51
|
Xu W, Li Y, Feng R, He P, Zhang Y. γ-Tocotrienol induced the proliferation and differentiation of MC3T3-E1 cells through the stimulation of the Wnt/β-catenin signaling pathway. Food Funct 2022; 13:398-410. [PMID: 34908071 DOI: 10.1039/d1fo02583j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
γ-Tocotrienol (γ-T3), an isoprenoid phytochemical, has shown the promotion of osteoblast proliferation and differentiation in our previous study. In this study, its underlying mechanism was investigated through regulating the Wnt/β-catenin signaling pathway in MC3T3-E1 cells. Comparative experiment results showed that γ-T3, not α-tocopherol (α-TOC) increased more significantly the viability and differentiation in MC3T3-E1 cells. After that, the cells were incubated with 10 mM LiCl, or 4 μM γ-T3 with or without 1 μM XAV-939. γ-T3 at 4 μM stimulated the Wnt/β-catenin signaling pathway by increasing the expression and nuclear accumulation of β-catenin, and the expressions of their downstream factors, such as cyclin-D1, c-Myc, BMP2 and BMP-4 in MC3T3-E1 cells. γ-T3 not only upregulated the viability, induced G0/G1 to the S phase, and promoted the expressions of PCNA (Proliferating Cell Nuclear Antigen) and Ki-67, but also increased ALP activity and the expressions of ON, OPN and OCN. Moreover, the effects of γ-T3 on the MC3T3-E1 cells resembled the actions of LiCl, an activator of the Wnt/β-catenin signaling pathway. Notably, all these effects of γ-T3 on the MC3T3-E1 cells were completely blocked by the Wnt/β-catenin signaling pathway inhibitor XAV-939. Our data demonstrated that γ-T3 can target β-catenin to enhance the Wnt/β-catenin signaling pathway, which led to increased expressions of the downstream cell proliferation and cell cycle-associated (cyclin D1 and c-myc), and cell differentiation-associated (BMP-2 and BMP-4) target genes, and ultimately promoted MC3T3-E1 cell proliferation and differentiation. Therefore, γ-T3 may be a potential agent to prevent and reverse osteoporosis due to its safety and powerful abilities of osteogenesis.
Collapse
Affiliation(s)
- Weili Xu
- Innovation Research Center for Special Food-Medicine and Biochemical Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, China.
| | - Yutong Li
- Innovation Research Center for Special Food-Medicine and Biochemical Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, China.
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, China
| | - Pan He
- Innovation Research Center for Special Food-Medicine and Biochemical Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, China.
| | - Yuqi Zhang
- Innovation Research Center for Special Food-Medicine and Biochemical Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, China.
| |
Collapse
|
52
|
Ishihara K, Kaneyasu M, Fukazawa K, Zhang R, Teramura Y. Induction of mesenchymal stem cell differentiation by co-culturing with mature cells in double-layered 2-methacryloyloxyethyl phosphorylcholine polymer hydrogel matrices. J Mater Chem B 2021; 10:2561-2569. [PMID: 34878485 DOI: 10.1039/d1tb01817e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The effects of differentiated cells on stem cell differentiation were analyzed via co-culturing using a cell-encapsulated double-layered hydrogel system. As a polymer hydrogel matrix, a water-soluble zwitterionic polymer having both a 2-methacryloyloxyethyl phosphorylcholine unit and a p-vinylphenylboronic acid unit (PMBV), was complexed spontaneously with poly(vinyl alcohol) (PVA) under mild cell culture conditions. The creep modulus of the hydrogel was controlled by changing the composition of the polymer in the solution. Mouse mesenchymal stem cells (MSCs), C3H10T1/2 cells, were encapsulated into PMBV/PVA hydrogels and cultured. In the PMBV/PVA hydrogel with a lower creep modulus (0.40 kPa), proliferation of C3H10T1/2 cells occurred, and the formation of cell aggregates was observed. On the other hand, a higher creep modulus (1.7 kPa) of the hydrogel matrix prevented cell proliferation. Culturing C3H10T1/2 cells encapsulated in the PMBV/PVA hydrogel in the presence of bone morphogenetic protein-2 increased the activity of intracellular alkaline phosphatase (ALP). This indicated that C3H10T1/2 cells differentiated into mature osteoblasts. When the C3H10T1/2 cells encapsulated in the PMBV/PVA hydrogel were cultured in combination with the mature osteoblasts in the hydrogel by a close contacting double-layered hydrogel structure, higher ALP activity was observed compared with the cells cultured separately. It was considered that the differentiation of C3H10T1/2 cells in the hydrogel layer was induced by cytokines diffused from mature osteoblasts encapsulated in another hydrogel layer. It could be concluded that the PMBV/PVA hydrogel system provides a good way to observe the effects of the surrounding cells on cell function in three-dimensional culture.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. .,Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Miu Kaneyasu
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Ren Zhang
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuji Teramura
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
53
|
Kang Z, Li D, Shu C, Du J, Yu B, Qian Z, Zhong Z, Zhang X, Yu B, Huang Q, Huang J, Zhu Y, Yi C, Ding H. Polydopamine Coating-Mediated Immobilization of BMP-2 on Polyethylene Terephthalate-Based Artificial Ligaments for Enhanced Bioactivity. Front Bioeng Biotechnol 2021; 9:749221. [PMID: 34869260 PMCID: PMC8636993 DOI: 10.3389/fbioe.2021.749221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Background/objectives: Polyethylene terephthalate (PET)-based artificial ligaments are one of the most commonly used grafts in anterior cruciate ligament (ACL) reconstruction surgery. However, the lack of favorable hydrophilicity and cell attachment for PET highly impeded its widespread application in clinical practice. Studies found that surface modification on PET materials could enhance the biocompatibility and bioactivity of PET ligaments. In this study, we immobilized bone morphogenetic protein-2 (BMP-2) on the surface of PET ligaments mediated by polydopamine (PDA) coating and investigated the bioactivation and graft-to-bone healing effect of the modified grafts in vivo and in vitro. Methods: In this study, we prepared the PDA coating and subsequent BMP-2-immobilized PET artificial ligaments. Scanning electron microscopy (SEM) was used to analyze the morphological changes of the modified grafts. In addition, the surface wettability properties of the modified ligaments, amount of immobilized BMP 2, and the release of BMP-2 during a dynamic period up to 28 days were tested. Then, the attachment and proliferation of rat bone mesenchymal stem cells (rBMSCs) on grafts were examined by SEM and Cell Counting Kit-8 (CCK-8) assay, respectively. Alkaline phosphatase (ALP) assay, RT-PCR, and Alizarin Red S staining were performed to test the osteoinduction property. For in vivo experiments, an extra-articular graft-to-bone healing model in rabbits was established. At 8 weeks after surgery, biomechanical tests, micro-CT, and histological staining were performed on harvested samples. Results: A surface morphological analysis verified the success of the PDA coating. The wettability of the PET artificial ligaments was improved, and more than 80% of BMP-2 stably remained on the graft surface for 28 days. The modified grafts could significantly enhance the proliferation, attachment, as well as expression of ALP and osteogenic-related genes, which demonstrated the favorable bioactivity of the grafts immobilized with BMP-2 in vitro. Moreover, the grafts immobilized with BMP-2 at a concentration of 138.4 ± 10.6 ng/cm2 could highly improve the biomechanical properties, bone regeneration, and healing between grafts and host bone after the implantation into the rabbits compared with the PDA-PET group or the PET group. Conclusion: The immobilization of BMP-2 mediated by polydopamine coating on PET artificial ligament surface could enhance the compatibility and bioactivity of the scaffolds and the graft-to-bone healing in vivo.
Collapse
Affiliation(s)
- Zhanrong Kang
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Dejian Li
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Chaoqin Shu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.,School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianhang Du
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Bin Yu
- Department of Pain and Rehabilitation, Shanghai Public Health Clinical Center, Shanghai Medical School, Fudan University, Shanghai, China
| | - Zhi Qian
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zeyuan Zhong
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xu Zhang
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Baoqing Yu
- Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Qikai Huang
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Jianming Huang
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yufang Zhu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Chengqing Yi
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Huifeng Ding
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.,Department of Pain and Rehabilitation, Shanghai Public Health Clinical Center, Shanghai Medical School, Fudan University, Shanghai, China
| |
Collapse
|
54
|
Li M, Ma H, Han F, Zhai D, Zhang B, Sun Y, Li T, Chen L, Wu C. Microbially Catalyzed Biomaterials for Bone Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104829. [PMID: 34632631 DOI: 10.1002/adma.202104829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Bone is a complex mineralized tissue composed of various organic (proteins, cells) and inorganic (hydroxyapatite, calcium carbonate) substances with micro/nanoscale structures. To improve interfacial bioactivity of bone-implanted biomaterials, extensive efforts are being made to fabricate favorable biointerface via surface modification. Inspired by microbially catalyzed mineralization, a novel concept to biologically synthesize the micro/nanostructures on bioceramics, microbial-assisted catalysis, is presented. It involves three processes: bacterial adhesion on biomaterials, production of CO3 2- assisted by bacteria, and nucleation and growth of CaCO3 nanocrystals on the surface of bioceramics. The microbially catalyzed biominerals exhibit relatively uniform micro/nanostructures on the surface of both 2D and 3D α-CaSiO3 bioceramics. The topographic and chemical cues of the grown micro/nanostructures present excellent in vitro and in vivo bone-forming bioactivity. The underlying mechanism is closely related to the activation of multiple biological processes associated with bone regeneration. The study offers a microbially catalytic concept and strategy of fabricating micro/nanostructured biomaterials for tissue regeneration.
Collapse
Affiliation(s)
- Mengmeng Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Hongshi Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Fei Han
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Dong Zhai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Bingjun Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yuhua Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Tian Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Lei Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
55
|
Zhou Q, Ren X, Oberoi MK, Bedar M, Caprini RM, Dewey MJ, Kolliopoulos V, Yamaguchi DT, Harley BA, Lee JC. β-Catenin Limits Osteogenesis on Regenerative Materials in a Stiffness-Dependent Manner. Adv Healthc Mater 2021; 10:e2101467. [PMID: 34585526 PMCID: PMC8665088 DOI: 10.1002/adhm.202101467] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/22/2021] [Indexed: 12/30/2022]
Abstract
Targeted refinement of regenerative materials requires mechanistic understanding of cell-material interactions. The nanoparticulate mineralized collagen glycosaminoglycan (MC-GAG) scaffold is shown to promote skull regeneration in vivo without additive exogenous growth factors or progenitor cells, suggesting potential for clinical translation. This work evaluates modulation of MC-GAG stiffness on canonical Wnt (cWnt) signaling. Primary human bone marrow-derived mesenchymal stem cells (hMSCs) are differentiated on two MC-GAG scaffolds (noncrosslinked, NX-MC, 0.3 kPa vs conventionally crosslinked, MC, 3.9 kPa). hMSCs increase expression of activated β-catenin, the major cWnt intracellular mediator, and the mechanosensitive YAP protein with near complete subcellular colocalization on stiffer MC scaffolds. Overall Wnt pathway inhibition reduces activated β-catenin and osteogenic differentiation, while elevating BMP4 and phosphorylated Smad1/5 (p-Smad1/5) expression on MC, but not NX-MC. Unlike Wnt pathway downregulation, isolated canonical Wnt inhibition with β-catenin knockdown increases osteogenic differentiation and mineralization specifically on the stiffer MC. β-catenin knockdown also increases p-Smad1/5, Runx2, and BMP4 expression only on the stiffer MC material. Thus, while stiffness-induced activation of the Wnt and mechanotransduction pathways promotes osteogenesis on MC-GAG, activated β-catenin is a limiting agent and may serve as a useful target or readout for optimal modulation of stiffness in skeletal regenerative materials.
Collapse
Affiliation(s)
- Qi Zhou
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Xiaoyan Ren
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Michelle K. Oberoi
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Meiwand Bedar
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Rachel M. Caprini
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| | - Marley J. Dewey
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Vasiliki Kolliopoulos
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Dean T. Yamaguchi
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
| | - Brendan A.C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Justine C. Lee
- Division of Plastic and Reconstructive Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA 90073
- UCLA Molecular Biology Institute, Los Angeles, CA 90095
| |
Collapse
|
56
|
Tissue-Nonspecific Alkaline Phosphatase, a Possible Mediator of Cell Maturation: Towards a New Paradigm. Cells 2021; 10:cells10123338. [PMID: 34943845 PMCID: PMC8699127 DOI: 10.3390/cells10123338] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/01/2023] Open
Abstract
Alkaline phosphatase (ALP) is a ubiquitous membrane-bound glycoprotein capable of providing inorganic phosphate by catalyzing the hydrolysis of organic phosphate esters, or removing inorganic pyrophosphate that inhibits calcification. In humans, four forms of ALP cDNA have been cloned, among which tissue-nonspecific ALP (TNSALP) (TNSALP) is widely distributed in the liver, bone, and kidney, making it an important marker in clinical and basic research. Interestingly, TNSALP is highly expressed in juvenile cells, such as pluripotent stem cells (i.e., embryonic stem cells and induced pluripotent stem cells (iPSCs)) and somatic stem cells (i.e., neuronal stem cells and bone marrow mesenchymal stem cells). Hypophosphatasia is a genetic disorder causing defects in bone and tooth development as well as neurogenesis. Mutations in the gene coding for TNSALP are thought to be responsible for the abnormalities, suggesting the essential role of TNSALP in these events. Moreover, a reverse-genetics-based study using mice revealed that TNSALP is important in bone and tooth development as well as neurogenesis. However, little is known about the role of TNSALP in the maintenance and differentiation of juvenile cells. Recently, it was reported that cells enriched with TNSALP are more easily reprogrammed into iPSCs than those with less TNSALP. Furthermore, in bone marrow stem cells, ALP could function as a "signal regulator" deciding the fate of these cells. In this review, we summarize the properties of ALP and the background of ALP gene analysis and its manipulation, with a special focus on the potential role of TNSALP in the generation (and possibly maintenance) of juvenile cells.
Collapse
|
57
|
Bimodal expression of Wnt5a in the tooth germ: A comparative study using in situ hybridization and immunohistochemistry. Ann Anat 2021; 240:151868. [PMID: 34823012 DOI: 10.1016/j.aanat.2021.151868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND During tooth development, Wnt5a, a member of the noncanonical Wnt ligand, is expressed prominently in the dental mesenchyme. However, the spatiotemporal profiles of Wnt5a protein production and distribution in tooth germs are largely unknown, which impairs elucidation of the Wnt5a-mediated regulatory mechanism of tooth development. METHODS We performed analyzes of the spatiotemporal expression of Wnt5a in embryonic tooth germs (E11.5-E18.5) by using in situ hybridization and immunohistochemistry in parallel. The developmental stages of the embryonic tooth germs were determined by HE staining. In order to compare the spatiotemporal distribution patterns of Wnt5a mRNA-expressing cells and those of Wnt5a protein-expressing cells, serial frontal sections of paraffinized mouse embryo heads were used for the analyzes. When needed, the immunohistochemistry images were subjected to digital detection analysis of Wnt5a immunostaining signal using the WinROOF 2018 Ver. 4.19.0 image processing software program. RESULTS Throughout the developmental process, cells expressing Wnt5a mRNA were found in various tissues including the dental follicle, dental papilla, inner and outer enamel epithelium, stratum intermediate, and stellate reticulum. However, odontoblasts differentiating and polarizing at E18.5 were the only cells representing an accumulation of Wnt5a protein in the apical region of the odontoblast process. The Wnt5a protein was undetectable in undifferentiated mesenchymal cells as well as any other cells positive for Wnt5a mRNA. CONCLUSION Differentiating odontoblasts execute Wnt5a expression, the mode of which is distinct from that executed by the other cells constituting tooth germ. Change of the mode of Wnt5a expression begins to take place in the mesenchymal cells by E18.5, starting the elongation of the cytoplasmic process.
Collapse
|
58
|
Melnik S, Hofmann N, Gabler J, Hecht N, Richter W. MiR-181a Targets RSPO2 and Regulates Bone Morphogenetic Protein - WNT Signaling Crosstalk During Chondrogenic Differentiation of Mesenchymal Stromal Cells. Front Cell Dev Biol 2021; 9:747057. [PMID: 34778258 PMCID: PMC8586458 DOI: 10.3389/fcell.2021.747057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Mechanisms of WNT and bone morphogenetic protein (BMP) signaling crosstalk is in the focus of multiple biological studies, and it also has been discovered to play important roles in human mesenchymal stromal cells (MSC) that are of great interest for neocartilage engineering due to their high chondrogenic differentiation potential. However, MSC-derived chondrocytes undergo hypertrophic degeneration that impedes their clinical application for cartilage regeneration. In our previous study, we established that several microRNAs (miRs) are differentially expressed between articular chondrocytes (AC) - and MSC-derived neocartilage, with miR-181a being the most prominent candidate as key microRNA involved in the regulation of a balance between chondral and endochondral differentiation. The aim of this study was the identification of precise mRNA targets and signaling pathways regulated by miR-181a in MSC during chondrogenesis. MiR-181a was upregulated during chondrogenesis of MSC, along with an increase of the hypertrophic phenotype in resulting cartilaginous tissue. By in silico analysis combined with miR reporter assay, the WNT signaling activator and BMP signaling repressor RSPO2 was suggested as a target of miR-181a. Further validation experiments confirmed that miR-181a targets RSPO2 mRNA in MSC. It was found that in human MSC miR-181a activated BMP signaling manifested by the accumulation of SOX9 protein and increased phosphorylation of SMAD1/5/9. These effects, together with the concomitant reduction of canonical WNT signaling induced by miR-181a mimic, were in accordance with the effects expected by the loss of RSPO2, thus indicating the causative link between miR-181a and RSPO2. Moreover, we observed that a tight correlation between miR-181a and miR-218 expression levels in healthy human cartilage tissue was disrupted in osteoarthritis (OA) highlighting the importance of the WNT-BMP signaling crosstalk for preventing OA.
Collapse
Affiliation(s)
- Svitlana Melnik
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Nina Hofmann
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Jessica Gabler
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Nicole Hecht
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Wiltrud Richter
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
59
|
Park KR, Park JE, Kim B, Kwon IK, Hong JT, Yun HM. Calycosin-7-O-β-Glucoside Isolated from Astragalus membranaceus Promotes Osteogenesis and Mineralization in Human Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms222111362. [PMID: 34768792 PMCID: PMC8583672 DOI: 10.3390/ijms222111362] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
Stem cells have received attention in various diseases, such as inflammatory, cancer, and bone diseases. Mesenchymal stem cells (MSCs) are multipotent stem cells that are critical for forming and repairing bone tissues. Herein, we isolated calycosin-7-O-β-glucoside (Caly) from the roots of Astragalus membranaceus, which is one of the most famous medicinal herbs, and investigated the osteogenic activities of Caly in MSCs. Caly did not affect cytotoxicity against MSCs, whereas Caly enhanced cell migration during the osteogenesis of MSCs. Caly increased the expression and enzymatic activities of ALP and the formation of mineralized nodules during the osteogenesis of MSCs. The osteogenesis and bone-forming activities of Caly are mediated by bone morphogenetic protein 2 (BMP2), phospho-Smad1/5/8, Wnt3a, phospho-GSK3β, and phospho-AKT, inducing the expression of runt-related transcription factor 2 (RUNX2). In addition, Caly-mediated osteogenesis and RUNX2 expression were attenuated by noggin and wortmannin. Moreover, the effects were validated in pre-osteoblasts committed to the osteoblast lineages from MSCs. Overall, our results provide novel evidence that Caly stimulates osteoblast lineage commitment of MSCs by triggering RUNX2 expression, suggesting Caly as a potential anabolic drug to prevent bone diseases.
Collapse
Affiliation(s)
- Kyung-Ran Park
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea;
- Medical Device Research Center, Medical Science Research Institute, Kyung Hee University Medical Center, Seoul 02447, Korea;
| | - Ji Eun Park
- National Institute for Korean Medicine Development, Gyeongsan 38540, Korea; (J.E.P.); (B.K.)
| | - Bomi Kim
- National Institute for Korean Medicine Development, Gyeongsan 38540, Korea; (J.E.P.); (B.K.)
| | - Il Keun Kwon
- Medical Device Research Center, Medical Science Research Institute, Kyung Hee University Medical Center, Seoul 02447, Korea;
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si 28160, Korea
- Correspondence: (J.T.H.); (H.-M.Y.); Tel.: +82-02-961-0691 (H.-M.Y.); Fax: +82-02-960-1457 (H.-M.Y.)
| | - Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea;
- Correspondence: (J.T.H.); (H.-M.Y.); Tel.: +82-02-961-0691 (H.-M.Y.); Fax: +82-02-960-1457 (H.-M.Y.)
| |
Collapse
|
60
|
Zhao C, Qiu P, Li M, Liang K, Tang Z, Chen P, Zhang J, Fan S, Lin X. The spatial form periosteal-bone complex promotes bone regeneration by coordinating macrophage polarization and osteogenic-angiogenic events. Mater Today Bio 2021; 12:100142. [PMID: 34647005 PMCID: PMC8495177 DOI: 10.1016/j.mtbio.2021.100142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022] Open
Abstract
Bone defects associated with soft tissue injuries are an important cause of deformity that threatens people’s health and quality of life. Although bone substitutes have been extensively explored, effective biomaterials that can coordinate early inflammation regulation and subsequent repair events are still lacking. We prepared a spatial form periosteal bone extracellular matrix (ECM) scaffold, which has advantages in terms of low immunogenicity, good retention of bioactive ingredients, and a natural spatial structure. The periosteal bone ECM scaffold with the relatively low-stiffness periosteum (41.6 ± 3.7 kPa) could inhibit iNOS and IL-1β expression, which might be related to actin-mediated YAP translocation. It also helped to promote CD206 expression with the potential influence of proteins related to immune regulation. Moreover, the scaffold combined the excellent properties of decalcified bone and periosteum, promoted the formation of blood vessels, and good osteogenic differentiation (RUNX2, Col 1α1, ALP, OPN, and OCN), and achieved good repair of a cranial defect in rats. This scaffold, with its natural structural and biological advantages, provides a new idea for bone healing treatment that is aligned with bone physiology. We provided a spatial form periosteal-bone complex. The scaffold preserved major biological components and spatial structure. The periosteum part of the scaffold acted as a physical barrier. The scaffold participated in the transformation of the macrophage phenotype. The scaffold promoted osteogenesis and angiogenesis.
Collapse
Affiliation(s)
- C. Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - P. Qiu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - M. Li
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - K. Liang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Z. Tang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - P. Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - J. Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - S. Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
- Corresponding author.
| | - X. Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
- Corresponding author.
| |
Collapse
|
61
|
Karadeniz F, Oh JH, Jo HJ, Seo Y, Kong CS. Myricetin 3- O-β-D-Galactopyranoside Exhibits Potential Anti-Osteoporotic Properties in Human Bone Marrow-Derived Mesenchymal Stromal Cells via Stimulation of Osteoblastogenesis and Suppression of Adipogenesis. Cells 2021; 10:2690. [PMID: 34685670 PMCID: PMC8534343 DOI: 10.3390/cells10102690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/27/2022] Open
Abstract
Natural bioactive substances are promising lead compounds with beneficial effects on various health problems including osteoporosis. In this context, the goal of this study was to investigate the effect of myricetin 3-O-β-D-galactopyranoside (M3G), a glycoside of a known bioactive phytochemical myricetin, on bone formation via osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hBM-MSCs). The hBM-MSCs were induced to differentiate into osteoblasts and adipocytes in the presence or absence of M3G and the differentiation markers were analyzed. Osteoblastogenesis-induced cells treated with M3G exhibited stimulated differentiation markers: cell proliferation, alkaline phosphatase (ALP) activity, and extracellular mineralization. In terms of intracellular signaling behind the stimulatory effect of M3G, the expression of RUNX2 and osteopontin transcription factors were upregulated. It has been shown that M3G treatment increased the activation of Wnt and BMP as a suggested mechanism of action for its effect. On the other hand, M3G treatment during adipogenesis-inducement of hBM-MSCs hindered the adipogenic differentiation shown as decreased lipid accumulation and expression of PPARγ, SREBP1c, and C/EBPα, adipogenic transcription factors. In conclusion, M3G treatment stimulated osteoblast differentiation and inhibited adipocyte differentiation in induced hBM-MSCs. Osteoblast formation was stimulated via Wnt/BMP and adipogenesis was inhibited via the PPARγ pathway. This study provided necessary data for further studies to utilize the therapeutic potential of M3G against osteoporosis via regulation of bone marrow stromal cell differentiation.
Collapse
Affiliation(s)
- Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea; (F.K.); (J.H.O.)
| | - Jung Hwan Oh
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea; (F.K.); (J.H.O.)
| | - Hyun Jin Jo
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Korea;
| | - Youngwan Seo
- Division of Marine Bioscience, Korea Maritime and Ocean University, Busan 49112, Korea;
| | - Chang-Suk Kong
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Korea; (F.K.); (J.H.O.)
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Korea;
| |
Collapse
|
62
|
Mollentze J, Durandt C, Pepper MS. An In Vitro and In Vivo Comparison of Osteogenic Differentiation of Human Mesenchymal Stromal/Stem Cells. Stem Cells Int 2021; 2021:9919361. [PMID: 34539793 PMCID: PMC8443361 DOI: 10.1155/2021/9919361] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/23/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
The use of stem cells in regenerative medicine, including tissue engineering and transplantation, has generated a great deal of enthusiasm. Mesenchymal stromal/stem cells (MSCs) can be isolated from various tissues, most commonly, bone marrow but more recently adipose tissue, dental pulp, and Wharton's jelly, to name a few. MSCs display varying phenotypic profiles and osteogenic differentiating capacity depending and their site of origin. MSCs have been successfully differentiated into osteoblasts both in vitro an in vivo but discrepancies exist when the two are compared: what happens in vitro does not necessarily happen in vivo, and it is therefore important to understand why these differences occur. The osteogenic process is a complex network of transcription factors, stimulators, inhibitors, proteins, etc., and in vivo experiments are helpful in evaluating the various aspects of this osteogenic process without distractions and confounding variables. With that in mind, the results of in vitro experiments need to be carefully considered and interpreted with caution as they do not perfectly replicate the conditions found within living organisms. This is where in vivo experiments help us better understand interactions that might occur in the osteogenic process that cannot be replicated in vitro. Potentially, these differences could also be exploited to develop an optimal MSC cell therapeutic product that can be used for bone disorders. There are many bone disorders, most of which cause a great deal of discomfort. Clinically acceptable protocols could be developed in which MSCs are used to aid in bone regeneration providing relief for patients with chronic pain. The aim of this review is to examine the differences between studies conducted in vitro and in vivo with regard to the osteogenic process to better define the gaps in current osteogenic research. By better understanding osteogenic differentiation, we can better define treatment strategies for various bone disorders.
Collapse
Affiliation(s)
- Jamie Mollentze
- Institute for Cellular and Molecular Medicine, Department of Immunology; SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Chrisna Durandt
- Institute for Cellular and Molecular Medicine, Department of Immunology; SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Michael S. Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology; SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
63
|
Kawata K, Narita K, Washio A, Kitamura C, Nishihara T, Kubota S, Takeda S. Odontoblast differentiation is regulated by an interplay between primary cilia and the canonical Wnt pathway. Bone 2021; 150:116001. [PMID: 33975031 DOI: 10.1016/j.bone.2021.116001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 01/29/2023]
Abstract
Primary cilium is a protruding cellular organelle that has various physiological functions, especially in sensory reception. While an avalanche of reports on primary cilia have been published, the function of primary cilia in dental cells remains to be investigated. In this study, we focused on the function of primary cilia in dentin-producing odontoblasts. Odontoblasts, like most other cell types, possess primary cilia, which disappear upon the knockdown of intraflagellar transport protein 88. In cilia-depleted cells, the expression of dentin sialoprotein, an odontoblastic marker, was elevated, while the deposition of minerals was slowed. This was recapitulated by the activation of canonical Wnt pathway, also decreased the ratio of ciliated cells. In dental pulp cells, as they differentiated into odontoblasts, the ratio of ciliated cells was increased, whereas the canonical Wnt signaling activity was repressed. Our results collectively underscore the roles of primary cilia in regulating odontoblastic differentiation through canonical Wnt signaling. This study implies the existence of a feedback loop between primary cilia and the canonical Wnt pathway.
Collapse
Affiliation(s)
- Kazumi Kawata
- Department of Anatomy and Cell Biology, University of Yamanashi Faculty of Medicine, 1110, Shimo-Kateau, Chuo, Yamanashi 4093898, Japan; Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 7008525, Japan.
| | - Keishi Narita
- Department of Anatomy and Cell Biology, University of Yamanashi Faculty of Medicine, 1110, Shimo-Kateau, Chuo, Yamanashi 4093898, Japan
| | - Ayako Washio
- Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokura-kita, Kitakyushu, Fukuoka 8038580, Japan
| | - Chiaki Kitamura
- Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokura-kita, Kitakyushu, Fukuoka 8038580, Japan
| | - Tatsuji Nishihara
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokura-kita, Kitakyushu, Fukuoka 8038580, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 7008525, Japan
| | - Sen Takeda
- Department of Anatomy and Cell Biology, University of Yamanashi Faculty of Medicine, 1110, Shimo-Kateau, Chuo, Yamanashi 4093898, Japan.
| |
Collapse
|
64
|
Peng CH, Lin WY, Yeh KT, Chen IH, Wu WT, Lin MD. The molecular etiology and treatment of glucocorticoid-induced osteoporosis. Tzu Chi Med J 2021; 33:212-223. [PMID: 34386357 PMCID: PMC8323641 DOI: 10.4103/tcmj.tcmj_233_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/19/2020] [Accepted: 12/30/2020] [Indexed: 12/30/2022] Open
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is the most common form of secondary osteoporosis, accounting for 20% of osteoporosis diagnoses. Using glucocorticoids for >6 months leads to osteoporosis in 50% of patients, resulting in an increased risk of fracture and death. Osteoblasts, osteocytes, and osteoclasts work together to maintain bone homeostasis. When bone formation and resorption are out of balance, abnormalities in bone structure or function may occur. Excess glucocorticoids disrupt the bone homeostasis by promoting osteoclast formation and prolonging osteoclasts' lifespan, leading to an increase in bone resorption. On the other hand, glucocorticoids inhibit osteoblasts' formation and facilitate apoptosis of osteoblasts and osteocytes, resulting in a reduction of bone formation. Several signaling pathways, signaling modulators, endocrines, and cytokines are involved in the molecular etiology of GIOP. Clinically, adults ≥40 years of age using glucocorticoids chronically with a high fracture risk are considered to have medical intervention. In addition to vitamin D and calcium tablet supplementations, the major therapeutic options approved for GIOP treatment include antiresorption drug bisphosphonates, parathyroid hormone N-terminal fragment teriparatide, and the monoclonal antibody denosumab. The selective estrogen receptor modulator can only be used under specific condition for postmenopausal women who have GIOP but fail to the regular GIOP treatment or have specific therapeutic contraindications. In this review, we focus on the molecular etiology of GIOP and the molecular pharmacology of the therapeutic drugs used for GIOP treatment.
Collapse
Affiliation(s)
- Cheng-Huan Peng
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Ying Lin
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Kuang-Ting Yeh
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ing-Ho Chen
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Tien Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ming-Der Lin
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
65
|
Yang X, Mou D, Yu Q, Zhang J, Xiong Y, Zhang Z, Xing S. Nerve growth factor promotes osteogenic differentiation of MC3T3-E1 cells via BMP-2/Smads pathway. Ann Anat 2021; 239:151819. [PMID: 34391912 DOI: 10.1016/j.aanat.2021.151819] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/16/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Exogenous nerve growth factor (NGF) can induce osteogenic precursor cell differentiation and promote fracture healing. However, the molecular mechanism by which NGF induces osteogenesis is not well understood. BMP-2 has good osteogenic efficacy and is one of the most osteogenic-inducing growth factors known. Therefore, this study aimed to determine whether NGF induces osteogenic differentiation of mouse embryonic osteogenic precursor cell line MC3T3-E1 by BMP-2 and search further mechanisms of NGF on BMP-2. METHODS MC3T3-E1 cells were treated with NGF at a concentration gradient for indicated times, after which the cell viability was measured by CCK-8 kit. Osteogenic differentiation was detected with quantification of alkaline phosphatase (ALP) activity also visualized with ALP staining. The transcription and expression of relevant genes were detected by qPCR and western blotting, respectively. NGF's effect on BMP2 was studied with qPCR and luciferase reporter assay. The phosphorylation of Smads was probed with specific antibodies by western blotting, and the location of Smads was observed through immunofluorescence. RESULTS We found that NGF promoted proliferation and osteogenic differentiation of MC3T3-E1, increased the expression level of BMP-2, as well as the phosphorylation and nuclear translocation of Smad1/5/8. However, neutralization of BMP-2 with si-BMP-2 or BMP-2 signal inhibitors reversed NGF induced phosphorylation and nuclear translocation of Smad1/5/8, as well as the expression of Runx2, type I collagen, osteocalcin and osteopontin. In addition, si-BMP-2 abrogated NGF-induced ALP activity. CONCLUSION NGF induced osteogenic differentiation of MC3T3-E1 cells through BMP-2/Smads pathway and induction of Runx2. Our study would provide a theoretical basis for clinical treatment of fractures using NGF.
Collapse
Affiliation(s)
- Xuming Yang
- Orthopedics Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650035, Yunnan Province, China.
| | - Donggang Mou
- Orthopedics Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650035, Yunnan Province, China
| | - Qunying Yu
- Maternity Department, The Second Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Jimei Zhang
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650065, Yunnan Province, China
| | - Ying Xiong
- Orthopedics Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650035, Yunnan Province, China
| | - Zhimin Zhang
- Orthopedics Department, Yanshan County Hospital of Traditional Chinese Medicine, Wenshan Zhuang and Miao Autonomous Prefecture 663100, Yunnan Province, China
| | - Shan Xing
- Orthopedics Department, The Second People's Hospital of Yanshan County, Wenshan Zhuang and Miao Autonomous Prefecture 663101, Yunnan Province, China
| |
Collapse
|
66
|
Chamani S, Liberale L, Mobasheri L, Montecucco F, Al-Rasadi K, Jamialahmadi T, Sahebkar A. The role of statins in the differentiation and function of bone cells. Eur J Clin Invest 2021; 51:e13534. [PMID: 33656763 DOI: 10.1111/eci.13534] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/09/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Statins are 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors blocking cholesterol biosynthesis in hepatic cells, thereby causing an increase in low-density lipoprotein (LDL) receptors resulting in enhanced uptake and clearance of atherogenic LDL-cholesterol (LDL-C) from the blood. Accordingly, statins decrease the risk of developing atherosclerosis and its acute complications, such as acute myocardial infarction and ischaemic stroke. Besides the LDL-C-lowering impact, statins also have other so-called pleiotropic effects. Among them, the ability to modulate differentiation and function of bone cells and exert direct effects on osteosynthesis factors. Specifically, earlier studies have shown that statins cause in vitro and in vivo osteogenic differentiation. DESIGN The most relevant papers on the bone-related 'pleiotropic' effects of statins were selected following literature search in databases and were reveiwed. RESULTS Statins increase the expression of many mediators involved in bone metabolism including bone morphogenetic protein-2 (BMP-2), glucocorticoids, transforming growth factor-beta (TGF-β), alkaline phosphatase (ALP), type I collagen and collagenase-1. As a result, they enhance bone formation and improve bone mineral density by modulating osteoblast and osteoclast differentiation. CONCLUSION This review summarizes the literature exploring bone-related 'pleiotropic' effects of statins and suggests an anabolic role in the bone tissue for this drug class. Accordingly, current knowledge encourages further clinical trials to assess the therapeutic potential of statins in the treatment of bone disorders, such as arthritis and osteoporosis.
Collapse
Affiliation(s)
- Sajad Chamani
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Luca Liberale
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Leila Mobasheri
- Department of Pharmacology, Faculty of medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | | | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
67
|
Biological Mechanisms of Paeonoside in the Differentiation of Pre-Osteoblasts and the Formation of Mineralized Nodules. Int J Mol Sci 2021; 22:ijms22136899. [PMID: 34199016 PMCID: PMC8268717 DOI: 10.3390/ijms22136899] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/23/2022] Open
Abstract
Paeonia suffruticosa is a magnificent and long-lived woody plant that has traditionally been used to treat various diseases including inflammatory, neurological, cancer, and cardiovascular diseases. In the present study, we demonstrated the biological mechanisms of paeonoside (PASI) isolated from the dried roots of P. suffruticosa in pre-osteoblasts. Herein, we found that PASI has no cytotoxic effects on pre-osteoblasts. Migration assay showed that PASI promoted wound healing and transmigration in osteoblast differentiation. PASI increased early osteoblast differentiation and mineralized nodule formation. In addition, PASI enhanced the expression of Wnt3a and bone morphogenetic protein 2 (BMP2) and activated their downstream molecules, Smad1/5/8 and β-catenin, leading to increases in runt-related transcription factor 2 (RUNX2) expression during osteoblast differentiation. Furthermore, PASI-mediated osteoblast differentiation was attenuated by inhibiting the BMP2 and Wnt3a pathways, which was accompanied by reduction in the expression of RUNX2 in the nucleus. Taken together, our findings provide evidence that PASI enhances osteoblast differentiation and mineralized nodules by regulating RUNX2 expression through the BMP2 and Wnt3a pathways, suggesting a potential role for PASI targeting osteoblasts to treat bone diseases including osteoporosis and periodontitis.
Collapse
|
68
|
Zhang J, Cohen A, Shen B, Du L, Tasdogan A, Zhao Z, Shane EJ, Morrison SJ. The effect of parathyroid hormone on osteogenesis is mediated partly by osteolectin. Proc Natl Acad Sci U S A 2021; 118:e2026176118. [PMID: 34140410 PMCID: PMC8237660 DOI: 10.1073/pnas.2026176118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We previously described a new osteogenic growth factor, osteolectin/Clec11a, which is required for the maintenance of skeletal bone mass during adulthood. Osteolectin binds to Integrin α11 (Itga11), promoting Wnt pathway activation and osteogenic differentiation by leptin receptor+ (LepR+) stromal cells in the bone marrow. Parathyroid hormone (PTH) and sclerostin inhibitor (SOSTi) are bone anabolic agents that are administered to patients with osteoporosis. Here we tested whether osteolectin mediates the effects of PTH or SOSTi on bone formation. We discovered that PTH promoted Osteolectin expression by bone marrow stromal cells within hours of administration and that PTH treatment increased serum osteolectin levels in mice and humans. Osteolectin deficiency in mice attenuated Wnt pathway activation by PTH in bone marrow stromal cells and reduced the osteogenic response to PTH in vitro and in vivo. In contrast, SOSTi did not affect serum osteolectin levels and osteolectin was not required for SOSTi-induced bone formation. Combined administration of osteolectin and PTH, but not osteolectin and SOSTi, additively increased bone volume. PTH thus promotes osteolectin expression and osteolectin mediates part of the effect of PTH on bone formation.
Collapse
Affiliation(s)
- Jingzhu Zhang
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Adi Cohen
- Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032
| | - Bo Shen
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Liming Du
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Alpaslan Tasdogan
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Zhiyu Zhao
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Elizabeth J Shane
- Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032
| | - Sean J Morrison
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235;
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX 75235
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75235
| |
Collapse
|
69
|
Grotheer V, Skrynecki N, Oezel L, Windolf J, Grassmann J. Osteogenic differentiation of human mesenchymal stromal cells and fibroblasts differs depending on tissue origin and replicative senescence. Sci Rep 2021; 11:11968. [PMID: 34099837 PMCID: PMC8184777 DOI: 10.1038/s41598-021-91501-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
The need for an autologous cell source for bone tissue engineering and medical applications has led researchers to explore multipotent mesenchymal stromal cells (MSC), which show stem cell plasticity, in various human tissues. However, MSC with different tissue origins vary in their biological properties and their capability for osteogenic differentiation. Furthermore, MSC-based therapies require large-scale ex vivo expansion, accompanied by cell type-specific replicative senescence, which affects osteogenic differentiation. To elucidate cell type-specific differences in the osteogenic differentiation potential and replicative senescence, we analysed the impact of BMP and TGF-β signaling in adipose-derived stromal cells (ASC), fibroblasts (FB), and dental pulp stromal cells (DSC). We used inhibitors of BMP and TGF-β signaling, such as SB431542, dorsomorphin and/or a supplemental addition of BMP-2. The expression of high-affinity binding receptors for BMP-2 and calcium deposition with alizarin red S were evaluated to assess osteogenic differentiation potential. Our study demonstrated that TGF-β signaling inhibits osteogenic differentiation of ASC, DSC and FB in the early cell culture passages. Moreover, DSC had the best osteogenic differentiation potential and an activation of BMP signaling with BMP-2 could further enhance this capacity. This phenomenon is likely due to an increased expression of activin receptor-like kinase-3 and -6. However, in DSC with replicative senescence (in cell culture passage 10), osteogenic differentiation sharply decreased, and the simultaneous use of BMP-2 and SB431542 did not result in further improvement of this process. In comparison, ASC retain a similar osteogenic differentiation potential regardless of whether they were in the early (cell culture passage 3) or later (cell culture passage 10) stages. Our study elucidated that ASC, DSC, and FB vary functionally in their osteogenic differentiation, depending on their tissue origin and replicative senescence. Therefore, our study provides important insights for cell-based therapies to optimize prospective bone tissue engineering strategies.
Collapse
Affiliation(s)
- Vera Grotheer
- Clinic for Orthopedics and Trauma Surgery, Medical Faculty of the Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - Nadine Skrynecki
- Clinic for Orthopedics and Trauma Surgery, Medical Faculty of the Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Lisa Oezel
- Clinic for Orthopedics and Trauma Surgery, Medical Faculty of the Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Joachim Windolf
- Clinic for Orthopedics and Trauma Surgery, Medical Faculty of the Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Jan Grassmann
- Clinic for Orthopedics and Trauma Surgery, Medical Faculty of the Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| |
Collapse
|
70
|
Song D, He G, Shi Y, Ni J, Long F. Functional interaction between Wnt and Bmp signaling in periosteal bone growth. Sci Rep 2021; 11:10782. [PMID: 34031510 PMCID: PMC8144582 DOI: 10.1038/s41598-021-90324-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/04/2021] [Indexed: 02/05/2023] Open
Abstract
Wnt and Bmp proteins are well known to regulate bone development and homeostasis. Although both signals are extensively studied, their potential interaction in vivo is less well understood. Previous studies have shown that deletion of Bmpr1a, a type I receptor for Bmp signaling, results in excessive trabecular bone formation while diminishing periosteal bone growth. Moreover, forced-expression of the Wnt antagonist Sost suppresses the overgrowth of trabecular bone caused by Bmpr1a deletion, thus implicating hyperactive Wnt signaling in the excessive trabecular bone formation. However, it remains uncertain whether Wnt and Bmp signaling interacts in regulating the periosteal bone growth. Here we show that multiple Wnt genes are markedly suppressed in the cortical bone without Bmpr1a. Importantly, overexpression of Wnt7b fully rescues periosteal bone growth in the Bmpr1a-deficient mice. Thus, pharmacological activation of Wnt signaling can restore normal bone size without intact Bmp signaling.
Collapse
Affiliation(s)
- Deye Song
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Guangxu He
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Yu Shi
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, USA.,State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiangdong Ni
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Fanxin Long
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, USA. .,Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
71
|
Distinct Concentration-Dependent Molecular Pathways Regulate Bone Cell Responses to Cobalt and Chromium Exposure from Joint Replacement Prostheses. Int J Mol Sci 2021; 22:ijms22105225. [PMID: 34069294 PMCID: PMC8156984 DOI: 10.3390/ijms22105225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/27/2022] Open
Abstract
Systemic cobalt (Co) and chromium (Cr) concentrations may be elevated in patients with metal joint replacement prostheses. Several studies have highlighted the detrimental effects of this exposure on bone cells in vitro, but the underlying mechanisms remain unclear. In this study, we use whole-genome microarrays to comprehensively assess gene expression in primary human osteoblasts, osteoclast precursors and mature resorbing osteoclasts following exposure to clinically relevant circulating versus local periprosthetic tissue concentrations of Co2+ and Cr3+ ions and CoCr nanoparticles. We also describe the gene expression response in osteoblasts on routinely used prosthesis surfaces in the presence of metal exposure. Our results suggest that systemic levels of metal exposure have no effect on osteoblasts, and primarily inhibit osteoclast differentiation and function via altering the focal adhesion and extracellular matrix interaction pathways. In contrast, periprosthetic levels of metal exposure inhibit both osteoblast and osteoclast activity by altering HIF-1α signaling and endocytic/cytoskeletal genes respectively, as well as increasing inflammatory signaling with mechanistic implications for adverse reactions to metal debris. Furthermore, we identify gene clusters and KEGG pathways for which the expression correlates with increasing Co2+:Cr3+ concentrations, and has the potential to serve as early markers of metal toxicity. Finally, our study provides a molecular basis for the improved clinical outcomes for hydroxyapatite-coated prostheses that elicit a pro-survival osteogenic gene signature compared to grit-blasted and plasma-sprayed titanium-coated surfaces in the presence of metal exposure.
Collapse
|
72
|
Xie D, Xu C, Ye C, Mei S, Wang L, Zhu Q, Chen Q, Zhao Q, Xu Z, Wei J, Yang L. Fabrication of Submicro-Nano Structures on Polyetheretherketone Surface by Femtosecond Laser for Exciting Cellular Responses of MC3T3-E1 Cells/Gingival Epithelial Cells. Int J Nanomedicine 2021; 16:3201-3216. [PMID: 34007174 PMCID: PMC8121686 DOI: 10.2147/ijn.s303411] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/12/2021] [Indexed: 01/24/2023] Open
Abstract
Purpose Polyetheretherketone (PEEK) exhibits high mechanical strengths and outstanding biocompatibility but biological inertness that does not excite the cell responses and stimulate bone formation. The objective of this study was to construct submicro-nano structures on PEEK by femtosecond laser (FSL) for exciting the responses of MC3T3-E1 cells and gingival epithelial (GE) cells, which induce regeneration of bone/gingival tissues for long-term stability of dental implants. Materials and Methods In this study, submicro-nano structures were created on PEEK surface by FSL with power of 80 mW (80FPK) and 160 mW (160FPK). Results Compared with PEEK, both 80FPK and 160FPK with submicro-nano structures exhibited elevated surface performances (hydrophilicity, surface energy, roughness and protein absorption). Furthermore, in comparison with 80FPK, 160FPK further enhanced the surface performances. In addition, compared with PEEK, both 80FPK and 160FPK significantly excited not only the responses (adhesion, proliferation, alkaline phosphatase [ALP] activity and osteogenic gene expression) of MC3T3-E1 cells but also responses (adhesion as well as proliferation) of GE cells of human in vitro. Moreover, in comparison with 80FPK, 160FPK further enhanced the responses of MC3T3-E1 cells/GE cells. Conclusion FSL created submicro-nano structures on PEEK with elevated surface performances, which played crucial roles in exciting the responses of MC3T3-E1 cells/GE cells. Consequently, 160FPK with elevated surface performances and outstanding cytocompatibility would have enormous potential as an implant for dental replacement.
Collapse
Affiliation(s)
- Dong Xie
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China.,Department of Orthopaedics, PLA Navy No.905 Hospital, Shanghai, 200052, People's Republic of China
| | - Chenhui Xu
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Cheng Ye
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Shiqi Mei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Longqing Wang
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Qi Zhu
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Qing Chen
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Qi Zhao
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Zhiyan Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Lili Yang
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| |
Collapse
|
73
|
Miyamoto S, Yoshikawa H, Nakata K. Axial mechanical loading to ex vivo mouse long bone regulates endochondral ossification and endosteal mineralization through activation of the BMP-Smad pathway during postnatal growth. Bone Rep 2021; 15:101088. [PMID: 34141832 PMCID: PMC8188257 DOI: 10.1016/j.bonr.2021.101088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/19/2021] [Accepted: 05/01/2021] [Indexed: 01/12/2023] Open
Abstract
Mechanical loading contributes to bone development, growth, and metabolism. However, the mechanisms underlying long bone mineralization via changes in loading during the growth period are unclear. The aim of the present study was to investigate the regulatory mechanisms underlying endochondral ossification and endosteal mineralization by developing an ex vivo organ culture model with cyclic axial mechanical loads. The metacarpal bones of 3-week-old C57BL/6 mice were exposed to mechanical loading (0, 7.8, and 78 mN) for 1 h/day for 4 days. Histomorphometry revealed that axial mechanical loading regulated the thickness of the calcified zone in the growth plate and endosteal mineralization in the diaphysis in a load-dependent manner. Mechanical loading also resulted in load-dependent upregulation of endochondral ossification and bone mineralization-related genes, including bone morphogenetic protein 2 (Bmp2). Recombinant human BMP-2 administration caused similar changes in tissue structures. Conversely, inhibition of the BMP-Smad pathway diminished the stimulatory effects of mechanical loading and BMP-2 administration, suggesting that the effects of mechanical loading may be exerted through activation of the BMP-Smad pathway with the results of gene ontology and pathway analyses. Mechanical loading increased alkaline phosphatase activity and decreased carbonic anhydrase IX (Car9) mRNA expression, resulting in a significant pH increase in the culture supernatant. We hypothesize that, through activation of the BMP-Smad pathway, mechanical loading downregulates Car9, which may alkalize the local milieu, thereby inducing bone formation and long bone mineralization. Our results showed that cyclic axial mechanical loading increased endochondral ossification and endosteal mineralization in developing mouse long bones, which may have resulted from changes in the pH, ALP activity, and Pi/PPi of the extracellular environment. These findings advance our understanding of the regulation of mineralization mechanisms by mechanical loading mediated through activation of the BMP-Smad pathway.
Collapse
Affiliation(s)
- Satoshi Miyamoto
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Ken Nakata
- Medicine for Sports and Performing Arts, Department of Health and Sport Sciences, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| |
Collapse
|
74
|
GSK3β rephosphorylation rescues ALPL deficiency-induced impairment of odontoblastic differentiation of DPSCs. Stem Cell Res Ther 2021; 12:225. [PMID: 33823913 PMCID: PMC8022410 DOI: 10.1186/s13287-021-02235-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/21/2021] [Indexed: 11/23/2022] Open
Abstract
Background Premature exfoliation of the deciduous teeth is a common manifestation in childhood patients with hypophosphatasia (HPP), which is an autosomal inherited disease caused by ALPL mutations. Dysplasia of the cementum, dentin, and alveolar bone has been proposed to be the main reasons for the exfoliation of teeth, while the extraordinarily complex intracellular mechanisms remain elusive. Dental pulp stem cells (DPSCs) have been demonstrated to successfully regenerate functional pulp-dentin-like tissue. Dental pulp cells derived from HPP patients impaired mineralization; however, insight into the deeper mechanism is still unclear. Methods The effects of ALPL on odontoblastic differentiation of DPSCs from HPP patient were assessed by Alizarin Red staining, immunofluorescent staining, Western blot and RT-PCR, and micro-CT assays. Result Here, we found DPSCs from HPP patient exhibited low ALP activity and impaired odontoblastic differentiation. Meanwhile, we found that loss of function of ALPL reduced phosphorylation of GSK3β in DPSCs. While GSK3β rephosphorylation improved odontoblastic differentiation of HPP DPSCs with LiCl treatment. Finally, we demonstrated systemic LiCl injection ameliorated tooth-associated defects in ALPL+/− mice by enhanced phosphorylation of GSK3β in the teeth. Conclusions Our study indicates that ALPL regulates odontoblastic differentiation of DPSCs and provides useful information for understanding how ALPL deficiency led to tooth dysplasia and, ultimately, may inform efforts at improvement tooth defects in HPP patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02235-7.
Collapse
|
75
|
Su YW, Wong DSK, Fan J, Chung R, Wang L, Chen Y, Xian CH, Yao L, Wang L, Foster BK, Xu J, Xian CJ. Enhanced BMP signalling causes growth plate cartilage dysrepair in rats. Bone 2021; 145:115874. [PMID: 33548573 DOI: 10.1016/j.bone.2021.115874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/25/2020] [Accepted: 01/29/2021] [Indexed: 11/30/2022]
Abstract
Growth plate cartilage injuries often result in bony repair at the injury site and premature mineralisation at the uninjured region causing bone growth defects, for which underlying mechanisms are unclear. With the prior microarray study showing upregulated bone morphogenetic protein (BMP) signalling during the injury site bony repair and with the known roles of BMP signalling in bone healing and growth plate endochondral ossification, this study used a rat tibial growth plate drill-hole injury model with or without systemic infusion of BMP antagonist noggin to investigate roles of BMP signalling in injury repair responses within the injury site and in the adjacent "uninjured" cartilage. At days 8, 14 and 35 post-injury, increased expression of BMP members and receptors and enhanced BMP signalling (increased levels of phosphorylated (p)-Smad1/5/8) were found during injury site bony repair. After noggin treatment, injury site bony repair at days 8 and 14 was reduced as shown by micro-CT and histological analyses and lower mRNA expression of osteogenesis-related genes Runx2 and osteocalcin (by RT-PCR). At the adjacent uninjured cartilage, the injury caused increases in the hypertrophic zone/proliferative zone height ratio and in mRNA expression of hypertrophy marker collagen-10, but a decrease in chondrogenesis marker Sox9 at days 14 and/or 35, which were accompanied by increased BMP signalling (increased levels of pSmad1/5/8 protein and BMP7, BMPR1a and target gene Dlx5 mRNA). Noggin treatment reduced the hypertrophic zone/proliferative zone height ratio and collagen-10 mRNA expression, but increased collagen-2 mRNA levels at the adjacent growth plate. This study has identified critical roles of BMP signalling in the injury site bony repair and in the hypertrophic degeneration of the adjacent growth plate in a growth plate drill-hole repair model. Moreover, suppressing BMP signalling can potentially attenuate the undesirable bony repair at injury site and suppress the premature hypertrophy but potentially rescue chondrogenesis at the adjacent growth plate.
Collapse
Affiliation(s)
- Yu-Wen Su
- University of South Australia, UniSA Clinical and Health Sciences, Adelaide, SA 5001, Australia
| | - Derick S K Wong
- University of South Australia, UniSA Clinical and Health Sciences, Adelaide, SA 5001, Australia
| | - Jian Fan
- Department of Orthopedics, Tongji Hospital, Tongji University, Shanghai 200065, China
| | - Rosa Chung
- University of South Australia, UniSA Clinical and Health Sciences, Adelaide, SA 5001, Australia
| | - Liping Wang
- University of South Australia, UniSA Clinical and Health Sciences, Adelaide, SA 5001, Australia; Ningbo No. 6 Hospital, Ningbo University, Ningbo 315040, China
| | - Yuhui Chen
- Department of Orthopedics, Orthopaedic Hospital of Guangdong Province, the Third Affiliated Hospital of Southern Medical University, Academy of Orthopaedics of Guangdong Province, Guangzhou 510630, Guangdong, China
| | - Claire H Xian
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Lufeng Yao
- Ningbo No. 6 Hospital, Ningbo University, Ningbo 315040, China
| | - Liang Wang
- Department of Orthopedics, Orthopaedic Hospital of Guangdong Province, the Third Affiliated Hospital of Southern Medical University, Academy of Orthopaedics of Guangdong Province, Guangzhou 510630, Guangdong, China
| | - Bruce K Foster
- Department of Orthopaedic Surgery, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA 6009, Australia
| | - Cory J Xian
- University of South Australia, UniSA Clinical and Health Sciences, Adelaide, SA 5001, Australia; Department of Orthopedics, Tongji Hospital, Tongji University, Shanghai 200065, China; Ningbo No. 6 Hospital, Ningbo University, Ningbo 315040, China.
| |
Collapse
|
76
|
Da Silva D, Crous A, Abrahamse H. Photobiomodulation: An Effective Approach to Enhance Proliferation and Differentiation of Adipose-Derived Stem Cells into Osteoblasts. Stem Cells Int 2021; 2021:8843179. [PMID: 33833810 PMCID: PMC8012132 DOI: 10.1155/2021/8843179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 01/07/2023] Open
Abstract
Osteoporosis is regarded as the most common chronic metabolic bone condition in humans. In osteoporosis, bone mesenchymal stem cells (MSCs) have reduced cellular function. Regenerative medicine using adipose-derived stem cell (ADSC) transplantation can promote the growth and strength of new bones, improve bone stability, and reduce the risk of fractures. Various methods have been attempted to differentiate ADSCs to functioning specialized cells for prospective clinical application. However, commonly used therapies have resulted in damage to the donor site and morbidity, immune reactions, carcinogenic generation, and postoperative difficulties. Photobiomodulation (PBM) improves ADSC differentiation and proliferation along with reducing clinical difficulties such as treatment failures to common drug therapies and late initiation of treatment. PBM is a noninvasive, nonthermal treatment that encourages cells to produce more energy and to undergo self-repair by using visible green and red and invisible near-infrared (NIR) radiation. The use of PBM for ADSC proliferation and differentiation has been widely studied with multiple outcomes observed due to laser fluence and wavelength dependence. In this article, the potential for differentiating ADSCs into osteoblasts and the various methods used, including biological induction, chemical induction, and PBM, will be addressed. Likewise, the optimal laser parameters that could improve the proliferation and differentiation of ADSC, translating into clinical success, will be commented on.
Collapse
Affiliation(s)
- Daniella Da Silva
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, South Africa 2028
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, South Africa 2028
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, South Africa 2028
| |
Collapse
|
77
|
Lin Y, Yang Y, Zhao Y, Gao F, Guo X, Yang M, Hong Q, Yang Z, Dai J, Pan C. Incorporation of heparin/BMP2 complex on GOCS-modified magnesium alloy to synergistically improve corrosion resistance, anticoagulation, and osteogenesis. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:24. [PMID: 33675428 PMCID: PMC7936966 DOI: 10.1007/s10856-021-06497-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The in vivo fast degradation and poor biocompatibility are two major challenges of the magnesium alloys in the field of artificial bone materials. In this study, graphene oxide (GO) was first functionalized by chitosan (GOCS) and then immobilized on the magnesium alloy surface, finally the complex of heparin and bone morphogenetic protein 2 was incorporated on the modified surface to synergistically improve the corrosion resistance, anticoagulation, and osteogenesis. Apart from an excellent hydrophilicity after the surface modification, a sustained heparin and BMP2 release over 14 days was achieved. The corrosion resistance of the modified magnesium alloy was significantly better than that of the control according to the results of electrochemical tests. Moreover, the corrosion rate was also significantly reduced in contrast to the control. The modified magnesium alloy not only had excellent anticoagulation, but also can significantly promote osteoblast adhesion and proliferation, upregulate the expression of alkaline phosphatase and osteocalcin, and enhance mineralization. Therefore, the method of the present study can be used to simultaneously improve the corrosion resistance and biocompatibility of the magnesium alloys targeted for the orthopedic applications.
Collapse
Affiliation(s)
- Yuebin Lin
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Ya Yang
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223003, China
| | - Yongjuan Zhao
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223003, China
| | - Fan Gao
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Xin Guo
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Minhui Yang
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Qingxiang Hong
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Zhongmei Yang
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Juan Dai
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Changjiang Pan
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
78
|
Li B, Zhang L, Wang D, Peng F, Zhao X, Liang C, Li H, Wang H. Thermosensitive -hydrogel-coated titania nanotubes with controlled drug release and immunoregulatory characteristics for orthopedic applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111878. [DOI: 10.1016/j.msec.2021.111878] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
|
79
|
Wu Y, Wharton J, Walters R, Vasilaki E, Aman J, Zhao L, Wilkins MR, Rhodes CJ. The pathophysiological role of novel pulmonary arterial hypertension gene SOX17. Eur Respir J 2021; 58:13993003.04172-2020. [PMID: 33632800 DOI: 10.1183/13993003.04172-2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/08/2021] [Indexed: 11/05/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease predominantly targeting pre-capillary blood vessels. Adverse structural remodelling and increased pulmonary vascular resistance result in cardiac hypertrophy and ultimately failure of the right ventricle. Recent whole-genome and whole-exome sequencing studies have identified SOX17 as a novel risk gene in PAH, with a dominant mode of inheritance and incomplete penetrance. Rare deleterious variants in the gene and more common variants in upstream enhancer sites have both been associated with the disease, and a deficiency of SOX17 expression may predispose to PAH. This review aims to consolidate the evidence linking genetic variants in SOX17 to PAH, and explores the numerous targets and effects of the transcription factor, focusing on the pulmonary vasculature and the pathobiology of PAH.
Collapse
Affiliation(s)
- Yukyee Wu
- National Heart and Lung Institute, Imperial College London, London, UK
| | - John Wharton
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rachel Walters
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Eleni Vasilaki
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jurjan Aman
- National Heart and Lung Institute, Imperial College London, London, UK.,VUmc, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Lan Zhao
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Martin R Wilkins
- National Heart and Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
80
|
Inoue S, Hatakeyama J, Aoki H, Kuroki H, Niikura T, Oe K, Fukui T, Kuroda R, Akisue T, Moriyama H. Effects of ultrasound, radial extracorporeal shock waves, and electrical stimulation on rat bone defect healing. Ann N Y Acad Sci 2021; 1497:3-14. [PMID: 33619772 DOI: 10.1111/nyas.14581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 11/27/2022]
Abstract
Fractures associated with osteoporosis are a major public health concern. Current treatments for fractures are limited to surgery or fixation, leading to long-term bedrest, which is linked to increased mortality. Alternatively, utilization of physical agents has been suggested as a promising therapeutic approach for fractures. Here, we examined the effects of ultrasound, radial extracorporeal shock waves, and electrical stimulation on normal or osteoporotic fracture healing. Femoral bone defects were created in normal or ovariectomized rats. Rats were divided into four groups: untreated, and treated with ultrasound, shock waves, or electrical stimulation after surgery. Samples were collected at 2 or 4 weeks after surgery, and the healing process was evaluated with micro-CT, histological, and immunohistochemical analyses. Ultrasound at intensities of 0.5 and 1.0 W/cm2 , but not 0.05 W/cm2 , accelerated new bone formation. Shock wave exposure also increased newly formed bone, but formed abnormal periosteal callus around the defect site. Conversely, electrical stimulation did not affect the healing process. Ultrasound exposure increased osteoblast activity and cell proliferation and decreased sclerostin-positive osteocytes. We demonstrated that higher-intensity ultrasound and radial extracorporeal shock waves accelerate fracture healing, but shock wave treatment may increase the risk of periosteal callus formation.
Collapse
Affiliation(s)
- Shota Inoue
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Junpei Hatakeyama
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Hitoshi Aoki
- OG Wellness Technologies Co., Ltd., Okayama, Japan
| | - Hiroshi Kuroki
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Niikura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keisuke Oe
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoaki Fukui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshihiro Akisue
- Life and Medical Sciences Area, Health Sciences Discipline, Kobe University, Kobe, Japan
| | - Hideki Moriyama
- Life and Medical Sciences Area, Health Sciences Discipline, Kobe University, Kobe, Japan
| |
Collapse
|
81
|
Yu S, Guo J, Sun Z, Lin C, Tao H, Zhang Q, Cui Y, Zuo H, Lin Y, Chen S, Liu H, Chen Z. BMP2-dependent gene regulatory network analysis reveals Klf4 as a novel transcription factor of osteoblast differentiation. Cell Death Dis 2021; 12:197. [PMID: 33608506 PMCID: PMC7895980 DOI: 10.1038/s41419-021-03480-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
Transcription factors (TFs) regulate the expression of target genes, inducing changes in cell morphology or activities needed for cell fate determination and differentiation. The BMP signaling pathway is widely regarded as one of the most important pathways in vertebrate skeletal biology, of which BMP2 is a potent inducer, governing the osteoblast differentiation of bone marrow stromal cells (BMSCs). However, the mechanism by which BMP2 initiates its downstream transcription factor cascade and determines the direction of differentiation remains largely unknown. In this study, we used RNA-seq, ATAC-seq, and animal models to characterize the BMP2-dependent gene regulatory network governing osteoblast lineage commitment. Sp7-Cre; Bmp2fx/fx mice (BMP2-cKO) were generated and exhibited decreased bone density and lower osteoblast number (n > 6). In vitro experiments showed that BMP2-cKO mouse bone marrow stromal cells (mBMSCs) had an impact on osteoblast differentiation and deficient cell proliferation. Osteogenic medium induced mBMSCs from BMP2-cKO mice and control were subjected to RNA-seq and ATAC-seq analysis to reveal differentially expressed TFs, along with their target open chromatin regions. Combined with H3K27Ac CUT&Tag during osteoblast differentiation, we identified 2338 BMP2-dependent osteoblast-specific active enhancers. Motif enrichment assay revealed that over 80% of these elements were directly targeted by RUNX2, DLX5, MEF2C, OASIS, and KLF4. We deactivated Klf4 in the Sp7 + lineage to validate the role of KLF4 in osteoblast differentiation of mBMSCs. Compared to the wild-type, Sp7-Cre; Klf4fx/+ mice (KLF4-Het) were smaller in size and had abnormal incisors resembling BMP2-cKO mice. Additionally, KLF4-Het mice had fewer osteoblasts and decreased osteogenic ability. RNA-seq and ATAC-seq revealed that KLF4 mainly "co-bound" with RUNX2 to regulate downstream genes. Given the significant overlap between KLF4- and BMP2-dependent NFRs and enriched motifs, our findings outline a comprehensive BMP2-dependent gene regulatory network specifically governing osteoblast differentiation of the Sp7 + lineage, in which Klf4 is a novel transcription factor.
Collapse
Affiliation(s)
- Shuaitong Yu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jinqiang Guo
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zheyi Sun
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chujiao Lin
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huangheng Tao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qian Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yu Cui
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huanyan Zuo
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuxiu Lin
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuo Chen
- Department of Developmental Dentistry, University of Texas Health Science Center, San Antonio, TX, USA
| | - Huan Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhi Chen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
82
|
Assessment of plasma BMP-2, BMP-7, BMP-10, vitamin D, and TGF β1 in simple fractures among Sudanese patients. PLoS One 2021; 16:e0247472. [PMID: 33606840 PMCID: PMC7895376 DOI: 10.1371/journal.pone.0247472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/09/2021] [Indexed: 12/16/2022] Open
Abstract
Background Bone morphogenetic proteins (BMP) are multifunctional proteins. They work as cytokines regulating osteogenesis during fracture healing process. The objectives of this study were to assess changes in BMPs during fracture and their correlations to Fracture’s healing. Methods Case-Control hospital–based study conducted from January 2018 to January 2019. Demographic data, anthropometric measurements, and blood samples were collected from patients and controls (18–65 years old). Plasma concentrations of selected BMPs and vitamin D were measured using quantitative enzyme linked immunosorbent assay (ELISA). SPSS version 25 was used to calculate frequencies, Pearson correlation tests, chi-square and unpaired t-test. Results Sixty-five patients with fractures and Sixty-five controls were studied. Means of plasma concentrations were (TGFβ1 = 21.07 ng/ml ±8.49 and 19.8 ng/ml ±7.2) (BMP-2 = 76.3 pg/ml ± 156.6 and 55.5 ng/ml ± 127.9) (BMP-7 = 13.02 pg/ml ±43.5 and 64.6pg/ml ±250) (BMP-10 = 8.14 pg/ml ±12.7 and 5.48 pg/ml ±11.3) (Vitamin D mean was 24.94 ng/ml ±13.2 and 26.2 ng/ml ±11.6) in patients and controls, respectively. Forty-five subjects were enrolled into follow up study: 30 males, 15 females. Healing time mean was 4.13± 2.6 months. No significant correlation between BMP-2/BMP-7 with healing time. Conclusions BMP-7 was significantly lowers in the plasma of patients that controls (P = 0.042). Low Vitamin D was observed among Sudanese participants.
Collapse
|
83
|
Terauchi M, Tamura A, Arisaka Y, Masuda H, Yoda T, Yui N. Cyclodextrin-Based Supramolecular Complexes of Osteoinductive Agents for Dental Tissue Regeneration. Pharmaceutics 2021; 13:136. [PMID: 33494320 PMCID: PMC7911178 DOI: 10.3390/pharmaceutics13020136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Oral tissue regeneration has received growing attention for improving the quality of life of patients. Regeneration of oral tissues such as alveolar bone and widely defected bone has been extensively investigated, including regenerative treatment of oral tissues using therapeutic cells and growth factors. Additionally, small-molecule drugs that promote bone formation have been identified and tested as new regenerative treatment. However, treatments need to progress to realize successful regeneration of oral functions. In this review, we describe recent progress in development of regenerative treatment of oral tissues. In particular, we focus on cyclodextrin (CD)-based pharmaceutics and polyelectrolyte complexation of growth factors to enhance their solubility, stability, and bioactivity. CDs can encapsulate hydrophobic small-molecule drugs into their cavities, resulting in inclusion complexes. The inclusion complexation of osteoinductive small-molecule drugs improves solubility of the drugs in aqueous solutions and increases in vitro osteogenic differentiation efficiency. Additionally, various anionic polymers such as heparin and its mimetic polymers have been developed to improve stability and bioactivity of growth factors. These polymers protect growth factors from deactivation and degradation by complex formation through electrostatic interaction, leading to potentiation of bone formation ability. These approaches using an inclusion complex and polyelectrolyte complexes have great potential in the regeneration of oral tissues.
Collapse
Affiliation(s)
- Masahiko Terauchi
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan; (M.T.); (H.M.); (T.Y.)
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; (Y.A.); (N.Y.)
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; (Y.A.); (N.Y.)
| | - Hiroki Masuda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan; (M.T.); (H.M.); (T.Y.)
| | - Tetsuya Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan; (M.T.); (H.M.); (T.Y.)
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; (Y.A.); (N.Y.)
| |
Collapse
|
84
|
Masuda H, Arisaka Y, Hakariya M, Iwata T, Yoda T, Yui N. Synergy of molecularly mobile polyrotaxane surfaces with endothelial cell co-culture for mesenchymal stem cell mineralization. RSC Adv 2021; 11:18685-18692. [PMID: 35480955 PMCID: PMC9033494 DOI: 10.1039/d1ra01296g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/16/2021] [Indexed: 11/26/2022] Open
Abstract
Stem cell-based bone tissue engineering is a promising strategy for the treatment of bone defects. Since regeneration of bone tissue takes a long time, promoting osteogenesis of stem cells is desired for earlier recovery from dysfunctions caused by bone defects. Here, we combined endothelial cell co-culture using the molecularly mobile sulfonated polyrotaxane (PRX) surfaces to enhance the mineralization of human bone marrow derived mesenchymal stem cells (HBMSCs). Sulfonated PRXs are composed of sulfopropyl ether-modified α-cyclodextrins (α-CDs) threaded on a polyethylene glycol chain. The molecular mobility of PRX, α-CDs moving along the polymer, can be modulated by the number of α-CDs. When osteoblastic differentiation was induced in HBMSCs and human umbilical vein endothelial cells (HUVECs), co-culture groups on sulfonated PRX surfaces with low molecular mobility showed the highest mineralization, which is about two times as high as co-culture groups on sulfonated PRX surfaces with high molecular mobility. Nuclear accumulation of yes-associated proteins in HBMSCs and cell–cell communication via cytokines or cadherin may play an important role in synergistically induced mineralization of HBMSCs. Molecular mobility of polyrotaxane surfaces promoted mineralization in a co-culture system of mesenchymal stem cells and endothelial cells.![]()
Collapse
Affiliation(s)
- Hiroki Masuda
- Department of Maxillofacial Surgery
- Graduate School of Medical and Dental Sciences
- Tokyo Medical and Dental University (TMDU)
- Bunkyo
- Japan
| | - Yoshinori Arisaka
- Department of Organic Biomaterials
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Chiyoda
- Japan
| | - Masahiro Hakariya
- Department of Periodontology
- Graduate School of Medical and Dental Sciences
- Tokyo Medical and Dental University (TMDU)
- Bunkyo
- Japan
| | - Takanori Iwata
- Department of Periodontology
- Graduate School of Medical and Dental Sciences
- Tokyo Medical and Dental University (TMDU)
- Bunkyo
- Japan
| | - Tetsuya Yoda
- Department of Maxillofacial Surgery
- Graduate School of Medical and Dental Sciences
- Tokyo Medical and Dental University (TMDU)
- Bunkyo
- Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Chiyoda
- Japan
| |
Collapse
|
85
|
Li Z, Wang Y, Li S, Li Y. Exosomes Derived From M2 Macrophages Facilitate Osteogenesis and Reduce Adipogenesis of BMSCs. Front Endocrinol (Lausanne) 2021; 12:680328. [PMID: 34295306 PMCID: PMC8290518 DOI: 10.3389/fendo.2021.680328] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/11/2021] [Indexed: 01/20/2023] Open
Abstract
Bone regeneration is a complex process that requires the coordination of osteogenesis and osteoclastogenesis. The balance between osteogenesis and adipogenesis of bone marrow mesenchymal stem cells (BMSCs) plays a major role in the process of bone formation. Recently, intercellular communication between bone cells and surrounding cells has been gradually recognized, and macrophages on the surface of bone have been proven to regulate bone metabolism. However, the underlying mechanisms have not been fully elucidated. Recent studies have indicated that exosomes are vital messengers for cell-cell communication in various biological processes. In this experiment, we found that exosomes derived from M2 macrophages (M2D-Exos) could inhibit adipogenesis and promote osteogenesis of BMSCs. M2D-Exo intervention increased the expression of miR-690, IRS-1, and TAZ in BMSCs. Additionally, miR-690 knockdown in M2 macrophages with a miR-690 inhibitor partially counteracted the effect of M2D-Exos on BMSC differentiation and the upregulation of IRS-1 and TAZ expression. Taken together, the results of our study indicate that exosomes isolated from M2 macrophages could facilitate osteogenesis and reduce adipogenesis through the miR-690/IRS-1/TAZ axis and might be a therapeutic tool for bone loss diseases.
Collapse
Affiliation(s)
- Ziyi Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yafei Wang
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shilun Li
- Department of Joint Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yukun Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Yukun Li,
| |
Collapse
|
86
|
Chen K, Jiao Y, Liu L, Huang M, He C, He W, Hou J, Yang M, Luo X, Li C. Communications Between Bone Marrow Macrophages and Bone Cells in Bone Remodeling. Front Cell Dev Biol 2020; 8:598263. [PMID: 33415105 PMCID: PMC7783313 DOI: 10.3389/fcell.2020.598263] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/27/2020] [Indexed: 01/15/2023] Open
Abstract
The mammalian skeleton is a metabolically active organ that continuously undergoes bone remodeling, a process of tightly coupled bone resorption and formation throughout life. Recent studies have expanded our knowledge about the interactions between cells within bone marrow in bone remodeling. Macrophages resident in bone (BMMs) can regulate bone metabolism via secreting numbers of cytokines and exosomes. This review summarizes the current understanding of factors, exosomes, and hormones that involved in the communications between BMMs and other bone cells including mensenchymal stem cells, osteoblasts, osteocytes, and so on. We also discuss the role of BMMs and potential therapeutic approaches targeting BMMs in bone remodeling related diseases such as osteoporosis, osteoarthritis, rheumatoid arthritis, and osteosarcoma.
Collapse
Affiliation(s)
- Kaixuan Chen
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Yurui Jiao
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Ling Liu
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Mei Huang
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Chen He
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Wenzhen He
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Jing Hou
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
87
|
Effects of PIN on Osteoblast Differentiation and Matrix Mineralization through Runt-Related Transcription Factor. Int J Mol Sci 2020; 21:ijms21249579. [PMID: 33339165 PMCID: PMC7765567 DOI: 10.3390/ijms21249579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Styrax Japonica Sieb. et Zucc. has been used as traditional medicine in inflammatory diseases, and isolated compounds have shown pharmacological activities. Pinoresinol glucoside (PIN) belonging to lignins was isolated from the stem bark of S. Japonica. This study aimed to investigate the biological function and mechanisms of PIN on cell migration, osteoblast differentiation, and matrix mineralization. Herein, we investigated the effects of PIN in MC3T3-E1 pre-osteoblasts, which are widely used for studying osteoblast behavior in in vitro cell systems. At concentrations ranging from 0.1 to 100 μM, PIN had no cell toxicity in pre-osteoblasts. Pre-osteoblasts induced osteoblast differentiation, and the treatment of PIN (10 and 30 μM) promoted the cell migration rate in a dose-dependent manner. At concentrations of 10 and 30 μM, PIN elevated early osteoblast differentiation in a dose-dependent manner, as indicated by increases in alkaline phosphatase (ALP) staining and activity. Subsequently, PIN also increased the formation of mineralized nodules in a dose-dependent manner, as indicated by alizarin red S (ARS) staining, demonstrating positive effects of PIN on late osteoblast differentiation. In addition, PIN induced the mRNA level of BMP2, ALP, and osteocalcin (OCN). PIN also upregulated the protein level of BMP2 and increased canonical BMP2 signaling molecules, the phosphorylation of Smad1/5/8, and the protein level of Runt-related transcription factor 2 (RUNX2). Furthermore, PIN activated non-canonical BMP2 signaling molecules, activated MAP kinases, and increased β-catenin signaling. The findings of this study indicate that PIN has biological roles in osteoblast differentiation and matrix mineralization, and suggest that PIN might have anabolic effects in bone diseases such as osteoporosis and periodontitis.
Collapse
|
88
|
Kuang MJ, Zhang KH, Qiu J, Wang AB, Che WW, Li XM, Shi DL, Wang DC. Exosomal miR-365a-5p derived from HUC-MSCs regulates osteogenesis in GIONFH through the Hippo signaling pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:565-576. [PMID: 33510944 PMCID: PMC7810916 DOI: 10.1016/j.omtn.2020.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
The pathogenesis of glucocorticoid (GC)-induced osteonecrosis of the femoral head (GIONFH) is still disputed, and abnormal bone metabolism caused by GCs may be an important factor. In vitro, Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2′-deoxyuridine (EdU) staining were used to evaluate cellular proliferation, and western blotting was used to investigate osteogenesis. In vivo, we used micro-computed tomography (micro-CT), H&E staining, Masson staining, and immunohistochemistry (IHC) analysis to evaluate the impact of exosomes. In addition, the mechanism by which exosomes regulate osteogenesis through the miR-365a-5p/Hippo signaling pathway was investigated using RNA sequencing (RNA-seq), luciferase reporter assays, fluorescence in situ hybridization (FISH), and western blotting. The results of western blotting verified that the relevant genes in osteogenesis, including BMP2, Sp7, and Runx2, were upregulated. RNA-seq and qPCR of the exosome and Dex-treated exosome groups showed that miR-365a-5p was upregulated in the exosome group. Furthermore, we verified that miR-365a-5p promoted osteogenesis by targeting SAV1. Additional in vivo experiments revealed that exosomes prevented GIONFH in a rat model, as shown by micro-CT scanning and histological and IHC analysis. We concluded that exosomal miR-365a-5p was effective in promoting osteogenesis and preventing the development of GIONFH via activation of the Hippo signaling pathway in rats.
Collapse
Affiliation(s)
- Ming-Jie Kuang
- Department of Orthopedics, The Provincial Hospital Affiliated to Shandong University, Shandong 250014, China
| | - Kai-Hui Zhang
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, China
| | - Jie Qiu
- Department of Orthopedics, The Provincial Hospital Affiliated to Shandong University, Shandong 250014, China
| | - An-Bang Wang
- Department of Orthopedics, The Provincial Hospital Affiliated to Shandong University, Shandong 250014, China
| | - Wen-Wen Che
- Department of Orthopedics, The Provincial Hospital Affiliated to Shandong University, Shandong 250014, China
| | - Xiao-Ming Li
- Department of Orthopedics, Traditional Chinese Medicine-Western Medicine Hospital of Cangzhou City, Hebei Province 061000, China
| | - Dong-Li Shi
- Department of Orthopedics, The Provincial Hospital Affiliated to Shandong University, Shandong 250014, China
| | - Da-Chuan Wang
- Department of Orthopedics, The Provincial Hospital Affiliated to Shandong University, Shandong 250014, China
| |
Collapse
|
89
|
Omar AE, Ibrahim AM, Abd El-Aziz TH, Al-Rashidy ZM, Farag MM. Role of alkali metal oxide type on the degradation and in vivo biocompatibility of soda-lime-borate bioactive glass. J Biomed Mater Res B Appl Biomater 2020; 109:1059-1073. [PMID: 33274827 DOI: 10.1002/jbm.b.34769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/24/2020] [Accepted: 11/17/2020] [Indexed: 11/09/2022]
Abstract
In this work, it is the first time to study the effect of replacing of Na2 O by a fixed amount of Li2 O or K2 O in soda-lime-borate glass on its in vivo biocompatibility. The glass composition was based on xM2 O-20x Na2 O20 CaO60 B2 O3 , (wt %), where, M2 OLi2 O and K2 O, and consequently, samples encoded BN100, BK50, and BL50. The degradation test was carried out in 0.25 M K2 HPO4 solution. The in vivo test was performed in the femoral bone defect of Sprague-Dawley adult male rat. Following up bone formation was conducted by the histological analyses and bone formation markers (alkaline phosphatase [ALP] and osteocalcin [OCN]). Furthermore, the glass effect on the liver and kidney functions was addressed in this study using (alanine transaminase [ALT] and aspartate transaminase [AST]) and (urea and creatinine), respectively. The results of the degradation test showed that the glass dissolution rate was increased by incorporating of K2 O, and its ion release was occurred by a diffusion-controlled process. Moreover, in vivo bioactivity test showed that serum activity of ALP, OCN level, and the newly formed bone was higher in BL50-implanted group than that of BN100 andBK50at 3 w and 6 w post-surgery. As well as, implantation of all glass samples in the femoral bone defect did not alter the liver and kidney functions. In conclusion, the synthesized borate glass was well served as a controlled delivery system for Li+ ion release, which enhanced bone formation as shown from the bone formation markers (ALP and OCN).
Collapse
Affiliation(s)
- Areg E Omar
- Department of Physics, Faculty of Science, Al-Azhar University (Girls' Branch), Nasr City, Egypt
| | - Ahlam M Ibrahim
- Physics Department (Biophysics Branch), Faculty of Science, Al-Azhar University (Girls' Branch), Nasr City, Egypt
| | - Tamer H Abd El-Aziz
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Giza, Egypt
| | - Zainab M Al-Rashidy
- Department of Refractoriness, Ceramics and Building Materials, National Research Centre, Giza, Egypt
| | - Mohammad M Farag
- Glass Research Department, National Research Centre, Giza, Egypt
| |
Collapse
|
90
|
Li R, Wang H, John JV, Song H, Teusink MJ, Xie J. 3D Hybrid Nanofiber Aerogels Combining with Nanoparticles Made of a Biocleavable and Targeting Polycation and MiR-26a for Bone Repair. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2005531. [PMID: 34326714 PMCID: PMC8315031 DOI: 10.1002/adfm.202005531] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 05/24/2023]
Abstract
The healing of large bone defects represents a clinical challenge, often requiring some form of grafting. Three-dimensional (3D) nanofiber aerogels could be a promising bone graft due to their biomimetic morphology and controlled porous structures and composition. miR-26a has been reported to induce the differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) and facilitate bone formation. Introducing miR-26a with a suitable polymeric vector targeting BMSCs could improve and enhance the functions of 3D nanofiber aerogels for bone regeneration. Herein, we first developed the comb-shaped polycation (HA-SS-PGEA) carrying a targeting component, biocleavable groups and short ethanolamine (EA)-decorated poly(glycidyl methacrylate) (PGMA) (abbreviated as PGEA) arms as miR-26a delivery vector. We then assessed the cytotoxicity and transfection efficiency of this polycation and cellular response to miR-26a-incorporated nanoparticles (NPs) in vitro. HA-SS-PGEA exhibited a stronger ability to transport miR-26a and exert its functions than the gold standard polyethyleneimine (PEI) and low-molecular-weight linear PGEA. We finally examined the efficacy of HA-SS-PGEA/miR-26a NPs loaded 3D hybrid nanofiber aerogels showing a positive effect on the cranial bone defect healing. Together, the combination of 3D nanofiber aerogels and functional NPs consisting of a biodegradable and targeting polycation and therapeutic miRNA could be a promising approach for bone regeneration.
Collapse
Affiliation(s)
- Ruiquan Li
- Department of Surgery-Transplant and Holland Regenerative Medicine Program University of Nebraska Medical Center, Omaha, NE 68130, United States
| | - Hongjun Wang
- Department of Surgery-Transplant and Holland Regenerative Medicine Program University of Nebraska Medical Center, Omaha, NE 68130, United States
| | - Johnson V John
- Department of Surgery-Transplant and Holland Regenerative Medicine Program University of Nebraska Medical Center, Omaha, NE 68130, United States
| | - Haiqing Song
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Matthew J Teusink
- Department of Orthopedic Surgery and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Holland Regenerative Medicine Program University of Nebraska Medical Center, Omaha, NE 68130, United States
| |
Collapse
|
91
|
Al Saedi A, Myers DE, Stupka N, Duque G. 1,25(OH) 2D 3 ameliorates palmitate-induced lipotoxicity in human primary osteoblasts leading to improved viability and function. Bone 2020; 141:115672. [PMID: 33011427 DOI: 10.1016/j.bone.2020.115672] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
Contributing to bone loss with aging is a progressive reduction in osteoblast number and function leading to decreased bone formation. In aging bone, mesenchymal stem cells decrease in number and their differentiation potential into osteoblasts is reduced. Instead, there is a shift towards adipogenic differentiation and increased lipid accumulation in the marrow of osteoporotic bones. Bone marrow adipocytes produce palmitic acid (PA), a saturated fatty acid, which is toxic to osteoblasts in vitro. Vitamin D (1,25(OH)2D3) stimulates osteoblastogenesis and has known anti-apoptotic effects on osteoblasts, as such it may protect human primary osteoblasts from PA-induced lipotoxicity. Here, the effects of PA (250 μM) or 1,25(OH)2D3 (10-8 M), alone or in combination, on osteoblast differentiation and mineralization, viability and autophagy were investigated. In PA-treated osteoblasts, 1,25(OH)2D3 ameliorated the decrease in the mRNA transcript abundance of representative palmitoylation (ZDHHC1, ZDHHC2 and ZDHHC12) and osteogenic (alkaline phosphatase and osteocalcin) genes. Collectively these gene regulate signaling pathways pertinent to osteoblastogenesis. In osteoblasts treated with PA and 1,25(OH)2D3, the capacity to undergo differentiation and mineralization was recovered and cell viability was increased when compared to osteoblasts treated with PA alone. 1,25(OH)2D3, irrespective of PA treatment, increased the expression of key osteogenic signaling proteins; specifically, SMAD1-3,5, Runx2 and β-catenin. 1,25(OH)2D3 also attenuated the high level of impaired autophagy induced by PA and potentiated a shift towards activated, functional autophagy and increased flux through autolysosomes. Altogether, these findings provide in vitro evidence regarding the potential of 1,25(OH)2D3 to protect osteoblasts from lipotoxicity by modulating autophagy and facilitating cell differentiation, which may enhance bone formation in an osteoporotic microenvironment with a high level of marrow adipose tissue.
Collapse
Affiliation(s)
- Ahmed Al Saedi
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia
| | - Damian E Myers
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia
| | - Nicole Stupka
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia.
| |
Collapse
|
92
|
Matsuzaki E, Minakami M, Matsumoto N, Anan H. Dental regenerative therapy targeting sphingosine-1-phosphate (S1P) signaling pathway in endodontics. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:127-134. [PMID: 33088365 PMCID: PMC7567953 DOI: 10.1016/j.jdsr.2020.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/02/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
The establishment of regenerative therapy in endodontics targeting the dentin-pulp complex, cementum, periodontal ligament tissue, and alveolar bone will provide valuable information to preserve teeth. It is well known that the application of stem cells such as induced pluripotent stem cells, embryonic stem cells, and somatic stem cells is effective in regenerative medicine. There are many somatic stem cells in teeth and periodontal tissues including dental pulp stem cells (DPSCs), stem cells from the apical papilla, and periodontal ligament stem cells. Particularly, several studies have reported the regeneration of clinical pulp tissue and alveolar bone by DPSCs transplantation. However, further scientific issues for practical implementation remain to be addressed. Sphingosine-1-phosphate (S1P) acts as a bioactive signaling molecule that has multiple biological functions including cellular differentiation, and has been shown to be responsible for bone resorption and formation. Here we discuss a strategy for bone regeneration and a possibility for regenerative endodontics targeting S1P signaling pathway as one of approaches for induction of regeneration by improving the regenerative capacity of endogenous cells. SCIENTIFIC FIELD OF DENTAL SCIENCE Endodontology.
Collapse
Affiliation(s)
- Etsuko Matsuzaki
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Masahiko Minakami
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Noriyoshi Matsumoto
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Hisashi Anan
- Section of Operative Dentistry and Endodontology, Department of Odontology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| |
Collapse
|
93
|
7-HYB, a Phenolic Compound Isolated from Myristica fragrans Houtt Increases Cell Migration, Osteoblast Differentiation, and Mineralization through BMP2 and β-catenin Signaling. Int J Mol Sci 2020; 21:ijms21218059. [PMID: 33137925 PMCID: PMC7663243 DOI: 10.3390/ijms21218059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
The seeds (nutmegs) of Myristica fragrans Houtt have been used as popular spices and traditional medicine to treat a variety of diseases. A phenolic compound, ((7S)-8′-(benzo[3′,4′]dioxol-1′-yl)-7-hydroxypropyl)benzene-2,4-diol (7-HYB) was isolated from the seeds of M. fragrans. This study aimed to investigate the anabolic effects of 7-HYB in osteogenesis and bone mineralization. In the present study, 7-HYB promotes the early and late differentiation of MC3T3-E1 preosteoblasts. 7-HYB also elevated cell migration rate during differentiation of the preosteoblasts with the increased phosphorylation of mitogen-activated protein kinases (MAPKs) including ERK1/2, p38, and JNK. In addition, 7-HYB induced the protein level of BMP2, the phosphorylation of Smad1/5/8, and the expression of RUNX2. 7-HYB also inhibited GSK3β and subsequently increased the level of β-catenin. However, in bone marrow macrophages (BMMs), 7-HYB has no biological effects in cell viability, TRAP-positive multinuclear osteoclasts, and gene expression (c-Fos and NF-ATc1) in receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis. Our findings suggest that 7-HYB plays an important role in osteoblast differentiation through the BMP2 and β-catenin signaling pathway. It also indicates that 7-HYB might have a therapeutic effect for the treatment of bone diseases such as osteoporosis and periodontitis.
Collapse
|
94
|
Wang SS, Wang C, Chen H. MicroRNAs are critical in regulating smooth muscle cell mineralization and apoptosis during vascular calcification. J Cell Mol Med 2020; 24:13564-13572. [PMID: 33089928 PMCID: PMC7754013 DOI: 10.1111/jcmm.16005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 02/01/2023] Open
Abstract
Vascular calcification refers to the pathological deposition of calcium and phosphate minerals into the vasculature. It is prevalent in atherosclerosis, ageing, type 2 diabetes mellitus and chronic kidney disease, thus, increasing morbidity and mortality from these conditions. Vascular calcification shares similar mechanisms with bone mineralization, with smooth muscle cells playing a critical role in both processes. In the last decade, a variety of microRNAs have been identified as key regulators for the differentiation, phenotypic switch, proliferation, apoptosis, cytokine production and matrix deposition in vascular smooth muscle cells during vascular calcification. Therefore, this review mainly discusses the roles of microRNAs in the pathophysiological mechanisms of vascular calcification in smooth muscle cells and describes several interventions against vascular calcification by regulating microRNAs. As the exact mechanisms of calcification remain not fully elucidated, having a better understanding of microRNA involvement in vascular calcification may give impetus to development of novel therapeutics for the control and treatment of vascular calcification.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Department of Cardiology, Zhejiang Provincial Key Lab of Cardiovascular Disease Diagnosis and Treatment, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Wang
- Department of Cardiology, Zhejiang Provincial Key Lab of Cardiovascular Disease Diagnosis and Treatment, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Han Chen
- Department of Cardiology, Zhejiang Provincial Key Lab of Cardiovascular Disease Diagnosis and Treatment, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
95
|
Influence of the TGF-β Superfamily on Osteoclasts/Osteoblasts Balance in Physiological and Pathological Bone Conditions. Int J Mol Sci 2020; 21:ijms21207597. [PMID: 33066607 PMCID: PMC7589189 DOI: 10.3390/ijms21207597] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/19/2022] Open
Abstract
The balance between bone forming cells (osteoblasts/osteocytes) and bone resorbing cells (osteoclasts) plays a crucial role in tissue homeostasis and bone repair. Several hormones, cytokines, and growth factors-in particular the members of the TGF-β superfamily such as the bone morphogenetic proteins-not only regulate the proliferation, differentiation, and functioning of these cells, but also coordinate the communication between them to ensure an appropriate response. Therefore, this review focuses on TGF-β superfamily and its influence on bone formation and repair, through the regulation of osteoclastogenesis, osteogenic differentiation of stem cells, and osteoblasts/osteoclasts balance. After introducing the main types of bone cells, their differentiation and cooperation during bone remodeling and fracture healing processes are discussed. Then, the TGF-β superfamily, its signaling via canonical and non-canonical pathways, as well as its regulation by Wnt/Notch or microRNAs are described and discussed. Its important role in bone homeostasis, repair, or disease is also highlighted. Finally, the clinical therapeutic uses of members of the TGF-β superfamily and their associated complications are debated.
Collapse
|
96
|
Bertrand AA, Malapati SH, Yamaguchi DT, Lee JC. The Intersection of Mechanotransduction and Regenerative Osteogenic Materials. Adv Healthc Mater 2020; 9:e2000709. [PMID: 32940024 PMCID: PMC7864218 DOI: 10.1002/adhm.202000709] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/14/2020] [Indexed: 12/23/2022]
Abstract
Mechanical signals play a central role in cell fate determination and differentiation in both physiologic and pathologic circumstances. Such signals may be delivered using materials to generate discrete microenvironments for the purposes of tissue regeneration and have garnered increasing attention in recent years. Unlike the addition of progenitor cells or growth factors, delivery of a microenvironment is particularly attractive in that it may reduce the known untoward consequences of the former two strategies, such as excessive proliferation and potential malignant transformation. Additionally, the ability to spatially modulate the fabrication of materials allows for the creation of multiple microenvironments, particularly attractive for regenerating complex tissues. While many regenerative materials have been developed and tested for augmentation of specific cellular responses, the intersection between cell biology and material interactions have been difficult to dissect due to the complexity of both physical and chemical interactions. Specifically, modulating materials to target individual signaling pathways is an avenue of interdisciplinary research that may lead to a more effective method of optimizing regenerative materials. In this work, the aim is to summarize the major mechanotransduction pathways for osteogenic differentiation and to consolidate the known materials and material properties that activate such pathways.
Collapse
Affiliation(s)
- Anthony A. Bertrand
- Division of Plastic and Reconstructive Surgery, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California
| | - Sri Harshini Malapati
- Division of Plastic and Reconstructive Surgery, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California
| | - Dean T. Yamaguchi
- Division of Plastic and Reconstructive Surgery, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, California
| | - Justine C. Lee
- Division of Plastic and Reconstructive Surgery, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, California
- UCLA Molecular Biology Institute, Los Angeles, California
| |
Collapse
|
97
|
Huang X, Lan M, Wang J, Guo L, Lin Z, Zhang F, Zhang T, Wu C, Qiu B. A dual-mode strategy for sensing and bio-imaging of endogenous alkaline phosphatase based on the combination of photoinduced electron transfer and hyperchromic effect. Anal Chim Acta 2020; 1142:65-72. [PMID: 33280705 DOI: 10.1016/j.aca.2020.09.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 01/21/2023]
Abstract
Benefit from the additional correction of the output signal in dual-mode detection, traditional dual signal readout strategies are performed by constructing the ratiometric fluorescent probe through excitation energy transfer (EET) or fluorescence resonance energy transfer (FRET). To avoid the complicated modification process and obtain the results rapidly, a simple dual-mode sensing strategy based on the electronic effects of p-nitrophenol (PNP) is described to monitor the activities of alkaline phosphatase (ALP). In the sensing platform, p-nitrophenylphosphate was used as a substrate to produce the PNP using ALP as the catalyst. Due to the PNP possesses negative effect of induction and conjugation, photoinduced electron transfer and hyperchromic effect have been achieved between PNP and polyethyleneimine-protected copper nanoclusters (PEI-Cu NCs), which caused the changes of the fluorescence intensity and UV-visible absorption. The dual-mode signal sensing system showed the satisfactory linear results of ALP from 1 to 100 U/L for fluorescent sensing strategy and 1-70 U/L for the absorption method with a competitive LOD of 0.27 and 0.87 U/L (signal-to-noise ratio of 3). This strategy detected biological ALP in human serum and bio-imaging of endogenous ALP in A549 cells successfully, which verifies a certain potential of the strategy for the practical applications.
Collapse
Affiliation(s)
- Xuemin Huang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Maojin Lan
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Longhua Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Fan Zhang
- Department of Neurosurgery, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, 350007, PR China.
| | - Tao Zhang
- Central Laboratory, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, 350007, PR China.
| | - Cuimin Wu
- Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350108, China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou University, Fuzhou, Fujian, 350108, PR China.
| |
Collapse
|
98
|
Jenke A, Kistner J, Saradar S, Chekhoeva A, Yazdanyar M, Bergmann AK, Rötepohl MV, Lichtenberg A, Akhyari P. Transforming growth factor-β1 promotes fibrosis but attenuates calcification of valvular tissue applied as a three-dimensional calcific aortic valve disease model. Am J Physiol Heart Circ Physiol 2020; 319:H1123-H1141. [PMID: 32986963 DOI: 10.1152/ajpheart.00651.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Calcific aortic valve disease (CAVD) is characterized by valvular fibrosis and calcification and driven by differentiating valvular interstitial cells (VICs). Expression data from patient biopsies suggest that transforming growth factor (TGF)-β1 is implicated in CAVD pathogenesis. However, CAVD models using isolated VICs failed to deliver clear evidence on the role of TGF-β1. Thus, employing cultures of aortic valve leaflets, we investigated effects of TGF-β1 in a tissue-based three-dimensional (3-D) CAVD model. We found that TGF-β1 induced phosphorylation of Mothers against decapentaplegic homolog (SMAD) 3 and expression of SMAD7, indicating effective downstream signal transduction in valvular tissue. Thus, TGF-β1 increased VIC contents of rough endoplasmic reticulum, Golgi, and secretory vesicles as well as tissue levels of RNA and protein. In addition, TGF-β1 raised expression of proliferation marker cyclin D1, attenuated VIC apoptosis, and upregulated VIC density. Moreover, TGF-β1 intensified myofibroblastic VIC differentiation as evidenced by increased α-smooth muscle actin and collagen type I along with diminished vimentin expression. In contrast, TGF-β1 attenuated phosphorylation of SMAD1/5/8 and upregulation of β-catenin while inhibiting osteoblastic VIC differentiation as revealed by downregulation of osteocalcin expression, alkaline phosphatase activity, and extracellular matrix incorporation of hydroxyapatite. Collectively, these effects resulted in blocking of valvular tissue calcification and associated disintegration of collagen fibers. Instead, TGF-β1 induced development of fibrosis. Overall, in a tissue-based 3-D CAVD model, TGF-β1 intensifies expressional and proliferative activation along with myofibroblastic differentiation of VICs, thus triggering dominant fibrosis. Simultaneously, by inhibiting SMAD1/5/8 activation and canonical Wnt/β-catenin signaling, TGF-β1 attenuates osteoblastic VIC differentiation, thus blocking valvular tissue calcification. These findings question a general phase-independent CAVD-promoting role of TGF-β1.NEW & NOTEWORTHY Employing aortic valve leaflets as a tissue-based three-dimensional disease model, our study investigates the role of transforming growth factor (TGF)-β1 in calcific aortic valve disease pathogenesis. We find that, by activating Mothers against decapentaplegic homolog 3, TGF-β1 intensifies expressional and proliferative activation along with myofibroblastic differentiation of valvular interstitial cells, thus triggering dominant fibrosis. Simultaneously, by inhibiting activation of Mothers against decapentaplegic homolog 1/5/8 and canonical Wnt/β-catenin signaling, TGF-β1 attenuates apoptosis and osteoblastic differentiation of valvular interstitial cells, thus blocking valvular tissue calcification. These findings question a general phase-independent calcific aortic valve disease-promoting role of TGF-β1.
Collapse
Affiliation(s)
- Alexander Jenke
- Department of Cardiac Surgery, Düsseldorf University Hospital, Düsseldorf, Germany.,Research Group Experimental Surgery, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Kistner
- Department of Cardiac Surgery, Düsseldorf University Hospital, Düsseldorf, Germany.,Research Group Experimental Surgery, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah Saradar
- Department of Cardiac Surgery, Düsseldorf University Hospital, Düsseldorf, Germany.,Research Group Experimental Surgery, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Agunda Chekhoeva
- Department of Cardiac Surgery, Düsseldorf University Hospital, Düsseldorf, Germany.,Research Group Experimental Surgery, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mariam Yazdanyar
- Department of Cardiac Surgery, Düsseldorf University Hospital, Düsseldorf, Germany.,Research Group Experimental Surgery, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ann Kathrin Bergmann
- Core Facility for Electron Microscopy, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Melanie Vera Rötepohl
- Department of Cardiac Surgery, Düsseldorf University Hospital, Düsseldorf, Germany.,Research Group Experimental Surgery, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Artur Lichtenberg
- Department of Cardiac Surgery, Düsseldorf University Hospital, Düsseldorf, Germany.,Research Group Experimental Surgery, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Payam Akhyari
- Department of Cardiac Surgery, Düsseldorf University Hospital, Düsseldorf, Germany.,Research Group Experimental Surgery, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
99
|
Sefkow-Werner J, Machillot P, Sales A, Castro-Ramirez E, Degardin M, Boturyn D, Cavalcanti-Adam EA, Albiges-Rizo C, Picart C, Migliorini E. Heparan sulfate co-immobilized with cRGD ligands and BMP2 on biomimetic platforms promotes BMP2-mediated osteogenic differentiation. Acta Biomater 2020; 114:90-103. [PMID: 32673751 DOI: 10.1016/j.actbio.2020.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/27/2022]
Abstract
The chemical and physical properties of the extracellular matrix (ECM) are known to be fundamental for regulating growth factor bioactivity. The role of heparan sulfate (HS), a glycosaminoglycan, and of cell adhesion proteins (containing the cyclic RGD (cRGD) ligands) on bone morphogenetic protein 2 (BMP2)-mediated osteogenic differentiation has not been fully explored. In particular, it is not known whether and how their effects can be potentiated when they are presented in controlled close proximity, as in the ECM. Here, we developed streptavidin platforms to mimic selective aspects of the in vivo presentation of cRGD, HS and BMP2, with a nanoscale-control of their surface density and orientation to study cell adhesion and osteogenic differentiation. We showed that whereas a controlled increase in cRGD surface concentration upregulated BMP2 signaling due to β3 integrin recruitment, silencing either β1 or β3 integrins negatively affected BMP2-mediated phosphorylation of SMAD1/5/9 and alkaline phosphatase expression. Furthermore, the presence of adsorbed BMP2 promoted cellular adhesion at very low cRGD concentrations. Finally, we proved that HS co-immobilized with cRGD both sustained BMP2 signaling and enhanced osteogenic differentiation compared to BMP2 directly immobilized on streptavidin, even with a low cRGD surface concentration. Altogether, our results show that HS facilitated and sustained the synergy between BMP2 and integrin pathways and that the co-immobilization of HS and cRGD peptides optimised BMP2-mediated osteogenic differentiation. Statement of significance The growth factor BMP2 is used to treat large bone defects. Previous studies have shown that the presentation of BMP2 via extracellular matrix molecules, such as heparan sulfate (HS), can upregulate BMP2 signaling. The potential advantages of dose reduction and local specificity have stimulated interest in further investigations into biomimetic approaches. We designed a streptavidin model surface eligible for immobilizing tunable amounts of molecules from the extracellular space, such as HS, adhesion motifs (cyclic RGD) and BMP2. By studying cellular adhesion, BMP2 bioactivity and its osteogenic potential we reveal the combined effect of integrins, HS and BMP2, which contribute in answering fundamental questions regarding cell-matrix interaction.
Collapse
|
100
|
Bagchi DP, Nishii A, Li Z, DelProposto JB, Corsa CA, Mori H, Hardij J, Learman BS, Lumeng CN, MacDougald OA. Wnt/β-catenin signaling regulates adipose tissue lipogenesis and adipocyte-specific loss is rigorously defended by neighboring stromal-vascular cells. Mol Metab 2020; 42:101078. [PMID: 32919095 PMCID: PMC7554252 DOI: 10.1016/j.molmet.2020.101078] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/14/2020] [Accepted: 09/06/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Canonical Wnt/β-catenin signaling is a well-studied endogenous regulator of mesenchymal cell fate determination, promoting osteoblastogenesis and inhibiting adipogenesis. However, emerging genetic evidence in humans links a number of Wnt pathway members to body fat distribution, obesity, and metabolic dysfunction, suggesting that this pathway also functions in adipocytes. Recent studies in mice have uncovered compelling evidence that the Wnt signaling pathway plays important roles in adipocyte metabolism, particularly under obesogenic conditions. However, complexities in Wnt signaling and differences in experimental models and approaches have thus far limited our understanding of its specific roles in this context. METHODS To investigate roles of the canonical Wnt pathway in the regulation of adipocyte metabolism, we generated adipocyte-specific β-catenin (β-cat) knockout mouse and cultured cell models. We used RNA sequencing, ChIP sequencing, and molecular approaches to assess expression of Wnt targets and lipogenic genes. We then used functional assays to evaluate effects of β-catenin deficiency on adipocyte metabolism, including lipid and carbohydrate handling. In mice maintained on normal chow and high-fat diets, we assessed the cellular and functional consequences of adipocyte-specific β-catenin deletion on adipose tissues and systemic metabolism. RESULTS We report that in adipocytes, the canonical Wnt/β-catenin pathway regulates de novo lipogenesis (DNL) and fatty acid monounsaturation. Further, β-catenin mediates effects of Wnt signaling on lipid metabolism in part by transcriptional regulation of Mlxipl and Srebf1. Intriguingly, adipocyte-specific loss of β-catenin is sensed and defended by CD45-/CD31- stromal cells to maintain tissue-wide Wnt signaling homeostasis in chow-fed mice. With long-term high-fat diet, this compensatory mechanism is overridden, revealing that β-catenin deletion promotes resistance to diet-induced obesity and adipocyte hypertrophy and subsequent protection from metabolic dysfunction. CONCLUSIONS Taken together, our studies demonstrate that Wnt signaling in adipocytes is required for lipogenic gene expression, de novo lipogenesis, and lipid desaturation. In addition, adipose tissues rigorously defend Wnt signaling homeostasis under standard nutritional conditions, such that stromal-vascular cells sense and compensate for adipocyte-specific loss. These findings underscore the critical importance of this pathway in adipocyte lipid metabolism and adipose tissue function.
Collapse
Affiliation(s)
- Devika P Bagchi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Akira Nishii
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ziru Li
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Jennifer B DelProposto
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Callie A Corsa
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Hiroyuki Mori
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Julie Hardij
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Brian S Learman
- Department of Microbiology and Immunology, University of Buffalo, Buffalo, NY, USA.
| | - Carey N Lumeng
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ormond A MacDougald
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|