51
|
Xu T, Chen L, Lim YT, Zhao H, Chen H, Chen MW, Huan T, Huang Y, Sobota RM, Fang M. System Biology-Guided Chemical Proteomics to Discover Protein Targets of Monoethylhexyl Phthalate in Regulating Cell Cycle. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1842-1851. [PMID: 33459556 DOI: 10.1021/acs.est.0c05832] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chemical proteomics methods have been used as effective tools to identify novel protein targets for small molecules. These methods have great potential to be applied as environmental toxicants to figure out their mode of action. However, these assays usually generate dozens of possible targets, making it challenging to validate the most important one. In this study, we have integrated the cellular thermal shift assay (CETSA), quantitative proteomics, metabolomics, computer-assisted docking, and target validation methods to uncover the protein targets of monoethylhexyl phthalate (MEHP). Using the mass spectrometry implementation of CETSA (MS-CETSA), we have identified 74 possible protein targets of MEHP. The Gene Ontology (GO) enrichment integration was further conducted for the target proteins, the cellular dysregulated proteins, and the metabolites, showing that cell cycle dysregulation could be one primary change due to the MEHP-induced toxicity. Flow cytometry analysis confirmed that hepatocytes were arrested at the G1 stage due to the treatment with MEHP. Subsequently, the potential protein targets were ranked by their binding energy calculated from the computer-assisted docking with MEHP. In summary, we have demonstrated the development of interactomics workflow to simplify the redundant information from multiomics data and identified novel cell cycle regulatory protein targets (CPEB4, ANAPC5, and SPOUT1) for MEHP.
Collapse
Affiliation(s)
- Tengfei Xu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
- Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 Singapore
| | - Liyan Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, 138673 Singapore
| | - Yan Ting Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, 138673 Singapore
| | - Haoduo Zhao
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Hongjin Chen
- Department of Pathology in the School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211112, P. R. China
| | - Ming Wei Chen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Tao Huan
- Department of Chemistry, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Yichao Huang
- School of Environment, Jinan University, Guangzhou, Guangdong 511443, P. R. China
| | - Radoslaw Mikolaj Sobota
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, 138673 Singapore
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
- Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 Singapore
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, 639798 Singapore
| |
Collapse
|
52
|
Shakeel I, Basheer N, Hasan GM, Afzal M, Hassan MI. Polo-like Kinase 1 as an emerging drug target: structure, function and therapeutic implications. J Drug Target 2021; 29:168-184. [PMID: 32886539 DOI: 10.1080/1061186x.2020.1818760] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/04/2020] [Accepted: 08/29/2020] [Indexed: 12/22/2022]
Abstract
Polo-like kinase 1 (PLK1) is a conserved mitotic serine-threonine protein kinase, functions as a regulatory protein, and is involved in the progression of the mitotic cycle. It plays important roles in the regulation of cell division, maintenance of genome stability, in spindle assembly, mitosis, and DNA-damage response. PLK1 is consist of a N-terminal serine-threonine kinase domain, and a C-terminal Polo-box domain (regulatory site). The expression of PLK1 is controlled by transcription repressor in the G1 stage and transcription activators in the G2 stage of the cell cycle. Overexpression of PLK1 results in undermining of checkpoints causes excessive cellular division resulting in abnormal cell growth, leading to the development of cancer. Blocking the expression of PLK1 by an antibody, RNA interference, or kinase inhibitors, causes a subsequent reduction in the proliferation of tumour cells and induction of apoptosis in tumour cells without affecting the healthy cells, suggesting an attractive target for drug development. In this review, we discuss detailed information on expression, gene and protein structures, role in different diseases, and progress in the design and development of PLK1 inhibitors. We have performed an in-depth analysis of the PLK1 inhibitors and their therapeutic implications with special focus to the cancer therapeutics.
Collapse
Affiliation(s)
- Ilma Shakeel
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Neha Basheer
- Institute of Neuroimmunology, Slovak Republic Bratislava, Bratislava, Slovakia
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Mohammad Afzal
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
53
|
Maan M, Agrawal NJ, Padmanabhan J, Leitzinger CC, Rivera-Rivera Y, Saavedra HI, Chellappan SP. Tank Binding Kinase 1 modulates spindle assembly checkpoint components to regulate mitosis in breast and lung cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118929. [PMID: 33310066 DOI: 10.1016/j.bbamcr.2020.118929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 11/25/2022]
Abstract
Error-free progression through mitosis is critical for proper cell division and accurate distribution of the genetic material. The anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase regulates the progression from metaphase to anaphase and its activation is controlled by the cofactors Cdc20 and Cdh1. Additionally, genome stability is maintained by the spindle assembly checkpoint (SAC), which monitors proper attachment of chromosomes to spindle microtubules prior to cell division. We had shown a role for Tank Binding Kinase 1 (TBK1) in microtubule dynamics and mitosis and here we describe a novel role of TBK1 in regulating SAC in breast and lung cancer cells. TBK1 interacts with and phosphorylates Cdc20 and Cdh1 and depletion of TBK1 elevates SAC components. TBK1 inhibition increases the association of Cdc20 with APC/C and BubR1 indicating inactivation of APC/C; similarly, interaction of Cdh1 with APC/C is also enhanced. TBK1 and TTK inhibition reduces cell viability and enhances centrosome amplification and micronucleation. These results indicate that alterations in TBK1 will impede mitotic progression and combining TBK1 inhibitors with other regulators of mitosis might be effective in eliminating cancer cells.
Collapse
Affiliation(s)
- Meenu Maan
- Department of Tumor Biology, H, Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, United States of America
| | - Neha Jaiswal Agrawal
- Department of Tumor Biology, H, Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, United States of America
| | - Jaya Padmanabhan
- Department of Tumor Biology, H, Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, United States of America
| | - Christelle Colin Leitzinger
- Department of Tumor Biology, H, Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, United States of America
| | - Yainyrette Rivera-Rivera
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, Ponce Health Sciences University/Ponce Research Institute, Ponce 00716-2348, Puerto Rico
| | - Harold I Saavedra
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, Ponce Health Sciences University/Ponce Research Institute, Ponce 00716-2348, Puerto Rico
| | - Srikumar P Chellappan
- Department of Tumor Biology, H, Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, United States of America.
| |
Collapse
|
54
|
Marlier Q, D'aes T, Verteneuil S, Vandenbosch R, Malgrange B. Core cell cycle machinery is crucially involved in both life and death of post-mitotic neurons. Cell Mol Life Sci 2020; 77:4553-4571. [PMID: 32476056 PMCID: PMC11105064 DOI: 10.1007/s00018-020-03548-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/23/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
A persistent dogma in neuroscience supported the idea that terminally differentiated neurons permanently withdraw from the cell cycle. However, since the late 1990s, several studies have shown that cell cycle proteins are expressed in post-mitotic neurons under physiological conditions, indicating that the cell cycle machinery is not restricted to proliferating cells. Moreover, many studies have highlighted a clear link between cell cycle-related proteins and neurological disorders, particularly relating to apoptosis-induced neuronal death. Indeed, cell cycle-related proteins can be upregulated or overactivated in post-mitotic neurons in case of acute or degenerative central nervous system disease. Given the considerable lack of effective treatments for age-related neurological disorders, new therapeutic approaches targeting the cell cycle machinery might thus be considered. This review aims at summarizing current knowledge about the role of the cell cycle machinery in post-mitotic neurons in healthy and pathological conditions.
Collapse
Affiliation(s)
- Quentin Marlier
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Tine D'aes
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Sébastien Verteneuil
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Renaud Vandenbosch
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA Stem Cells/Neurosciences, University of Liège, Quartier Hopital (CHU), Avenue Hippocrate, 15, 4000, Liege, Belgium.
| |
Collapse
|
55
|
Han H, Davidson LA, Fan Y, Goldsby JS, Yoon G, Jin U, Wright GA, Landrock KK, Weeks BR, Wright RC, Allred CD, Jayaraman A, Ivanov I, Roper J, Safe SH, Chapkin RS. Loss of aryl hydrocarbon receptor potentiates FoxM1 signaling to enhance self-renewal of colonic stem and progenitor cells. EMBO J 2020; 39:e104319. [PMID: 32915464 PMCID: PMC7527924 DOI: 10.15252/embj.2019104319] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that senses xenobiotics, diet, and gut microbial-derived metabolites, is increasingly recognized as a key regulator of intestinal biology. However, its effects on the function of colonic stem and progenitor cells remain largely unexplored. Here, we observed that inducible deletion of AhR in Lgr5+ stem cells increases the percentage of colonic stem cells and enhances organoid initiating capacity and growth of sorted stem and progenitor cells, while AhR activation has the opposite effect. Moreover, intestinal-specific AhR knockout increases basal stem cell and crypt injury-induced cell proliferation and promotes colon tumorigenesis in a preclinical colitis-associated tumor model by upregulating FoxM1 signaling. Mechanistically, AhR transcriptionally suppresses FoxM1 expression. Activation of AhR in human organoids recapitulates phenotypes observed in mice, such as reduction in the percentage of colonic stem cells, promotion of stem cell differentiation, and attenuation of FoxM1 signaling. These findings indicate that the AhR-FoxM1 axis, at least in part, mediates colonic stem/progenitor cell behavior.
Collapse
Affiliation(s)
- Huajun Han
- Program in Integrative Nutrition and Complex DiseasesTexas A&M UniversityCollege StationTXUSA
- Department of Biochemistry & BiophysicsTexas A&M UniversityCollege StationTXUSA
| | - Laurie A Davidson
- Program in Integrative Nutrition and Complex DiseasesTexas A&M UniversityCollege StationTXUSA
- Department of NutritionTexas A&M UniversityCollege StationTXUSA
| | - Yang‐Yi Fan
- Program in Integrative Nutrition and Complex DiseasesTexas A&M UniversityCollege StationTXUSA
- Department of NutritionTexas A&M UniversityCollege StationTXUSA
| | - Jennifer S Goldsby
- Program in Integrative Nutrition and Complex DiseasesTexas A&M UniversityCollege StationTXUSA
- Department of NutritionTexas A&M UniversityCollege StationTXUSA
| | - Grace Yoon
- Department of StatisticsTexas A&M UniversityCollege StationTXUSA
| | - Un‐Ho Jin
- Veterinary Physiology and PharmacologyTexas A&M UniversityCollege StationTXUSA
| | - Gus A Wright
- Department of Veterinary PathobiologyTexas A&M UniversityCollege StationTXUSA
| | - Kerstin K Landrock
- Program in Integrative Nutrition and Complex DiseasesTexas A&M UniversityCollege StationTXUSA
- Department of NutritionTexas A&M UniversityCollege StationTXUSA
| | - Bradley R Weeks
- Department of Veterinary PathobiologyTexas A&M UniversityCollege StationTXUSA
| | - Rachel C Wright
- Program in Integrative Nutrition and Complex DiseasesTexas A&M UniversityCollege StationTXUSA
- Department of NutritionTexas A&M UniversityCollege StationTXUSA
| | | | - Arul Jayaraman
- Department of Chemical EngineeringTexas A&M UniversityCollege StationTXUSA
| | - Ivan Ivanov
- Program in Integrative Nutrition and Complex DiseasesTexas A&M UniversityCollege StationTXUSA
- Veterinary Physiology and PharmacologyTexas A&M UniversityCollege StationTXUSA
| | - Jatin Roper
- Department of MedicineDivision of GastroenterologyDuke University School of MedicineDurhamNCUSA
| | - Stephen H Safe
- Veterinary Physiology and PharmacologyTexas A&M UniversityCollege StationTXUSA
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex DiseasesTexas A&M UniversityCollege StationTXUSA
- Department of Biochemistry & BiophysicsTexas A&M UniversityCollege StationTXUSA
- Department of NutritionTexas A&M UniversityCollege StationTXUSA
| |
Collapse
|
56
|
Transcriptional signature of prion-induced neurotoxicity in a Drosophila model of transmissible mammalian prion disease. Biochem J 2020; 477:833-852. [PMID: 32108870 PMCID: PMC7054746 DOI: 10.1042/bcj20190872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/14/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
Prion diseases are fatal transmissible neurodegenerative conditions of humans and animals that arise through neurotoxicity induced by PrP misfolding. The cellular and molecular mechanisms of prion-induced neurotoxicity remain undefined. Understanding these processes will underpin therapeutic and control strategies for human and animal prion diseases, respectively. Prion diseases are difficult to study in their natural hosts and require the use of tractable animal models. Here we used RNA-Seq-based transcriptome analysis of prion-exposed Drosophila to probe the mechanism of prion-induced neurotoxicity. Adult Drosophila transgenic for pan neuronal expression of ovine PrP targeted to the plasma membrane exhibit a neurotoxic phenotype evidenced by decreased locomotor activity after exposure to ovine prions at the larval stage. Pathway analysis and quantitative PCR of genes differentially expressed in prion-infected Drosophila revealed up-regulation of cell cycle activity and DNA damage response, followed by down-regulation of eIF2 and mTOR signalling. Mitochondrial dysfunction was identified as the principal toxicity pathway in prion-exposed PrP transgenic Drosophila. The transcriptomic changes we observed were specific to PrP targeted to the plasma membrane since these prion-induced gene expression changes were not evident in similarly treated Drosophila transgenic for cytosolic pan neuronal PrP expression, or in non-transgenic control flies. Collectively, our data indicate that aberrant cell cycle activity, repression of protein synthesis and altered mitochondrial function are key events involved in prion-induced neurotoxicity, and correlate with those identified in mammalian hosts undergoing prion disease. These studies highlight the use of PrP transgenic Drosophila as a genetically well-defined tractable host to study mammalian prion biology.
Collapse
|
57
|
Fatima I, Singh AB, Dhawan P. MASTL: A novel therapeutic target for Cancer Malignancy. Cancer Med 2020; 9:6322-6329. [PMID: 32692487 PMCID: PMC7476815 DOI: 10.1002/cam4.3141] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/09/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Targeting mitotic kinases is an emerging anticancer approach with promising preclinical outcomes. Microtubule‐associated serine/threonine kinase like (MASTL), also known as Greatwall (Gwl), is an important mitotic kinase that regulates mitotic progression of normal or transformed cells by blocking the activity of tumor suppressor protein phosphatase 2A (PP2A). MASTL upregulation has now been detected in multiple cancer types and associated with aggressive clinicopathological features. Apart, an aberrant MASTL activity has been implicated in oncogenic transformation through the development of chromosomal instability and alteration of key oncogenic signaling pathways. In this regard, recent publications have revealed potential role of MASTL in the regulation of AKT/mTOR and Wnt/β‐catenin signaling pathways, which may be independent of its regulation of PP2A‐B55 (PP2A holoenzyme containing a B55‐family regulatory subunit). Taken together, MASTL kinase has emerged as a novel target for cancer therapeutics, and hence development of small molecule inhibitors of MASTL may significantly improve the clinical outcomes of cancer patients. In this article, we review the role of MASTL in cancer progression and the current gaps in this knowledge. We also discuss potential efficacy of MASTL expression for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Iram Fatima
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Amar B Singh
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Punita Dhawan
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
58
|
Lee TY, Huang KY, Chuang CH, Lee CY, Chang TH. Incorporating deep learning and multi-omics autoencoding for analysis of lung adenocarcinoma prognostication. Comput Biol Chem 2020; 87:107277. [PMID: 32512487 DOI: 10.1016/j.compbiolchem.2020.107277] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/30/2020] [Indexed: 12/25/2022]
Abstract
Lung cancer is the most occurring cancer type, and its mortality rate is also the highest, among them lung adenocarcinoma (LUAD) accounts for about 40 % of lung cancer. There is an urgent need to develop a prognosis prediction model for lung adenocarcinoma. Previous LUAD prognosis studies only took single-omics data, such as mRNA or miRNA, into consideration. To this end, we proposed a deep learning-based autoencoding approach for combination of four-omics data, mRNA, miRNA, DNA methylation and copy number variations, to construct an autoencoder model, which learned representative features to differentiate the two optimal patient subgroups with a significant difference in survival (P = 4.08e-09) and good consistency index (C-index = 0.65). The multi-omics model was validated though four independent datasets, i.e. GSE81089 for mRNA (n = 198, P = 0.0083), GSE63805 for miRNA (n = 32, P = 0.018), GSE63384 for DNA methylation (n = 35, P = 0.009), and TCGA independent samples for copy number variations (n = 94, P = 0.0052). Finally, a functional analysis was performed on two survival subgroups to discover genes involved in biological processes and pathways. This is the first study incorporating deep autoencoding and four-omics data to construct a robust survival prediction model, and results show the approach is useful at predicting LUAD prognostication.
Collapse
Affiliation(s)
- Tzong-Yi Lee
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China; School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen, China; School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China.
| | - Kai-Yao Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China; School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen, China; School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China.
| | - Cheng-Hsiang Chuang
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 320, Taiwan.
| | - Cheng-Yang Lee
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei City, Taiwan.
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei City, Taiwan; Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei City, Taiwan.
| |
Collapse
|
59
|
Quan R, Wei L, Hou L, Wang J, Zhu S, Li Z, Lv M, Liu J. Proteome Analysis in a Mammalian Cell line Reveals that PLK2 is Involved in Avian Metapneumovirus Type C (aMPV/C)-Induced Apoptosis. Viruses 2020; 12:v12040375. [PMID: 32231136 PMCID: PMC7232392 DOI: 10.3390/v12040375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/09/2023] Open
Abstract
Avian metapneumovirus subtype C (aMPV/C) causes an acute respiratory disease that has caused serious economic losses in the Chinese poultry industry. In the present study, we first explored the protein profile in aMPV/C-infected Vero cells using iTRAQ quantitative proteomics. A total of 921 of 7034 proteins were identified as significantly altered by aMPV/C infection. Three selected proteins were confirmed by Western blot analysis. Bioinformatics GO analysis revealed multiple signaling pathways involving cell cycle, endocytosis, and PI3K-Akt, mTOR, MAPK and p53 signaling pathways, which might participate in viral infection. In this analysis, we found that PLK2 expression was upregulated by aMPV/C infection and investigated whether it contributed to aMPV/C-mediated cellular dysfunction. Suppressing PLK2 attenuated aMPV/C-induced reactive oxygen species (ROS) production and p53-dependent apoptosis and reduced virus release. These results in a mammalian cell line suggest that high PLK2 expression correlates with aMPV/C-induced apoptosis and viral replication, providing new insight into the potential avian host cellular response to aMPV/C infection and antiviral targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jue Liu
- Correspondence: ; Tel.: 86-10-51503671; Fax: 86-10-51503498
| |
Collapse
|
60
|
Saha D, Kharbanda A, Yan W, Lakkaniga NR, Frett B, Li HY. The Exploration of Chirality for Improved Druggability within the Human Kinome. J Med Chem 2020; 63:441-469. [PMID: 31550151 PMCID: PMC10536157 DOI: 10.1021/acs.jmedchem.9b00640] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chirality is important in drug discovery because stereoselective drugs can ameliorate therapeutic difficulties including adverse toxicity and poor pharmacokinetic profiles. The human kinome, a major druggable enzyme class has been exploited to treat a wide range of diseases. However, many kinase inhibitors are planar and overlap in chemical space, which leads to selectivity and toxicity issues. By exploring chirality within the kinome, a new iteration of kinase inhibitors is being developed to better utilize the three-dimensional nature of the kinase active site. Exploration into novel chemical space, in turn, will also improve drug solubility and pharmacokinetic profiles. This perspective explores the role of chirality to improve kinome druggability and will serve as a resource for pioneering kinase inhibitor development to address current therapeutic needs.
Collapse
Affiliation(s)
- Debasmita Saha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Anupreet Kharbanda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| |
Collapse
|
61
|
Zhang J, Wang Y, Li J, Zhao W, Yang Z, Feng Y. α-Santalol functionalized chitosan nanoparticles as efficient inhibitors of polo-like kinase in triple negative breast cancer. RSC Adv 2020; 10:5487-5501. [PMID: 35498298 PMCID: PMC9049642 DOI: 10.1039/c9ra09084c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/20/2019] [Indexed: 11/21/2022] Open
Abstract
Polo-like kinase 1 (PLK-1) is a protein kinase that plays a significant role in the initiation, maintenance, and completion of mitotic processes in the cell cycle.
Collapse
Affiliation(s)
- Jinku Zhang
- Department of Pathology
- Baoding First Central Hospital
- Baoding
- China
| | - Yanan Wang
- Department of Pathology
- Affiliated Hospital of Hebei University
- Baoding
- China
| | - Jinmei Li
- Department of Pathology
- Baoding First Central Hospital
- Baoding
- China
| | - Wenming Zhao
- Department of Pathology
- Baoding First Central Hospital
- Baoding
- China
| | - Zhao Yang
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing
- China
| | - Yanguang Feng
- Department of Cardiology
- Baoding Qingyuan District People's Hospital
- Baoding
- China
| |
Collapse
|
62
|
Chen YC, Jung S, Zhang Z, Wicha MS, Yoon E. Co-culture of functionally enriched cancer stem-like cells and cancer-associated fibroblasts for single-cell whole transcriptome analysis. Integr Biol (Camb) 2019; 11:353-361. [PMID: 31820801 PMCID: PMC11457749 DOI: 10.1093/intbio/zyz029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/26/2019] [Accepted: 07/01/2019] [Indexed: 10/09/2024]
Abstract
Considerable evidence suggests that breast cancer development and metastasis are driven by cancer stem-like cells (CSCs). Due to their unique role in tumor initiation, the interaction between CSCs and stromal cells is especially critical. In this work, we developed a platform to reliably isolate single cells in suspension and grow single-cell-derived spheres for functional enrichment of CSCs. The platform also allows adherent culture of stromal cells for cancer-stromal interaction. As a proof of concept, we grew SUM149 breast cancer cells and successfully formed single-cell-derived spheres. Cancer-associated fibroblasts (CAFs) as stromal cells were found to significantly enhance the formation and growth of cancer spheres, indicating elevated tumor-initiation potential. After on-chip culture for 14 days, we retrieved single-cell derived spheres with and without CAF co-culture for single-cell transcriptome sequencing. Whole transcriptome analysis highlights that CAF co-culture can boost cancer stemness especially ALDHhigh CSCs and alter epithelial/mesenchymal status. Single-cell resolution allows identification of individual CSCs and investigation of cancer cellular heterogeneity. Incorporating whole transcriptome sequencing data with public patient database, we discovered novel genes associated with cancer-CAF interaction and critical to patient survival. The preliminary works demonstrated a reliable platform for enrichment of CSCs and studies of cancer-stromal interaction.
Collapse
Affiliation(s)
- Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA
- Forbes Institute for Cancer Discovery, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Seungwon Jung
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA
| | - Zhixiong Zhang
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA
| | - Max S Wicha
- Forbes Institute for Cancer Discovery, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd. Ann Arbor, MI 48109-2099, USA
- Center for Nanomedicine, Institute for Basic Science (IBS) and Graduate Program of Nano Biomedical Engineering (Nano BME), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
63
|
Lee D, Hokinson D, Park S, Elvira R, Kusuma F, Lee JM, Yun M, Lee SG, Han J. ER Stress Induces Cell Cycle Arrest at the G2/M Phase Through eIF2α Phosphorylation and GADD45α. Int J Mol Sci 2019; 20:E6309. [PMID: 31847234 PMCID: PMC6940793 DOI: 10.3390/ijms20246309] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 01/04/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is known to influence various cellular functions, including cell cycle progression. Although it is well known how ER stress inhibits cell cycle progression at the G1 phase, the molecular mechanism underlying how ER stress induces G2/M cell cycle arrest remains largely unknown. In this study, we found that ER stress and subsequent induction of the UPR led to cell cycle arrest at the G2/M phase by reducing the amount of cyclin B1. Pharmacological inhibition of the IRE1α or ATF6α signaling did not affect ER stress-induced cell cycle arrest at the G2/M phase. However, when the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α) phosphorylation was genetically abrogated, the cell cycle progressed without arresting at the G2/M phase after ER stress. GEO database analysis showed that growth arrest and DNA-damage-inducible protein α (Gadd45α) were induced in an eIF2a phosphorylation-dependent manner, which was confirmed in this study. Knockdown of GADD45α abrogated cell cycle arrest at the G2/M phase upon ER stress. Finally, the cell death caused by ER stress significantly reduced when GADD45α expression was knocked down. In conclusion, GADD45α is a key mediator of ER stress-induced growth arrest via regulation of the G2/M transition and cell death through the eIF2α signaling pathway.
Collapse
Affiliation(s)
- Duckgue Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (D.L.); (D.H.); (S.P.); (R.E.); (F.K.); (J.-M.L.)
| | - Daniel Hokinson
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (D.L.); (D.H.); (S.P.); (R.E.); (F.K.); (J.-M.L.)
| | - Soyoung Park
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (D.L.); (D.H.); (S.P.); (R.E.); (F.K.); (J.-M.L.)
| | - Rosalie Elvira
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (D.L.); (D.H.); (S.P.); (R.E.); (F.K.); (J.-M.L.)
| | - Fedho Kusuma
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (D.L.); (D.H.); (S.P.); (R.E.); (F.K.); (J.-M.L.)
| | - Ji-Min Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (D.L.); (D.H.); (S.P.); (R.E.); (F.K.); (J.-M.L.)
| | - Miyong Yun
- Department of Bioindustry and Bioresource Engineering, College of Life Sciences, Sejong University, Seoul 02447, Korea;
| | - Seok-Geun Lee
- KHU-KIST Department of Converging Science & Technology, Department of Science in Korean Medicine, and Bionanocomposite Research Center, Kyung Hee Univerisity, 26 Kyungheedae-ro, Seoul 02447, Korea;
| | - Jaeseok Han
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (D.L.); (D.H.); (S.P.); (R.E.); (F.K.); (J.-M.L.)
| |
Collapse
|
64
|
Combinatorial Avidity Selection of Mosaic Landscape Phages Targeted at Breast Cancer Cells-An Alternative Mechanism of Directed Molecular Evolution. Viruses 2019; 11:v11090785. [PMID: 31454976 PMCID: PMC6784196 DOI: 10.3390/v11090785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 02/08/2023] Open
Abstract
Low performance of actively targeted nanomedicines required revision of the traditional drug targeting paradigm and stimulated the development of novel phage-programmed, self-navigating drug delivery vehicles. In the proposed smart vehicles, targeting peptides, selected from phage libraries using traditional principles of affinity selection, are substituted for phage proteins discovered through combinatorial avidity selection. Here, we substantiate the potential of combinatorial avidity selection using landscape phage in the discovery of Short Linear Motifs (SLiMs) and their partner domains. We proved an algorithm for analysis of phage populations evolved through multistage screening of landscape phage libraries against the MDA-MB-231 breast cancer cell line. The suggested combinatorial avidity selection model proposes a multistage accumulation of Elementary Binding Units (EBU), or Core Motifs (CorMs), in landscape phage fusion peptides, serving as evolutionary initiators for formation of SLiMs. Combinatorial selection has the potential to harness directed molecular evolution to create novel smart materials with diverse novel, emergent properties.
Collapse
|
65
|
Jeyapal GP, Krishnasamy R, Suzuki CK, Venkatesh S, Chandrasekar M. In-silico design and synthesis of N9-substituted β-Carbolines as PLK-1 inhibitors and their in-vitro/in-vivo tumor suppressing evaluation. Bioorg Chem 2019; 88:102913. [DOI: 10.1016/j.bioorg.2019.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/22/2019] [Accepted: 04/05/2019] [Indexed: 12/18/2022]
|
66
|
Meng FJ, Wang S, Zhang J, Yan YJ, Wang CY, Yang CR, Guan ZY, Wang CL. Alteration in gene expression profiles of thymoma: Genetic differences and potential novel targets. Thorac Cancer 2019; 10:1129-1135. [PMID: 30932350 PMCID: PMC6500959 DOI: 10.1111/1759-7714.13053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND This study was conducted to investigate the gene expression profiles associated with thymoma to better understand the molecular mechanism underlying the pathogenesis of thymoma. METHODS Eight patients with thymomas (type A, AB, B1, and B2) and four controls with thymic cysts were analyzed using microarray profiling to identify changes in gene expression. RESULTS Across all of our samples, 2319 messenger RNAs were upregulated and 2776 were downregulated in thymomas relative to thymic cysts. Gene ontology and pathway analyses revealed that a large number of genes participate in cellular functions, among which MHC class II protein complex assembly, assembly with peptide antigen, calcium activated phosphatidylcholine scrambling, and release of cytoplasmic sequestered NF-κB were dysregulated, whereas intestinal immune network for immunoglobulin A production, cytokine-cytokine receptor interaction, the calcium signaling pathway, and pathways related to autoimmune diseases were downregulated. CONCLUSIONS Our results revealed gene expression differences between thymomas and thymic cysts, and identified key candidate genes/pathways that might be used as diagnostic markers and potential therapeutic targets to treat cancer metastasis.
Collapse
Affiliation(s)
- Fan-Jie Meng
- Department of Thoracic Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shuo Wang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jun Zhang
- Department of Thoracic Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yi-Jie Yan
- Department of Thoracic Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chun-Yang Wang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chun-Rui Yang
- Department of Pathology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhi-Yu Guan
- Department of Thoracic Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chang-Li Wang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
67
|
Panebianco C, Villani A, Pazienza V. High Levels of Prebiotic Resistant Starch in Diet Modulate Gene Expression and Metabolomic Profile in Pancreatic Cancer Xenograft Mice. Nutrients 2019; 11:nu11040709. [PMID: 30934731 PMCID: PMC6521226 DOI: 10.3390/nu11040709] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/28/2022] Open
Abstract
Cancer initiation and protection mainly derives from a systemic metabolic environment regulated by dietary patterns. Less is known about the impact of nutritional interventions in people with a diagnosis of cancer. The aim of our study was to investigate the effect of a diet rich in resistant starch (RS) on cell pathways modulation and metabolomic phenotype in pancreatic cancer xenograft mice. RNA-Seq experiments on tumor tissue showed that 25 genes resulted in dysregulated pancreatic cancer in mice fed with an RS diet, as compared to those fed with control diet. Moreover, in these two different mice groups, six serum metabolites were deregulated as detected by LC–MS analysis. A bioinformatic prediction analysis showed the involvement of the differentially expressed genes on insulin receptor signaling, circadian rhythm signaling, and cancer drug resistance among the three top canonical pathways, whilst cell death and survival, gene expression, and neurological disease were among the three top disease and biological functions. These findings shed light on the genomic and metabolic phenotype, contributing to the knowledge of the mechanisms through which RS may act as a potential supportive approach for enhancing the efficacy of existing cancer treatments.
Collapse
Affiliation(s)
- Concetta Panebianco
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy.
| | - Annacandida Villani
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy.
| | - Valerio Pazienza
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy.
| |
Collapse
|
68
|
Koskimäki J, Girard R, Li Y, Saadat L, Zeineddine HA, Lightle R, Moore T, Lyne S, Avner K, Shenkar R, Cao Y, Shi C, Polster SP, Zhang D, Carrión-Penagos J, Romanos S, Fonseca G, Lopez-Ramirez MA, Chapman EM, Popiel E, Tang AT, Akers A, Faber P, Andrade J, Ginsberg M, Derry WB, Kahn ML, Marchuk DA, Awad IA. Comprehensive transcriptome analysis of cerebral cavernous malformation across multiple species and genotypes. JCI Insight 2019; 4:126167. [PMID: 30728328 DOI: 10.1172/jci.insight.126167] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/03/2019] [Indexed: 12/18/2022] Open
Abstract
The purpose of this study was to determine important genes, functions, and networks contributing to the pathobiology of cerebral cavernous malformation (CCM) from transcriptomic analyses across 3 species and 2 disease genotypes. Sequencing of RNA from laser microdissected neurovascular units of 5 human surgically resected CCM lesions, mouse brain microvascular endothelial cells, Caenorhabditis elegans with induced Ccm gene loss, and their respective controls provided differentially expressed genes (DEGs). DEGs from mouse and C. elegans were annotated into human homologous genes. Cross-comparisons of DEGs between species and genotypes, as well as network and gene ontology (GO) enrichment analyses, were performed. Among hundreds of DEGs identified in each model, common genes and 1 GO term (GO:0051656, establishment of organelle localization) were commonly identified across the different species and genotypes. In addition, 24 GO functions were present in 4 of 5 models and were related to cell-to-cell adhesion, neutrophil-mediated immunity, ion transmembrane transporter activity, and responses to oxidative stress. We have provided a comprehensive transcriptome library of CCM disease across species and for the first time to our knowledge in Ccm1/Krit1 versus Ccm3/Pdcd10 genotypes. We have provided examples of how results can be used in hypothesis generation or mechanistic confirmatory studies.
Collapse
Affiliation(s)
- Janne Koskimäki
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Yan Li
- Center for Research Informatics, The University of Chicago, Chicago, Illinois, USA
| | - Laleh Saadat
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Hussein A Zeineddine
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Rhonda Lightle
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Thomas Moore
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Seán Lyne
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Kenneth Avner
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Robert Shenkar
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Ying Cao
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Changbin Shi
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Sean P Polster
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Dongdong Zhang
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Julián Carrión-Penagos
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | - Sharbel Romanos
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| | | | | | - Eric M Chapman
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Evelyn Popiel
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Alan T Tang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amy Akers
- Angioma Alliance, Norfolk, Virginia, USA
| | - Pieter Faber
- University of Chicago Genomics Facility, The University of Chicago, Chicago, Illinois, USA
| | - Jorge Andrade
- Center for Research Informatics, The University of Chicago, Chicago, Illinois, USA
| | - Mark Ginsberg
- Department of Medicine, UCSD, La Jolla, California, USA
| | - W Brent Derry
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas A Marchuk
- The Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, North Carolina, USA
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA
| |
Collapse
|
69
|
Henriques AC, Ribeiro D, Pedrosa J, Sarmento B, Silva PMA, Bousbaa H. Mitosis inhibitors in anticancer therapy: When blocking the exit becomes a solution. Cancer Lett 2018; 440-441:64-81. [PMID: 30312726 DOI: 10.1016/j.canlet.2018.10.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/12/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
Abstract
Current microtubule-targeting agents (MTAs) remain amongst the most important antimitotic drugs used against a broad range of malignancies. By perturbing spindle assembly, MTAs activate the spindle assembly checkpoint (SAC), which induces mitotic arrest and subsequent apoptosis. However, besides toxic side effects and resistance, mitotic slippage and failure in triggering apoptosis in various cancer cells are limiting factors of MTAs efficacy. Alternative strategies to target mitosis without affecting microtubules have, thus, led to the identification of small molecules, such as those that target spindle Kinesins, Aurora and Polo-like kinases. Unfortunately, these so-called second-generation of antimitotics, encompassing mitotic blockers and mitotic drivers, have failed in clinical trials. Our recent understanding regarding the mechanisms of cell death during a mitotic arrest pointed out apoptosis as the main variable, providing an opportunity to control the cell fates and influence the effectiveness of antimitotics. Here, we provide an overview on the second-generation of antimitotics, and discuss possible strategies that exploit SAC activity, mitotic slippage/exit and apoptosis induction, in order to improve the efficacy of anticancer strategies that target mitosis.
Collapse
Affiliation(s)
- Ana C Henriques
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
| | - Diana Ribeiro
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade Do Porto, Porto, Portugal
| | - Joel Pedrosa
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; INEB, Instituto Nacional de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, Porto, Portugal
| | - Patrícia M A Silva
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal
| | - Hassan Bousbaa
- CESPU, Instituto de Investigação e Formação Avançada Em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde, Gandra PRD, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade Do Porto, Porto, Portugal.
| |
Collapse
|
70
|
Sahin K, Tuzcu M, Yabas M, Orhan C, Sahin N, Ozercan IH. LFM-A13, a potent inhibitor of polo-like kinase, inhibits breast carcinogenesis by suppressing proliferation activity and inducing apoptosis in breast tumors of mice. Invest New Drugs 2018; 36:388-395. [PMID: 29139009 DOI: 10.1007/s10637-017-0540-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
Abstract
The goals of the present study were to define the anticancer activity of LFM-A13 (α-cyano-β-hydroxy-β-methyl-N-(2,5-dibromophenyl)-propenamide), a potent inhibitor of Polo-like kinase (PLK), in a mouse mammary cancer model induced by 7,12-dimethylbenz(a)anthracene (DMBA) in vivo and explore its anticancer mechanism(s). We also examined whether the inhibition of PLK by LFM-A13 would improve the efficiency of paclitaxel in breast cancer growth in vivo. To do this, female BALB/c mice received 1 mg of DMBA once a week for 6 weeks with oral gavage. LFM-A13 (50 mg/kg body weight) was administered intraperitoneally with DMBA administration and continued for 25 weeks. We found that LFM-A13, paclitaxel, and their combination have a significant effect on the DMBA-induced breast tumor incidence, mean tumor numbers, average tumor weight, and size. At the molecular level, the administration of LFM-A13 hindered mammary gland carcinoma development by regulating the expression of PLK1, cell cycle-regulating proteins cyclin D1, cyclin dependent kinase-4 (CDK-4), and the CDK inhibitor, p21. Moreover, LFM-A13 treatment upregulated the levels of IκB, the pro-apoptotic proteins Bax, and caspase-3, and down-regulated p53 and the antiapoptotic protein Bcl-2 in mammary tumors. The combination of LFM-A13 with paclitaxel was found to be more effective compared with either agent alone. Collectively, these results suggest that LFM-A13 has an anti-proliferative activity against breast cancer in vivo and that LFM-A13 and paclitaxel combination could be a strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Kazim Sahin
- Faculty of Veterinary Medicine, Firat University, Elazig, Turkey.
| | - Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Mehmet Yabas
- Department of Genetics and Bioengineering, Trakya University, Edirne, Turkey
| | - Cemal Orhan
- Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Nurhan Sahin
- Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Ibrahim H Ozercan
- Department of Pathology, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
71
|
Pathak A, Tanwar S, Kumar V, Banarjee BD. Present and Future Prospect of Small Molecule & Related Targeted Therapy Against Human Cancer. VIVECHAN INTERNATIONAL JOURNAL OF RESEARCH 2018; 9:36-49. [PMID: 30853755 PMCID: PMC6407887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cancer is uncontrolled cell growth guided by deregulation of cell growth network. Subsequently, alteration in genes occurs which influences expression (down-regulation of tumor suppressor genes and/or up-regulation of proto-oncogene) of these prominent cell growth proteins. Protein targeting has emerged as a hope against cancer. These therapies work by inhibiting or up regulating the target proteins through agents specific for treatment of deregulated proteins. Targeted cancer therapies are more favorable for cancers like lung, colorectal, breast, lymphoma and leukemia as they focus on particular molecular changes unique to a specific cancer. As researchers scrutinize and comprehend the cell changes that initiate cancer, they are better able to design promising therapies targeting these changes or nullify their effect. In present study we have assessed prospects of significant proteins which are known to be targeted by number of small molecules and related drugs for effective treatment of various forms of cancer. Moreover, we also addressed the efficacies of these drugs toward the cancer treatment and future challenges in their development as this information is lacking in previously published work.
Collapse
Affiliation(s)
- Akshat Pathak
- Department of Computer Science and Engineering IMS Engineering College, Ghaziabad, Uttar Pradesh, India
| | - Sanskriti Tanwar
- Department of Biotechnology IMS Engineering College, Ghaziabad, Uttar Pradesh, India
| | - Vivek Kumar
- Department of Biotechnology IMS Engineering College, Ghaziabad, Uttar Pradesh, India
| | - Basu Dev Banarjee
- Department of Biochemistry, University College of Medical Sciences & Guru Tegh Bahadur Hospital, University of Delhi, Dilshad Garden, Delhi, India
| |
Collapse
|
72
|
Opoku-Temeng C, Dayal N, Hernandez DE, Naganna N, Sintim HO. Tetrahydro-3H-pyrazolo[4,3-a]phenanthridine-based CDK inhibitor. Chem Commun (Camb) 2018; 54:4521-4524. [PMID: 29629444 DOI: 10.1039/c8cc01154k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclin-dependent kinases have emerged as important targets for cancer therapy.
Collapse
Affiliation(s)
- Clement Opoku-Temeng
- Chemistry Department
- Institute for Drug Discovery
- Purdue University
- West Lafayette
- USA
| | - Neetu Dayal
- Chemistry Department
- Institute for Drug Discovery
- Purdue University
- West Lafayette
- USA
| | - Delmis E. Hernandez
- Chemistry Department
- Institute for Drug Discovery
- Purdue University
- West Lafayette
- USA
| | - N. Naganna
- Chemistry Department
- Institute for Drug Discovery
- Purdue University
- West Lafayette
- USA
| | - Herman O. Sintim
- Chemistry Department
- Institute for Drug Discovery
- Purdue University
- West Lafayette
- USA
| |
Collapse
|
73
|
Li Z, Hao P, Wu Q, Li F, Zhao J, Wu K, Qu C, Chen Y, Li M, Chen X, Stucky A, Zhong J, Li L, Zhong JF. Genetic mutations associated with metastatic clear cell renal cell carcinoma. Oncotarget 2017; 7:16172-9. [PMID: 26908440 PMCID: PMC4941305 DOI: 10.18632/oncotarget.7473] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/06/2016] [Indexed: 01/13/2023] Open
Abstract
Metastasis is the major cause of death among cancer patients, yet early detection and intervention of metastasis could significantly improve their clinical outcomes. We have sequenced and analyzed RNA (Expression) and DNA (Mutations) from the primary tumor (PT), tumor extension (TE) and lymphatic metastatic (LM) sites of patients with clear cell renal cell carcinoma (CCRCC) before treatment. Here, we report a three-nucleotide deletion near the C-region of Plk5 that is specifically associated with the lymphatic metastasis. This mutation is un-detectable in the PT, becomes detectable in the TE and dominates the LM tissue. So while only a few primary cancer cells carry this mutation, the majority of metastatic cells have this mutation. The increasing frequency of this mutation in metastatic tissue suggests that this Plk5 deletion could be used as an early indicator of CCRCC metastasis, and be identified by low cost PCR assay. A large scale clinical trial could reveal whether a simple PCR assay for this mutation at the time of nephrectomy could identify and stratify high-risk CCRCC patients for treatments.
Collapse
Affiliation(s)
- Zhongjun Li
- Department of Blood Transfusion, Second Affiliated Hospital, Third Military Medical University, Chongqing, P. R. China.,Ostrow School of Dentistry and Department of Pediatrics, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ping Hao
- Department of Oncology, Second Affiliated Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Qingjian Wu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Fengjie Li
- Department of Blood Transfusion, Second Affiliated Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Jiang Zhao
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Kaijin Wu
- Ostrow School of Dentistry and Department of Pediatrics, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Cunye Qu
- Ostrow School of Dentistry and Department of Pediatrics, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yibu Chen
- Bioinformatics Service, Norris Medical Library, University of Southern California, Los Angeles, CA, USA
| | - Meng Li
- Bioinformatics Service, Norris Medical Library, University of Southern California, Los Angeles, CA, USA
| | - Xuelian Chen
- Ostrow School of Dentistry and Department of Pediatrics, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andres Stucky
- Ostrow School of Dentistry and Department of Pediatrics, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Longkun Li
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Jiang F Zhong
- Ostrow School of Dentistry and Department of Pediatrics, School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
74
|
Nehate C, Moothedathu Raynold AA, Koul V. ATRP Fabricated and Short Chain Polyethylenimine Grafted Redox Sensitive Polymeric Nanoparticles for Codelivery of Anticancer Drug and siRNA in Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:39672-39687. [PMID: 29048878 DOI: 10.1021/acsami.7b11716] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To overcome the limitations of conventional chemotherapy, nanoparticle-mediated combinatorial delivery of siRNA and drugs represents a new approach to overcome its associated side effects. Designing safe and efficient vehicles for their codelivery has emerged as a potential challenge in the clinical translation of these formulations. Herein, we have demonstrated a novel "two-in-one" polyplex nanosystem developed from redox sensitive, short chain polyethylenimine modified poly[(poly(ethylene)glycol methacrylate]-s-s-polycaprolactone copolymer synthesized by atom-transfer free-radical polymerization (ATRP), which can deliver doxorubicin and polo-like kinase I (plk1) siRNA, simultaneously for an enhanced chemotherapeutic effect. The nanoparticles were found to be stable at physiological buffer with and without fetal bovine serum (FBS). The developed polymeric nanosystem was found to be biocompatible and hemocompatible in vitro and in vivo at repeated dose administrations. The polymer could easily self-assemble into ∼100 nm spherical nanoparticles with enhanced doxorubicin loading (∼18%) and effective siRNA complexation at a polymer to siRNA weight ratio of 15. The doxorubicin loaded nanoparticles exhibited ∼4-fold higher drug release in endosomal pH (pH 5) containing 10 mmol of GSH compared to pH 7.4, depicting their redox-sensitive behavior. The polyplexes were capable of delivering both cargos simultaneously to cancer cells in vitro as observed by their excellent colocalization in the cytoplasm of MDA-MB-231 and HeLa cells using confocal laser microscopy. Moreover, in vitro transfection of the cells with polyplexes exhibited 50-70% knockdown of plk1-mRNA expression in both cell lines. In vivo administration of the drug loaded polyplexes to EAT tumor bearing (EAT, Ehrlich ascites tumor) Swiss albino mice showed a ∼29-fold decrease in percent tumor volume in comparison to the control group. The results highlight the therapeutic potential of the polyplexes as a combined delivery of doxorubicin and plk1-siRNA in cancer therapy.
Collapse
Affiliation(s)
- Chetan Nehate
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi , New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences , New Delhi 110029, India
| | - Aji Alex Moothedathu Raynold
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi , New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences , New Delhi 110029, India
| | - Veena Koul
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi , New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences , New Delhi 110029, India
| |
Collapse
|
75
|
Wang W, Zhang Y, Chen R, Tian Z, Zhai Y, Janz S, Gu C, Yang Y. Chromosomal instability and acquired drug resistance in multiple myeloma. Oncotarget 2017; 8:78234-78244. [PMID: 29100463 PMCID: PMC5652852 DOI: 10.18632/oncotarget.20829] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/26/2017] [Indexed: 12/29/2022] Open
Abstract
Chromosomal instability (CIN) is an important hallmark of human cancer. CIN not only contributes to all stages of tumor development (initiation, promotion and progression) but also drives, in large measure, the acquisition of drug resistance by cancer cells. Although CIN is a cornerstone of the complex mutational architecture that underlies neoplastic cell development and tumor heterogeneity and has been tightly associated with treatment responses and survival of cancer patients, it may be one of the least understood features of the malignant phenotype in terms of genetic pathways and molecular mechanisms. Here we review new insights into the type of CIN seen in multiple myeloma (MM), a blood cancer of terminally differentiated, immunoglobulin-producing B-lymphocytes called plasma cells that remains incurable in the great majority of cases. We will consider bona fide myeloma CIN genes, methods for measuring CIN in myeloma cells, and novel approaches to CIN-targeted treatments of patients with myeloma. The new findings generate optimism that enhanced understanding of CIN will lead to the design and testing of new therapeutic strategies to overcome drug resistance in MM in the not-so-distant future.
Collapse
Affiliation(s)
- Wang Wang
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yi Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ruini Chen
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhidan Tian
- Department of Pathology, Nanjing First Hospital, Nanjing, 210006, China
| | - Yongpin Zhai
- Department of Hematology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China
| | - Siegfried Janz
- Department of Pathology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, 52242, USA
| | - Chunyan Gu
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Yang
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
76
|
Medina-Aguilar R, Marchat LA, Arechaga Ocampo E, Gariglio P, García Mena J, Villegas Sepúlveda N, Martínez Castillo M, López-Camarillo C. Resveratrol inhibits cell cycle progression by targeting Aurora kinase A and Polo-like kinase 1 in breast cancer cells. Oncol Rep 2016; 35:3696-3704. [PMID: 27109433 DOI: 10.3892/or.2016.4728] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/08/2016] [Indexed: 11/06/2022] Open
Abstract
The Aurora protein kinase (AURKA) and the Polo-like kinase-1 (PLK1) activate the cell cycle, and they are considered promising druggable targets in cancer therapy. However, resistance to chemotherapy and to specific small‑molecule inhibitors is common in cancer patients; thus alternative therapeutic approaches are needed to overcome clinical resistance. Here, we showed that the dietary compound resveratrol suppressed the cell cycle by targeting AURKA and PLK1 kinases. First, we identified genes modulated by resveratrol using a genome-wide analysis of gene expression in MDA-MB-231 breast cancer cells. Transcriptional profiling indicated that 375 genes were modulated at 24 h after resveratrol intervention, whereas 579 genes were regulated at 48 h. Of these, 290 genes were deregulated in common at 24 and 48 h. Interestingly, a significant decrease in the expression of genes involved in the cell cycle, DNA repair, cytoskeleton organization, and angiogenesis was detected. In particular, AURKA and PLK1 kinases were downregulated by resveratrol at 24 h. In addition the BRCA1 gene, an AURKA/PLK1 inhibitor, was upregulated at 24 h of treatment. Moreover, two well-known resveratrol effectors, cyclin D1 (CCND1) and cyclin B1 (CCNB1), were also repressed at both times. Congruently, we found that resveratrol impaired G1/S phase transition in both MDA-MB-231 and MCF-7 cells. By western blot assays, we confirmed that resveratrol suppressed AURKA, CCND1 and CCNB1 at 24 and 48 h. In summary, we showed for the first time that resveratrol regulates cell cycle progression by targeting AURKA and PLK1. Our findings highlight the potential use of resveratrol as an adjuvant therapy for breast cancer.
Collapse
Affiliation(s)
| | - Laurence A Marchat
- Molecular Biomedicine Program and Biotechnology Network, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico D.F., Mexico
| | - Elena Arechaga Ocampo
- Natural Sciences Department, Metropolitan Autonomous University, Mexico D.F., Mexico
| | - Patricio Gariglio
- Department of Genetics and Molecular Biology, CINVESTAV-IPN, Mexico D.F., Mexico
| | - Jaime García Mena
- Department of Genetics and Molecular Biology, CINVESTAV-IPN, Mexico D.F., Mexico
| | | | | | - César López-Camarillo
- Oncogenomics and Cancer Proteomics Laboratory, Universidad Autónoma de la Ciudad de México, Mexico D.F., Mexico
| |
Collapse
|