and potential clinical applications of ncRNAs are discussed.
Collapse
Affiliation(s)
- Nan Wu
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Burton B Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|