51
|
Ding G, Wang T, Tang G, Zou Q, Wu G, Wu J. A novel prognostic predictor of immune microenvironment and therapeutic response in clear cell renal cell carcinoma based on angiogenesis-immune-related gene signature. Heliyon 2024; 10:e23503. [PMID: 38170124 PMCID: PMC10758882 DOI: 10.1016/j.heliyon.2023.e23503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/26/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC), the most common type of RCC, typically produces no symptoms initially. Patients with ccRCC are at increased risk of developing advanced metastatic disease due to the absence of dependable and effective prognostic biomarkers. Therefore, it is particularly urgent to find optimal stratification of patients with ccRCC to distinguish the clinical benefits of different malignant degrees. Angiogenesis has a profound impact on the malignant behavior of renal cancer cells, and anti-angiogenic drugs have been applied to metastatic renal cancer patients. Moreover, immune function dysregulation is also a significant factor in tumorigenesis. We aim to construct a predictive model that combines angiogenesis and immune-related genes (AIRGs) to aid clinicians in predicting ccRCC prognosis. Methods We gathered transcriptome and clinicopathology data from two datasets, the E-MTAB-1980 dataset and the Cancer Genome Atlas (TCGA). We utilized consensus clustering to find new molecular subgroups. A predictive model for the prognosis of angiogenesis-immune-associated genes (AIRGs) was conducted by the lasso and multivariate Cox regression analysis. The signature's predictive ability was then tested in different datasets. Meticulous scrutiny and comprehensive assessment were undertaken, both internally and externally, to establish the prognostic model. Analyses of immunogenomics were carried out to examine the relationship between risk scores and clinical/immune features, including immune cell infiltration, genomic alterations, and response to targeted and immunotherapy therapy. Results Our prognostic signature, comprising 4 AIRGs, stood as an independent prognostic factor for ccRCC, while risk scores emerged as a novel indicator for forecasting overall survival. Risk scores exhibited significant associations with various immunophenotypic factors, such as oncogenic pathways, antitumor response, different immune cell infiltration, antitumor immunity, and response to targeted and immunotherapy therapy. Conclusions AIRGs-based prognostic prediction model could effectively predict immunotherapy responses and survival outcomes of ccRCC.
Collapse
Affiliation(s)
| | | | | | - Qingsong Zou
- Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Gang Wu
- Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Jitao Wu
- Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| |
Collapse
|
52
|
Yuan J, Liu Z, Dong Y, Gao F, Xia X, Wang P, Luo Y, Zhang Z, Yan D, Zhang W. Pioneering 4,11-Dioxo-4,11-dihydro-1 H-anthra[2,3- d]imidazol-3-ium Compounds as Promising Survivin Inhibitors by Targeting ILF3/NF110 for Cancer Therapy. J Med Chem 2023; 66:16843-16868. [PMID: 38079530 DOI: 10.1021/acs.jmedchem.3c01551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Survivin is a novel attractive target for cancer therapy; however, it is considered undruggable because it lacks enzymatic activities. Herein, we describe our efforts toward the discovery of a novel series of 4,11-dioxo-4,11-dihydro-1H-anthra[2,3-d]imidazol-3-ium derivatives as survivin inhibitors by targeting ILF3/NF110. Intensive structural modifications led us to identify a lead compound AQIM-I, which remarkably inhibited nonsmall cell lung cancer cells A549 with an IC50 value of 9 nM and solid tumor cell proliferation with more than 700-fold selectivity against human normal cells. Further biological studies revealed that compound AQIM-I significantly inhibited survivin expression and colony formation and induced ROS production, apoptosis, cell cycle arrest, DNA damage, and autophagy. Furthermore, the promoter-luciferase reporter assay showed that AQIM-I attenuated the survivin promoter activity enhanced by the overexpression of ILF3/NF110 in a concentration-dependent manner, and specific binding (KD = 163 nM) of AQIM-I to ILF3/NF110 was detected by surface plasmon resonance.
Collapse
Affiliation(s)
- Jing Yuan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Zhanxiong Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yachun Dong
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Feng Gao
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Xuelin Xia
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Penghui Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yanli Luo
- Department of Pathology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Deyue Yan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
53
|
Savary C, Luciana L, Huchedé P, Tourbez A, Coquet C, Broustal M, Lopez Gonzalez A, Deligne C, Diot T, Naret O, Costa M, Meynard N, Barbet V, Müller K, Tonon L, Gadot N, Degletagne C, Attignon V, Léon S, Vanbelle C, Bomane A, Rochet I, Mournetas V, Oliveira L, Rinaudo P, Bergeron C, Dutour A, Cordier-Bussat M, Roch A, Brandenberg N, El Zein S, Watson S, Orbach D, Delattre O, Dijoud F, Corradini N, Picard C, Maucort-Boulch D, Le Grand M, Pasquier E, Blay JY, Castets M, Broutier L. Fusion-negative rhabdomyosarcoma 3D organoids to predict effective drug combinations: A proof-of-concept on cell death inducers. Cell Rep Med 2023; 4:101339. [PMID: 38118405 PMCID: PMC10772578 DOI: 10.1016/j.xcrm.2023.101339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/29/2023] [Accepted: 11/22/2023] [Indexed: 12/22/2023]
Abstract
Rhabdomyosarcoma (RMS) is the main form of pediatric soft-tissue sarcoma. Its cure rate has not notably improved in the last 20 years following relapse, and the lack of reliable preclinical models has hampered the design of new therapies. This is particularly true for highly heterogeneous fusion-negative RMS (FNRMS). Although methods have been proposed to establish FNRMS organoids, their efficiency remains limited to date, both in terms of derivation rate and ability to accurately mimic the original tumor. Here, we present the development of a next-generation 3D organoid model derived from relapsed adult and pediatric FNRMS. This model preserves the molecular features of the patients' tumors and is expandable for several months in 3D, reinforcing its interest to drug combination screening with longitudinal efficacy monitoring. As a proof-of-concept, we demonstrate its preclinical relevance by reevaluating the therapeutic opportunities of targeting apoptosis in FNRMS from a streamlined approach based on transcriptomic data exploitation.
Collapse
Affiliation(s)
- Clara Savary
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Léa Luciana
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Paul Huchedé
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Arthur Tourbez
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Claire Coquet
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Maëlle Broustal
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Alejandro Lopez Gonzalez
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Clémence Deligne
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Thomas Diot
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Olivier Naret
- DOPPL, EPFL Innovation Park, Building L, Ch. de la Dent d'Oche 1, 1024 Ecublens, Switzerland
| | - Mariana Costa
- DOPPL, EPFL Innovation Park, Building L, Ch. de la Dent d'Oche 1, 1024 Ecublens, Switzerland
| | - Nina Meynard
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Virginie Barbet
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Kevin Müller
- Université Aix-Marseille, CNRS 7258, INSERM 1068, Institute Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), 13009 Marseille, France
| | - Laurie Tonon
- Synergie Lyon Cancer, Gilles Thomas' Bioinformatics Platform, Centre Léon Bérard, 69008 Lyon, France
| | - Nicolas Gadot
- Anatomopathology Research Platform, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Cyril Degletagne
- Cancer Genomics Platform, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Valéry Attignon
- Cancer Genomics Platform, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Sophie Léon
- EX-VIVO Platform, Centre de recherche en cancérologie de Lyon (CRCL), Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Christophe Vanbelle
- Plateforme d'Imagerie cellulaire, Centre de recherche en cancérologie de Lyon (CRCL), Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Alexandra Bomane
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Isabelle Rochet
- Multisite Institute of Pathology, Groupement Hospitalier Est du CHU de Lyon, Hôpital Femme-Mère-Enfant, 69677 Bron, France; Department of Pediatric Oncology, Institut d'Hématologie et d'Oncologie Pédiatrique, Centre Léon Bérard, 69008 Lyon, France
| | | | | | | | - Christophe Bergeron
- Department of Pediatric Oncology, Institut d'Hématologie et d'Oncologie Pédiatrique, Centre Léon Bérard, 69008 Lyon, France
| | - Aurélie Dutour
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Martine Cordier-Bussat
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Aline Roch
- DOPPL, EPFL Innovation Park, Building L, Ch. de la Dent d'Oche 1, 1024 Ecublens, Switzerland
| | - Nathalie Brandenberg
- DOPPL, EPFL Innovation Park, Building L, Ch. de la Dent d'Oche 1, 1024 Ecublens, Switzerland
| | - Sophie El Zein
- Department of Biopathology, Institut Curie, Paris, France
| | - Sarah Watson
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, PSL Research University, Paris, France; INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, Institut Curie, PSL Research University, Paris, France; Medical Oncology Department, Institut Curie, PSL Research University, Paris, France
| | - Daniel Orbach
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, PSL Research University, Paris, France
| | - Olivier Delattre
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, PSL Research University, Paris, France; INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, Institut Curie, PSL Research University, Paris, France
| | - Frédérique Dijoud
- Multisite Institute of Pathology, Groupement Hospitalier Est du CHU de Lyon, Hôpital Femme-Mère-Enfant, 69677 Bron, France
| | - Nadège Corradini
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France; Department of Pediatric Oncology, Institut d'Hématologie et d'Oncologie Pédiatrique, Centre Léon Bérard, 69008 Lyon, France; Department of Translational Research in Pediatric Oncology PROSPECT, Centre Léon Bérard, 69008 Lyon, France
| | - Cécile Picard
- Multisite Institute of Pathology, Groupement Hospitalier Est du CHU de Lyon, Hôpital Femme-Mère-Enfant, 69677 Bron, France
| | - Delphine Maucort-Boulch
- Université Lyon 1, 69100 Villeurbanne, France; Hospices Civils de Lyon, Pôle Santé Publique, Service de Biostatistique et Bioinformatique, 69003 Lyon, France; CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Équipe Biostatistique-Santé, 69100 Villeurbanne, France
| | - Marion Le Grand
- Université Aix-Marseille, CNRS 7258, INSERM 1068, Institute Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), 13009 Marseille, France
| | - Eddy Pasquier
- Université Aix-Marseille, CNRS 7258, INSERM 1068, Institute Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), 13009 Marseille, France
| | - Jean-Yves Blay
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France; Department of Translational Research in Pediatric Oncology PROSPECT, Centre Léon Bérard, 69008 Lyon, France
| | - Marie Castets
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France; Department of Translational Research in Pediatric Oncology PROSPECT, Centre Léon Bérard, 69008 Lyon, France.
| | - Laura Broutier
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France; Department of Translational Research in Pediatric Oncology PROSPECT, Centre Léon Bérard, 69008 Lyon, France.
| |
Collapse
|
54
|
Kondapuram SK, Ramachandran HK, Arya H, Coumar MS. Targeting survivin for cancer therapy: Strategies, small molecule inhibitors and vaccine based therapeutics in development. Life Sci 2023; 335:122260. [PMID: 37963509 DOI: 10.1016/j.lfs.2023.122260] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
Survivin is a member of the family of inhibitors of apoptosis proteins (IAPs). It is involved in the normal mitotic process and acts as an anti-apoptotic molecule. While terminally differentiated normal tissues lack survivin, several human malignancies have significant protein levels. Resistance to chemotherapy and radiation in tumor cells is associated with survivin expression. Decreased tumor development, apoptosis, and increased sensitivity to chemotherapy and radiation are all effects of downregulating survivin expression or activity. As a prospective cancer treatment, small molecules targeting the transcription and translation of survivin and molecules that can directly bind with the survivin are being explored both in pre-clinical and clinics. Pre-clinical investigations have found and demonstrated the effectiveness of several small-molecule survivin inhibitors. Unfortunately, these inhibitors have also been shown to have off-target effects, which could limit their clinical utility. In addition to small molecules, several survivin peptide vaccines are currently under development. These vaccines are designed to elicit a cytotoxic T-cell response against survivin, which could lead to the destruction of tumor cells expressing survivin. Some survivin-based vaccines are advancing through Phase II clinical studies. Overall, survivin is a promising cancer drug target. However, challenges still need to be addressed before the survivin targeted therapies can be widely used in the clinics.
Collapse
Affiliation(s)
- Sree Karani Kondapuram
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Hema Kasthuri Ramachandran
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Hemant Arya
- Institute for Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr University Bochum, 44780 Bochum, Germany
| | - Mohane Selvaraj Coumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India.
| |
Collapse
|
55
|
Dorneburg C, Galiger C, Stadler GL, Westhoff MA, Rasche V, Barth TFE, Debatin KM, Beltinger C. Inhibition of Survivin Homodimerization Decreases Neuroblastoma Cell Growth. Cancers (Basel) 2023; 15:5775. [PMID: 38136322 PMCID: PMC10741502 DOI: 10.3390/cancers15245775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Increased expression of BIRC5/survivin, a crucial regulator of the mitotic spindle checkpoint, is associated with poor prognosis in neuroblastoma (NB), the most common extracranial tumor of childhood. Transcriptional inhibitors of survivin have been tested in adult cancers and inhibitors of survivin homodimerization are emerging. We compared genetic inhibition of survivin transcription with the inhibition of survivin homodimerization by S12 and LQZ-7I, chosen from a larger panel of survivin dimerization inhibitors with activity against NB cells. Mice hemizygous for Birc5 were crossed with NB-prone TH-MYCN mice to generate Birc5+/-/MYCNtg/+ mice. The marked decrease of survivin transcription in these mice did not suffice to attenuate the aggressiveness of NB, even when tumors were transplanted into wild-type mice to assure that immune cell function was not compromised by the lack of survivin. In contrast, viability, clonogenicity and anchorage-independent growth of NB cells were markedly decreased by S12. S12 administered systemically to mice with subcutaneous NB xenotransplants decreased intratumoral hemorrhage, albeit not tumor growth. LQZ-7I, which directly targets the survivin dimerization interface, was efficacious in controlling NB cell growth in vitro at markedly lower concentrations compared to S12. LQZ-7I abrogated viability, clonogenicity and anchorage-independent growth, associated with massively distorted mitotic spindle formation. In vivo, LQZ-7I effectively reduced tumor size and cell proliferation of NB cells in CAM assays without apparent toxicity to the developing chick embryo. Collectively, these findings show that inhibiting survivin homodimerization with LQZ-7I holds promise for the treatment of NB and merits further investigation.
Collapse
Affiliation(s)
- Carmen Dorneburg
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, 89075 Ulm, Germany; (C.D.); (G.L.S.); (M.-A.W.); (K.-M.D.)
| | - Celimene Galiger
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, 89075 Ulm, Germany; (C.D.); (G.L.S.); (M.-A.W.); (K.-M.D.)
| | - Giovanna L. Stadler
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, 89075 Ulm, Germany; (C.D.); (G.L.S.); (M.-A.W.); (K.-M.D.)
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, 89075 Ulm, Germany; (C.D.); (G.L.S.); (M.-A.W.); (K.-M.D.)
| | - Volker Rasche
- Department of Internal Medicine II, University Medical Center Ulm, 89075 Ulm, Germany;
| | - Thomas F. E. Barth
- Department of Pathology, University Medical Center Ulm, 89075 Ulm, Germany;
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, 89075 Ulm, Germany; (C.D.); (G.L.S.); (M.-A.W.); (K.-M.D.)
| | - Christian Beltinger
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, 89075 Ulm, Germany; (C.D.); (G.L.S.); (M.-A.W.); (K.-M.D.)
| |
Collapse
|
56
|
Park DG, Jin B, Lee WW, Kim HJ, Kim JH, Choi SJ, Hong SD, Shin JA, Cho SD. Apoptotic activity of genipin in human oral squamous cell carcinoma in vitro by regulating STAT3 signaling. Cell Biochem Funct 2023; 41:1319-1329. [PMID: 37792550 DOI: 10.1002/cbf.3866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/01/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
Genipin, a natural compound derived from the fruit of Gardenia jasminoides Ellis, was reported to have activity against various cancer types. In this study, we determined the underlying mechanism for genipin-induced cell death in human oral squamous cell carcinoma (OSCC). The growth-inhibitory effects of genipin in human OSCC cells was examined by the Cell Counting Kit-8 and soft agar assays. The effects of genipin on apoptosis were assessed by nuclear morphological changes by 4',6-diamidino-2-phenylindole staining, measurement of the sub-G1 population, and Annexin V-fluorescein isothiocyanate/propidium iodide double staining. The underlying mechanism of genipin activity was analyzed by western blot analysis, subcellular fractionation of the nucleus and cytoplasm, immunocytochemistry, and quantitative real-time polymerase chain reaction. Genipin inhibited the growth of OSCC cells and induced apoptosis, which was mediated by a caspase-dependent pathway. Genipin reduced the phosphorylation of signal transducer and activator of transcription 3 (STAT3) at Tyr705 and its nuclear localization. Furthermore, inhibition of p-STAT3Tyr705 levels following genipin treatment was required for the reduction of survivin and myeloid cell leukemia-1 (Mcl-1) expression, leading to apoptotic cell death. The genipin-mediated reduction in survivin and Mcl-1 expression was caused by transcriptional and/or posttranslational regulatory mechanisms. The results provide insight into the regulatory mechanism by which genipin induces apoptotic cell death through the abrogation of nuclear STAT3 phosphorylation and suggest that genipin may represent a potential therapeutic option for the treatment of human OSCC.
Collapse
Affiliation(s)
- Dong-Guk Park
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Bohwan Jin
- Laboratory Animal Center, CHA Biocomplex, CHA University, Seongnam, Republic of Korea
| | - Won W Lee
- Laboratory Animal Center, CHA Biocomplex, CHA University, Seongnam, Republic of Korea
| | - Hyun-Ji Kim
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Ji-Hoon Kim
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Su-Jung Choi
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Seong-Doo Hong
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
57
|
He Q, He Y, Li C, Wang J, Xia T, Xiong X, Xu J, Liu L. Downregulated BIRC5 inhibits proliferation and metastasis of melanoma through the β-catenin/HIF-1α/VEGF/MMPs pathway. J Cancer Res Clin Oncol 2023; 149:16797-16809. [PMID: 37728702 DOI: 10.1007/s00432-023-05425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE Melanoma is a malignant skin tumor caused by melanocytes and associated with high mortality rates. This study aims to investigate the specific mechanism of ZWZ-3 in melanoma proliferation and metastasis. METHODS RNA sequencing was performed to identify the effect of ZWZ-3 on gene expression. siRNA was used to inhibit BIRC5 gene expression in the B16F10 cell line. A zebrafish tumor model was used to assess the therapeutic effect of ZWZ-3 in vivo. Mechanistic insights into the inhibition of tumor metastasis by ZWZ-3 were obtained through analysis of tumor tissue sections in mice. RESULTS Our findings demonstrated that ZWZ-3 suppressed melanoma cell proliferation and migration. We performed RNA sequencing in melanoma cells after the treatment with ZWZ-3 and found that Birc5, which is closely associated with tumor metastasis, was significantly down-regulated. Bioinformatics analysis and the immuno-histochemical results of tissue chips for melanoma further confirmed the high expression of BIRC5 in melanoma and its effect on disease progression. Moreover, Birc5 knock-down significantly inhibited melanoma cell proliferation and metastasis, which was correlated with the β-catenin/HIF-1α/VEGF/MMPs pathway. Additionally, ZWZ-3 significantly inhibited tumor growth in the zebrafish tumor model without any evident side effects. Histological and immuno-histochemical analyses revealed that ZWZ-3 inhibited tumor cell metastasis by down-regulating HIF-1α, VEGF, and MMP9. CONCLUSION Our findings revealed that ZWZ-3 could downregulate BIRC5 and inhibit melanoma proliferation and metastasis through the β-catenin/HIF-1α/VEGF/MMPs pathway. Therefore, BIRC5 represents a promising therapeutic target for the treatment of melanoma.
Collapse
Affiliation(s)
- Qingqing He
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yijing He
- Department of Science and Technology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Changqiang Li
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jianv Wang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Tong Xia
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jixiang Xu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
58
|
Li Z, Quan C, Li W, Ji M. Synergistic effect of docetaxel combined with a novel multi-target inhibitor CUDC-101 on inhibiting human prostate cancer. Pathol Res Pract 2023; 252:154938. [PMID: 37989076 DOI: 10.1016/j.prp.2023.154938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/22/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
Histone deacetylases (HDACs) are commonly overexpressed in several types of human cancers, including prostate cancer (PCa). Histone deacetylase inhibitors (HDACis) are emerging as promising tools for cancer therapy. However, there is still a need to understand their anti-tumor effects and the mechanisms underlying their action. In our study, we investigated the effects of co-treatment with CUDC-101 and docetaxel (DTX) on cell growth, clonogenicity, invasion and migration of PCa cells both in vitro, and in a xenograft mouse model. We found that the combination of CUDC-101 and DTX significantly reduced tumor growth, as evidenced by lower tumor weight and volumes. Moreover, apoptotic cell death was increased in the combination group compared to either drug alone or control. Mechanistically, we observed that the combined treatment of CUDC-101 with DTX suppressed the progression of PCa cell lines through the AKT and ERK1/2 signaling pathways. Additionally, this combination treatment reversed EMT by modulating the expression of key markers such as E-cadherin, vimentin, Snail and MMP-9. To conclude, these results demonstrated that the combination of CUDC-101 with DTX had a synergistic and significantly improved anti-carcinogenic effect. This combination may serve as a potential strategy for clinical treatment and prognosis improvement in PCa.
Collapse
Affiliation(s)
- Zhenling Li
- Department of Pathology, Yanbian University Hospital, Yanji, Jilin 133000, China.
| | - Chunji Quan
- Department of Pathology, Yanbian University Hospital, Yanji, Jilin 133000, China
| | - Wenhao Li
- Department of Laboratory Medicine, Yanbian University Hospital, Yanji, Jilin 133000, China
| | - Meiying Ji
- Research Center of Yanbian University Hospital, Yanji, Jilin 133000, China.
| |
Collapse
|
59
|
Forouzanfar F, Tabatabaei Z, Emami SA, Ayati Z, Tayarani‐Najaran Z. Protective effects of fruit extract of Rosa canina and quercetin on human umbilical vein endothelial cell injury induced by hydrogen peroxide. Food Sci Nutr 2023; 11:7618-7625. [PMID: 38107098 PMCID: PMC10724588 DOI: 10.1002/fsn3.3681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 12/19/2023] Open
Abstract
The Nastaran plant, with the scientific name of Rosa canina, has been used since ancient times as a plant with medicinal properties. In the present study, human umbilical vein endothelial cells (HUVECs) were used to examine the protective effects of R. canina fruit extract (RCFE) and its flavonoid ingredient (quercetin) against H2O2-induced cell injury. RCFE (1.25-20 μg/mL) and quercetin (1.25-20 μM) were exposed to H2O2-oxidizing agent (1 and 2 mM) and the protective effect was examined on HUVEC cells by Alamar Blue test. The amount of intracellular reactive oxygen species (ROS) was measured by using DCFDA reagent by fluorimetric method. The effects of RCFE and quercetin on cell apoptosis were studied by staining with hypotonic PI solution and flow cytometry. The amount of PARP and survivin involved in the apoptotic process was measured using the western blot analysis. The results of the Alamar Blue test showed that RCFE and quercetin could reduce the toxicity of H2O2. RCFE and quercetin were able to significantly increase cell viability against H2O2. Also, it was found that RCFE and quercetin reduced the production of ROS by H2O2. It was found that RCFE and quercetin reduced the apoptosis and sub-G1 peak area in flow histogram after exposure of cells to H2O2. Based on western blot results, pretreatment with RCFE and quercetin could significantly increase survivin protein after exposure of cells to H2O2. Also, RCFE and quercetin could significantly reduce the amount of cleaved PARP after exposure of cells to H2O2. RCFE and its ingredient (quercetin) can be considered a promising source of phytochemicals in the prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Department of Neuroscience, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Zeynab Tabatabaei
- Department of Traditional Pharmacy, School of PharmacyMashhad University of Medical SciencesMashhadIran
- Medical Toxicology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Zahra Ayati
- Department of Traditional Pharmacy, School of PharmacyMashhad University of Medical SciencesMashhadIran
- Western Sydney UniversityPenrithAustralia
| | - Zahra Tayarani‐Najaran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
60
|
Galiger C, Zohora FT, Dorneburg C, Tews D, Debatin KM, Beltinger C. The survivin-ran inhibitor LLP-3 decreases oxidative phosphorylation, glycolysis and growth of neuroblastoma cells. BMC Cancer 2023; 23:1148. [PMID: 38007466 PMCID: PMC10676583 DOI: 10.1186/s12885-023-11635-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/12/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Neuroblastoma (NB), the most common extracranial solid malignancy in children, carries a poor prognosis in high-risk disease, thus requiring novel therapeutic approaches. Survivin is overexpressed in NB, has pro-mitotic and anti-apoptotic functions, and impacts on oxidative phosphorylation (OXPHOS) and aerobic glycolysis. The subcellular localization and hence function of survivin is directed by the GTPase Ran. AIM To determine efficacy and modes of action of the survivin-Ran inhibitor LLP-3 as a potential novel therapy of NB. METHODS Survivin and Ran mRNA expression in NB tumors was correlated to patient survival. Response to LLP-3 in NB cell lines was determined by assays for viability, proliferation, apoptosis, clonogenicity and anchorage-independent growth. Interaction of survivin and Ran was assessed by proximity-linked ligation assay and their subcellular distribution by confocal immunofluorescence microscopy. Expression of survivin, Ran and proteins important for OXPHOS and glycolysis was determined by Western blot, hexokinase activity by enzymatic assay, interaction of survivin with HIF-1α by co-IP, and OXPHOS and glycolysis by extracellular flux analyzer. RESULTS High mRNA expression of survivin and Ran is correlated with poor patient survival. LLP-3 decreases viability, induces apoptosis, and inhibits clonogenic and anchorage-independent growth in NB cell lines, including those with MYCN amplification, and mutations of p53 and ALK. LLP-3 inhibits interaction of survivin with Ran, decreasing their concentration both in the cytoplasm and the nucleus. LLP-3 impairs flexibility of energy metabolism by inhibiting both OXPHOS and glycolysis. Metabolic inhibition is associated with mitochondrial dysfunction and attenuated hexokinase activity but is independent of HIF-1α. CONCLUSION LLP-3 attenuates interaction and concentration of survivin and Ran in NB cells. It controls NB cells with diverse genetic alterations, associated with inhibition of OXPHOS, aerobic glycolysis, mitochondrial function and HK activity. Thus, LLP-3 warrants further studies as a novel drug against NB.
Collapse
Affiliation(s)
- Celimene Galiger
- Department of Pediatrics and Adolescent Medicine, Section of Experimental Pediatric Oncology, University Medical Center Ulm, Eythstr. 24, Ulm, 89075, Germany
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstr. 24, Ulm, 89075, Germany
| | - Fatema Tuj Zohora
- Department of Pediatrics and Adolescent Medicine, Section of Experimental Pediatric Oncology, University Medical Center Ulm, Eythstr. 24, Ulm, 89075, Germany
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstr. 24, Ulm, 89075, Germany
| | - Carmen Dorneburg
- Department of Pediatrics and Adolescent Medicine, Section of Experimental Pediatric Oncology, University Medical Center Ulm, Eythstr. 24, Ulm, 89075, Germany
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstr. 24, Ulm, 89075, Germany
| | - Daniel Tews
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstr. 24, Ulm, 89075, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstr. 24, Ulm, 89075, Germany
| | - Christian Beltinger
- Department of Pediatrics and Adolescent Medicine, Section of Experimental Pediatric Oncology, University Medical Center Ulm, Eythstr. 24, Ulm, 89075, Germany.
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Eythstr. 24, Ulm, 89075, Germany.
| |
Collapse
|
61
|
Palacios Y, Ramón-Luing LA, Ruiz A, García-Martínez A, Sánchez-Monciváis A, Barreto-Rodríguez O, Falfán-Valencia R, Pérez-Rubio G, Medina-Quero K, Buendia-Roldan I, Chavez-Galan L. COVID-19 patients with high TNF/IFN-γ levels show hallmarks of PANoptosis, an inflammatory cell death. Microbes Infect 2023; 25:105179. [PMID: 37394112 DOI: 10.1016/j.micinf.2023.105179] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
TNF and IFN-γ trigger cell damage during SARS CoV-2 infection; these cytokines can induce senescence and a cell death process called PANoptosis. This study included 138 vaccine-naïve COVID-19 patients, who were divided into four groups (Gp) according to the plasma level of TNF and IFN-γ (High [Hi] or Normal-Low [No-Low]), Gp 1: TNFHi/IFNγHi; Gp 2: TNFHi/IFNγNo-Low; Gp 3: TNFNo-Low/IFNγHi; and Gp 4: TNFNo-Low/IFNγNo-Low. Thirty-five apoptosis-related proteins and molecules related to cell death and senescence were evaluated. Our results showed that groups did not display differences in age and comorbidities. However, 81% of the Gp 1 patients had severe COVID-19, and 44% died. Notably, the p21/CDKN1A was increased in Gp 2 and Gp 3. Moreover, Gp 1 showed higher TNFR1, MLKL, RIPK1, NLRP3, Caspase 1, and HMGB-1 levels, suggesting elevated TNF and IFN-γ levels simultaneously activate diverse cell death pathways because it is not observed when only one of these cytokines is increased. Thus, high TNF/IFN-γ levels are predominant in severe COVID-19 status, and patients display cell alterations associated with the activation of diverse cell death pathways, including a possible senescent phenotype.
Collapse
Affiliation(s)
- Yadira Palacios
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City 14080, Mexico
| | - Lucero A Ramón-Luing
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City 14080, Mexico
| | - Andy Ruiz
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City 14080, Mexico
| | | | - Anahí Sánchez-Monciváis
- Laboratorio de Inmunología, Escuela Militar de Graduados de Sanidad, SEDENA, Mexico City 11200, Mexico
| | - Omar Barreto-Rodríguez
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City 14080, Mexico
| | - Ramces Falfán-Valencia
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City 14080, Mexico
| | - Gloria Pérez-Rubio
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City 14080, Mexico
| | - Karen Medina-Quero
- Laboratorio de Inmunología, Escuela Militar de Graduados de Sanidad, SEDENA, Mexico City 11200, Mexico
| | - Ivette Buendia-Roldan
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City 14080, Mexico
| | - Leslie Chavez-Galan
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City 14080, Mexico.
| |
Collapse
|
62
|
Meleshko A, Kushniarova L, Shinkevich V, Mikhaleuskaya T, Valochnik A, Proleskovskaya I. Expression Pattern of Tumor-associated Antigens in Neuroblastoma: Association With Cytogenetic Features and Survival. CANCER DIAGNOSIS & PROGNOSIS 2023; 3:695-705. [PMID: 37927813 PMCID: PMC10619573 DOI: 10.21873/cdp.10274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023]
Abstract
Background/Aim The prognosis of high-risk and relapsed neuroblastoma (NB) patients remains poor. The identification of tumor-associated markers is important for differential diagnosis, prognosis, and the development of targeted therapies. The aim of the study was to determine the expression profile of nine most common NB antigens and assess their association with clinicopathological characteristics and patient survival. Patients and Methods Tumor samples from 86 patients with NB were evaluated for the expression of tumor-associated antigen (TAA) using quantitative PCR. Twenty-one patients with benign tumors and 17 healthy donors were assigned as controls. Results Overexpression of tyrosine hydroxylase (TH), PHOX2B, PRAME, GPC2, B7-H3, and Survivin is the most typical for NB. Positive expression of MAGEA3, MAGEA1, and NY-ESO-1 at low levels was detected in 54%, 48%, and 52%, respectively, and was not NB specific. Higher TH expression was observed in samples without MYCN-amplification, while higher expression of Survivin, PHOX2B, and GPC2 was significantly associated with the presence of 1p.36 deletion. Overexpression of TH, PHOX2B, and MAGEA1 was associated with better event-free (EFS) and overall survival (OS). Survivin overexpression was associated with poor EFS but had no impact on OS. Multivariate analysis confirmed Survivin as independent marker for poor survival, and PHOX2B and MAGEA1 for better survival. Conclusion High expression of TH, PHOX2B, and MAGEA1 genes are favorable prognostic factors for OS and EFS, whereas high expression of Survivin is associated with an increased risk of relapse or progression.
Collapse
Affiliation(s)
- Alexander Meleshko
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Lizaveta Kushniarova
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | | | - Taisia Mikhaleuskaya
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Alena Valochnik
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Inna Proleskovskaya
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| |
Collapse
|
63
|
Liao J, Qing X, Deng G, Xiao Y, Fu Y, Han S, Li X, Gan Y, Li W. Gastrodin destabilizes survivin and overcomes pemetrexed resistance. Cell Signal 2023; 110:110851. [PMID: 37586466 DOI: 10.1016/j.cellsig.2023.110851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Survivin is a bifunctional protein that plays crucial roles in tumorigenesis. In the present study, we discovered that the natural product gastrodin suppressed the cell viability and colony formation of non-small cell lung cancer (NSCLC) cell lines A549, HCC827, and H460 in a dose-dependent manner. In addition, gastrodin enhanced the protein levels of cleaved-caspase 3 by activating the endogenous mitochondrial apoptosis pathway. Gastrodin inhibits protein kinase B (Akt)/WEE1/cyclin-dependent kinase 1 (CDK1) signaling to downregulate survivin Thr34 phosphorylation. Survivin Thr34 dephosphorylation caused by gastrodin interfered with the binding of ubiquitin-specific protease 19 (USP19), which eventually destabilized survivin. We revealed that the growth of NSCLC xenograft tumors was markedly suppressed by gastrodin in vivo. Furthermore, gastrodin overcomes pemetrexed resistance in vivo or in vitro. Our results suggest that gastrodin is a potential antitumor agent by reducing survivin in NSCLC.
Collapse
Affiliation(s)
- Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiang Qing
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Gaoyan Deng
- Department of Thoracic Surgery, Hunan Chest Hospital, Changsha, Hunan, China
| | - Yeqing Xiao
- Department of Ultrasonography, Hunan Chest Hospital, Changsha, Hunan, China
| | - Yaqian Fu
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Shuangze Han
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu Gan
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
64
|
Cao Y, Tang H, Wang G, Li P, Song Z, Li W, Sun X, Zhong X, Yu Q, Zhu S, Zhu L. Targeting survivin with Tanshinone IIA inhibits tumor growth and overcomes chemoresistance in colorectal cancer. Cell Death Discov 2023; 9:351. [PMID: 37749082 PMCID: PMC10520088 DOI: 10.1038/s41420-023-01622-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/27/2023] Open
Abstract
The inhibitor of apoptosis protein survivin has a critical regulatory role in carcinogenesis and treatment tolerance in colorectal cancer (CRC). However, the targeted drugs for survivin protein are extremely limited. In the present research, we discovered that Tanshinone IIA (Tan IIA) played a dual regulatory role in inhibiting tumorigenesis and reversing 5-Fu tolerance via modulating the expression and phosphorylation of survivin in CRC cells. Mechanistically, Tan IIA suppressed the Akt/WEE1/CDK1 signaling pathway, which led to the downregulation of survivin Thr34 phosphorylation and destruction of the interaction between USP1 and survivin to promote survivin ubiquitination and degradation. Furthermore, Tan IIA significantly facilitated chemoresistant CRC cells to 5-Fu sensitivity. These results revealed that Tan IIA possessed a strong antitumor activity against CRC cells and could act as an up-and-coming agent for treating CRC and overcoming chemotherapy resistance.
Collapse
Affiliation(s)
- Yaoquan Cao
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Haibo Tang
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Guohui Wang
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Pengzhou Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhi Song
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Weizheng Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xulong Sun
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xiaoxiao Zhong
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Qianqian Yu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Shaihong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Liyong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
65
|
Begg LR, Orriols AM, Zannikou M, Yeh C, Vadlamani P, Kanojia D, Bolin R, Dunne SF, Balakrishnan S, Camarda R, Roth D, Zielinski-Mozny NA, Yau C, Vassilopoulos A, Huang TH, Kim KYA, Horiuchi D. S100A8/A9 predicts triple-negative breast cancer response to PIM kinase and PD-1/PD-L1 inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558870. [PMID: 37790346 PMCID: PMC10542194 DOI: 10.1101/2023.09.21.558870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
It remains elusive why some triple-negative breast cancer (TNBC) patients respond poorly to existing therapies while others respond well. Our retrospective analysis of historical gene expression datasets reveals that increased expression of immunosuppressive cytokine S100A8/A9 in early-stage tumors is robustly associated with subsequent disease progression in TNBC. Although it has recently gained recognition as a potential anticancer target, S100A8/A9 has not been integrated into clinical study designs evaluating molecularly targeted therapies. Our small molecule screen has identified PIM kinase inhibitors as capable of decreasing S100A8/A9 expression in multiple cell types, including TNBC and immunosuppressive myeloid cells. Furthermore, combining PIM inhibition and immune checkpoint blockade induces significant antitumor responses, especially in otherwise resistant S100A8/A9-high PD-1/PD-L1-positive tumors. Importantly, serum S100A8/A9 levels mirror those of tumor S100A8/A9 in a syngeneic mouse model of TNBC. Thus, our data suggest that S100A8/A9 could be a predictive and pharmacodynamic biomarker in clinical trials evaluating combination therapy targeting PIM and immune checkpoints in TNBC and encourage the development of S100A8/A9-based liquid biopsy tests.
Collapse
|
66
|
Breder-Bonk C, Docter D, Barz M, Strieth S, Knauer SK, Gül D, Stauber RH. The Apoptosis Inhibitor Protein Survivin Is a Critical Cytoprotective Resistor against Silica-Based Nanotoxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2546. [PMID: 37764575 PMCID: PMC10535920 DOI: 10.3390/nano13182546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
Exposure to nanoparticles is inevitable as they become widely used in industry, cosmetics, and foods. However, knowledge of their (patho)physiological effects on biological entry routes of the human body and their underlying molecular mechanisms is still fragmented. Here, we examined the molecular effects of amorphous silica nanoparticles (aSiNPs) on cell lines mimicking the alveolar-capillary barrier of the lung. After state-of-the-art characterization of the used aSiNPs and the cell model, we performed cell viability-based assays and a protein analysis to determine the aSiNP-induced cell toxicity and underlying signaling mechanisms. We revealed that aSiNPs induce apoptosis in a dose-, time-, and size-dependent manner. aSiNP-induced toxicity involves the inhibition of pro-survival pathways, such as PI3K/AKT and ERK signaling, correlating with reduced expression of the anti-apoptotic protein Survivin on the protein and transcriptional levels. Furthermore, induced Survivin overexpression mediated resistance against aSiNP-toxicity. Thus, we present the first experimental evidence suggesting Survivin as a critical cytoprotective resistor against silica-based nanotoxicity, which may also play a role in responses to other NPs. Although Survivin's relevance as a biomarker for nanotoxicity needs to be demonstrated in vivo, our data give general impetus to investigate the pharmacological modulation of Survivin`s functions to attenuate the harmful effects of acute or chronic inhalative NP exposure.
Collapse
Affiliation(s)
- Christina Breder-Bonk
- Molecular and Cellular Oncology, University Medical Center Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany; (D.D.); (R.H.S.)
| | - Dominic Docter
- Molecular and Cellular Oncology, University Medical Center Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany; (D.D.); (R.H.S.)
| | - Matthias Barz
- Leiden Academic Center for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands;
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Bonn, Venusberg-Campus 1, 53127 Bonn, Germany;
| | - Shirley K. Knauer
- Center for Medical Biotechnology (ZMB), Department of Molecular Biology II, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany;
| | - Désirée Gül
- Molecular and Cellular Oncology, University Medical Center Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany; (D.D.); (R.H.S.)
| | - Roland H. Stauber
- Molecular and Cellular Oncology, University Medical Center Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany; (D.D.); (R.H.S.)
| |
Collapse
|
67
|
Jung M, Bui I, Bonavida B. Role of YY1 in the Regulation of Anti-Apoptotic Gene Products in Drug-Resistant Cancer Cells. Cancers (Basel) 2023; 15:4267. [PMID: 37686541 PMCID: PMC10486809 DOI: 10.3390/cancers15174267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Cancer is a leading cause of death among the various diseases encountered in humans. Cancer is not a single entity and consists of numerous different types and subtypes that require various treatment regimens. In the last decade, several milestones in cancer treatments were accomplished, such as specific targeting agents or revitalizing the dormant anti-tumor immune response. These milestones have resulted in significant positive clinical responses as well as tumor regression and the prolongation of survival in subsets of cancer patients. Hence, in non-responding patients and non-responding relapsed patients, cancers develop intrinsic mechanisms of resistance to cell death via the overexpression of anti-apoptotic gene products. In parallel, the majority of resistant cancers have been reported to overexpress a transcription factor, Yin Yang 1 (YY1), which regulates the chemo-immuno-resistance of cancer cells to therapeutic anticancer cytotoxic agents. The relationship between the overexpression of YY1 and several anti-apoptotic gene products, such as B-cell lymphoma 2 protein (Bcl-2), B-cell lymphoma extra-large (Bcl-xL), myeloid cell leukemia 1 (Mcl-1) and survivin, is investigated in this paper. The findings demonstrate that these anti-apoptotic gene products are regulated, in part, by YY1 at the transcriptional, epigenetic, post-transcriptional and translational levels. While targeting each of the anti-apoptotic gene products individually has been examined and clinically tested for some, this targeting strategy is not effective due to compensation by other overexpressed anti-apoptotic gene products. In contrast, targeting YY1 directly, through small interfering RNAs (siRNAs), gene editing or small molecule inhibitors, can be therapeutically more effective and generalized in YY1-overexpressed resistant cancers.
Collapse
Affiliation(s)
| | | | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
68
|
Mathew AM, Deng Z, Nelson CJ, Mayberry TG, Bai Q, Lequio M, Fajardo E, Xiao H, Wakefield MR, Fang Y. Artichoke as a melanoma growth inhibitor. Med Oncol 2023; 40:262. [PMID: 37544953 DOI: 10.1007/s12032-023-02077-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/08/2023] [Indexed: 08/08/2023]
Abstract
Melanoma is the most lethal malignancy in skin cancers. About 97,610 new cases of melanoma are projected to occur in the United States (US) in 2023. Artichoke is a very popular plant widely consumed in the US due to its nutrition. In recent years, it has been shown that artichoke shows powerful anti-cancer effects on cancers such as breast cancer, colon cancer, liver cancer, and leukemia. However, there is little known about its effect on melanoma. This study was designed to investigate if artichoke extract (AE) has any direct effect on the growth of melanoma. Clonogenic survival assay, cell proliferation, and caspase-3 activity kits were used to evaluate the effects AE has on cell survival, proliferation, and apoptosis of the widely studied melanoma cell line HTB-72. We further investigated the possible molecular mechanisms using RT-PCR and immunohistochemical staining. The percentage of colonies of HTB-72 melanoma cells decreased significantly after treated with AE. This was paralleled with the decrease in the optic density (OD) value of cancer cells after treatment with AE. This was further supported by the decreased expression of PCNA mRNA after treated with AE. Furthermore, the cellular caspase-3 activity increased after treated with AE. The anti-proliferative effect of AE on melanoma cells correlated with increased p21, p27, and decreased CDK4. The pro-apoptotic effect of AE on melanoma cells correlated with decreased survivin. Artichoke inhibits growth of melanoma by inhibition of proliferation and promotion of apoptosis. Such a study might be helpful to develop a new promising treatment for melanoma.
Collapse
Affiliation(s)
- Annette M Mathew
- The Department of Microbiology & Immunology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Zuliang Deng
- The Center of Early Screening and Diagnosis of Gastrointestinal Tumors of Affiliated Hospital of Xiangnan University, Chenzhou, 423000, Hunan, People's Republic of China
| | - Christian J Nelson
- The Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Trenton G Mayberry
- The Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Qian Bai
- The Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Marco Lequio
- The Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Emerson Fajardo
- The Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Huaping Xiao
- The Department of Microbiology & Immunology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- The Center of Early Screening and Diagnosis of Gastrointestinal Tumors of Affiliated Hospital of Xiangnan University, Chenzhou, 423000, Hunan, People's Republic of China
- The Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mark R Wakefield
- The Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Yujiang Fang
- The Department of Microbiology & Immunology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA.
- The Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, 65212, USA.
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA.
| |
Collapse
|
69
|
Chen X, An Y, Tan M, Xie D, Liu L, Xu B. Biological functions and research progress of eIF4E. Front Oncol 2023; 13:1076855. [PMID: 37601696 PMCID: PMC10435865 DOI: 10.3389/fonc.2023.1076855] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/30/2023] [Indexed: 08/22/2023] Open
Abstract
The eukaryotic translation initiation factor eIF4E can specifically bind to the cap structure of an mRNA 5' end, mainly regulating translation initiation and preferentially enhancing the translation of carcinogenesis related mRNAs. The expression of eIF4E is closely related to a variety of malignant tumors. In tumor cells, eIF4E activity is abnormally increased, which stimulates cell growth, metastasis and translation of related proteins. The main factors affecting eIF4E activity include intranuclear regulation, phosphorylation of 4EBPs, and phosphorylation and sumoylation of eIF4E. In this review, we summarize the biological functions and the research progress of eIF4E, the main influencing factors of eIF4E activity, and the recent progress of drugs targeting eIF4E, in the hope of providing new insights for the treatment of multiple malignancies and development of targeted drugs.
Collapse
Affiliation(s)
- Xiaocong Chen
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Yang An
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Mengsi Tan
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Dongrui Xie
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Benjin Xu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| |
Collapse
|
70
|
Stahl P, Kollenda S, Sager J, Schmidt L, Schroer MA, Stauber RH, Epple M, Knauer SK. Tuning Nanobodies' Bioactivity: Coupling to Ultrasmall Gold Nanoparticles Allows the Intracellular Interference with Survivin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300871. [PMID: 37035950 DOI: 10.1002/smll.202300871] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Nanobodies are highly affine binders, often used to track disease-relevant proteins inside cells. However, they often fail to interfere with pathobiological functions, required for their clinical exploitation. Here, a nanobody targeting the disease-relevant apoptosis inhibitor and mitosis regulator Survivin (SuN) is utilized. Survivin's multifaceted functions are regulated by an interplay of dynamic cellular localization, dimerization, and protein-protein interactions. However, as Survivin harbors no classical "druggable" binding pocket, one must aim at blocking extended protein surface areas. Comprehensive experimental evidence demonstrates that intracellular expression of SuN allows to track Survivin at low nanomolar concentrations but failed to inhibit its biological functions. Small angle X-ray scattering of the Survivin-SuN complex locates the proposed interaction interface between the C-terminus and the globular domain, as such not blocking any pivotal interaction. By clicking multiple SuN to ultrasmall (2 nm) gold nanoparticles (SuN-N), not only intracellular uptake is enabled, but additionally, Survivin crosslinking and interference with mitotic progression in living cells are also enabled. In sum, it is demonstrated that coupling of nanobodies to nanosized scaffolds can be universally applicable to improve their function and therapeutic applicability.
Collapse
Affiliation(s)
- Paul Stahl
- Molecular Biology II, Department of Biology, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Sebastian Kollenda
- Inorganic Chemistry, Department of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Jonas Sager
- Inorganic Chemistry, Department of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Laura Schmidt
- Molecular Biology II, Department of Biology, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Martin A Schroer
- Nanoparticle Process Technology, Department of Engineering, University of Duisburg-Essen, Lotharstr. 1, 47057, Duisburg, Germany
| | - Roland H Stauber
- Molecular and Cellular Oncology/ENT, University Medical Center Mainz (UMM), Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Matthias Epple
- Inorganic Chemistry, Department of Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE) and Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Shirley K Knauer
- Molecular Biology II, Department of Biology, Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| |
Collapse
|
71
|
Wright S, Burkholz SR, Zelinsky C, Wittman C, Carback RT, Harris PE, Blankenberg T, Herst CV, Rubsamen RM. Survivin Expression in Luminal Breast Cancer and Adjacent Normal Tissue for Immuno-Oncology Applications. Int J Mol Sci 2023; 24:11827. [PMID: 37511584 PMCID: PMC10380623 DOI: 10.3390/ijms241411827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Survivin (BIRC5) is a tumor-associated antigen (TAA) overexpressed in various tumors but present at low to undetectable levels in normal tissue. Survivin is known to have a high expression in breast cancer (e.g., Ductal Carcinoma in situ (DCIS) and triple negative breast cancer). Previous studies have not compared survivin expression levels in DCIS tumor samples to levels in adjacent, normal breast tissue from the same patient. To ensure the effective use of survivin as a target for T cell immunotherapy of breast cancer, it is essential to ascertain the varying levels of survivin expression between DCIS tumor tissue samples and the adjacent normal breast tissue taken from the same patient simultaneously. Next-generation sequencing of RNA (RNA-seq) in normal breast tissue and tumor breast tissue from five women presenting with DCIS for lumpectomy was used to identify sequence variation and expression levels of survivin. The identity of both tumor and adjacent normal tissue samples were corroborated by histopathology. Survivin was overexpressed in human breast tissue tumor samples relative to the corresponding adjacent human normal breast tissue. Wild-type survivin transcripts were the predominant species identified in all tumor tissue sequenced. This study demonstrates upregulated expression of wild type survivin in DCIS tumor tissue versus normal breast tissue taken from the same patient at the same time, and provides evidence that developing selective cytotoxic T lymphocyte (CTL) immunotherapy for DCIS targeting survivin warrants further study.
Collapse
Affiliation(s)
- Sharon Wright
- Saint Mary’s Regional Medical Center, Reno, NV 89503, USA; (S.W.); (C.Z.); (C.W.)
- Western Surgical Group, Reno, NV 89502, USA
| | - Scott R. Burkholz
- Flow Pharma Inc., Warrensville Heights, OH 44128, USA; (S.R.B.); (R.T.C.); (P.E.H.); (T.B.); (C.V.H.)
| | - Cathy Zelinsky
- Saint Mary’s Regional Medical Center, Reno, NV 89503, USA; (S.W.); (C.Z.); (C.W.)
| | - Connor Wittman
- Saint Mary’s Regional Medical Center, Reno, NV 89503, USA; (S.W.); (C.Z.); (C.W.)
| | - Richard T. Carback
- Flow Pharma Inc., Warrensville Heights, OH 44128, USA; (S.R.B.); (R.T.C.); (P.E.H.); (T.B.); (C.V.H.)
| | - Paul E. Harris
- Flow Pharma Inc., Warrensville Heights, OH 44128, USA; (S.R.B.); (R.T.C.); (P.E.H.); (T.B.); (C.V.H.)
| | - Tikoes Blankenberg
- Flow Pharma Inc., Warrensville Heights, OH 44128, USA; (S.R.B.); (R.T.C.); (P.E.H.); (T.B.); (C.V.H.)
- Shasta Pathology Associates, Redding, CA 96001, USA
| | - Charles V. Herst
- Flow Pharma Inc., Warrensville Heights, OH 44128, USA; (S.R.B.); (R.T.C.); (P.E.H.); (T.B.); (C.V.H.)
| | - Reid M. Rubsamen
- Saint Mary’s Regional Medical Center, Reno, NV 89503, USA; (S.W.); (C.Z.); (C.W.)
- Flow Pharma Inc., Warrensville Heights, OH 44128, USA; (S.R.B.); (R.T.C.); (P.E.H.); (T.B.); (C.V.H.)
- Cleveland Medical Center, University Hospitals, Cleveland, OH 44106, USA
- Case Western Reserve School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
72
|
Sausen DG, Shechter O, Gallo ES, Dahari H, Borenstein R. Herpes Simplex Virus, Human Papillomavirus, and Cervical Cancer: Overview, Relationship, and Treatment Implications. Cancers (Basel) 2023; 15:3692. [PMID: 37509353 PMCID: PMC10378257 DOI: 10.3390/cancers15143692] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
There is a significant body of research examining the role of human papillomavirus (HPV) in the pathogenesis of cervical cancer, with a particular emphasis on the oncogenic proteins E5, E6, and E7. What is less well explored, however, is the relationship between cervical cancer and herpes simplex virus (HSV). To date, studies examining the role of HSV in cervical cancer pathogenesis have yielded mixed results. While several experiments have determined that HPV/HSV-2 coinfection results in a higher risk of developing cervical cancer, others have questioned the validity of this association. However, clarifying the potential role of HSV in the pathogenesis of cervical cancer may have significant implications for both the prevention and treatment of this disease. Should this relationship be clarified, treating and preventing HSV could open another avenue with which to prevent cervical cancer. The importance of this is highlighted by the fact that, despite the creation of an effective vaccine against HPV, cervical cancer still impacts 604,000 women and is responsible for 342,000 deaths annually. This review provides an overview of HSV and HPV infections and then delves into the possible links between HPV, HSV, and cervical cancer. It concludes with a summary of preventive measures against and recent treatment advances in cervical cancer.
Collapse
Affiliation(s)
- Daniel G. Sausen
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA; (D.G.S.); (O.S.)
| | - Oren Shechter
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA; (D.G.S.); (O.S.)
| | - Elisa S. Gallo
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
| | - Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA;
| | - Ronen Borenstein
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA;
| |
Collapse
|
73
|
Chen LC, Mokgautsi N, Kuo YC, Wu ATH, Huang HS. In Silico Evaluation of HN-N07 Small Molecule as an Inhibitor of Angiogenesis and Lymphangiogenesis Oncogenic Signatures in Non-Small Cell Lung Cancer. Biomedicines 2023; 11:2011. [PMID: 37509650 PMCID: PMC10376976 DOI: 10.3390/biomedicines11072011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Tumor angiogenesis and lymphangiogenesis pathways have been identified as important therapeutic targets in non-small cell lung cancer (NSCLC). Bevacizumab, which is a monoclonal antibody, was the initial inhibitor of angiogenesis and lymphangiogenesis that received approval for use in the treatment of advanced non-small cell lung cancer (NSCLC) in combination with chemotherapy. Despite its usage, patients may still develop resistance to the treatment, which can be attributed to various histological subtypes and the initiation of treatment at advanced stages of cancer. Due to their better specificity, selectivity, and safety compared to chemotherapy, small molecules have been approved for treating advanced NSCLC. Based on the development of multiple small-molecule antiangiogenic drugs either in house and abroad or in other laboratories to treat NSCLC, we used a quinoline-derived small molecule-HN-N07-as a potential target drug for NSCLC. Accordingly, we used computational simulation tools and evaluated the drug-likeness properties of HN-N07. Moreover, we identified target genes, resulting in the discovery of the target BIRC5/HIF1A/FLT4 pro-angiogenic genes. Furthermore, we used in silico molecular docking analysis to determine whether HN-N07 could potentially inhibit BIRC5/HIF1A/FLT4. Interestingly, the results of docking HN-N07 with the BIRC5, FLT4, and HIF1A oncogenes revealed unique binding affinities, which were significantly higher than those of standard inhibitors. In summary, these results indicate that HN-N07 shows promise as a potential inhibitor of oncogenic signaling pathways in NSCLC. Ongoing studies that involve in vitro experiments and in vivo investigations using tumor-bearing mice are in progress, aiming to evaluate the therapeutic effectiveness of the HN-N07 small molecule.
Collapse
Affiliation(s)
- Lung-Ching Chen
- Division of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan
| | - Ntlotlang Mokgautsi
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Cheng Kuo
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Alexander T H Wu
- The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- School of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan
- PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
74
|
Yu B, Zhang J, Fu Q, Han Y, Zhang J, Gao F, Jing P, Zhang P, Zheng G. Successful targeting in situ of an oncogenic nuclear antigen by hapten induced tumor associated autoantibodies (iTAA). Sci Rep 2023; 13:9902. [PMID: 37336938 DOI: 10.1038/s41598-023-36757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 06/09/2023] [Indexed: 06/21/2023] Open
Abstract
The abscopal is a hypothesis for treating of non-irradiated tumors after localized radiation therapy. It is associated with the products of tumor-associated gene as autoantibodies (aTAAs) in reaction to the tumor-associated antigens (TAAs), with increasing of anti-MAGEA3 and an relationship between the abscopal effect and immune response. The hapten enhanced local chemotherapy (HELC) was studied to kills tumor and release tumor TAAs, then hapten modify the TAAs to neu-TAAs, to produce tumor autologous antibodies, called induced tumor-associated autoantibodies (iTAAs) that is different from natural TAAs. Since the iTAAs and complement (C) are associated with cancer therapy Immunofluorescence (IF) was applied to evaluate the expression of the iTAAs and C3, C5, C9. Traces resulted in a partial staining of the nucleus in C3's perinuclear reaction. The iTTAs of Survivin, C-MYC, and IMP1 increased significantly in the tumor cells' intranuclear regions (P = 0.02, P = 0.00, P < 0.0001). Koc, zeta, RalA, and p53 had a similar trend in the perinuclear regions (P < 0.0001, P = 0.004, P < 0.0001, P = 0.003). Therefore, we can propose that tumor antigens inside the cancer cells' nuclei are targeted by the iTAAs since the iTAAs binding levels are higher after HELC. The iTAA tagging oncogenic nuclear antigens may play a distinctive role in regulating tumor cell growth.
Collapse
Affiliation(s)
- Baofa Yu
- TaiMei Baofa Cancer Hospital, Dongping, 271500, Shandong Province, China.
- Jinan Baofa Cancer Hospital, Jinan, 250000, Shandong Province, China.
- Beijing Baofa Cancer Hospital, Beijing, 100010, China.
- Immune Oncology Systems, Inc, San Diego, CA, 92102, USA.
- South China Hospital of Shenzhen Univisity, 518055, Shenzhen, China.
| | - Jian Zhang
- Jinan Baofa Cancer Hospital, Jinan, 250000, Shandong Province, China
| | - Qiang Fu
- Jinan Baofa Cancer Hospital, Jinan, 250000, Shandong Province, China
| | - Yan Han
- Jinan Baofa Cancer Hospital, Jinan, 250000, Shandong Province, China
| | - Jie Zhang
- Shandong University, Jinan, 250000, Shandong Province, China
| | - Feng Gao
- TaiMei Baofa Cancer Hospital, Dongping, 271500, Shandong Province, China
| | - Peng Jing
- TaiMei Baofa Cancer Hospital, Dongping, 271500, Shandong Province, China
| | - Peicheng Zhang
- TaiMei Baofa Cancer Hospital, Dongping, 271500, Shandong Province, China
| | - Guoqin Zheng
- TaiMei Baofa Cancer Hospital, Dongping, 271500, Shandong Province, China
| |
Collapse
|
75
|
Du Y, Jian S, Wang X, Yang C, Qiu H, Fang K, Yan Y, Shi J, Li J. Machine learning and single cell RNA sequencing analysis identifies regeneration-related hepatocytes and highlights a Birc5-related model for identifying cell proliferative ability. Aging (Albany NY) 2023; 15:204775. [PMID: 37315292 PMCID: PMC10292894 DOI: 10.18632/aging.204775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Partial hepatectomy (PHx) has been shown to induce rapid regeneration of adult liver under emergency conditions. Therefore, an in-depth investigation of the underlying mechanisms that govern liver regeneration following PHx is crucial for a comprehensive understanding of this process. METHOD We analyzed scRNA-seq data from liver samples of normal and PHx-48-hour mice. Seven machine learning algorithms were utilized to screen and validate a gene signature that accurately identifies and predicts this population. Co-immunostaining of zonal markers with BIRC5 to investigate regional characteristics of hepatocytes post-PHx. RESULTS Single cell sequencing results revealed a population of regeneration-related hepatocytes. Transcription factor analysis emphasized the importance of Hmgb1 transcription factor in liver regeneration. HdWGCNA and machine learning algorithm screened and obtained the key signature characterizing this population, including a total of 17 genes and the function enrichment analysis indicated their high correlation with cell cycle pathway. It is note-worthy that we inferred that Hmgb1 might be vital in the regeneration-related hepatocytes of PHx_48h group. Parallelly, Birc5 might be closely related to the regulation of liver regeneration, and positively correlated with Hmgb1. CONCLUSIONS Our study has identified a distinct population of hepatocytes that are closely associated with liver regeneration. Through machine learning algorithms, we have identified a set of 17 genes that are highly indicative of the regenerative capacity of hepatocytes. This gene signature has enabled us to assess the proliferation ability of in vitro cultured hepatocytes using sequencing data alone.
Collapse
Affiliation(s)
- Yuan Du
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shuqin Jian
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xicheng Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Chao Yang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Hua Qiu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kang Fang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yehong Yan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jun Shi
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of General Surgery, Ji’an Hospital of Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, Jiangxi, China
| | - Jianfeng Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
76
|
Manou M, Kanakoglou DS, Loupis T, Vrachnos DM, Theocharis S, Papavassiliou AG, Piperi C. Role of Histone Deacetylases in the Pathogenesis of Salivary Gland Tumors and Therapeutic Targeting Options. Int J Mol Sci 2023; 24:10038. [PMID: 37373187 PMCID: PMC10298439 DOI: 10.3390/ijms241210038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Salivary gland tumors (SGTs) comprise a rare and heterogenous category of benign/malignant neoplasms with progressively increasing knowledge of the molecular mechanisms underpinning their pathogenesis, poor prognosis, and therapeutic treatment efficacy. Emerging data are pointing toward an interplay of genetic and epigenetic factors contributing to their heterogeneity and diverse clinical phenotypes. Post-translational histone modifications such as histone acetylation/deacetylation have been shown to actively participate in the pathobiology of SGTs, further suggesting that histone deacetylating factors (HDACs), selective or pan-HDAC inhibitors (HDACis), might present effective treatment options for these neoplasms. Herein, we describe the molecular and epigenetic mechanisms underlying the pathology of the different types of SGTs, focusing on histone acetylation/deacetylation effects on gene expression as well as the progress of HDACis in SGT therapy and the current status of relevant clinical trials.
Collapse
Affiliation(s)
- Maria Manou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.M.); (D.S.K.)
| | - Dimitrios S. Kanakoglou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.M.); (D.S.K.)
| | - Theodoros Loupis
- Haematology Research Laboratory, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (T.L.); (D.M.V.)
| | - Dimitrios M. Vrachnos
- Haematology Research Laboratory, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (T.L.); (D.M.V.)
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.M.); (D.S.K.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.M.); (D.S.K.)
| |
Collapse
|
77
|
Zhao Y, E Z, Jiao A, Sun Z, Zhang H, Wang H, Fang N, Gao Q, Jin Q. Dendrobine enhances bovine oocyte maturation and subsequent embryonic development and quality. Theriogenology 2023; 203:53-60. [PMID: 36972665 DOI: 10.1016/j.theriogenology.2023.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/28/2023]
Abstract
Strategies for improving the quality of oocytes have important theoretical and practical significance for increasing the efficiency of livestock breeding. In this respect, the accumulation of reactive oxygen species (ROS) is a major factor affecting the development of oocytes and embryos. This study investigated the effects of Dendrobium nobile extract (DNE) on the in vitro maturation of bovine oocytes and embryonic development after IVF. DNE is an extract from Dendrobium rhizomes that contains alkaloids with anti-inflammatory, anti-cancer and anti-ageing functions. Various concentrations of DNE (0, 5, 10, 20 and 50 μmol/L) were added during oocyte maturation in vitro, and we found that 10 μmol/L of DNE remarkably increased the oocyte maturation rate, the subsequent blastocyst formation rate and embryo quality. Further, we found that DNE treatment decreased the frequency of spindle/chromosome defects and ROS and increased the oocyte glutathione and mitochondrial membrane potential in oocytes. Moreover, DNE upregulated the expression of oxidative stress-related genes (Sirt1, Sirt2, Sirt3 and Sod1) in oocytes and apoptosis-related genes (Caspase-3, Caspase-4, Bax, Bcl-xl and Survivin) in blastocysts. These results suggest that DNE supplementation can promote oocyte maturation and subsequent embryonic development by regulating redox reactions and inhibiting embryonic apoptosis.
Collapse
|
78
|
Chen YH, Chen HH, Wang WJ, Chen HY, Huang WS, Kao CH, Lee SR, Yeat NY, Yan RL, Chan SJ, Wu KP, Chen RH. TRABID inhibition activates cGAS/STING-mediated anti-tumor immunity through mitosis and autophagy dysregulation. Nat Commun 2023; 14:3050. [PMID: 37237031 DOI: 10.1038/s41467-023-38784-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Activation of tumor-intrinsic innate immunity has been a major strategy for improving immunotherapy. Previously, we reported an autophagy-promoting function of the deubiquitinating enzyme TRABID. Here, we identify a critical role of TRABID in suppressing anti-tumor immunity. Mechanistically, TRABID is upregulated in mitosis and governs mitotic cell division by removing K29-linked polyubiquitin chain from Aurora B and Survivin, thereby stabilizing the entire chromosomal passenger complex. TRABID inhibition causes micronuclei through a combinatory defect in mitosis and autophagy and protects cGAS from autophagic degradation, thereby activating the cGAS/STING innate immunity pathway. Genetic or pharmacological inhibition of TRABID promotes anti-tumor immune surveillance and sensitizes tumors to anti-PD-1 therapy in preclinical cancer models in male mice. Clinically, TRABID expression in most solid cancer types correlates inversely with an interferon signature and infiltration of anti-tumor immune cells. Our study identifies a suppressive role of tumor-intrinsic TRABID in anti-tumor immunity and highlights TRABID as a promising target for sensitizing solid tumors to immunotherapy.
Collapse
Affiliation(s)
- Yu-Hsuan Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Han-Hsiun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Won-Jing Wang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Hsin-Yi Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Wei-Syun Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Chien-Han Kao
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Sin-Rong Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Nai Yang Yeat
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Ruei-Liang Yan
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Shu-Jou Chan
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
79
|
Yesupatham ST, Dayanand CD, Azeem Mohiyuddin SM, Harendra Kumar ML. An Insight into Survivin in Relevance to Hematological, Biochemical and Genetic Characteristics in Tobacco Chewers with Oral Squamous Cell Carcinoma. Cells 2023; 12:1444. [PMID: 37408277 PMCID: PMC10217417 DOI: 10.3390/cells12101444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Survivin is an inhibitor of apoptosis protein (IAP), encoded by the Baculoviral IAP Repeat Containing 5 (BIRC5) gene located on q arm (25.3) on chromosome 17. It is expressed in various human cancers and involved in tumor resistance to radiation and chemotherapy. The genetic analysis of the BIRC5 gene and its protein survivin levels in buccal tissue related to oral squamous cell carcinoma (OSCC) in South Indian tobacco chewers has not been studied. Hence, the study was designed to quantify survivin in buccal tissue and its association with pretreatment hematological parameters and to analyze the BIRC5 gene sequence. METHOD In a single centric case control study, buccal tissue survivin levels were measured by ELISA. A total of 189 study subjects were categorized into Group 1 (n = 63) habitual tobacco chewers with OSCC, Group 2 (n = 63) habitual tobacco chewers without OSCC, and Group 3 (n = 63) healthy subjects as control. Retrospective hematological data were collected from Group 1 subjects and statistically analyzed. The BIRC5 gene was sequenced and data were analyzed using a bioinformatics tool. RESULTS Survivin protein mean ± SD in Group 1 was (1670.9 ± 796.21 pg/mL), in Group 2 it was (1096.02 ± 346.17 pg/mL), and in Group 3 it was (397.5 ± 96.1 pg/mL) with significance (p < 0.001). Survivin levels showed significance with cut-off levels of absolute monocyte count (AMC), neutrophil/lymphocyte ratio (NLR), and lymphocyte/monocyte ratio (LMR) at (p = 0.001). The unique variants found only in OSCC patients were T → G in the promoter region, G → C in exon 3, C → A, A → G, G → T, T → G, A → C, G → A in exon 4, C → A, G → T, G → C in the exon 5 region. CONCLUSIONS The tissue survivin level increased in OSCC patients compared to controls; pretreatment AMC, LMR, and NLR may serve as add-on markers along with survivin to measure the progression of OSCC. Unique mutations in the promoter and exons 3-5 were observed in sequence analysis and were associated with survivin concentrations.
Collapse
Affiliation(s)
- Susanna Theophilus Yesupatham
- Department of Biochemistry, Sri Devaraj Urs Academy of Higher Education and Research, Tamaka, Kolar 563103, Karnataka, India;
| | - C. D. Dayanand
- Allied Health and Basic Sciences, Sri Devaraj Urs Academy of Higher Education and Research, Tamaka, Kolar 563103, Karnataka, India
| | - S. M. Azeem Mohiyuddin
- Department of Otorhinolaryngology and Head and Neck Surgery, Sri Devaraj Urs Academy of Higher Education and Research, Tamaka, Kolar 563103, Karnataka, India
| | - M. L. Harendra Kumar
- Department of Pathology, Shridevi Institute of Medical Sciences and Research Hospital, Sira Road, Tumakuru 572106, Karnataka, India
| |
Collapse
|
80
|
Amiri Souri E, Chenoweth A, Karagiannis SN, Tsoka S. Drug repurposing and prediction of multiple interaction types via graph embedding. BMC Bioinformatics 2023; 24:202. [PMID: 37193964 DOI: 10.1186/s12859-023-05317-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/30/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Finding drugs that can interact with a specific target to induce a desired therapeutic outcome is key deliverable in drug discovery for targeted treatment. Therefore, both identifying new drug-target links, as well as delineating the type of drug interaction, are important in drug repurposing studies. RESULTS A computational drug repurposing approach was proposed to predict novel drug-target interactions (DTIs), as well as to predict the type of interaction induced. The methodology is based on mining a heterogeneous graph that integrates drug-drug and protein-protein similarity networks, together with verified drug-disease and protein-disease associations. In order to extract appropriate features, the three-layer heterogeneous graph was mapped to low dimensional vectors using node embedding principles. The DTI prediction problem was formulated as a multi-label, multi-class classification task, aiming to determine drug modes of action. DTIs were defined by concatenating pairs of drug and target vectors extracted from graph embedding, which were used as input to classification via gradient boosted trees, where a model is trained to predict the type of interaction. After validating the prediction ability of DT2Vec+, a comprehensive analysis of all unknown DTIs was conducted to predict the degree and type of interaction. Finally, the model was applied to propose potential approved drugs to target cancer-specific biomarkers. CONCLUSION DT2Vec+ showed promising results in predicting type of DTI, which was achieved via integrating and mapping triplet drug-target-disease association graphs into low-dimensional dense vectors. To our knowledge, this is the first approach that addresses prediction between drugs and targets across six interaction types.
Collapse
Affiliation(s)
- E Amiri Souri
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London, WC2B 4BG, UK
| | - A Chenoweth
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, Guy's Hospital, King's College London, London, SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, Guy's Cancer Centre, King's College London, London, SE1 9RT, UK
| | - S N Karagiannis
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, Guy's Hospital, King's College London, London, SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, Guy's Cancer Centre, King's College London, London, SE1 9RT, UK
| | - S Tsoka
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London, WC2B 4BG, UK.
| |
Collapse
|
81
|
Ruiz EM, Alhassan SA, Errami Y, Abd Elmageed ZY, Fang JS, Wang G, Brooks MA, Abi-Rached JA, Kandil E, Zerfaoui M. A Predictive Model of Adaptive Resistance to BRAF/MEK Inhibitors in Melanoma. Int J Mol Sci 2023; 24:8407. [PMID: 37176114 PMCID: PMC10178962 DOI: 10.3390/ijms24098407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The adaptive acquisition of resistance to BRAF and MEK inhibitor-based therapy is a common feature of melanoma cells and contributes to poor patient treatment outcomes. Leveraging insights from a proteomic study and publicly available transcriptomic data, we evaluated the predictive capacity of a gene panel corresponding to proteins differentially abundant between treatment-sensitive and treatment-resistant cell lines, deciphering predictors of treatment resistance and potential resistance mechanisms to BRAF/MEK inhibitor therapy in patient biopsy samples. From our analysis, a 13-gene signature panel, in both test and validation datasets, could identify treatment-resistant or progressed melanoma cases with an accuracy and sensitivity of over 70%. The dysregulation of HMOX1, ICAM, MMP2, and SPARC defined a BRAF/MEK treatment-resistant landscape, with resistant cases showing a >2-fold risk of expression of these genes. Furthermore, we utilized a combination of functional enrichment- and gene expression-derived scores to model and identify pathways, such as HMOX1-mediated mitochondrial stress response, as potential key drivers of the emergence of a BRAF/MEK inhibitor-resistant state in melanoma cells. Overall, our results highlight the utility of these genes in predicting treatment outcomes and the underlying mechanisms that can be targeted to reduce the development of resistance to BRAF/MEK targeted therapy.
Collapse
Affiliation(s)
- Emmanuelle M. Ruiz
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Solomon A. Alhassan
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Youssef Errami
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Zakaria Y. Abd Elmageed
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana, Monroe, LA 71203, USA
| | - Jennifer S. Fang
- Department of Cell and Molecular Biology, Tulane University School of Science & Engineering, New Orleans, LA 70118, USA
| | - Guangdi Wang
- Department of Chemistry, RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Margaret A. Brooks
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Joe A. Abi-Rached
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Emad Kandil
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mourad Zerfaoui
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
82
|
Yu Z, Chao H, Xu F, Deng H, Deng L, Song Z, Zeng T. Identification of a prognostic biomarker predicting biochemical recurrence and construction of a novel nomogram for prostate cancer. Front Oncol 2023; 13:1115718. [PMID: 37077837 PMCID: PMC10106702 DOI: 10.3389/fonc.2023.1115718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
BackgroundBiochemical recurrence (BCR) is common in prostate cancer (PCa), but its prediction is based predominantly on clinicopathological characteristics with low accuracy. We intend to identify a potential prognostic biomarker related to the BCR and construct a nomogram for improving the risk stratification of PCa patients.MethodsThe transcriptome and clinical data of PCa patients were obtained from TCGA and GEO databases. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were used to screen out differentially expressed genes (DEGs) related to the BCR of PCa. Cox regression analysis was further applied to screen out DEGs related to BCR-free survival (BFS). Time-dependent receiver operating curve (ROC) analysis and Kaplan–Meier (K-M) survival analysis were conducted to assess the prognostic value. Then, a prognostic nomogram was established and evaluated. The clinicopathological correlation analysis, GSEA analysis, and immune analysis were used to explore the biological and clinical significance of the biomarker. Finally, the qRT-PCR, western blotting, and immunohistochemistry (IHC) were conducted to validate the expression of the biomarker.ResultsBIRC5 was identified to be the potential prognostic biomarker. The clinical correlation analysis and K-M survival analysis found that the BIRC5 mRNA expression was positively associated with disease progression and negatively associated with the BFS rate. Time-dependent ROC curves verified its accurate prediction performance. The GSEA and immune analysis suggested that the BIRC5 was related to immunity. A nomogram with an accurate prediction for BFS of PCa patients was constructed. qRT-PCR, western blotting, and IHC results validated the expression level of BIRC5 in PCa cells and tissues.ConclusionOur study identified BIRC5 as a potential prognostic biomarker related to BCR of PCa and constructed an efficacy nomogram for predicting BFS to assist clinical decision-making.
Collapse
Affiliation(s)
- Zhaojun Yu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, JiangXi, China
- Medical Department, Nanchang University, Nanchang, JiangXi, China
| | - Haichao Chao
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, JiangXi, China
| | - Fanghua Xu
- Pathology Department, The People’s Hospital of Pingxiang, Pingxiang, JiangXi, China
| | - Huanhuan Deng
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, JiangXi, China
- Medical Department, Nanchang University, Nanchang, JiangXi, China
| | - Leihong Deng
- Department of Ultrasound, The First Affiliated Hospital of Nanchang University, Nanchang, JiangXi, China
| | - Zhen Song
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, JiangXi, China
| | - Tao Zeng
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, JiangXi, China
- *Correspondence: Tao Zeng,
| |
Collapse
|
83
|
Liu L, Zhang H, Jin B, Li H, Zheng X, Li X, Li M, Li M, Nian S, Wang K. MiR-214-3p may alleviate T-2 toxin-induced chondrocyte apoptosis and matrix degradation by regulating NF-κB signaling pathway in vitro. Toxicon 2023; 225:107049. [PMID: 36796497 DOI: 10.1016/j.toxicon.2023.107049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
T-2 toxin is part of the most toxic fungal secondary metabolites contaminating different kinds of grains. Previous studies have demonstrated that T-2 toxin can influence the survival of chondrocytes and extracellular matrix (ECM) composition. MiR-214-3p is essential for the homeostasis of chondrocytes and ECM. However, the molecular machinery underlying T-2 toxin-induced chondrocyte apoptosis and ECM degradation remain to be elucidated. The present study aimed to investigate the mechanism of miR-214-3p's involvement in T-2 toxin-induced chondrocyte apoptosis and ECM degradation. Meanwhile, the role of the NF-κB signaling pathway was scrutinized. C28/I2 chondrocytes were treated with 8 ng/ml of T-2 toxin for 24 h, after the pretreatment of miR-214-3p interfering RNAs for 6 h. Gene and protein levels involved in chondrocyte apoptosis and ECM degradation were assessed through RT-PCR and Western blotting. The apoptosis rate of chondrocyte was measured by flow cytometry. Results and data indicated that miR-214-3p was decreased in a dose-dependent manner at different concentrations of T-2 toxin. The enhancement of miR-214-3p could alleviate chondrocyte apoptosis and ECM degradation due to T-2 toxin exposure. The upregulation of miR-214-3p was associated with the decreased expression of apoptosis-promoting genes such as Bax and Cleaved-caspase3/caspase3 as well as the increased expression of anti-apoptotic genes such as Bcl2 and Survivin. Furthermore, miR-214-3p stimulated the relative protein expression of collagen Ⅱ but inhibited the expression of MMP13. Overexpressing miR-214-3p could suppress the relative protein expression of IKKβ and phospho-p65/p65, thus blocking the activation of the NF-κB signaling pathway. The study suggested that the miR-214-3p attenuates T-2 toxin-induced chondrocyte apoptosis and ECM degradation through a potential NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lele Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin, 150081, China
| | - Hua Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin, 150081, China
| | - Baiming Jin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China; Department of Preventive Medicine, Qiqihar Medical University, Qiqihar, 161006, China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin, 150081, China
| | - Haonan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin, 150081, China
| | - Xiujuan Zheng
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin, 150081, China
| | - Xuying Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin, 150081, China
| | - Mengyuan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin, 150081, China
| | - Mingqi Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin, 150081, China
| | - Shijing Nian
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin, 150081, China
| | - Kewei Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
84
|
Survivin (BIRC5) Peptide Vaccine in the 4T1 Murine Mammary Tumor Model: A Potential Neoadjuvant T Cell Immunotherapy for Triple Negative Breast Cancer: A Preliminary Study. Vaccines (Basel) 2023; 11:vaccines11030644. [PMID: 36992227 DOI: 10.3390/vaccines11030644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
A triple negative breast cancer model using the murine 4T1 tumor cell line was used to explore the efficacy of an adjuvanted survivin peptide microparticle vaccine using tumor growth as the outcome metric. We first performed tumor cell dose titration studies to determine a tumor cell dose that resulted in sufficient tumor takes but allowed multiple serial measurements of tumor volumes, yet with minimal morbidity/mortality within the study period. Later, in a second cohort of mice, the survivin peptide microparticle vaccine was administered via intraperitoneal injection at the study start with a second dose given 14 days later. An orthotopic injection of 4T1 cells into the mammary tissue was performed on the same day as the administration of the second vaccine dose. The mice were followed for up to 41 days with subcutaneous measurements of tumor volume made every 3–4 days. Vaccination with survivin peptides was associated with a peptide antigen-specific gamma interferon enzyme-linked immunosorbent spot response in the murine splenocyte population but was absent from the control microparticle group. At the end of the study, we found that vaccination with adjuvanted survivin peptide microparticles resulted in statistically significant slower primary tumor growth rates in BALB/c mice challenged with 4T1 cells relative to the control peptideless vaccination group. These studies suggest that T cell immunotherapy specifically targeting survivin might be an applicable neoadjuvant immunotherapy therapy for triple negative breast cancer. More preclinical studies and clinical trials are needed to explore this concept further.
Collapse
|
85
|
Herkenhoff CGB, Trarbach EB, Batista RL, Soares IC, Frassetto FP, do Nascimento FBP, Grande IPP, Silva PPB, Duarte FHG, Bronstein MD, Jallad RS. Survivin: A Potential Marker of Resistance to Somatostatin Receptor Ligands. J Clin Endocrinol Metab 2023; 108:876-887. [PMID: 36273993 DOI: 10.1210/clinem/dgac610] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/19/2022] [Indexed: 02/13/2023]
Abstract
CONTEXT Invasive and somatostatin receptor ligand (SRL)-resistant pituitary tumors represent a challenge in the clinical practice of endocrinologists. Efforts have been made to elucidate reliable makers for both. Survivin and eukaryotic translation initiation factor-binding protein 1 (4EBP1) are upregulated in several cancers and involved in apoptosis and cell proliferation. OBJECTIVE We explored the role of these markers in somatotropinomas. METHODS Immunostains for survivin and 4EBP1, and also for somatostatin receptor type 2 (SSTR2), Ki-67, and cytokeratin 18, were analyzed in tissue microarrays containing 52 somatotropinoma samples. Tumor invasiveness was evaluated in all samples while drug resistance was evaluated in 34 patients who received SRL treatment. All these parameters were correlated with first-generation SRL (fg-SRL) responsiveness and tumor invasiveness. RESULTS Low survivin expression (P = 0.04), hyperintense signal on T2 weighted image (T2WI) (P = 0.01), younger age (P = 0.01), sparsely granular adenomas (SGA) (P = 0.04), high postoperative growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels (P = 0.049 and P < 0.001, respectively), and large postoperative tumor size (P = 0.02) were associated with resistance to fg-SRL. Low survivin and SSTR2 expression and high 4EBP1 expression were associated with SGA (P = 0.04, P = 0.01, and P = 0.001, respectively). Younger age (P = 0.03), large tumor pre- and postoperative (P = 0.04 and P = 0.006, respectively), low SSTR2 expression (P = 0.03), and high baseline GH and IGF-1 (P = 0.01 and P = 0.02, respectively) were associated with tumor invasiveness. However, survivin, 4EBP1, Ki-67, and granulation patterns were not associated with tumor invasion. CONCLUSION This study suggests that low survivin expression is predictive of resistance to fg-SRL in somatotropinomas, but not of tumor invasiveness.
Collapse
Affiliation(s)
- Clarissa G Borba Herkenhoff
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Clinics Hospital, University of São Paulo Medical School, São Paulo, CEP 05403-010, Brazil
| | - Ericka B Trarbach
- Laboratory of Cellular and Molecular Endocrinology/LIM25 Division of Endocrinology and Metabology, Clinics Hospital, University of São Paulo Medical School, São Paulo, CEP 05403-010, Brazil
| | - Rafael Loch Batista
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Clinics Hospital, University of São Paulo Medical School, São Paulo, CEP 05403-010, Brazil
- Service of Endocrine Oncology, Cancer Institute of the State of São Paulo (ICESP), Clinics Hospital, University of São Paulo Medical School, São Paulo, CEP 05403-010, Brazil
| | - Iberê Cauduro Soares
- Department of Pathology, Clinics Hospital, University of São Paulo Medical School, São Paulo, CEP 05403-010, Brazil
| | - Fernando Pereira Frassetto
- Department of Pathology, Clinics Hospital, University of São Paulo Medical School, São Paulo, CEP 05403-010, Brazil
| | | | - Isabella Pacetti Pajaro Grande
- Laboratory of Cellular and Molecular Endocrinology/LIM25 Division of Endocrinology and Metabology, Clinics Hospital, University of São Paulo Medical School, São Paulo, CEP 05403-010, Brazil
| | - Paula P B Silva
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Clinics Hospital, University of São Paulo Medical School, São Paulo, CEP 05403-010, Brazil
| | - Felipe H G Duarte
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Clinics Hospital, University of São Paulo Medical School, São Paulo, CEP 05403-010, Brazil
| | - Marcello D Bronstein
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Clinics Hospital, University of São Paulo Medical School, São Paulo, CEP 05403-010, Brazil
- Laboratory of Cellular and Molecular Endocrinology/LIM25 Division of Endocrinology and Metabology, Clinics Hospital, University of São Paulo Medical School, São Paulo, CEP 05403-010, Brazil
| | - Raquel S Jallad
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Clinics Hospital, University of São Paulo Medical School, São Paulo, CEP 05403-010, Brazil
- Laboratory of Cellular and Molecular Endocrinology/LIM25 Division of Endocrinology and Metabology, Clinics Hospital, University of São Paulo Medical School, São Paulo, CEP 05403-010, Brazil
| |
Collapse
|
86
|
Platelets Facilitate Wound Healing by Mitochondrial Transfer and Reducing Oxidative Stress in Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:2345279. [PMID: 36860732 PMCID: PMC9970712 DOI: 10.1155/2023/2345279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/22/2023]
Abstract
As a critical member in wound healing, vascular endothelial cells (ECs) impaired under high levels of reactive oxygen species (ROS) would hamper neovascularization. Mitochondria transfer can reduce intracellular ROS damage under pathological condition. Meanwhile, platelets can release mitochondria and alleviate oxidative stress. However, the mechanism by which platelets promote cell survival and reduce oxidative stress damage has not been clarified. Here, first, we selected ultrasound as the best method for subsequent experiments by detecting the growth factors and mitochondria released from manipulation platelet concentrates (PCs), as well as the effect of manipulation PCs on the proliferation and migration of HUVECs. Then, we found that sonicate platelet concentrates (SPC) decreased the level of ROS in HUVECs treated with hydrogen peroxide in advance, increased mitochondrial membrane potential, and reduced apoptosis. By transmission electron microscope, we saw that two kinds of mitochondria, free or wrapped in vesicles, were released by activated platelets. In addition, we explored that platelet-derived mitochondria were transferred to HUVECs partly by means of dynamin-dependent clathrin-mediated endocytosis. Consistently, we determined that platelet-derived mitochondria reduced apoptosis of HUVECs caused by oxidative stress. What is more, we screened survivin as the target of platelet-derived mitochondria via high-throughput sequencing. Finally, we demonstrated that platelet-derived mitochondria promoted wound healing in vivo. Overall, these findings revealed that platelets are important donors of mitochondria, and platelet-derived mitochondria can promote wound healing by reducing apoptosis caused by oxidative stress in vascular endothelial cells. And survivin is a potential target. These results further expand the knowledge of the platelet function and provide new insights into the role of platelet-derived mitochondria in wound healing.
Collapse
|
87
|
Li X, Zhou L, Wang R, Zhang Y, Li W. Dihydromyricetin suppresses tumor growth via downregulation of the EGFR/Akt/survivin signaling pathway. J Biochem Mol Toxicol 2023:e23328. [PMID: 36807944 DOI: 10.1002/jbt.23328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/23/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Deregulation of epidermal growth factor receptor (EGFR) signaling is frequently observed in non-small cell lung cancer (NSCLC). The present study aimed to determine the impact of dihydromyricetin (DHM) on NSCLC, a natural compound extracted from Ampelopsis grossedentata with various pharmacological activities. Results of the present study demonstrated that DHM may act as a promising antitumor agent for NSCLC therapy, inhibiting the growth of cancer cells in vitro and in vivo. Mechanistically, results of the present study demonstrated that exposure to DHM downregulated the activity of wild-type (WT) and mutant EGFRs (mutations, exon 19 deletion, and L858R/T790M mutation). Moreover, western blot analysis indicated that DHM induced cell apoptosis via suppression of the antiapoptotic protein, survivin. Results of the present study further demonstrated that depletion or activation of EGFR/Akt signaling may regulate survivin expression though modulating ubiquitination. Collectively, these results suggested that DHM may act as a potential EGFR inhibitor, and may provide a novel choice of treatment strategy for patients with NSCLC.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China.,Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ruike Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yangnan Zhang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
88
|
Yao G, Li H, Zuo X, Wang C, Xiao Y, Zhao Y, Wang X. Oscillatory shear stress promotes vein graft intimal hyperplasia via NADPH oxidase-related pathways. Front Surg 2023; 10:1073557. [PMID: 36860953 PMCID: PMC9968757 DOI: 10.3389/fsurg.2023.1073557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
Background Uncontrolled intimal hyperplasia (IH) after autologous saphenous vein grafting triggers a high restenosis rate; however, its association with the activation of NADPH oxidase (NOX)-related pathways is unclear. Here, we investigated the effects and mechanism of oscillatory shear stress (OSS) on grafted vein IH. Methods Thirty male New Zealand rabbits were randomly divided into control, high-OSS (HOSS), and low-OSS (LOSS) groups, and the vein grafts were harvested after 4 weeks. Hematoxylin and eosin staining and Masson staining assays were used to observe morphological and structural changes. Immunohistochemical staining was used to detect α-SMA, PCNA, MMP-2, and MMP-9 expression. Immunofluorescence staining was used to observe reactive oxygen species (ROS) production in the tissues. Western blotting was used to determine the expression levels of pathway-related proteins (NOX1, NOX2, AKT, p-AKT, and BIRC5), PCNA, BCL-2, BAX, and caspase-3/cleaved caspase-3 in tissues. Results Blood flow velocity was lower in the LOSS group than in the HOSS group, while vessel diameter did not change significantly. Shear rate was elevated in both HOSS and LOSS groups but was higher in the HOSS group. Additionally, vessel diameter increased with time in the HOSS and LOSS groups, whereas flow velocity did not. Intimal hyperplasia was significantly lower in the LOSS group than in the HOSS group. IH was dominated by smooth muscle fibers in the grafted veins and collagen fibers in the media. OSS restriction significantly reduced the α-SMA, PCNA, MMP-2, and MMP-9 levels. Moreover, ROS production and the expression of NOX1, NOX2, p-AKT, BIRC5, PCNA, BCL-2, BAX, and cleaved caspase-3 were phase-reduced in LOSS compared to the levels in the HOSS group. Total AKT was not differentially expressed among the three groups. Conclusion OSS promotes the proliferation, migration, and survival of subendothelial vascular smooth muscle cells in grafted veins, which may be related to the regulation of downstream p-AKT/BIRC5 levels through the increased production of ROS by NOX. Drugs inhibiting this pathway might be used to prolong vein graft survival time.
Collapse
Affiliation(s)
- Guoqing Yao
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huanhuan Li
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,Department of Emergency, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Xiangyi Zuo
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunkai Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yelei Xiao
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Zhao
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuehu Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,Correspondence: Xuehu Wang
| |
Collapse
|
89
|
Targeting Transcription Factors ATF5, CEBPB and CEBPD with Cell-Penetrating Peptides to Treat Brain and Other Cancers. Cells 2023; 12:cells12040581. [PMID: 36831248 PMCID: PMC9954556 DOI: 10.3390/cells12040581] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Developing novel therapeutics often follows three steps: target identification, design of strategies to suppress target activity and drug development to implement the strategies. In this review, we recount the evidence identifying the basic leucine zipper transcription factors ATF5, CEBPB, and CEBPD as targets for brain and other malignancies. We describe strategies that exploit the structures of the three factors to create inhibitory dominant-negative (DN) mutant forms that selectively suppress growth and survival of cancer cells. We then discuss and compare four peptides (CP-DN-ATF5, Dpep, Bpep and ST101) in which DN sequences are joined with cell-penetrating domains to create drugs that pass through tissue barriers and into cells. The peptide drugs show both efficacy and safety in suppressing growth and in the survival of brain and other cancers in vivo, and ST101 is currently in clinical trials for solid tumors, including GBM. We further consider known mechanisms by which the peptides act and how these have been exploited in rationally designed combination therapies. We additionally discuss lacunae in our knowledge about the peptides that merit further research. Finally, we suggest both short- and long-term directions for creating new generations of drugs targeting ATF5, CEBPB, CEBPD, and other transcription factors for treating brain and other malignancies.
Collapse
|
90
|
Jafarzadeh A, Bazargan N, Chatrabnous N, Jafarzadeh S, Nemati M. Contribution of survivin to the immune system, allergies and autoimmune diseases. Hum Immunol 2023; 84:301-310. [PMID: 36754653 DOI: 10.1016/j.humimm.2023.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/30/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
In addition to malignancies, survivin (a member of the apoptosis inhibitor family) has been implicated in the pathogenesis of inflammatory disorders, including autoimmune and allergic diseases. Survivin is constantly expressed in the proliferating hematopoietic progenitor cells, and it is re-expressed in the mature cells of the innate and adaptive immunity, upon activation. Survivin enhances the expression of co-stimulatory molecules and MHC class II molecules in dendritic cells, and promotes the lifespan of macrophages, neutrophils, and eosinophils, while suppressing natural killer (NK) cell activity. Survivin has been implicated in T cell maturation, T cell expansion, effector CD4+ T cell differentiation, maintenance of memory CD4+ T and CD8+ T cells, as well as antibody production. Upregulated expression of survivin was indicated in the T cells as well as various samples collected from allergic patients. Survivin can contribute to the pathogenesis of allergic diseases via the promotion of the Th2 polarization, promoting IL-4 expression, compromising activation-induced cell death (AICD) in Th2 cells, and preventing apoptosis of eosinophils, as well as, amplification of eosinophilia. Moreover, survivin can interfere with clonal deletion of autoreactive T and B cells, as well as suppress Treg cell development and activity supporting the development of autoimmune diseases. This review discusses the role of survivin in immunity, allergy and autoimmunity as well as provides evidence that survivin may be considered as a novel therapeutic target for the treatment of allergic and autoimmune diseases.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Nasrin Bazargan
- Department of Internal Medicine, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Nazanin Chatrabnous
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Haematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
91
|
Chang WH, Liu Y, Hammes EA, Bryant KL, Cerione RA, Antonyak MA. Oncogenic RAS promotes MYC protein stability by upregulating the expression of the inhibitor of apoptosis protein family member Survivin. J Biol Chem 2023; 299:102842. [PMID: 36581205 PMCID: PMC9860443 DOI: 10.1016/j.jbc.2022.102842] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
The small GTPase KRAS is frequently mutated in pancreatic cancer and its cooperation with the transcription factor MYC is essential for malignant transformation. The key to oncogenic KRAS and MYC working together is the stabilization of MYC expression due to KRAS activating the extracellular signal-regulated kinase 1/2, which phosphorylates MYC at serine 62 (Ser 62). This prevents the proteasomal degradation of MYC while enhancing its transcriptional activity. Here, we identify how this essential signaling connection between oncogenic KRAS and MYC expression is mediated by the inhibitor of apoptosis protein family member Survivin. This discovery stemmed from our finding that Survivin expression is downregulated upon treatment of pancreatic cancer cells with the KRASG12C inhibitor Sotorasib. We went on to show that oncogenic KRAS increases Survivin expression by activating extracellular signal-regulated kinase 1/2 in pancreatic cancer cells and that treating the cells either with siRNAs targeting Survivin or with YM155, a small molecule that potently blocks Survivin expression, downregulates MYC and strongly inhibited their growth. We further determined that Survivin protects MYC from degradation by blocking autophagy, which then prevents cellular inhibitor of protein phosphatase 2A from undergoing autophagic degradation. Cellular inhibitor of protein phosphatase 2A, by inhibiting protein phosphatase 2A, helps to maintain MYC phosphorylation at Ser 62, thereby ensuring its cooperation with oncogenic KRAS in driving cancer progression. Overall, these findings highlight a novel role for Survivin in mediating the cooperative actions of KRAS and MYC during malignant transformation and raise the possibility that targeting Survivin may offer therapeutic benefits against KRAS-driven cancers.
Collapse
Affiliation(s)
- Wen-Hsuan Chang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yinzhe Liu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Emma A Hammes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Kirsten L Bryant
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA; Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA.
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
92
|
CBX5 loss drives EGFR inhibitor resistance and results in therapeutically actionable vulnerabilities in lung cancer. Proc Natl Acad Sci U S A 2023; 120:e2218118120. [PMID: 36652476 PMCID: PMC9942844 DOI: 10.1073/pnas.2218118120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Although epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFRi) are approved for treating EGFR-mutant lung adenocarcinoma (LUAD), emergence of acquired resistance limits their clinical benefits. Several mechanisms for acquired resistance to EGFRi in LUAD have been identified; however, the molecular basis for this resistance remains unknown in ~30% of LUAD. Chromatin and DNA modifiers and their regulators play important roles in determining response to anticancer therapies. Therefore, to identify nongenetic mechanisms of EGFRi resistance in LUAD, we performed an epigenome-wide shRNA screen targeting 363 human epigenetic regulator genes. This screen identified loss of the transcriptional repressor chromobox homolog 5 (CBX5) as a driver of EGFRi resistance in EGFR-mutant LUAD. Loss of CBX5 confers resistance to multiple EGFRi in both cell culture and mice. We found that CBX5 loss in EGFR-mutant LUAD cells leads to increased expression of the transcription factor E2F1, which in turn stimulates expression of the antiapoptotic gene BIRC5 (survivin). This E2F1-mediated upregulation of BIRC5 in CBX5-knockdown LUAD cells attenuates apoptosis induction following EGFRi treatment. Consistent with these results, knockdown of E2F1 or BIRC5 partly rescues CBX5-knockdown-induced EGFRi resistance in cell culture and mice. EGFRi-resistant LUAD cell lines show reduced CBX5 expression compared to parental lines; however, bromo- and extra-terminal (BET)-domain inhibitors (BETi) restore CBX5 expression in these cells and sensitize them to EGFRi/BETi combination therapy. Similarly, treatment with a BIRC5 inhibitor suppresses growth of EGFRi-resistant LUAD cells. Collectively, these studies identify CBX5 loss as a driver of EGFRi resistance and reveal therapeutic opportunities for treating EGFRi-resistant LUAD.
Collapse
|
93
|
Zhao C, Zhang L, Hu Y, Nie C, Chen TT, Chu X. Simultaneous Imaging and Visualizing the Association of Survivin mRNA and Telomerase in Living Cells by Using a Dual-Color Encoded DNA Nanomachine. Anal Chem 2023; 95:1498-1504. [PMID: 36598384 DOI: 10.1021/acs.analchem.2c04531] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Simultaneous imaging and especially visualizing the association of survivin mRNA and telomerase in living cells are of great value for the diagnosis and prognosis of cancer because their co-expression facilitates the development of cancer and identifies patients at high risk of tumor-related death. The challenge is to develop methods that enable visualizing the association of multiplex targets and avoid the distorted signals due to the different delivery efficiency of probes. Herein, we engineered a DNA triangular prism nanomachine (DTPN) for simultaneous multicolor imaging of survivin mRNA and telomerase and visualizing their association in living cells. Two recognizing probes targeted survivin mRNA and telomerase, and the reporter probe was assembled on the DTP in equal amounts, ensuring the same delivery efficiency of the probes to the living cells. The results showed that this DTPN could quantify intracellular survivin mRNA expression and telomerase activity. Moreover, it also enabled us to visualize the effect of the down-regulation of one target on the expression of another target under different drug stimulations. The results implied that our DTPN provided a promising platform for cancer diagnosis, prognosis, drug screening, and related biological research.
Collapse
Affiliation(s)
- Chuan Zhao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lan Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yanlei Hu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Cunpeng Nie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ting-Ting Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
94
|
Semenova MN, Tsyganov DV, Konyushkin LD, Semenov VV. Cytotoxic monoaryl furazanopyrazines with microtubule destabilizing activity in the sea urchin embryo model. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2022.100704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
95
|
Nainu F, Ophinni Y, Shiratsuchi A, Nakanishi Y. Apoptosis and Phagocytosis as Antiviral Mechanisms. Subcell Biochem 2023; 106:77-112. [PMID: 38159224 DOI: 10.1007/978-3-031-40086-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Viruses are infectious entities that make use of the replication machinery of their hosts to produce more progenies, causing disease and sometimes death. To counter viral infection, metazoan hosts are equipped with various defense mechanisms, from the rapid-evoking innate immune responses to the most advanced adaptive immune responses. Previous research demonstrated that cells in fruit flies and mice infected with Drosophila C virus and influenza, respectively, undergo apoptosis, which triggers the engulfment of apoptotic virus-infected cells by phagocytes. This process involves the recognition of eat-me signals on the surface of virus-infected cells by receptors of specialized phagocytes, such as macrophages and neutrophils in mice and hemocytes in fruit flies, to facilitate the phagocytic elimination of virus-infected cells. Inhibition of phagocytosis led to severe pathologies and death in both species, indicating that apoptosis-dependent phagocytosis of virus-infected cells is a conserved antiviral mechanism in multicellular organisms. Indeed, our understanding of the mechanisms underlying apoptosis-dependent phagocytosis of virus-infected cells has shed a new perspective on how hosts defend themselves against viral infection. This chapter explores the mechanisms of this process and its potential for developing new treatments for viral diseases.
Collapse
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia.
| | - Youdiil Ophinni
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Akiko Shiratsuchi
- Center for Medical Education, Sapporo Medical University, Sapporo, Japan
- Division of Biological Function and Regulation, Graduate School of Medicine, Sapporo Medical University, Sapporo, Japan
| | | |
Collapse
|
96
|
Araújo D, Ribeiro E, Amorim I, Vale N. Repurposed Drugs in Gastric Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010319. [PMID: 36615513 PMCID: PMC9822219 DOI: 10.3390/molecules28010319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
Gastric cancer (GC) is one of the major causes of death worldwide, ranking as the fifth most incident cancer in 2020 and the fourth leading cause of cancer mortality. The majority of GC patients are in an advanced stage at the time of diagnosis, presenting a poor prognosis and outcome. Current GC treatment approaches involve endoscopic detection, gastrectomy and chemotherapy or chemoradiotherapy in an adjuvant or neoadjuvant setting. Drug development approaches demand extreme effort to identify molecular mechanisms of action of new drug candidates. Drug repurposing is based on the research of new therapeutic indications of drugs approved for other pathologies. In this review, we explore GC and the different drugs repurposed for this disease.
Collapse
Affiliation(s)
- Diana Araújo
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
97
|
Wang L, Wan G, Wang G, Zhang M, Li N, Zhang Q, Yan H. Anthocyanin from Lycium ruthenicum Murr. in the Qaidam Basin Alleviates Ultraviolet-Induced Apoptosis of Human Skin Fibroblasts by Regulating the Death Receptor Pathway. CLINICAL, COSMETIC AND INVESTIGATIONAL DERMATOLOGY 2022; 15:2925-2932. [PMID: 36601462 PMCID: PMC9807275 DOI: 10.2147/ccid.s388418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/15/2022] [Indexed: 12/30/2022]
Abstract
Purpose The study aimed to investigate the potential protective role of anthocyanin from Lycium ruthenicum Murr. in the Qaidam Basin against ultraviolet B (UVB)-induced apoptosis of human skin fibroblasts (HSFs). Methods HSFs cultured in vitro were randomly divided into a control group, UVB group, and anthocyanin groups (0.1, 0.5, and 1.0 mg/mL). HSFs in the UVB and anthocyanin groups were exposed to 30 mJ/cm2 UVB to establish a photoaging model. Then, apoptosis rate, tumor necrosis factor-α (TNF-α), cysteinyl aspartate specific proteinase-3 (caspase-3), cysteinyl aspartate specific proteinase-7 (caspase-7), and survivin expression were evaluated. Results UVB irradiation can increase the apoptosis rate of HSFs and expression of TNF-α, caspase-7, and survivin. Anthocyanin pretreatment (0.1, 0.5, and 1.0 mg/mL) decreased UVB-induced apoptosis rate and TNF-α and caspase-7 expression and increased survivin expression. Compared with the control group, the apoptosis rate and expression of TNF-α, caspase-7, and survivin of anthocyanin groups in UVB-irradiated HSFs were high. Among the three doses of anthocyanin (0.1, 0.5, and 1.0 mg/mL) groups, the apoptosis rate and TNF-α expression of anthocyanin at 1.0 mg/mL were the lowest. There was no significant change in caspase-3 expression in each group. Conclusion Anthocyanin from Lycium ruthenicum Murr. in the Qaidam Basin could alleviate UVB-induced apoptosis by regulating the death receptor pathway.
Collapse
Affiliation(s)
- Liwen Wang
- Department of Dermatology, Qinghai University Affiliated Hospital, Xining, People’s Republic of China
| | - Guangmei Wan
- Department of Dermatology, Qinghai University Affiliated Hospital, Xining, People’s Republic of China
| | - Gang Wang
- Department of Dermatology, Qinghai University Affiliated Hospital, Xining, People’s Republic of China
| | - Meihong Zhang
- Department of Dermatology, Qinghai University Affiliated Hospital, Xining, People’s Republic of China
| | - Nanxin Li
- Department of Dermatology, Qinghai University Affiliated Hospital, Xining, People’s Republic of China
| | - Qinning Zhang
- Shijingshan Teaching Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Hualing Yan
- Department of Dermatology, Qinghai University Affiliated Hospital, Xining, People’s Republic of China,Correspondence: Hualing Yan, Department of Dermatology, Qinghai University Affiliated Hospital, No. 29, Tongren Road, Chengxi District, Xining, Qinghai Province, People’s Republic of China, Email
| |
Collapse
|
98
|
Differential Immunomodulatory Effects of Head and Neck Cancer-Derived Exosomes on B Cells in the Presence of ATP. Int J Mol Sci 2022; 23:ijms232214446. [PMID: 36430925 PMCID: PMC9693630 DOI: 10.3390/ijms232214446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an aggressive malignancy. Tumor-derived exosomes (TEX) have immunoregulatory properties. Adenosine triphosphate (ATP) and its immunosuppressive precursor adenosine (ADO) have been found in cancerous tissue. We investigated the effect of TEX on B cells in the presence of ATP. TEX were isolated from human HNSCC cell line (PCI-13) cultures and co-cultured with peripheral blood B cells of healthy donors, with or without TEX in different concentrations and with or without a low (20 µM) or high (2000 µM) ATP dose. We were able to demonstrate that TEX inhibit B-cell proliferation. The addition of TEX to either ATP concentration showed a decreasing trend in CD39 expression on B cells in a dose-dependent manner. High ATP levels (2000 µM) increased apoptosis and necrosis, and analysis of apoptosis-associated proteins revealed dose-dependent effects of ATP, which were modified by TEX. Altogether, TEX exhibited dual immunomodulatory effects on B cells. TEX were immunosuppressive by inhibiting B-cell proliferation; they were immunostimulatory by downregulating CD39 expression. Furthermore, TEX were able to modulate the expression of pro- and anti-apoptotic proteins. In conclusion, our data indicate that TEX play an important, but complex, role in the tumor microenvironment.
Collapse
|
99
|
Lnc Tmem235 promotes repair of early steroid-induced osteonecrosis of the femoral head by inhibiting hypoxia-induced apoptosis of BMSCs. Exp Mol Med 2022; 54:1991-2006. [PMID: 36380019 PMCID: PMC9723185 DOI: 10.1038/s12276-022-00875-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/24/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) have been used in the treatment of early steroid-induced osteonecrosis of the femoral head (SONFH). However, the hypoxic microenvironment in the osteonecrotic area leads to hypoxia-induced apoptosis of transplanted BMSCs, which limits their efficacy. Therefore, approaches that inhibit hypoxia-induced apoptosis of BMSCs are promising for augmenting the efficacy of BMSC transplantation. Our present study found that under hypoxia, the expression of the long noncoding RNA (Lnc) transmembrane protein 235 (Tmem235) was downregulated, the expression of Bcl-2-associated X protein was upregulated, the expression of B-cell lymphoma-2 protein was downregulated, and the apoptotic rate of BMSCs was over 70%. However, overexpression of Lnc Tmem235 reversed hypoxia-induced apoptosis of BMSCs and promoted their survival. These results demonstrated that Lnc Tmem235 effectively inhibited hypoxia-induced apoptosis of BMSCs. Mechanistically, we found that Lnc Tmem235 exhibited competitive binding to miR-34a-3p compared with BIRC5 mRNA, which is an inhibitor of apoptosis; this competitive binding relieved the silencing effect of miR-34a-3p on BIRC5 mRNA to ultimately inhibit hypoxia-induced apoptosis of BMSCs by promoting the expression of BIRC5. Furthermore, we cocultured BMSCs overexpressing Lnc Tmem235 with xenogeneic antigen-extracted cancellous bone to construct tissue-engineered bone to repair a model of early SONFH in vivo. The results showed that overexpression of Lnc Tmem235 effectively reduced apoptosis of BMSCs in the hypoxic microenvironment of osteonecrosis and improved the effect of BMSC transplantation. Taken together, our findings show that Lnc Tmem235 inhibited hypoxia-induced apoptosis of BMSCs by regulating the miR-34a-3p/BIRC5 axis, thus improving the transplantation efficacy of BMSCs for treating early SONFH.
Collapse
|
100
|
Arafat K, Sulaiman S, Al-Azawi AM, Yasin J, Sugathan S, Nemmar A, Karam S, Attoub S. Origanum majorana essential oil decreases lung tumor growth and metastasis in vitro and in vivo. Biomed Pharmacother 2022; 155:113762. [PMID: 36182733 DOI: 10.1016/j.biopha.2022.113762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 11/02/2022] Open
Abstract
Current targeted- and immuno-therapies have prolonged the overall survival of non-small cell lung cancer (NSCLC) patients by few months in a small percentage of patients responding to these treatments. This situation has prompted us to investigate the anticancer potential of the Origanum majorana Essential Oil (OMEO). In this pre-clinical study and using two major human NSCLC, namely A549 and LNM35, we demonstrated that OMEO significantly decreases the viability of these cells and the growth of their pre-formed colonies in vitro in a concentration-dependent manner and partly via the induction of caspase 3/7-dependent cell death and downregulation of survivin. Moreover, OMEO significantly slow down the growth of A549 and LNM35 tumor xenografts in the CAM and in nude mice models in vivo. Furthermore, OMEO significantly reduces in vitro A549 and LNM35 cancer cell migration and invasion, and the incidence and growth of lymph nodes metastasis in vivo in nude mice xenografted subcutaneously with the highly metastatic LNM35 cells. Three months of treatment of mice with OMEO did not affect blood, kidney, and liver functions. Our study demonstrates that OMEO is a safe and robust anticancer option.
Collapse
Affiliation(s)
- Kholoud Arafat
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates.
| | - Shahrazad Sulaiman
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates.
| | - Aya Mudhafar Al-Azawi
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates.
| | - Javed Yasin
- Department of Medicine, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates.
| | - Subi Sugathan
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates.
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates.
| | - Sherif Karam
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates.
| | - Samir Attoub
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain 17666, United Arab Emirates; Institut National de la Santé et de la Recherche Médicale (INSERM), 75013 Paris, France.
| |
Collapse
|