51
|
Seyedali A, Berry MJ. Nonsense-mediated decay factors are involved in the regulation of selenoprotein mRNA levels during selenium deficiency. RNA (NEW YORK, N.Y.) 2014; 20:1248-1256. [PMID: 24947499 PMCID: PMC4105750 DOI: 10.1261/rna.043463.113] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 05/08/2014] [Indexed: 06/03/2023]
Abstract
Selenoproteins contain the unique amino acid selenocysteine (Sec), which is encoded by the triplet UGA. Since UGA also serves as a stop codon, it has been postulated that selenoprotein mRNAs are targeted for degradation by the nonsense-mediated mRNA decay pathway (NMD). Several reports have observed a hierarchy of selenoprotein mRNA expression when selenium (Se) is limiting, whereby the abundance of certain transcripts decline while others do not. We sought to investigate the role of NMD in this hierarchical response that selenoprotein mRNAs exhibit to environmental Se status. Selenoprotein mRNAs were categorized as being predicted sensitive or resistant to NMD based on the requirements held by the current model. About half of the selenoprotein transcriptome was predicted to be sensitive to NMD and showed significant changes in mRNA abundance in response to cellular Se status. The other half that was predicted to be resistant to NMD did not respond to Se status. RNA immunoprecipitation with essential NMD factor UPF1 revealed that the mRNAs that were the most sensitive to Se status were also the most enriched on UPF1 during Se deficiency. Furthermore, depletion of SMG1, the kinase responsible for UPF1 phosphorylation and NMD activation, abrogated the decline in transcript abundance of Se-responsive transcripts. Lastly, mRNA decay rates of Se-responsive transcripts were altered upon the addition of Se to resemble the slower decay rates of nonresponsive transcripts. Taken together, these results present novel evidence in support of a crucial role for the NMD pathway in regulating selenoprotein mRNA levels when Se is limiting.
Collapse
Affiliation(s)
- Ali Seyedali
- Department of Cell and Molecular Biology, John A. Burn School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| | - Marla J Berry
- Department of Cell and Molecular Biology, John A. Burn School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| |
Collapse
|
52
|
Burugu S, Daher A, Meurs EF, Gatignol A. HIV-1 translation and its regulation by cellular factors PKR and PACT. Virus Res 2014; 193:65-77. [PMID: 25064266 DOI: 10.1016/j.virusres.2014.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 12/24/2022]
Abstract
The synthesis of proteins from viral mRNA is the first step towards viral assembly. Viruses are dependent upon the cellular translation machinery to synthesize their own proteins. The synthesis of proteins from the human immunodeficiency virus (HIV) type 1 and 2 RNAs utilize several alternative mechanisms. The regulation of viral protein production requires a constant interplay between viral requirements and the cell response to viral infection. Among the antiviral cell responses, the interferon-induced RNA activated protein kinase, PKR, regulates the cellular and viral translation. During HIV-1 infection, PKR activation is highly regulated by viral and cellular factors. The cellular TAR RNA Binding Protein, TRBP, the Adenosine Deaminase acting on RNA, ADAR1, and the PKR Activator, PACT, play important roles. Recent data show that PACT changes its function from activator to inhibitor in HIV-1 infected cells. Therefore, HIV-1 has evolved to replicate in cells in which TRBP, ADAR1 and PACT prevent PKR activation to allow efficient viral protein synthesis. This proper translation will initiate the assembly of viral particles.
Collapse
Affiliation(s)
- Samantha Burugu
- Virus-cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Aïcha Daher
- Virus-cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Eliane F Meurs
- Institut Pasteur, Department of Virology, Hepacivirus and Innate Immunity Unit, Paris, France
| | - Anne Gatignol
- Virus-cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada.
| |
Collapse
|
53
|
Natural single-nucleotide polymorphisms in the 3' region of the HIV-1 pol gene modulate viral replication ability. J Virol 2014; 88:4145-60. [PMID: 24478432 DOI: 10.1128/jvi.01859-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED We previously showed that prototype macaque-tropic human immunodeficiency virus type 1 (HIV-1) acquired nonsynonymous growth-enhancing mutations within a narrow genomic region during the adaptation process in macaque cells. These adaptive mutations were clustered in the 3' region of the pol gene, encoding a small portion of the C-terminal domain of integrase (IN). Mutations in HIV-1 IN have been reported to have pleiotropic effects on both the early and late phases in viral replication. cis-acting functions in the IN-coding sequence for viral gene expression have also been reported. We here demonstrated that the adaptive mutations promoted viral growth by increasing virion production with no positive effects on the early replication phase. Synonymous codon alterations in one of the adaptive mutations influenced virion production levels, which suggested nucleotide-dependent regulation. Indeed, when the single-nucleotide natural polymorphisms observed in the 3' regions of 196 HIV-1/simian immunodeficiency virus (SIVcpz) pol genes (nucleotides [nt] 4895 to 4929 for HIV-1 NL4-3) were introduced into macaque- and human-tropic HIV-1 clones, more than half exhibited altered replication potentials. Moreover, single-nucleotide mutations caused parallel increases or decreases in the expression levels of viral late proteins and viral replication potentials. We also showed that the overall expression profiles of viral mRNAs were markedly changed by single-nucleotide mutations. These results demonstrate that the 3' region of the HIV-1 pol gene (nt 4895 to 4929) can alter viral replication potential by modulating the expression pattern of viral mRNAs in a nucleotide-dependent manner. IMPORTANCE Viruses have the plasticity to adapt themselves under various constraints. HIV-1 can mutate and evolve in growth-restrictive cells by acquiring adaptive changes in its genome. We have previously identified some growth-enhancing mutations in a narrow region of the IN-coding sequence, in which a number of cis-acting elements are located. We now focus on the virological significance of this pol gene region and the mechanistic basis underlying its effects on viral replication. We have found several naturally occurring synonymous mutations within this region that alter viral replication potentials. The effects caused by these natural single-nucleotide polymorphisms are linked to the definite expression patterns of viral mRNAs. We show here that the nucleotide sequence of the pol gene (nucleotides 4895 to 4929 for HIV-1 NL4-3) plays an important role in HIV-1 replication by modulating viral gene expression.
Collapse
|
54
|
Gladue DP, Baker-Bransetter R, Holinka LG, Fernandez-Sainz IJ, O’Donnell V, Fletcher P, Lu Z, Borca MV. Interaction of CSFV E2 protein with swine host factors as detected by yeast two-hybrid system. PLoS One 2014; 9:e85324. [PMID: 24416391 PMCID: PMC3885694 DOI: 10.1371/journal.pone.0085324] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/26/2013] [Indexed: 01/31/2023] Open
Abstract
E2 is one of the envelope glycoproteins of pestiviruses, including classical swine fever virus (CSFV) and bovine viral diarrhea virus (BVDV). E2 is involved in several critical functions, including virus entry into target cells, induction of a protective immune response and virulence in swine. However, there is no information regarding any host binding partners for the E2 proteins. Here, we utilized the yeast two-hybrid system and identified fifty-seven host proteins as positive binding partners which bound E2 from both CSFV and BVDV with the exception of two proteins that were found to be positive for binding only to CSFV E2. Alanine scanning of CSFV E2 demonstrated that the binding sites for these cellular proteins on E2 are likely non-linear binding sites. The possible roles of the identified host proteins are discussed as the results presented here will be important for future studies to elucidate mechanisms of host protein-virus interactions during pestivirus infection. However, due to the limitations of the yeast two hybrid system, the proteins identified is not exhaustive and each interaction identified needs to be confirmed by independent experimental approaches in the context of virus-infected cells before any definitive conclusion can be drawn on relevance for the virus life cycle.
Collapse
Affiliation(s)
- Douglas P. Gladue
- Plum Island Animal Disease Center, Agriculture Research Service, United States Department of Agriculture, Greenport, New York, United States of America
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut, United States of America
| | - Ryan Baker-Bransetter
- Plum Island Animal Disease Center, Agriculture Research Service, United States Department of Agriculture, Greenport, New York, United States of America
| | - Lauren G. Holinka
- Plum Island Animal Disease Center, Agriculture Research Service, United States Department of Agriculture, Greenport, New York, United States of America
| | - Ignacio J. Fernandez-Sainz
- Plum Island Animal Disease Center, Agriculture Research Service, United States Department of Agriculture, Greenport, New York, United States of America
| | - Vivian O’Donnell
- Plum Island Animal Disease Center, Agriculture Research Service, United States Department of Agriculture, Greenport, New York, United States of America
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut, United States of America
| | - Paige Fletcher
- Plum Island Animal Disease Center, Agriculture Research Service, United States Department of Agriculture, Greenport, New York, United States of America
| | - Zhiqiang Lu
- Plum Island Animal Disease Center, Department of Homeland Security, Greenport, New York, United States of America
| | - Manuel V. Borca
- Plum Island Animal Disease Center, Agriculture Research Service, United States Department of Agriculture, Greenport, New York, United States of America
- * E-mail:
| |
Collapse
|
55
|
Serquiña AKP, Das SR, Popova E, Ojelabi OA, Roy CK, Göttlinger HG. UPF1 is crucial for the infectivity of human immunodeficiency virus type 1 progeny virions. J Virol 2013; 87:8853-61. [PMID: 23785196 PMCID: PMC3754033 DOI: 10.1128/jvi.00925-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/10/2013] [Indexed: 12/28/2022] Open
Abstract
The SF1 helicase MOV10 is an antiviral factor that is incorporated into human immunodeficiency virus type 1 (HIV-1) virions. We now report that HIV-1 virions also incorporate UPF1, which belongs to the same SF1 helicase subfamily as MOV10 and functions in the nonsense-mediated decay (NMD) pathway. Unlike ectopic MOV10, the overexpression of UPF1 does not impair the infectivity of HIV-1 progeny virions. However, UPF1 becomes a potent inhibitor of HIV-1 progeny virion infectivity when residues required for its helicase activity are mutated. In contrast, equivalent mutations abolish the antiviral activity of MOV10. Importantly, cells depleted of endogenous UPF1, but not of another NMD core component, produce HIV-1 virions of substantially lower specific infectivity. The defect is at the level of reverse transcription, the same stage of the HIV-1 life cycle inhibited by ectopic MOV10. Thus, whereas ectopic MOV10 restricts HIV-1 replication, the related UPF1 helicase functions as a cofactor at an early postentry step.
Collapse
Affiliation(s)
| | - Suman R. Das
- Program in Gene Function and Expression, Program in Molecular Medicine
| | - Elena Popova
- Program in Gene Function and Expression, Program in Molecular Medicine
| | - Ogooluwa A. Ojelabi
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Christian K. Roy
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
56
|
Lorgeoux RP, Pan Q, Le Duff Y, Liang C. DDX17 promotes the production of infectious HIV-1 particles through modulating viral RNA packaging and translation frameshift. Virology 2013; 443:384-92. [PMID: 23769241 DOI: 10.1016/j.virol.2013.05.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/24/2013] [Accepted: 05/18/2013] [Indexed: 01/13/2023]
Abstract
RNA helicases are a large family of proteins that rearrange RNA structures and remodel ribonucleic protein complexes using energy derived from hydrolysis of nucleotide triphosphates. They have been shown to participate in every step of RNA metabolism. In the past decade, an increasing number of helicases were shown to promote or inhibit the replication of different viruses, including human immunodeficiency virus type 1. Among these helicases, the DEAD-box RNA helicase DDX17 was recently reported to modulate HIV-1 RNA stability and export. In this study, we further show that the helicase activity of DDX17 is required for the production of infectious HIV-1 particles. Over expression of the DDX17 mutant DQAD in HEK293 cells reduces the amount of packaged viral genomic RNA and diminishes HIV-1 Gag-Pol frameshift. Altogether, these data demonstrate that DDX17 promotes the production of HIV-1 infectious particles by modulating HIV-1 RNA metabolism.
Collapse
|
57
|
Leblanc J, Weil J, Beemon K. Posttranscriptional regulation of retroviral gene expression: primary RNA transcripts play three roles as pre-mRNA, mRNA, and genomic RNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:567-80. [PMID: 23754689 DOI: 10.1002/wrna.1179] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/09/2013] [Accepted: 05/11/2013] [Indexed: 12/11/2022]
Abstract
After reverse transcription of the retroviral RNA genome and integration of the DNA provirus into the host genome, host machinery is used for viral gene expression along with viral proteins and RNA regulatory elements. Here, we discuss co-transcriptional and posttranscriptional regulation of retroviral gene expression, comparing simple and complex retroviruses. Cellular RNA polymerase II synthesizes full-length viral primary RNA transcripts that are capped and polyadenylated. All retroviruses generate a singly spliced env mRNA from this primary transcript, which encodes the viral glycoproteins. In addition, complex viral RNAs are alternatively spliced to generate accessory proteins, such as Rev, which is involved in posttranscriptional regulation of HIV-1 RNA. Importantly, the splicing of all retroviruses is incomplete; they must maintain and export a fraction of their primary RNA transcripts. This unspliced RNA functions both as the major mRNA for Gag and Pol proteins and as the packaged genomic RNA. Different retroviruses export their unspliced viral RNA from the nucleus to the cytoplasm by either Tap-dependent or Rev/CRM1-dependent routes. Translation of the unspliced mRNA involves frame-shifting or termination codon suppression so that the Gag proteins, which make up the capsid, are expressed more abundantly than the Pol proteins, which are the viral enzymes. After the viral polyproteins assemble into viral particles and bud from the cell membrane, a viral encoded protease cleaves them. Some retroviruses have evolved mechanisms to protect their unspliced RNA from decay by nonsense-mediated RNA decay and to prevent genome editing by the cellular APOBEC deaminases.
Collapse
Affiliation(s)
- Jason Leblanc
- Biology Department, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
58
|
Iordanskiy S, Santos S, Bukrinsky M. Nature, nurture and HIV: The effect of producer cell on viral physiology. Virology 2013; 443:208-13. [PMID: 23747196 DOI: 10.1016/j.virol.2013.05.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/23/2013] [Accepted: 05/15/2013] [Indexed: 01/13/2023]
Abstract
Macrophages and CD4-positive T lymphocytes are the major targets and producers of HIV-1. While the molecular details underlying HIV replication in macrophages and T cells become better understood, it remains unclear whether viruses produced by these target cells differ in their biological properties. Recent reports suggest that HIV virions incorporate a large number of producer cell proteins and lipids which have an effect on subsequent viral replication in newly infected cells. The identity and abundance of these incorporated factors varies between different types of producer cells, suggesting that they may influence the replication capacity and pathogenic activity of the virions produced by T cells and macrophages.
Collapse
Affiliation(s)
- Sergey Iordanskiy
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, 2300 I Street NW, Ross Hall, Washington, DC 20037, USA.
| | | | | |
Collapse
|
59
|
Ochs MJ, Ossipova E, Oliynyk G, Steinhilber D, Suess B, Jakobsson PJ. Mass Spectrometry-Based Proteomics Identifies UPF1 as a Critical Gene Expression Regulator in MonoMac 6 Cells. J Proteome Res 2013; 12:2622-9. [DOI: 10.1021/pr301193f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Meike J. Ochs
- Institute of Pharmaceutical Chemistry/ZAFES, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438
Frankfurt/M., Germany
- Institute
of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
| | - Elena Ossipova
- Department of Medicine, Rheumatology Unit, Karolinska Institute, Stockholm, Sweden
| | - Ganna Oliynyk
- Department of Medicine, Rheumatology Unit, Karolinska Institute, Stockholm, Sweden
- Department of Microbiology, Tumor
and Cell Biology, Karolinska Institute,
Stockholm, Sweden
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry/ZAFES, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438
Frankfurt/M., Germany
| | - Beatrix Suess
- Institute
of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt/M., Germany
- Department of
Biology, Technical University Darmstadt, Schnittspahnstraße 1064287 Darmstadt, Germany
| | - Per-Johan Jakobsson
- Department of Medicine, Rheumatology Unit, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
60
|
Nakano K, Ando T, Yamagishi M, Yokoyama K, Ishida T, Ohsugi T, Tanaka Y, Brighty DW, Watanabe T. Viral interference with host mRNA surveillance, the nonsense-mediated mRNA decay (NMD) pathway, through a new function of HTLV-1 Rex: implications for retroviral replication. Microbes Infect 2013; 15:491-505. [PMID: 23541980 DOI: 10.1016/j.micinf.2013.03.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 01/08/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is an essential and conserved cellular mRNA quality control mechanism. RNA signals to express viral genes from overlapping open reading frames potentially initiate NMD, nevertheless it is not clear whether viral RNAs are sensitive to NMD or if viruses have evolved mechanisms to evade NMD. Here we demonstrate that the genomic and full-length mRNAs of Human-T-cell Leukemia Virus type-I (HTLV-1), a retrovirus responsible for Adult T-cell Leukemia (ATL), are sensitive to NMD. They exhibit accelerated turnover in NMD-activated cells, while siRNA-mediated knockdown of NMD-master-regulator, UPF1, promotes enhanced stability of them. These effects on RNA stability were recapitulated by a reporter construct encoding the HTLV-1 translational frameshift signal of gag-pol. In agreement with the RNA stability, viral protein expression from the integrated provirus was inversely correlated with cellular NMD activity. We further demonstrated that the viral RNA-binding protein, Rex, approves the stability of viral RNA by inhibiting NMD. Significantly, Rex establishes a general block to NMD, as both NMD-responsive reporter transcripts and natural host-encoded NMD substrates were stabilized in the presence of Rex. Thus, we suggest that Rex not only stabilizes viral transcripts, but also perturbs cellular mRNA metabolism and host cell homeostasis via inhibition of NMD.
Collapse
Affiliation(s)
- Kazumi Nakano
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minatoku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Chen CY, Liu X, Boris-Lawrie K, Sharma A, Jeang KT. Cellular RNA helicases and HIV-1: insights from genome-wide, proteomic, and molecular studies. Virus Res 2013; 171:357-65. [PMID: 22814432 PMCID: PMC3493675 DOI: 10.1016/j.virusres.2012.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 06/25/2012] [Accepted: 06/25/2012] [Indexed: 11/24/2022]
Abstract
RNA helicases are ubiquitous in plants and animals and function in many cellular processes. Retroviruses, such as human immunodeficiency virus (HIV-1), encode no RNA helicases in their genomes and utilize host cellular RNA helicases at various stages of their life cycle. Here, we briefly summarize the roles RNA helicases play in HIV-1 replication that have been identified recently, in part, through genome-wide screenings, proteomics, and molecular studies. Some of these helicases augment virus propagation while others apparently participate in antiviral defenses against viral replication.
Collapse
Affiliation(s)
- Chia-Yen Chen
- Molecular Virology Section1, Laboratory of Molecular, Microbiology, the National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD, USA 20892
| | - Xiang Liu
- Molecular Virology Section1, Laboratory of Molecular, Microbiology, the National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD, USA 20892
| | - Kathleen Boris-Lawrie
- Department of Veterinary Biosciences, Center for Retrovirus Research, Ohio State University, Columbus, OH USA 43210
| | - Amit Sharma
- Department of Veterinary Biosciences, Center for Retrovirus Research, Ohio State University, Columbus, OH USA 43210
| | - Kuan-Teh Jeang
- Molecular Virology Section1, Laboratory of Molecular, Microbiology, the National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD, USA 20892
| |
Collapse
|
62
|
Meng B, Lever AM. Wrapping up the bad news: HIV assembly and release. Retrovirology 2013; 10:5. [PMID: 23305486 PMCID: PMC3558412 DOI: 10.1186/1742-4690-10-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/21/2012] [Indexed: 02/02/2023] Open
Abstract
The late Nobel Laureate Sir Peter Medawar once memorably described viruses as ‘bad news wrapped in protein’. Virus assembly in HIV is a remarkably well coordinated process in which the virus achieves extracellular budding using primarily intracellular budding machinery and also the unusual phenomenon of export from the cell of an RNA. Recruitment of the ESCRT system by HIV is one of the best documented examples of the comprehensive way in which a virus hijacks a normal cellular process. This review is a summary of our current understanding of the budding process of HIV, from genomic RNA capture through budding and on to viral maturation, but centering on the proteins of the ESCRT pathway and highlighting some recent advances in our understanding of the cellular components involved and the complex interplay between the Gag protein and the genomic RNA.
Collapse
Affiliation(s)
- Bo Meng
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | |
Collapse
|
63
|
Competing and noncompeting activities of miR-122 and the 5' exonuclease Xrn1 in regulation of hepatitis C virus replication. Proc Natl Acad Sci U S A 2012; 110:1881-6. [PMID: 23248316 DOI: 10.1073/pnas.1213515110] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C virus (HCV) replication is dependent on microRNA 122 (miR-122), a liver-specific microRNA that recruits Argonaute 2 to the 5' end of the viral genome, stabilizing it and slowing its decay both in cell-free reactions and in infected cells. Here we describe the RNA degradation pathways against which miR-122 provides protection. Transfected HCV RNA is degraded by both the 5' exonuclease Xrn1 and 3' exonuclease exosome complex, whereas replicating RNA within infected cells is degraded primarily by Xrn1 with no contribution from the exosome. Consistent with this, sequencing of the 5' and 3' ends of RNA degradation intermediates in infected cells confirmed that 5' decay is the primary pathway for HCV RNA degradation. Xrn1 knockdown enhances HCV replication, indicating that Xrn1 decay and the viral replicase compete to set RNA abundance within infected cells. Xrn1 knockdown and miR-122 supplementation have equal, redundant, and nonadditive effects on the rate of viral RNA decay, indicating that miR-122 protects HCV RNA from 5' decay. Nevertheless, Xrn1 knockdown does not rescue replication of a viral mutant defective in miR-122 binding, indicating that miR-122 has additional yet uncharacterized function(s) in the viral life cycle.
Collapse
|
64
|
Noguchi K, Ishibashi K, Miyokawa K, Hokari M, Kanno T, Hirano T, Yamamoto N, Takaku H. HIV-1 suppressive sequences are modulated by Rev transport of unspliced RNA and are required for efficient HIV-1 production. PLoS One 2012; 7:e51393. [PMID: 23251516 PMCID: PMC3519575 DOI: 10.1371/journal.pone.0051393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 10/31/2012] [Indexed: 11/18/2022] Open
Abstract
The unspliced human immunodeficiency virus type 1 (HIV-1) RNAs are translated as Gag and Gag-Pol polyproteins or packaged as genomes into viral particles. Efficient translation is necessary before the transition to produce infective virions. The viral protein Rev exports all intron-containing viral RNAs; however, it also appears to enhance translation. Cellular microRNAs target cellular and viral mRNAs to silence their translation and enrich them at discrete cytoplasmic loci that overlap with the putative interim site of Gag and the genome. Here, we analyzed how Rev-mediated transport and the splicing status of the mRNA influenced the silencing status imposed by microRNA. Through identification and mutational analysis of the silencing sites in the HIV-1 genome, we elucidated the effect of silencing on virus production. Renilla luciferase mRNA, which contains a let-7 targeting site in its 3' untranslated region, was mediated when it was transported by Rev and not spliced, but it was either not mediated when it was spliced even in a partial way or it was Rev-independent. The silencing sites in the pol and env-nef regions of the HIV-1 genome, which were repressed in T cells and other cell lines, were Drosha-dependent and could also be modulated by Rev in an unspliced state. Mutant viruses that contained genomic mutations that reflect alterations to show more derepressive effects in the 3' untranslated region of the Renilla luciferase gene replicated more slowly than wild-type virus. These findings yield insights into the HIV-1 silencing sites that might allow the genome to avoid translational machinery and that might be utilized in coordinating virus production during initial virus replication. However, the function of Rev to modulate the silencing sites of unspliced RNAs would be advantageous for the efficient translation that is required to support protein production prior to viral packaging and particle production.
Collapse
Affiliation(s)
- Kousei Noguchi
- High Technology Research Center, Chiba Institute of Technology, Tsudanuma, Narashino-shi, Chiba, Japan
| | - Keisuke Ishibashi
- Department of Life and Environmental Science, Chiba Institute of Technology, Tsudanuma, Narashino-shi, Chiba, Japan
| | - Kaori Miyokawa
- Department of Life and Environmental Science, Chiba Institute of Technology, Tsudanuma, Narashino-shi, Chiba, Japan
| | - Manami Hokari
- Department of Life and Environmental Science, Chiba Institute of Technology, Tsudanuma, Narashino-shi, Chiba, Japan
| | - Tomoyuki Kanno
- Department of Life and Environmental Science, Chiba Institute of Technology, Tsudanuma, Narashino-shi, Chiba, Japan
| | - Tomoya Hirano
- Department of Life and Environmental Science, Chiba Institute of Technology, Tsudanuma, Narashino-shi, Chiba, Japan
| | - Norio Yamamoto
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Hiroshi Takaku
- Department of Life and Environmental Science, Chiba Institute of Technology, Tsudanuma, Narashino-shi, Chiba, Japan
- High Technology Research Center, Chiba Institute of Technology, Tsudanuma, Narashino-shi, Chiba, Japan
| |
Collapse
|
65
|
Ghoujal B, Milev MP, Ajamian L, Abel K, Mouland AJ. ESCRT-II's involvement in HIV-1 genomic RNA trafficking and assembly. Biol Cell 2012; 104:706-21. [PMID: 22978549 DOI: 10.1111/boc.201200021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 09/06/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND INFORMATION Several host proteins play crucial roles in the HIV-1 replication cycle. The endosomal sorting complex required for transport (ESCRT) exemplifies a large, multi-component host machinery that is required by HIV-1 for viral budding. ESCRT promotes the inward budding of vesicles from the membranes of late endosomes to generate multi-vesicular bodies. However, HIV-1 co-opts the ESCRT to enable outwards budding of virus particles from the plasma membrane, a phenomenon that is topologically similar to multi-vesicular body biogenesis. A role for ESCRTII in mRNA trafficking has been established in Drosophila in which the ESCRT-II components, Vps22 and Vps36, promote the localisation of the bicoid mRNA in the fertilised egg. This is achieved via specific interactions with the Staufen protein. In this work, we investigated a possible implication of ESCRT-II in the HIV-1 replication cycle. RESULTS Co-immunoprecipitation analyses and live cell tri-molecular fluorescence complementation assays revealed that interactions between EAP30 and Gag and another between EAP30 and Staufen1 occur in mammalian cells. We then depleted EAP30 (the orthologue for Vps22) by siRNA to target ESCRT-II in HIV-1 expressing cells. This treatment disrupted ESCRT-II function and leads to the degradation of the two other ESCRT-II complex proteins, EAP45 and EAP20, as well as the associated Rab7-interacting lysosomal protein. The depletion of EAP30 led to dramatically reduced viral structural protein Gag and virus production levels, without any effect on viral RNA levels. On the contrary, the overexpression of EAP30 led to a several-fold increase in virus production. Unexpec-tedly, siRNA-mediated depletion of EAP30 led to a block to HIV-1 genomic RNA trafficking and resulted in the accumulation of genomic RNA in the nucleus and juxtanuclear domains. CONCLUSIONS Our data provide the first evidence that the Staufen1-ESCRT-II interaction is evolutionarily conserved from lower to higher eukaryotes and reveal a novel role for EAP30 in the control of HIV-1 RNA trafficking and gene expression.
Collapse
Affiliation(s)
- Bashar Ghoujal
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital and the Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3T 1E2, Canada
| | | | | | | | | |
Collapse
|
66
|
Milev MP, Ravichandran M, Khan MF, Schriemer DC, Mouland AJ. Characterization of staufen1 ribonucleoproteins by mass spectrometry and biochemical analyses reveal the presence of diverse host proteins associated with human immunodeficiency virus type 1. Front Microbiol 2012; 3:367. [PMID: 23125841 PMCID: PMC3486646 DOI: 10.3389/fmicb.2012.00367] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/27/2012] [Indexed: 12/02/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) unspliced, 9 kb genomic RNA (vRNA) is exported from the nucleus for the synthesis of viral structural proteins and enzymes (Gag and Gag/Pol) and is then transported to sites of virus assembly where it is packaged into progeny virions. vRNA co-exists in the cytoplasm in the context of the HIV-1 ribonucleoprotein (RNP) that is currently defined by the presence of Gag and several host proteins including the double-stranded RNA-binding protein, Staufen1. In this study we isolated Staufen1 RNP complexes derived from HIV-1-expressing cells using tandem affinity purification and have identified multiple host protein components by mass spectrometry. Four viral proteins, including Gag, Gag/Pol, Env and Nef as well as >200 host proteins were identified in these RNPs. Moreover, HIV-1 induces both qualitative and quantitative differences in host protein content in these RNPs. 22% of Staufen1-associated factors are virion-associated suggesting that the RNP could be a vehicle to achieve this. In addition, we provide evidence on how HIV-1 modulates the composition of cytoplasmic Staufen1 RNPs. Biochemical fractionation by density gradient analyses revealed new facets on the assembly of Staufen1 RNPs. The assembly of dense Staufen1 RNPs that contain Gag and several host proteins were found to be entirely RNA-dependent but their assembly appeared to be independent of Gag expression. Gag-containing complexes fractionated into a lighter and another, more dense pool. Lastly, Staufen1 depletion studies demonstrated that the previously characterized Staufen1 HIV-1-dependent RNPs are most likely aggregates of smaller RNPs that accumulate at juxtanuclear domains. The molecular characterization of Staufen1 HIV-1 RNPs will offer important information on virus-host cell interactions and on the elucidation of the function of these RNPs for the transport of Gag and the fate of the unspliced vRNA in HIV-1-producing cells.
Collapse
Affiliation(s)
- Miroslav P Milev
- HIV-1 Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital Montréal, QC, Canada ; Division of Experimental Medicine, Department of Medicine, McGill University Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
67
|
Lorgeoux RP, Guo F, Liang C. From promoting to inhibiting: diverse roles of helicases in HIV-1 Replication. Retrovirology 2012; 9:79. [PMID: 23020886 PMCID: PMC3484045 DOI: 10.1186/1742-4690-9-79] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 09/22/2012] [Indexed: 01/09/2023] Open
Abstract
Helicases hydrolyze nucleotide triphosphates (NTPs) and use the energy to modify the structures of nucleic acids. They are key players in every cellular process involving RNA or DNA. Human immunodeficiency virus type 1 (HIV-1) does not encode a helicase, thus it has to exploit cellular helicases in order to efficiently replicate its RNA genome. Indeed, several helicases have been found to specifically associate with HIV-1 and promote viral replication. However, studies have also revealed a couple of helicases that inhibit HIV-1 replication; these findings suggest that HIV-1 can either benefit from the function of cellular helicases or become curtailed by these enzymes. In this review, we focus on what is known about how a specific helicase associates with HIV-1 and how a distinct step of HIV-1 replication is affected. Despite many helicases having demonstrated roles in HIV-1 replication and dozens of other helicase candidates awaiting to be tested, a deeper appreciation of their involvement in the HIV-1 life cycle is hindered by our limited knowledge at the enzymatic and molecular levels regarding how helicases shape the conformation and structure of viral RNA-protein complexes and how these conformational changes are translated into functional outcomes in the context of viral replication.
Collapse
Affiliation(s)
- Rene-Pierre Lorgeoux
- McGill AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, H3T 1E2, Quebec, Canada
| | | | | |
Collapse
|
68
|
Santos S, Obukhov Y, Nekhai S, Bukrinsky M, Iordanskiy S. Virus-producing cells determine the host protein profiles of HIV-1 virion cores. Retrovirology 2012; 9:65. [PMID: 22889230 PMCID: PMC3432596 DOI: 10.1186/1742-4690-9-65] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/15/2012] [Indexed: 11/10/2022] Open
Abstract
Background Upon HIV entry into target cells, viral cores are released and rearranged into reverse transcription complexes (RTCs), which support reverse transcription and also protect and transport viral cDNA to the site of integration. RTCs are composed of viral and cellular proteins that originate from both target and producer cells, the latter entering the target cell within the viral core. However, the proteome of HIV-1 viral cores in the context of the type of producer cells has not yet been characterized. Results We examined the proteomic profiles of the cores purified from HIV-1 NL4-3 virions assembled in Sup-T1 cells (T lymphocytes), PMA and vitamin D3 activated THP1 (model of macrophages, mMΦ), and non-activated THP1 cells (model of monocytes, mMN) and assessed potential involvement of identified proteins in the early stages of infection using gene ontology information and data from genome-wide screens on proteins important for HIV-1 replication. We identified 202 cellular proteins incorporated in the viral cores (T cells: 125, mMΦ: 110, mMN: 90) with the overlap between these sets limited to 42 proteins. The groups of RNA binding (29), DNA binding (17), cytoskeleton (15), cytoskeleton regulation (21), chaperone (18), vesicular trafficking-associated (12) and ubiquitin-proteasome pathway-associated proteins (9) were most numerous. Cores of the virions from SupT1 cells contained twice as many RNA binding proteins as cores of THP1-derived virus, whereas cores of virions from mMΦ and mMN were enriched in components of cytoskeleton and vesicular transport machinery, most probably due to differences in virion assembly pathways between these cells. Spectra of chaperones, cytoskeletal proteins and ubiquitin-proteasome pathway components were similar between viral cores from different cell types, whereas DNA-binding and especially RNA-binding proteins were highly diverse. Western blot analysis showed that within the group of overlapping proteins, the level of incorporation of some RNA binding (RHA and HELIC2) and DNA binding proteins (MCM5 and Ku80) in the viral cores from T cells was higher than in the cores from both mMΦ and mMN and did not correlate with the abundance of these proteins in virus producing cells. Conclusions Profiles of host proteins packaged in the cores of HIV-1 virions depend on the type of virus producing cell. The pool of proteins present in the cores of all virions is likely to contain factors important for viral functions. Incorporation ratio of certain RNA- and DNA-binding proteins suggests their more efficient, non-random packaging into virions in T cells than in mMΦ and mMN.
Collapse
Affiliation(s)
- Steven Santos
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Ross Hall, Washington, DC 20037, USA
| | | | | | | | | |
Collapse
|
69
|
Vyboh K, Ajamian L, Mouland AJ. Detection of viral RNA by fluorescence in situ hybridization (FISH). J Vis Exp 2012:e4002. [PMID: 22588480 DOI: 10.3791/4002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Viruses that infect cells elicit specific changes to normal cell functions which serve to divert energy and resources for viral replication. Many aspects of host cell function are commandeered by viruses, usually by the expression of viral gene products that recruit host cell proteins and machineries. Moreover, viruses engineer specific membrane organelles or tag on to mobile vesicles and motor proteins to target regions of the cell (during de novo infection, viruses co-opt molecular motor proteins to target the nucleus; later, during virus assembly, they will hijack cellular machineries that will help in the assembly of viruses). Less is understood on how viruses, in particular those with RNA genomes, coordinate the intracellular trafficking of both protein and RNA components and how they achieve assembly of infectious particles at specific loci in the cell. The study of RNA localization began in earlier work. Developing lower eukaryotic embryos and neuronal cells provided important biological information, and also underscored the importance of RNA localization in the programming of gene expression cascades. The study in other organisms and cell systems has yielded similar important information. Viruses are obligate parasites and must utilise their host cells to replicate. Thus, it is critical to understand how RNA viruses direct their RNA genomes from the nucleus, through the nuclear pore, through the cytoplasm and on to one of its final destinations, into progeny virus particles. FISH serves as a useful tool to identify changes in steady-state localization of viral RNA. When combined with immunofluorescence (IF) analysis, FISH/IF co-analyses will provide information on the co-localization of proteins with the viral RNA. This analysis therefore provides a good starting point to test for RNA-protein interactions by other biochemical or biophysical tests, since co-localization by itself is not enough evidence to be certain of an interaction. In studying viral RNA localization using a method like this, abundant information has been gained on both viral and cellular RNA trafficking events. For instance, HIV-1 produces RNA in the nucleus of infected cells but the RNA is only translated in the cytoplasm. When one key viral protein is missing (Rev), FISH of the viral RNA has revealed that the block to viral replication is due to the retention of the HIV-1 genomic RNA in the nucleus. Here, we present the method for visual analysis of viral genomic RNA in situ. The method makes use of a labelled RNA probe. This probe is designed to be complementary to the viral genomic RNA. During the in vitro synthesis of the antisense RNA probe, the ribonucleotide that is modified with digoxigenin (DIG) is included in an in vitro transcription reaction. Once the probe has hybridized to the target mRNA in cells, subsequent antibody labelling steps (Figure 1) will reveal the localization of the mRNA as well as proteins of interest when performing FISH/IF.
Collapse
Affiliation(s)
- Kishanda Vyboh
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital
| | | | | |
Collapse
|
70
|
Miki T, Kamikawa Y, Kurono S, Kaneko Y, Katahira J, Yoneda Y. Cell type-dependent gene regulation by Staufen2 in conjunction with Upf1. BMC Mol Biol 2011; 12:48. [PMID: 22087843 PMCID: PMC3226675 DOI: 10.1186/1471-2199-12-48] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 11/16/2011] [Indexed: 12/01/2022] Open
Abstract
Background Staufen2 (Stau2), a double-stranded RNA-binding protein, is a component of neuronal RNA granules, which are dendritic mRNA transport machines. Although Stau2 is thought to be involved in the dendritic targeting of several mRNAs in neurons, the mechanism whereby Stau2 regulates these mRNAs is unknown. To elucidate the functions of Stau2, we screened for novel binding partners by affinity purification of GST-tagged Stau2 from 293F cells. Results Three RNA helicases, RNA helicase A, Upf1 and Mov10, were identified in Stau2-containing complexes. We focused our studies on Upf1, a key player in nonsense-mediated mRNA decay. Stau2 was found to bind directly to Upf1 in an RNA-independent manner in vitro. Tethering Stau2 to the 3'-untranslated region (UTR) of a reporter gene had little effect on its expression in HeLa cells. In contrast, when the same tethering assay was performed in 293F cells, we observed an increase in reporter protein levels. This upregulation of protein expression by Stau2 turned out to be dependent on Upf1. Moreover, we found that in 293F cells, Stau2 upregulates the reporter mRNA level in an Upf1-independent manner. Conclusions These results indicate that the recruitment of Stau2 alone or in combination with Upf1 differentially affects the fate of mRNAs. Moreover, the results suggest that Stau2-mediated fate determination could be executed in a cell type-specific manner.
Collapse
Affiliation(s)
- Takashi Miki
- Department of Frontier Bioscience, Graduate School of Frontier Biosciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
71
|
Dickson AM, Wilusz J. Strategies for viral RNA stability: live long and prosper. Trends Genet 2011; 27:286-93. [PMID: 21640425 PMCID: PMC3123725 DOI: 10.1016/j.tig.2011.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 04/21/2011] [Accepted: 04/26/2011] [Indexed: 12/23/2022]
Abstract
Eukaryotic cells have a powerful RNA decay machinery that plays an important and diverse role in regulating both the quantity and the quality of gene expression. Viral RNAs need to successfully navigate around this cellular machinery to initiate and maintain a highly productive infection. Recent work has shown that viruses have developed a variety of strategies to accomplish this, including inherent RNA shields, hijacking host RNA stability factors, incapacitating the host decay machinery and changing the entire landscape of RNA stability in cells using virally encoded nucleases. In addition to maintaining the stability of viral transcripts, these strategies can also contribute to the regulation and complexity of viral gene expression as well as to viral RNA evolution.
Collapse
|
72
|
Kula A, Guerra J, Knezevich A, Kleva D, Myers MP, Marcello A. Characterization of the HIV-1 RNA associated proteome identifies Matrin 3 as a nuclear cofactor of Rev function. Retrovirology 2011; 8:60. [PMID: 21771346 PMCID: PMC3160904 DOI: 10.1186/1742-4690-8-60] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 07/20/2011] [Indexed: 12/30/2022] Open
Abstract
Background Central to the fully competent replication cycle of the human immunodeficiency virus type 1 (HIV-1) is the nuclear export of unspliced and partially spliced RNAs mediated by the Rev posttranscriptional activator and the Rev response element (RRE). Results Here, we introduce a novel method to explore the proteome associated with the nuclear HIV-1 RNAs. At the core of the method is the generation of cell lines harboring an integrated provirus carrying RNA binding sites for the MS2 bacteriophage protein. Flag-tagged MS2 is then used for affinity purification of the viral RNA. By this approach we found that the viral RNA is associated with the host nuclear matrix component MATR3 (Matrin 3) and that its modulation affected Rev activity. Knockdown of MATR3 suppressed Rev/RRE function in the export of unspliced HIV-1 RNAs. However, MATR3 was able to associate with Rev only through the presence of RRE-containing viral RNA. Conclusions In this work, we exploited a novel proteomic method to identify MATR3 as a cellular cofactor of Rev activity. MATR3 binds viral RNA and is required for the Rev/RRE mediated nuclear export of unspliced HIV-1 RNAs.
Collapse
Affiliation(s)
- Anna Kula
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34012 Trieste, Italy
| | | | | | | | | | | |
Collapse
|
73
|
Isken O, Maquat LE. The multiple lives of NMD factors: balancing roles in gene and genome regulation. Nat Rev Genet 2011; 9:699-712. [PMID: 18679436 DOI: 10.1038/nrg2402] [Citation(s) in RCA: 240] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) largely functions to ensure the quality of gene expression. However, NMD is also crucial to regulating appropriate expression levels for certain genes and for maintaining genome stability. Furthermore, just as NMD serves cells in multiple ways, so do its constituent proteins. Recent studies have clarified that UPF and SMG proteins, which were originally discovered to function in NMD, also have roles in other pathways, including specialized pathways of mRNA decay, DNA synthesis and cell-cycle progression, and the maintenance of telomeres. These findings suggest a delicate balance of metabolic events - some not obviously related to NMD - that can be influenced by the cellular abundance, location and activity of NMD factors and their binding partners.
Collapse
Affiliation(s)
- Olaf Isken
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, New York 14642, USA
| | | |
Collapse
|
74
|
Avery P, Vicente-Crespo M, Francis D, Nashchekina O, Alonso CR, Palacios IM. Drosophila Upf1 and Upf2 loss of function inhibits cell growth and causes animal death in a Upf3-independent manner. RNA (NEW YORK, N.Y.) 2011; 17:624-38. [PMID: 21317294 PMCID: PMC3062174 DOI: 10.1261/rna.2404211] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 12/21/2010] [Indexed: 05/29/2023]
Abstract
Nonsense-mediated RNA decay (NMD) is a surveillance mechanism that degrades transcripts containing nonsense mutations, preventing the translation of truncated proteins. NMD also regulates the levels of many endogenous mRNAs. While the mechanism of NMD is gradually understood, its physiological role remains largely unknown. The core NMD genes upf1 and upf2 are essential in several organisms, which may reflect an important developmental role for NMD. Alternatively, the lethality of these mutants might arise from their function in NMD-independent processes. To analyze the developmental importance of NMD, we studied Drosophila mutants of the other core NMD gene, upf3. We compare the resulting upf3 phenotype with those defects observed in upf1 and upf2 loss-of-function mutants, as well as with flies expressing a mutant Upf2 protein unable to bind Upf3. Our results show that Upf3 is an NMD effector in the fly but, unlike Upf1 and Upf2, plays a peripheral role in the degradation of most NMD targets and is not required for development or viability. Furthermore, Upf1 and Upf2 loss-of-function inhibits cell growth and induces apoptosis through a Upf3-independent pathway. Accordingly, disruption of Upf2-Upf1 interaction causes death, while the Upf2-Upf3 complex is dispensable for viability. Our findings suggest that NMD is essential for cell growth and animal development, and that the lethality of upf1 and upf2 mutants is not due to disrupting their roles during NMD-independent processes, but to their function in the degradation of specific mRNAs by the NMD pathway. Furthermore, our results show that Upf3 is not always essential in NMD.
Collapse
Affiliation(s)
- Paul Avery
- The Zoology Department, University of Cambridge, Cambridge CB23EJ, United Kingdom
| | | | | | | | | | | |
Collapse
|
75
|
Milev MP, Brown CM, Mouland AJ. Live cell visualization of the interactions between HIV-1 Gag and the cellular RNA-binding protein Staufen1. Retrovirology 2010; 7:41. [PMID: 20459747 PMCID: PMC2887380 DOI: 10.1186/1742-4690-7-41] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Accepted: 05/10/2010] [Indexed: 11/11/2022] Open
Abstract
Background Human immunodeficiency virus type 1 (HIV-1) uses cellular proteins and machinery to ensure transmission to uninfected cells. Although the host proteins involved in the transport of viral components toward the plasma membrane have been investigated, the dynamics of this process remain incompletely described. Previously we showed that the double-stranded (ds)RNA-binding protein, Staufen1 is found in the HIV-1 ribonucleoprotein (RNP) that contains the HIV-1 genomic RNA (vRNA), Gag and other host RNA-binding proteins in HIV-1-producing cells. Staufen1 interacts with the nucleocapsid domain (NC) domain of Gag and regulates Gag multimerization on membranes thereby modulating HIV-1 assembly. The formation of the HIV-1 RNP is dynamic and likely central to the fate of the vRNA during the late phase of the HIV-1 replication cycle. Results Detailed molecular imaging of both the intracellular trafficking of virus components and of virus-host protein complexes is critical to enhance our understanding of factors that contribute to HIV-1 pathogenesis. In this work, we visualized the interactions between Gag and host proteins using bimolecular and trimolecular fluorescence complementation (BiFC and TriFC) analyses. These methods allow for the direct visualization of the localization of protein-protein and protein-protein-RNA interactions in live cells. We identified where the virus-host interactions between Gag and Staufen1 and Gag and IMP1 (also known as VICKZ1, IGF2BP1 and ZBP1) occur in cells. These virus-host interactions were not only detected in the cytoplasm, but were also found at cholesterol-enriched GM1-containing lipid raft plasma membrane domains. Importantly, Gag specifically recruited Staufen1 to the detergent insoluble membranes supporting a key function for this host factor during virus assembly. Notably, the TriFC experiments showed that Gag and Staufen1 actively recruited protein partners when tethered to mRNA. Conclusions The present work characterizes the interaction sites of key components of the HIV-1 RNP (Gag, Staufen1 and IMP1), thereby bringing to light where HIV-1 recruits and co-opts RNA-binding proteins during virus assembly.
Collapse
Affiliation(s)
- Miroslav P Milev
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute for Medical Research-Sir Mortimer B, Davis Jewish General Hospital, 3755 Côte-Ste-Catherine Road, Montréal, H3T 1E2 Québec, Canada
| | | | | |
Collapse
|
76
|
Gaglia MM, Glaunsinger BA. Viruses and the cellular RNA decay machinery. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:47-59. [PMID: 21956906 PMCID: PMC7169783 DOI: 10.1002/wrna.3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ability to control cellular and viral gene expression, either globally or selectively, is central to a successful viral infection, and it is also crucial for the host to respond and eradicate pathogens. In eukaryotes, regulation of message stability contributes significantly to the control of gene expression and plays a prominent role in the normal physiology of a cell as well as in its response to environmental and pathogenic stresses. Not surprisingly, emerging evidence indicates that there are significant interactions between the eukaryotic RNA turnover machinery and a wide variety of viruses. Interestingly, in many cases viruses have evolved mechanisms not only to evade eradication by these pathways, but also to manipulate them for enhanced viral replication and gene expression. Given our incomplete understanding of how many of these pathways are normally regulated, viruses should be powerful tools to help deconstruct the complex networks and events governing eukaryotic RNA stability. Copyright © 2010 John Wiley & Sons, Ltd. This article is categorized under:
RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA in Disease and Development > RNA in Disease
Collapse
Affiliation(s)
- Marta Maria Gaglia
- Department of Plant and Microbiology, University of California, Berkeley, CA 94720‐3102, USA
| | - Britt A. Glaunsinger
- Department of Plant and Microbiology, University of California, Berkeley, CA 94720‐3102, USA
| |
Collapse
|
77
|
Wen J, Brogna S. Splicing-dependent NMD does not require the EJC in Schizosaccharomyces pombe. EMBO J 2010; 29:1537-51. [PMID: 20360683 PMCID: PMC2876954 DOI: 10.1038/emboj.2010.48] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Accepted: 03/04/2010] [Indexed: 12/04/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a translation-linked process that destroys mRNAs with premature translation termination codons (PTCs). In mammalian cells, NMD is also linked to pre-mRNA splicing, usually PTCs trigger strong NMD only when positioned upstream of at least one intron. The exon junction complex (EJC) is believed to mediate the link between splicing and NMD in these systems. Here, we report that in Schizosaccharomyces pombe splicing also enhances NMD, but against the EJC model prediction, an intron stimulated NMD regardless of whether it is positioned upstream or downstream of the PTC and EJC components are not required. Still the effect of splicing seems to be direct-we have found that the important NMD determinant is the proximity of an intron to the PTC, not just the occurrence of splicing. On the basis of these results, we propose a new model to explain how splicing could affect NMD.
Collapse
Affiliation(s)
- Jikai Wen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | |
Collapse
|
78
|
5' to 3' mRNA decay factors colocalize with Ty1 gag and human APOBEC3G and promote Ty1 retrotransposition. J Virol 2010; 84:5052-66. [PMID: 20219921 DOI: 10.1128/jvi.02477-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The genomic RNA of retroviruses and retrovirus-like transposons must be sequestered from the cellular translational machinery so that it can be packaged into viral particles. Eukaryotic mRNA processing bodies (P bodies) play a central role in segregating cellular mRNAs from the translational machinery for storage or decay. In this work, we provide evidence that the RNA of the Saccharomyces cerevisiae Ty1 retrotransposon is packaged into virus-like particles (VLPs) in P bodies. Ty1 RNA is translationally repressed, and Ty1 Gag, the capsid and RNA binding protein, accumulates in discrete cytoplasmic foci, a subset of which localize to P bodies. Human APOBEC3G, a potent Ty1 restriction factor that is packaged into Ty1 VLPs via an interaction with Gag, also localizes to P bodies. The association of APOBEC3G with P bodies does not require Ty1 element expression, suggesting that P-body localization of APOBEC3G and Ty1 Gag precedes VLP assembly. Additionally, we report that two P-body-associated 5' to 3' mRNA decay pathways, deadenylation-dependent mRNA decay (DDD) and nonsense-mediated decay (NMD), stimulate Ty1 retrotransposition. The additive contributions of DDD and NMD explain the strong requirement for general 5' to 3' mRNA degradation factors Dcp1, Dcp2, and Xrn1 in Ty1 retromobility. 5' to 3' decay factors act at a posttranslational step in retrotransposition, and Ty1 RNA packaging into VLPs is abolished in the absence of the 5' to 3' exonuclease Xrn1. Together, the results suggest that VLPs assemble in P bodies and that 5' to 3' mRNA decay is essential for the packaging of Ty1 RNA in VLPs.
Collapse
|
79
|
Nicholson P, Yepiskoposyan H, Metze S, Zamudio Orozco R, Kleinschmidt N, Mühlemann O. Nonsense-mediated mRNA decay in human cells: mechanistic insights, functions beyond quality control and the double-life of NMD factors. Cell Mol Life Sci 2010; 67:677-700. [PMID: 19859661 PMCID: PMC11115722 DOI: 10.1007/s00018-009-0177-1] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 09/16/2009] [Accepted: 10/06/2009] [Indexed: 12/16/2022]
Abstract
Nonsense-mediated decay is well known by the lucid definition of being a RNA surveillance mechanism that ensures the speedy degradation of mRNAs containing premature translation termination codons. However, as we review here, NMD is far from being a simple quality control mechanism; it also regulates the stability of many wild-type transcripts. We summarise the abundance of research that has characterised each of the NMD factors and present a unified model for the recognition of NMD substrates. The contentious issue of how and where NMD occurs is also discussed, particularly with regard to P-bodies and SMG6-driven endonucleolytic degradation. In recent years, the discovery of additional functions played by several of the NMD factors has further complicated the picture. Therefore, we also review the reported roles of UPF1, SMG1 and SMG6 in other cellular processes.
Collapse
Affiliation(s)
- Pamela Nicholson
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Hasmik Yepiskoposyan
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Stefanie Metze
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Rodolfo Zamudio Orozco
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Nicole Kleinschmidt
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Oliver Mühlemann
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| |
Collapse
|
80
|
Abrahamyan LG, Chatel-Chaix L, Ajamian L, Milev MP, Monette A, Clément JF, Song R, Lehmann M, DesGroseillers L, Laughrea M, Boccaccio G, Mouland AJ. Novel Staufen1 ribonucleoproteins prevent formation of stress granules but favour encapsidation of HIV-1 genomic RNA. J Cell Sci 2010; 123:369-83. [PMID: 20053637 DOI: 10.1242/jcs.055897] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Gag selects for and mediates genomic RNA (vRNA) encapsidation into progeny virus particles. The host protein, Staufen1 interacts directly with Gag and is found in ribonucleoprotein (RNP) complexes containing vRNA, which provides evidence that Staufen1 plays a role in vRNA selection and encapsidation. In this work, we show that Staufen1, vRNA and Gag are found in the same RNP complex. These cellular and viral factors also colocalize in cells and constitute novel Staufen1 RNPs (SHRNPs) whose assembly is strictly dependent on HIV-1 expression. SHRNPs are distinct from stress granules and processing bodies, are preferentially formed during oxidative stress and are found to be in equilibrium with translating polysomes. Moreover, SHRNPs are stable, and the association between Staufen1 and vRNA was found to be evident in these and other types of RNPs. We demonstrate that following Staufen1 depletion, apparent supraphysiologic-sized SHRNP foci are formed in the cytoplasm and in which Gag, vRNA and the residual Staufen1 accumulate. The depletion of Staufen1 resulted in reduced Gag levels and deregulated the assembly of newly synthesized virions, which were found to contain several-fold increases in vRNA, Staufen1 and other cellular proteins. This work provides new evidence that Staufen1-containing HIV-1 RNPs preferentially form over other cellular silencing foci and are involved in assembly, localization and encapsidation of vRNA.
Collapse
Affiliation(s)
- Levon G Abrahamyan
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute for Medical Research-Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC, H3T 1E2, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Monette A, Ajamian L, López-Lastra M, Mouland AJ. Human immunodeficiency virus type 1 (HIV-1) induces the cytoplasmic retention of heterogeneous nuclear ribonucleoprotein A1 by disrupting nuclear import: implications for HIV-1 gene expression. J Biol Chem 2009; 284:31350-62. [PMID: 19737937 DOI: 10.1074/jbc.m109.048736] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) co-opts host proteins and cellular machineries to its advantage at every step of the replication cycle. Here we show that HIV-1 enhances heterogeneous nuclear ribonucleoprotein (hnRNP) A1 expression and promotes the relocalization of hnRNP A1 to the cytoplasm. The latter was dependent on the nuclear export of the unspliced viral genomic RNA (vRNA) and to alterations in the abundance and localization of the FG-repeat nuclear pore glycoprotein p62. hnRNP A1 and vRNA remain colocalized in the cytoplasm supporting a post-nuclear function during the late stages of HIV-1 replication. Consistently, we show that hnRNP A1 acts as an internal ribosomal entry site trans-acting factor up-regulating internal ribosome entry site-mediated translation initiation of the HIV-1 vRNA. The up-regulation and cytoplasmic retention of hnRNP A1 by HIV-1 would ensure abundant expression of viral structural proteins in cells infected with HIV-1.
Collapse
Affiliation(s)
- Anne Monette
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute for Medical Research-Sir Mortimer B. Davis Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | | | | | | |
Collapse
|
82
|
Lehmann M, Milev MP, Abrahamyan L, Yao XJ, Pante N, Mouland AJ. Intracellular transport of human immunodeficiency virus type 1 genomic RNA and viral production are dependent on dynein motor function and late endosome positioning. J Biol Chem 2009; 284:14572-85. [PMID: 19286658 PMCID: PMC2682905 DOI: 10.1074/jbc.m808531200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 03/03/2009] [Indexed: 11/06/2022] Open
Abstract
Our earlier work indicated that the human immunodeficiency virus type 1 (HIV-1) genomic RNA (vRNA) is trafficked to the microtubule-organizing center (MTOC) when heterogeneous nuclear ribonucleoprotein A2/B1 is depleted from cells. Also, Rab7-interacting lysosomal protein promoted dynein motor complex, late endosome and vRNA clustering at the MTOC suggesting that the dynein motor and late endosomes were involved in vRNA trafficking. To investigate the role of the dynein motor in vRNA trafficking, dynein motor function was disrupted by small interference RNA-mediated depletion of the dynein heavy chain or by p50/dynamitin overexpression. These treatments led to a marked relocalization of vRNA and viral structural protein Gag to the cell periphery with late endosomes and a severalfold increase in HIV-1 production. In contrast, rerouting vRNA to the MTOC reduced virus production. vRNA localization depended on Gag membrane association as shown using both myristoylation and Gag nucleocapsid domain proviral mutants. Furthermore, the cytoplasmic localization of vRNA and Gag was not attributable to intracellular or internalized endocytosed virus particles. Our results demonstrate that dynein motor function is important for regulating Gag and vRNA egress on endosomal membranes in the cytoplasm to directly impact on viral production.
Collapse
Affiliation(s)
- Martin Lehmann
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute for Medical Research, Quebec
| | | | | | | | | | | |
Collapse
|
83
|
Abstract
Nonsense-mediated mRNA decay (NMD) is a translation-coupled mechanism that eliminates mRNAs containing premature translation-termination codons (PTCs). In mammalian cells, NMD is also linked to pre-mRNA splicing, as in many instances strong mRNA reduction occurs only when the PTC is located upstream of an intron. It is proposed that in these systems, the exon junction complex (EJC) mediates the link between splicing and NMD. Recent studies have questioned the role of splicing and the EJC in initiating NMD. Instead, they put forward a general and evolutionarily conserved mechanism in which the main regulator of NMD is the distance between a PTC and the poly(A) tail of an mRNA. Here we discuss the limitations of the new NMD model and the EJC concept; we argue that neither satisfactorily accounts for all of the available data and offer a new model to test in future studies.
Collapse
Affiliation(s)
- Saverio Brogna
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham B15 2TT, UK.
| | | |
Collapse
|