51
|
Structure function relations in PDZ-domain-containing proteins: Implications for protein networks in cellular signalling. J Biosci 2017. [DOI: 10.1007/s12038-017-9727-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
52
|
Moreno CL, Mobbs CV. Epigenetic mechanisms underlying lifespan and age-related effects of dietary restriction and the ketogenic diet. Mol Cell Endocrinol 2017; 455:33-40. [PMID: 27884781 DOI: 10.1016/j.mce.2016.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 02/08/2023]
Abstract
Aging constitutes the central risk factor for major diseases including many forms of cancer, neurodegeneration, and cardiovascular diseases. The aging process is characterized by both global and tissue-specific changes in gene expression across taxonomically diverse species. While aging has historically been thought to entail cell-autonomous, even stochastic changes, recent evidence suggests that modulation of this process can be hierarchal, wherein manipulations of nutrient-sensing neurons (e.g., in the hypothalamus) produce peripheral effects that may modulate the aging process itself. The most robust intervention extending lifespan, plausibly impinging on the aging process, involves different modalities of dietary restriction (DR). Lifespan extension by DR is associated with broad protection against diseases (natural and engineered). Here we review potential epigenetic processes that may link lifespan to age-related diseases, particularly in the context of DR and (other) ketogenic diets, focusing on brain and hypothalamic mechanisms.
Collapse
Affiliation(s)
- Cesar L Moreno
- Department of Neurology, 1470 Madison Ave., 9-119, New York, NY 10029, USA
| | - Charles V Mobbs
- Departments of Neuroscience, Endocrinology, and Geriatrics, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., 9-119, New York, NY 10029, USA.
| |
Collapse
|
53
|
Westfall S, Lomis N, Kahouli I, Dia SY, Singh SP, Prakash S. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell Mol Life Sci 2017; 74:3769-3787. [PMID: 28643167 PMCID: PMC11107790 DOI: 10.1007/s00018-017-2550-9] [Citation(s) in RCA: 348] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/05/2017] [Accepted: 05/29/2017] [Indexed: 02/07/2023]
Abstract
The gut microbiota is essential to health and has recently become a target for live bacterial cell biotherapies for various chronic diseases including metabolic syndrome, diabetes, obesity and neurodegenerative disease. Probiotic biotherapies are known to create a healthy gut environment by balancing bacterial populations and promoting their favorable metabolic action. The microbiota and its respective metabolites communicate to the host through a series of biochemical and functional links thereby affecting host homeostasis and health. In particular, the gastrointestinal tract communicates with the central nervous system through the gut-brain axis to support neuronal development and maintenance while gut dysbiosis manifests in neurological disease. There are three basic mechanisms that mediate the communication between the gut and the brain: direct neuronal communication, endocrine signaling mediators and the immune system. Together, these systems create a highly integrated molecular communication network that link systemic imbalances with the development of neurodegeneration including insulin regulation, fat metabolism, oxidative markers and immune signaling. Age is a common factor in the development of neurodegenerative disease and probiotics prevent many harmful effects of aging such as decreased neurotransmitter levels, chronic inflammation, oxidative stress and apoptosis-all factors that are proven aggravators of neurodegenerative disease. Indeed patients with Parkinson's and Alzheimer's diseases have a high rate of gastrointestinal comorbidities and it has be proposed by some the management of the gut microbiota may prevent or alleviate the symptoms of these chronic diseases.
Collapse
Affiliation(s)
- Susan Westfall
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, H3A2B4, Canada
| | - Nikita Lomis
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, H3A2B4, Canada
- Department of Experimental Medicine, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, H3A2B4, Canada
| | - Imen Kahouli
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, H3A2B4, Canada
- Department of Experimental Medicine, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, H3A2B4, Canada
| | - Si Yuan Dia
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, H3A2B4, Canada
| | - Surya Pratap Singh
- Department of Biochemistry, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, H3A2B4, Canada.
- Department of Experimental Medicine, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC, H3A2B4, Canada.
| |
Collapse
|
54
|
Ikeda T, Uno M, Honjoh S, Nishida E. The MYST family histone acetyltransferase complex regulates stress resistance and longevity through transcriptional control of DAF-16/FOXO transcription factors. EMBO Rep 2017; 18:1716-1726. [PMID: 28794203 PMCID: PMC5623868 DOI: 10.15252/embr.201743907] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 11/09/2022] Open
Abstract
The well-known link between longevity and the Sir2 histone deacetylase family suggests that histone deacetylation, a modification associated with repressed chromatin, is beneficial to longevity. However, the molecular links between histone acetylation and longevity remain unclear. Here, we report an unexpected finding that the MYST family histone acetyltransferase complex (MYS-1/TRR-1 complex) promotes rather than inhibits stress resistance and longevity in Caenorhabditis elegans. Our results show that these beneficial effects are largely mediated through transcriptional up-regulation of the FOXO transcription factor DAF-16. MYS-1 and TRR-1 are recruited to the promoter regions of the daf-16 gene, where they play a role in histone acetylation, including H4K16 acetylation. Remarkably, we also find that the human MYST family Tip60/TRRAP complex promotes oxidative stress resistance by up-regulating the expression of FOXO transcription factors in human cells. Tip60 is recruited to the promoter regions of the foxo1 gene, where it increases H4K16 acetylation levels. Our results thus identify the evolutionarily conserved role of the MYST family acetyltransferase as a key epigenetic regulator of DAF-16/FOXO transcription factors.
Collapse
Affiliation(s)
- Takako Ikeda
- Department of Cell and Developmental BiologyGraduate School of BiostudiesKyoto UniversitySakyo‐ku, KyotoJapan
| | - Masaharu Uno
- Department of Cell and Developmental BiologyGraduate School of BiostudiesKyoto UniversitySakyo‐ku, KyotoJapan
| | - Sakiko Honjoh
- Department of Cell and Developmental BiologyGraduate School of BiostudiesKyoto UniversitySakyo‐ku, KyotoJapan
| | - Eisuke Nishida
- Department of Cell and Developmental BiologyGraduate School of BiostudiesKyoto UniversitySakyo‐ku, KyotoJapan
| |
Collapse
|
55
|
Silencing of Repetitive DNA Is Controlled by a Member of an Unusual Caenorhabditis elegans Gene Family. Genetics 2017; 207:529-545. [PMID: 28801529 DOI: 10.1534/genetics.117.300134] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/10/2017] [Indexed: 01/08/2023] Open
Abstract
Repetitive DNA sequences are subject to gene silencing in various animal species. Under specific circumstances repetitive DNA sequences can escape such silencing. For example, exogenously added, extrachromosomal DNA sequences that are stably inherited in multicopy repetitive arrays in the nematode Caenorhabditis elegans are frequently silenced in the germline, whereas such silencing often does not occur in the soma. This indicates that somatic cells might utilize factors that prevent repetitive DNA silencing. Indeed, such "antisilencing" factors have been revealed through genetic screens that identified mutant loci in which repetitive transgenic arrays are aberrantly silenced in the soma. We describe here a novel locus, pals-22 (for protein containing ALS2CR12 signature), required to prevent silencing of repetitive transgenes in neurons and other somatic tissue types. pals-22 deficiency also severely impacts animal vigor and confers phenotypes reminiscent of accelerated aging. We find that pals-22 is a member of a large family of divergent genes (39 members), defined by homology to the ALS2CR12 protein family. While gene family members are highly divergent, they show striking patterns of chromosomal clustering. The family expansion appears C. elegans-specific and has not occurred to the same extent in other nematode species for which genome sequences are available. The transgene-silencing phenotype observed upon loss of PALS-22 protein depends on the biogenesis of small RNAs. We speculate that the pals gene family may be part of a species-specific cellular defense mechanism.
Collapse
|
56
|
Moreno CL, Yang L, Dacks PA, Isoda F, van Deursen JMA, Mobbs CV. Role of Hypothalamic Creb-Binding Protein in Obesity and Molecular Reprogramming of Metabolic Substrates. PLoS One 2016; 11:e0166381. [PMID: 27832201 PMCID: PMC5104324 DOI: 10.1371/journal.pone.0166381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/27/2016] [Indexed: 01/04/2023] Open
Abstract
We have reported a correlation between hypothalamic expression of Creb-binding protein (Cbp) and lifespan, and that inhibition of Cbp prevents protective effects of dietary restriction during aging, suggesting that hypothalamic Cbp plays a role in responses to nutritional status and energy balance. Recent GWAS and network analyses have also implicated Cbp as the most connected gene in protein-protein interactions in human Type 2 diabetes. The present studies address mechanisms mediating the role of Cbp in diabetes by inhibiting hypothalamic Cbp using a Cre-lox strategy. Inhibition of hypothalamic Cbp results in profound obesity and impaired glucose homeostasis, increased food intake, and decreased body temperature. In addition, these changes are accompanied by molecular evidence in the hypothalamus for impaired leptin and insulin signaling, a shift from glucose to lipid metabolism, and decreased Pomc mRNA, with no effect on locomotion. Further assessment of the significance of the metabolic switch demonstrated that enhanced expression of hypothalamic Cpt1a, which promotes lipid metabolism, similarly resulted in increased body weight and reduced Pomc mRNA.
Collapse
Affiliation(s)
- Cesar L. Moreno
- Department of Neuroscience, and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Linda Yang
- Department of Neuroscience, and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Penny A. Dacks
- Department of Neuroscience, and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Fumiko Isoda
- Department of Neuroscience, and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jan M. A. van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Charles V. Mobbs
- Department of Neuroscience, and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
57
|
Calvert S, Tacutu R, Sharifi S, Teixeira R, Ghosh P, de Magalhães JP. A network pharmacology approach reveals new candidate caloric restriction mimetics in C. elegans. Aging Cell 2016; 15:256-66. [PMID: 26676933 PMCID: PMC4783339 DOI: 10.1111/acel.12432] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2015] [Indexed: 01/04/2023] Open
Abstract
Caloric restriction (CR), a reduction in calorie intake without malnutrition, retards aging in several animal models from worms to mammals. Developing CR mimetics, compounds that reproduce the longevity benefits of CR without its side effects, is of widespread interest. Here, we employed the Connectivity Map to identify drugs with overlapping gene expression profiles with CR. Eleven statistically significant compounds were predicted as CR mimetics using this bioinformatics approach. We then tested rapamycin, allantoin, trichostatin A, LY‐294002 and geldanamycin in Caenorhabditis elegans. An increase in lifespan and healthspan was observed for all drugs except geldanamycin when fed to wild‐type worms, but no lifespan effects were observed in eat‐2 mutant worms, a genetic model of CR, suggesting that life‐extending effects may be acting via CR‐related mechanisms. We also treated daf‐16 worms with rapamycin, allantoin or trichostatin A, and a lifespan extension was observed, suggesting that these drugs act via DAF‐16‐independent mechanisms, as would be expected from CR mimetics. Supporting this idea, an analysis of predictive targets of the drugs extending lifespan indicates various genes within CR and longevity networks. We also assessed the transcriptional profile of worms treated with either rapamycin or allantoin and found that both drugs use several specific pathways that do not overlap, indicating different modes of action for each compound. The current work validates the capabilities of this bioinformatic drug repositioning method in the context of longevity and reveals new putative CR mimetics that warrant further studies.
Collapse
Affiliation(s)
- Shaun Calvert
- Integrative Genomics of Ageing Group; Institute of Integrative Biology; University of Liverpool; Liverpool UK
| | - Robi Tacutu
- Integrative Genomics of Ageing Group; Institute of Integrative Biology; University of Liverpool; Liverpool UK
| | - Samim Sharifi
- Integrative Genomics of Ageing Group; Institute of Integrative Biology; University of Liverpool; Liverpool UK
| | - Rute Teixeira
- Integrative Genomics of Ageing Group; Institute of Integrative Biology; University of Liverpool; Liverpool UK
| | - Pratul Ghosh
- Integrative Genomics of Ageing Group; Institute of Integrative Biology; University of Liverpool; Liverpool UK
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group; Institute of Integrative Biology; University of Liverpool; Liverpool UK
| |
Collapse
|
58
|
The aryl hydrocarbon receptor promotes aging phenotypes across species. Sci Rep 2016; 6:19618. [PMID: 26790370 PMCID: PMC4726214 DOI: 10.1038/srep19618] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/16/2015] [Indexed: 02/06/2023] Open
Abstract
The ubiquitously expressed aryl hydrocarbon receptor (AhR) induces drug metabolizing enzymes as well as regulators of cell growth, differentiation and apoptosis. Certain AhR ligands promote atherosclerosis, an age-associated vascular disease. Therefore, we investigated the role of AhR in vascular functionality and aging. We report a lower pulse wave velocity in young and old AhR-deficient mice, indicative of enhanced vessel elasticity. Moreover, endothelial nitric oxide synthase (eNOS) showed increased activity in the aortas of these animals, which was reflected in increased NO production. Ex vivo, AhR activation reduced the migratory capacity of primary human endothelial cells. AhR overexpression as well as treatment with a receptor ligand, impaired eNOS activation and reduced S-NO content. All three are signs of endothelial dysfunction. Furthermore, AhR expression in blood cells of healthy human volunteers positively correlated with vessel stiffness. In the aging model Caenorhabditis elegans, AhR-deficiency resulted in increased mean life span, motility, pharynx pumping and heat shock resistance, suggesting healthier aging. Thus, AhR seems to have a negative impact on vascular and organismal aging. Finally, our data from human subjects suggest that AhR expression levels could serve as an additional, new predictor of vessel aging.
Collapse
|
59
|
Moreno CL, Ehrlich ME, Mobbs CV. Protection by dietary restriction in the YAC128 mouse model of Huntington's disease: Relation to genes regulating histone acetylation and HTT. Neurobiol Dis 2015; 85:25-34. [PMID: 26485309 DOI: 10.1016/j.nbd.2015.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/27/2015] [Accepted: 09/28/2015] [Indexed: 01/13/2023] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disease characterized by metabolic, cognitive, and motor deficits. HD is caused by an expanded CAG repeat in the first exon of the HTT gene, resulting in an expanded polyglutamine section. Dietary restriction (DR) increases lifespan and ameliorates age-related pathologies, including in a model of HD, but the mechanisms mediating these protective effects are unknown. We report metabolic and behavioral effects of DR in the full-length YAC128 HD mouse model, and associated transcriptional changes in hypothalamus and striatum. DR corrected many effects of the transgene including increased body weight, decreased blood glucose, and impaired motor function. These changes were associated with reduced striatal human (but not mouse) HTT expression, as well as alteration in gene expression regulating histone acetylation modifications, particularly Hdac2. Other mRNAs related to Huntington's pathology in striatal tissue showed significant modulation by the transgene, dietary restriction or both. These results establish a protective role of DR in a transgenic model that contains the complete human HTT gene and for the first time suggest a role for DR in lowering HTT level, which correlates with severity of symptoms.
Collapse
Affiliation(s)
- Cesar L Moreno
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, New York, NY 10029, USA.
| | - Michelle E Ehrlich
- Friedman Brain Institute, New York, NY 10029, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Charles V Mobbs
- Friedman Brain Institute, New York, NY 10029, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Endocrinology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Geriatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
60
|
Ji C. Advances and New Concepts in Alcohol-Induced Organelle Stress, Unfolded Protein Responses and Organ Damage. Biomolecules 2015; 5:1099-121. [PMID: 26047032 PMCID: PMC4496712 DOI: 10.3390/biom5021099] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 05/23/2015] [Accepted: 05/26/2015] [Indexed: 12/20/2022] Open
Abstract
Alcohol is a simple and consumable biomolecule yet its excessive consumption disturbs numerous biological pathways damaging nearly all organs of the human body. One of the essential biological processes affected by the harmful effects of alcohol is proteostasis, which regulates the balance between biogenesis and turnover of proteins within and outside the cell. A significant amount of published evidence indicates that alcohol and its metabolites directly or indirectly interfere with protein homeostasis in the endoplasmic reticulum (ER) causing an accumulation of unfolded or misfolded proteins, which triggers the unfolded protein response (UPR) leading to either restoration of homeostasis or cell death, inflammation and other pathologies under severe and chronic alcohol conditions. The UPR senses the abnormal protein accumulation and activates transcription factors that regulate nuclear transcription of genes related to ER function. Similarly, this kind of protein stress response can occur in other cellular organelles, which is an evolving field of interest. Here, I review recent advances in the alcohol-induced ER stress response as well as discuss new concepts on alcohol-induced mitochondrial, Golgi and lysosomal stress responses and injuries.
Collapse
Affiliation(s)
- Cheng Ji
- GI/Liver Division, Research Center for Liver Disease, Department of Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
61
|
Abstract
The ketone body beta-hydroxybutyrate (βHB) is a histone deacetylase (HDAC) inhibitor and has been shown to be protective in many disease models, but its effects on aging are not well studied. Therefore we determined the effect of βHB supplementation on the lifespan of C. elegans nematodes. βHB supplementation extended mean lifespan by approximately 20%. RNAi knockdown of HDACs hda-2 or hda-3 also increased lifespan and further prevented βHB-mediated lifespan extension. βHB-mediated lifespan extension required the DAF-16/FOXO and SKN-1/Nrf longevity pathways, the sirtuin SIR-2.1, and the AMP kinase subunit AAK-2. βHB did not extend lifespan in a genetic model of dietary restriction indicating that βHB is likely functioning through a similar mechanism. βHB addition also upregulated βHB dehydrogenase activity and increased oxygen consumption in the worms. RNAi knockdown of F55E10.6, a short chain dehydrogenase and SKN-1 target gene, prevented the increased lifespan and βHB dehydrogenase activity induced by βHB addition, suggesting that F55E10.6 functions as an inducible βHB dehydrogenase. Furthermore, βHB supplementation increased worm thermotolerance and partially prevented glucose toxicity. It also delayed Alzheimer's amyloid-beta toxicity and decreased Parkinson's alpha-synuclein aggregation. The results indicate that D-βHB extends lifespan through inhibiting HDACs and through the activation of conserved stress response pathways.
Collapse
|
62
|
Hill S, Van Remmen H. Mitochondrial stress signaling in longevity: a new role for mitochondrial function in aging. Redox Biol 2014; 2:936-44. [PMID: 25180170 PMCID: PMC4143811 DOI: 10.1016/j.redox.2014.07.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 11/29/2022] Open
Abstract
Mitochondria are principal regulators of cellular function and metabolism through production of ATP for energy homeostasis, maintenance of calcium homeostasis, regulation of apoptosis and fatty acid oxidation to provide acetyl CoA for fueling the electron transport chain. In addition, mitochondria play a key role in cell signaling through production of reactive oxygen species that modulate redox signaling. Recent findings support an additional mechanism for control of cellular and tissue function by mitochondria through complex mitochondrial-nuclear communication mechanisms and potentially through extracellular release of mitochondrial components that can act as signaling molecules. The activation of stress responses including mitophagy, mitochondrial number, fission and fusion events, and the mitochondrial unfolded protein response (UPR(MT)) requires mitochondrial-nuclear communication for the transcriptional activation of nuclear genes involved in mitochondrial quality control and metabolism. The induction of these signaling pathways is a shared feature in long-lived organisms spanning from yeast to mice. As a result, the role of mitochondrial stress signaling in longevity has been expansively studied. Current and exciting studies provide evidence that mitochondria can also signal among tissues to up-regulate cytoprotective activities to promote healthy aging. Alternatively, mitochondria release signals to modulate innate immunity and systemic inflammatory responses and could consequently promote inflammation during aging. In this review, established and emerging models of mitochondrial stress response pathways and their potential role in modulating longevity are discussed.
Collapse
Affiliation(s)
- Shauna Hill
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104, USA ; Oklahoma City VA Medical Center, Oklahoma City, OK, USA ; Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA ; Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Holly Van Remmen
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104, USA ; Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
63
|
Lifespan regulation under axenic dietary restriction: a close look at the usual suspects. Exp Gerontol 2014; 58:96-103. [PMID: 25066271 DOI: 10.1016/j.exger.2014.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 07/10/2014] [Accepted: 07/23/2014] [Indexed: 11/21/2022]
Abstract
In Caenorhabditis elegans, there are several ways to impose dietary restriction (DR) all of which extend lifespan to a different degree. Until recently, the molecular mechanisms underlying the DR-mediated lifespan extension were completely unknown but extensive efforts led to the identification of several key players in this process. Culture in sterile axenic medium is a method of DR (ADR), leading to an impressive doubling of lifespan. Earlier, we established that ADR-mediated longevity is independent of Ins/IGF signaling and eat-2. The only gene reported to be indispensable for the ADR lifespan effect is cbp-1 (Zhang et al., 2009) which was confirmed in this study. In an attempt to identify more genes involved in ADR-mediated longevity, we tested several candidate genes known to regulate lifespan extension in other DR regimens. We found that cup-4 is equally important as cbp-1 in ADR-mediated longevity and we identified some genes that may contribute to ADR-induced longevity, but are not required for the full lifespan effect.
Collapse
|
64
|
Gámez-Del-Estal MM, Contreras I, Prieto-Pérez R, Ruiz-Rubio M. Epigenetic effect of testosterone in the behavior of C. elegans. A clue to explain androgen-dependent autistic traits? Front Cell Neurosci 2014; 8:69. [PMID: 24624060 PMCID: PMC3940884 DOI: 10.3389/fncel.2014.00069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/17/2014] [Indexed: 12/04/2022] Open
Abstract
Current research indicates that the causes of autism spectrum disorders (ASDs) are multifactorial and include both genetic and environmental factors. To date, several works have associated ASDs with mutations in genes that encode proteins involved in neuronal synapses; however other factors and the way they can interact with the development of the nervous system remain largely unknown. Some studies have established a direct relationship between risk for ASDs and the exposure of the fetus to high testosterone levels during the prenatal stage. In this work, in order to explain possible mechanisms by which this androgenic hormone may interact with the nervous system, C. elegans was used as an experimental model. We observed that testosterone was able to alter the behavioral pattern of the worm, including the gentle touch response and the pharyngeal pumping rate. This impairment of the behavior was abolished using specific RNAi against genes orthologous to the human androgen receptor gene. The effect of testosterone was eliminated in the nhr-69 (ok1926) deficient mutant, a putative ortholog of human AR gene, suggesting that this gene encodes a receptor able to interact with the hormone. On the other hand the testosterone effect remained in the gentle touch response during four generations in the absence of the hormone, indicating that some epigenetic mechanisms could be involved. Sodium butyrate, a histone deacetylase inhibitor, was able to abolish the effect of testosterone. In addition, the lasting effect of testosterone was eliminated after the dauer stage. These results suggest that testosterone may impair the nervous system function generating transgenerational epigenetic marks in the genome. This work may provide new paradigms for understanding biological mechanisms involved in ASDs traits.
Collapse
Affiliation(s)
- M Mar Gámez-Del-Estal
- Departamento de Genética, Universidad de Córdoba, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba Córdoba, Spain
| | - Israel Contreras
- Departamento de Genética, Universidad de Córdoba, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba Córdoba, Spain
| | - Rocío Prieto-Pérez
- Departamento de Genética, Universidad de Córdoba, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba Córdoba, Spain
| | - Manuel Ruiz-Rubio
- Departamento de Genética, Universidad de Córdoba, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba Córdoba, Spain
| |
Collapse
|
65
|
Mobbs CV, Moreno CL, Poplawski M. Metabolic mystery: aging, obesity, diabetes, and the ventromedial hypothalamus. Trends Endocrinol Metab 2013; 24:488-94. [PMID: 23791973 PMCID: PMC4325996 DOI: 10.1016/j.tem.2013.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 05/14/2013] [Accepted: 05/22/2013] [Indexed: 01/04/2023]
Abstract
We propose that energy balance, glucose homeostasis, and aging are all regulated largely by the same nutrient-sensing neurons in the ventromedial hypothalamus (VMH). Although the central role of these neurons in regulating energy balance is clear, their role in regulating glucose homeostasis has only recently become more clear. This latter function may be most relevant to aging and lifespan by controlling the rate of glucose metabolism. Specifically, glucose-sensing neurons in VMH promote peripheral glucose metabolism, and dietary restriction, by reducing glucose metabolism in these neurons, reduces glucose metabolism of the rest of the body, thereby increasing lifespan. Here we discuss recent studies demonstrating the key role of hypothalamic neurons in driving aging and age-related diseases.
Collapse
Affiliation(s)
- Charles V Mobbs
- Departments of Neuroscience, Endocrinology, and Geriatrics, and the Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
66
|
Vora M, Shah M, Ostafi S, Onken B, Xue J, Ni JZ, Gu S, Driscoll M. Deletion of microRNA-80 activates dietary restriction to extend C. elegans healthspan and lifespan. PLoS Genet 2013; 9:e1003737. [PMID: 24009527 PMCID: PMC3757059 DOI: 10.1371/journal.pgen.1003737] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 07/07/2013] [Indexed: 12/12/2022] Open
Abstract
Caloric/dietary restriction (CR/DR) can promote longevity and protect against age-associated disease across species. The molecular mechanisms coordinating food intake with health-promoting metabolism are thus of significant medical interest. We report that conserved Caenorhabditis elegans microRNA-80 (mir-80) is a major regulator of the DR state. mir-80 deletion confers system-wide healthy aging, including maintained cardiac-like and skeletal muscle-like function at advanced age, reduced accumulation of lipofuscin, and extended lifespan, coincident with induction of physiological features of DR. mir-80 expression is generally high under ad lib feeding and low under food limitation, with most striking food-sensitive expression changes in posterior intestine. The acetyltransferase transcription co-factor cbp-1 and interacting transcription factors daf-16/FOXO and heat shock factor-1 hsf-1 are essential for mir-80(Δ) benefits. Candidate miR-80 target sequences within the cbp-1 transcript may confer food-dependent regulation. Under food limitation, lowered miR-80 levels directly or indirectly increase CBP-1 protein levels to engage metabolic loops that promote DR.
Collapse
Affiliation(s)
- Mehul Vora
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Mitalie Shah
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Silvana Ostafi
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Brian Onken
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Jian Xue
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Julie Zhouli Ni
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Sam Gu
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
67
|
Liu B, Yip RK, Zhou Z. Chromatin remodeling, DNA damage repair and aging. Curr Genomics 2013; 13:533-47. [PMID: 23633913 PMCID: PMC3468886 DOI: 10.2174/138920212803251373] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/19/2012] [Accepted: 07/25/2012] [Indexed: 01/26/2023] Open
Abstract
Cells are constantly exposed to a variety of environmental and endogenous conditions causing DNA damage, which is detected and repaired by conserved DNA repair pathways to maintain genomic integrity. Chromatin remodeling is critical in this process, as the organization of eukaryotic DNA into compact chromatin presents a natural barrier to all DNA-related events. Studies on human premature aging syndromes together with normal aging have suggested that accumulated damages might lead to exhaustion of resources that are required for physiological functions and thus accelerate aging. In this manuscript, combining the present understandings and latest findings, we focus mainly on discussing the role of chromatin remodeling in the repair of DNA double-strand breaks (DSBs) and regulation of aging.
Collapse
Affiliation(s)
- Baohua Liu
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China ; Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
68
|
Hokama M, Oka S, Leon J, Ninomiya T, Honda H, Sasaki K, Iwaki T, Ohara T, Sasaki T, LaFerla FM, Kiyohara Y, Nakabeppu Y. Altered expression of diabetes-related genes in Alzheimer's disease brains: the Hisayama study. ACTA ACUST UNITED AC 2013; 24:2476-88. [PMID: 23595620 PMCID: PMC4128707 DOI: 10.1093/cercor/bht101] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus (DM) is considered to be a risk factor for dementia including Alzheimer's disease (AD). However, the molecular mechanism underlying this risk is not well understood. We examined gene expression profiles in postmortem human brains donated for the Hisayama study. Three-way analysis of variance of microarray data from frontal cortex, temporal cortex, and hippocampus was performed with the presence/absence of AD and vascular dementia, and sex, as factors. Comparative analyses of expression changes in the brains of AD patients and a mouse model of AD were also performed. Relevant changes in gene expression identified by microarray analysis were validated by quantitative real-time reverse-transcription polymerase chain reaction and western blotting. The hippocampi of AD brains showed the most significant alteration in gene expression profile. Genes involved in noninsulin-dependent DM and obesity were significantly altered in both AD brains and the AD mouse model, as were genes related to psychiatric disorders and AD. The alterations in the expression profiles of DM-related genes in AD brains were independent of peripheral DM-related abnormalities. These results indicate that altered expression of genes related to DM in AD brains is a result of AD pathology, which may thereby be exacerbated by peripheral insulin resistance or DM.
Collapse
Affiliation(s)
- Masaaki Hokama
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Department of Neurosurgery, Graduate School of Medical Sciences
| | - Sugako Oka
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Research Center for Nucleotide Pool
| | - Julio Leon
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
| | - Toshiharu Ninomiya
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences
| | - Hiroyuki Honda
- Department of Neuropathology, Graduate School of Medical Sciences
| | - Kensuke Sasaki
- Department of Neuropathology, Graduate School of Medical Sciences
| | - Toru Iwaki
- Department of Neuropathology, Graduate School of Medical Sciences
| | - Tomoyuki Ohara
- Department of Neuropsychiatry, Graduate School of Medical Sciences
| | - Tomio Sasaki
- Department of Neurosurgery, Graduate School of Medical Sciences
| | - Frank M LaFerla
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Yutaka Kiyohara
- Department of Environmental Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan and
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Research Center for Nucleotide Pool
| |
Collapse
|
69
|
Bilkei-Gorzo A. The endocannabinoid system in normal and pathological brain ageing. Philos Trans R Soc Lond B Biol Sci 2013; 367:3326-41. [PMID: 23108550 DOI: 10.1098/rstb.2011.0388] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The role of endocannabinoids as inhibitory retrograde transmitters is now widely known and intensively studied. However, endocannabinoids also influence neuronal activity by exerting neuroprotective effects and regulating glial responses. This review centres around this less-studied area, focusing on the cellular and molecular mechanisms underlying the protective effect of the cannabinoid system in brain ageing. The progression of ageing is largely determined by the balance between detrimental, pro-ageing, largely stochastic processes, and the activity of the homeostatic defence system. Experimental evidence suggests that the cannabinoid system is part of the latter system. Cannabinoids as regulators of mitochondrial activity, as anti-oxidants and as modulators of clearance processes protect neurons on the molecular level. On the cellular level, the cannabinoid system regulates the expression of brain-derived neurotrophic factor and neurogenesis. Neuroinflammatory processes contributing to the progression of normal brain ageing and to the pathogenesis of neurodegenerative diseases are suppressed by cannabinoids, suggesting that they may also influence the ageing process on the system level. In good agreement with the hypothesized beneficial role of cannabinoid system activity against brain ageing, it was shown that animals lacking CB1 receptors show early onset of learning deficits associated with age-related histological and molecular changes. In preclinical models of neurodegenerative disorders, cannabinoids show beneficial effects, but the clinical evidence regarding their efficacy as therapeutic tools is either inconclusive or still missing.
Collapse
|
70
|
Dacks PA, Moreno CL, Kim ES, Marcellino BK, Mobbs CV. Role of the hypothalamus in mediating protective effects of dietary restriction during aging. Front Neuroendocrinol 2013; 34:95-106. [PMID: 23262258 PMCID: PMC3626742 DOI: 10.1016/j.yfrne.2012.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/04/2012] [Accepted: 12/11/2012] [Indexed: 01/09/2023]
Abstract
Dietary restriction (DR) can extend lifespan and reduce disease burden across a wide range of animals and yeast but the mechanisms mediating these remarkably protective effects remain to be elucidated despite extensive efforts. Although it has generally been assumed that protective effects of DR are cell-autonomous, there is considerable evidence that many whole-body responses to nutritional state, including DR, are regulated by nutrient-sensing neurons. In this review, we explore the hypothesis that nutrient sensing neurons in the ventromedial hypothalamus hierarchically regulate the protective responses of dietary restriction. We describe multiple peripheral responses that are hierarchically regulated by the hypothalamus and we present evidence for non-cell autonomous signaling of dietary restriction gathered from a diverse range of models including invertebrates, mammalian cell culture, and rodent studies.
Collapse
Affiliation(s)
- Penny A. Dacks
- Department of Neurosciences and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029
- Alzheimer's Drug Discovery Foundation, New York, NY 10019
| | - Cesar L. Moreno
- Department of Neurosciences and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029
| | - Esther S. Kim
- Department of Neurosciences and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029
| | - Bridget K. Marcellino
- Department of Neurosciences and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029
| | - Charles V. Mobbs
- Department of Neurosciences and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|
71
|
Edwards CB, Copes N, Brito AG, Canfield J, Bradshaw PC. Malate and fumarate extend lifespan in Caenorhabditis elegans. PLoS One 2013; 8:e58345. [PMID: 23472183 PMCID: PMC3589421 DOI: 10.1371/journal.pone.0058345] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 02/03/2013] [Indexed: 11/18/2022] Open
Abstract
Malate, the tricarboxylic acid (TCA) cycle metabolite, increased lifespan and thermotolerance in the nematode C. elegans. Malate can be synthesized from fumarate by the enzyme fumarase and further oxidized to oxaloacetate by malate dehydrogenase with the accompanying reduction of NAD. Addition of fumarate also extended lifespan, but succinate addition did not, although all three intermediates activated nuclear translocation of the cytoprotective DAF-16/FOXO transcription factor and protected from paraquat-induced oxidative stress. The glyoxylate shunt, an anabolic pathway linked to lifespan extension in C. elegans, reversibly converts isocitrate and acetyl-CoA to succinate, malate, and CoA. The increased longevity provided by malate addition did not occur in fumarase (fum-1), glyoxylate shunt (gei-7), succinate dehydrogenase flavoprotein (sdha-2), or soluble fumarate reductase F48E8.3 RNAi knockdown worms. Therefore, to increase lifespan, malate must be first converted to fumarate, then fumarate must be reduced to succinate by soluble fumarate reductase and the mitochondrial electron transport chain complex II. Reduction of fumarate to succinate is coupled with the oxidation of FADH2 to FAD. Lifespan extension induced by malate depended upon the longevity regulators DAF-16 and SIR-2.1. Malate supplementation did not extend the lifespan of long-lived eat-2 mutant worms, a model of dietary restriction. Malate and fumarate addition increased oxygen consumption, but decreased ATP levels and mitochondrial membrane potential suggesting a mild uncoupling of oxidative phosphorylation. Malate also increased NADPH, NAD, and the NAD/NADH ratio. Fumarate reduction, glyoxylate shunt activity, and mild mitochondrial uncoupling likely contribute to the lifespan extension induced by malate and fumarate by increasing the amount of oxidized NAD and FAD cofactors.
Collapse
Affiliation(s)
- Clare B. Edwards
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida Tampa, Florida, United States of America
| | - Neil Copes
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida Tampa, Florida, United States of America
| | - Andres G. Brito
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida Tampa, Florida, United States of America
| | - John Canfield
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida Tampa, Florida, United States of America
| | - Patrick C. Bradshaw
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
72
|
Pirola L, Zerzaihi O, Vidal H, Solari F. Protein acetylation mechanisms in the regulation of insulin and insulin-like growth factor 1 signalling. Mol Cell Endocrinol 2012; 362:1-10. [PMID: 22683437 DOI: 10.1016/j.mce.2012.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/02/2012] [Accepted: 05/24/2012] [Indexed: 12/18/2022]
Abstract
Lysine acetylation is a protein post-translational modification (PTM) initially discovered in abundant proteins such as tubulin, whose acetylated form confers microtubule stability, and histones, where it promotes the transcriptionally active chromatin state. Other individual reports identified lysine acetylation as a PTM regulating transcription factors and co-activators including p53, c-Myc, PGC1α and Ku70. The subsequent employment of proteomics-based approaches revealed that lysine acetylation is a widespread PTM, contributing to cellular regulation as much as protein-phosphorylation based mechanisms. In particular, most of the enzymes of central metabolic processes - glycolysis, tricarboxylic acid and urea cycles, fatty acid and glycogen metabolism - have been shown to be regulated by lysine acetylation, through the opposite actions of protein acetyltransferases and deacetylases, making protein acetylation a PTM that connects the cell's energetic state and its consequent metabolic response. In multicellular organisms, insulin/insulin-like signalling (IIS) is a major hormonal regulator of metabolism and cell growth, and very recent research indicates that most of the enzymes participating in IIS are likewise subjected to acetylation-based regulatory mechanisms, that integrate the classical phosphorylation mechanisms. Here, we review the current knowledge on acetylation/deacetylation regulatory phenomena within the IIS cascade, with emphasis on the enzymatic machinery linking the acetylation/deacetylation switch to the metabolic state. We cover this recent area of investigation because pharmacological modulation of protein acetylation/deacetylation has been shown to be a promising target for the amelioration of the metabolic abnormalities occurring in the metabolic syndrome.
Collapse
Affiliation(s)
- Luciano Pirola
- Carmen (Cardiology, Metabolism and Nutrition) Institute, INSERM U1060, Lyon-1 University, South Lyon Medical Faculty, 69921 Oullins, France.
| | | | | | | |
Collapse
|
73
|
Chiang WC, Tishkoff DX, Yang B, Wilson-Grady J, Yu X, Mazer T, Eckersdorff M, Gygi SP, Lombard DB, Hsu AL. C. elegans SIRT6/7 homolog SIR-2.4 promotes DAF-16 relocalization and function during stress. PLoS Genet 2012; 8:e1002948. [PMID: 23028355 PMCID: PMC3441721 DOI: 10.1371/journal.pgen.1002948] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Accepted: 07/27/2012] [Indexed: 01/04/2023] Open
Abstract
FoxO transcription factors and sirtuin family deacetylases regulate diverse biological processes, including stress responses and longevity. Here we show that the Caenorhabditis elegans sirtuin SIR-2.4—homolog of mammalian SIRT6 and SIRT7 proteins—promotes DAF-16–dependent transcription and stress-induced DAF-16 nuclear localization. SIR-2.4 is required for resistance to multiple stressors: heat shock, oxidative insult, and proteotoxicity. By contrast, SIR-2.4 is largely dispensable for DAF-16 nuclear localization and function in response to reduced insulin/IGF-1-like signaling. Although acetylation is known to regulate localization and activity of mammalian FoxO proteins, this modification has not been previously described on DAF-16. We find that DAF-16 is hyperacetylated in sir-2.4 mutants. Conversely, DAF-16 is acetylated by the acetyltransferase CBP-1, and DAF-16 is hypoacetylated and constitutively nuclear in response to cbp-1 inhibition. Surprisingly, a SIR-2.4 catalytic mutant efficiently rescues the DAF-16 localization defect in sir-2.4 null animals. Acetylation of DAF-16 by CBP-1 in vitro is inhibited by either wild-type or mutant SIR-2.4, suggesting that SIR-2.4 regulates DAF-16 acetylation indirectly, by preventing CBP-1-mediated acetylation under stress conditions. Taken together, our results identify SIR-2.4 as a critical regulator of DAF-16 specifically in the context of stress responses. Furthermore, they reveal a novel role for acetylation, modulated by the antagonistic activities of CBP-1 and SIR-2.4, in modulating DAF-16 localization and function. Sensing and responding appropriately to environmental insults is a challenge facing all organisms. In the roundworm C. elegans, the FoxO protein DAF-16 moves to the nucleus in response to stress, where it regulates gene expression and plays a key role in ensuring organismal survival. In this manuscript, we characterize SIR-2.4 as a novel factor that promotes DAF-16 function during stress. SIR-2.4 is a member of a family of proteins called sirtuins, some of which promote increased lifespan in model organisms. Worms lacking SIR-2.4 show impaired DAF-16 nuclear recruitment, DAF-16–dependent gene expression, and survival in response to a variety of stressors. SIR-2.4 regulates DAF-16 by indirectly affecting levels of a modification called acetylation on DAF-16. Overall, our work has revealed SIR-2.4 to be a key new factor in stress resistance and DAF-16 regulation in C. elegans. Future studies will address whether mammalian SIR-2.4 homologs SIRT6 and SIRT7 act similarly towards mammalian FoxO proteins.
Collapse
Affiliation(s)
- Wei-Chung Chiang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Daniel X. Tishkoff
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bo Yang
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Joshua Wilson-Grady
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiaokun Yu
- Department of Internal Medicine, Division of Geriatric Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Travis Mazer
- Department of Internal Medicine, Division of Geriatric Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mark Eckersdorff
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David B. Lombard
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
- Institute of Gerontology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (DBL); (A-LH)
| | - Ao-Lin Hsu
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, Division of Geriatric Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Institute of Gerontology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (DBL); (A-LH)
| |
Collapse
|
74
|
O'Sullivan RJ, Karlseder J. The great unravelling: chromatin as a modulator of the aging process. Trends Biochem Sci 2012; 37:466-76. [PMID: 22959736 DOI: 10.1016/j.tibs.2012.08.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 08/01/2012] [Accepted: 08/07/2012] [Indexed: 02/01/2023]
Abstract
During embryogenesis, the establishment of chromatin states permits the implementation of genetic programs that allow the faithful development of the organism. However, these states are not fixed and there is much evidence that stochastic or chronic deterioration of chromatin organization, as correlated by transcriptional alterations and the accumulation of DNA damage in cells, occurs during the lifespan of the individual. Whether causal or simply a byproduct of macromolecular decay, these changes in chromatin states have emerged as potentially central conduits of mammalian aging. This review explores the current state of our understanding of the links between chromatin organization and aging.
Collapse
Affiliation(s)
- Roderick J O'Sullivan
- The Salk Institute for Biological Studies, Molecular and Cellular Biology Department, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
75
|
Bedford DC, Brindle PK. Is histone acetylation the most important physiological function for CBP and p300? Aging (Albany NY) 2012; 4:247-55. [PMID: 22511639 PMCID: PMC3371760 DOI: 10.18632/aging.100453] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein lysine acetyltransferases (HATs or PATs) acetylate histones and other proteins, and are principally modeled as transcriptional coactivators. CREB binding protein (CBP, CREBBP) and its paralog p300 (EP300) constitute the KAT3 family of HATs in mammals, which has mostly unique sequence identity compared to other HAT families. Although studies in yeast show that many histone mutations cause modest or specific phenotypes, similar studies are impractical in mammals and it remains uncertain if histone acetylation is the primary physiological function for CBP/p300. Nonetheless, CBP and p300 mutations in humans and mice show that these coactivators have important roles in development, physiology, and disease, possibly because CBP and p300 act as network “hubs” with more than 400 described protein interaction partners. Analysis of CBP and p300 mutant mouse fibroblasts reveals CBP/p300 are together chiefly responsible for the global acetylation of histone H3 residues K18 and K27, and contribute to other locus-specific histone acetylation events. CBP/p300 can also be important for transcription, but the recruitment of CBP/p300 and their associated histone acetylation marks do not absolutely correlate with a requirement for gene activation. Rather, it appears that target gene context (e.g. DNA sequence) influences the extent to which CBP and p300 are necessary for transcription.
Collapse
Affiliation(s)
- David C Bedford
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
76
|
Tomás Pereira I, Coletta CE, Perez EV, Kim DH, Gallagher M, Goldberg IG, Rapp PR. CREB-binding protein levels in the rat hippocampus fail to predict chronological or cognitive aging. Neurobiol Aging 2012; 34:832-44. [PMID: 22884549 DOI: 10.1016/j.neurobiolaging.2012.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/29/2012] [Accepted: 07/11/2012] [Indexed: 01/01/2023]
Abstract
Normal cognitive aging is associated with deficits in memory processes dependent on the hippocampus, along with large-scale changes in the hippocampal expression of many genes. Histone acetylation can broadly influence gene expression and has been recently linked to learning and memory. We hypothesized that CREB-binding protein (CBP), a key histone acetyltransferase, may contribute to memory decline in normal aging. Here, we quantified CBP protein levels in the hippocampus of young, aged unimpaired, and aged impaired rats, classified on the basis of spatial memory capacity documented in the Morris water maze. First, CBP-immunofluorescence was quantified across the principal cell layers of the hippocampus using both low and high resolution laser scanning imaging approaches. Second, digital images of CBP immunostaining were analyzed by a multipurpose classifier algorithm with validated sensitivity across many types of input materials. Finally, CBP protein levels in the principal subfields of the hippocampus were quantified by quantitative Western blotting. CBP levels were equivalent as a function of age and cognitive status in all analyses. The sensitivity of the techniques used was substantial, sufficient to reveal differences across the principal cell fields of the hippocampus, and to correctly classify images from young and aged animals independent of CBP immunoreactivity. The results are discussed in the context of recent evidence suggesting that CBP decreases may be most relevant in conditions of aging that, unlike normal cognitive aging, involve significant neuron loss.
Collapse
Affiliation(s)
- Inês Tomás Pereira
- Neuroscience Graduate Program, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
77
|
Lena AM, Mancini M, Rivetti di Val Cervo P, Saintigny G, Mahé C, Melino G, Candi E. MicroRNA-191 triggers keratinocytes senescence by SATB1 and CDK6 downregulation. Biochem Biophys Res Commun 2012; 423:509-14. [PMID: 22683624 PMCID: PMC3400053 DOI: 10.1016/j.bbrc.2012.05.153] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 05/26/2012] [Indexed: 01/08/2023]
Abstract
Keratinocyte replicative senescence has an important role in time-dependent changes of the epidermis, a tissue with high turnover. Senescence encompasses growth arrest during which cells remain metabolically active but acquire a typical enlarged, vacuolar and flattened morphology. It is also accompanied by the expression of endogenous senescence-associated-β-galactosidase and specific gene expression profiles. MicroRNAs levels have been shown to be modulated during keratinocytes senescence, playing key roles in inhibiting proliferation and in the acquisition of senescent markers. Here, we identify miR-191 as an anti-proliferative and replicative senescence-associated miRNA in primary human keratinocytes. Its overexpression is sufficient per se to induce senescence, as evaluated by induction of several senescence-associated markers. We show that SATB1 and CDK6 3′UTRs are two miR-191 direct targets involved in this pathway. Cdk6 and Satb1 protein levels decrease during keratinocytes replicative senescence and their silencing by siRNA is able to induce a G1 block in cell cycle, accompanied by an increase in senescence-associated markers.
Collapse
Affiliation(s)
- A M Lena
- University of Tor Vergata, Department of Experimental Medicine and Biochemical Sciences, Via Montpellier 1, Rome 00133, Italy
| | | | | | | | | | | | | |
Collapse
|
78
|
Cacabelos R, Martínez R, Fernández-Novoa L, Carril JC, Lombardi V, Carrera I, Corzo L, Tellado I, Leszek J, McKay A, Takeda M. Genomics of Dementia: APOE- and CYP2D6-Related Pharmacogenetics. Int J Alzheimers Dis 2012; 2012:518901. [PMID: 22482072 PMCID: PMC3312254 DOI: 10.1155/2012/518901] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 11/12/2011] [Indexed: 01/05/2023] Open
Abstract
Dementia is a major problem of health in developed societies. Alzheimer's disease (AD), vascular dementia, and mixed dementia account for over 90% of the most prevalent forms of dementia. Both genetic and environmental factors are determinant for the phenotypic expression of dementia. AD is a complex disorder in which many different gene clusters may be involved. Most genes screened to date belong to different proteomic and metabolomic pathways potentially affecting AD pathogenesis. The ε4 variant of the APOE gene seems to be a major risk factor for both degenerative and vascular dementia. Metabolic factors, cerebrovascular disorders, and epigenetic phenomena also contribute to neurodegeneration. Five categories of genes are mainly involved in pharmacogenomics: genes associated with disease pathogenesis, genes associated with the mechanism of action of a particular drug, genes associated with phase I and phase II metabolic reactions, genes associated with transporters, and pleiotropic genes and/or genes associated with concomitant pathologies. The APOE and CYP2D6 genes have been extensively studied in AD. The therapeutic response to conventional drugs in patients with AD is genotype specific, with CYP2D6-PMs, CYP2D6-UMs, and APOE-4/4 carriers acting as the worst responders. APOE and CYP2D6 may cooperate, as pleiotropic genes, in the metabolism of drugs and hepatic function. The introduction of pharmacogenetic procedures into AD pharmacological treatment may help to optimize therapeutics.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Rocío Martínez
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Lucía Fernández-Novoa
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Juan C. Carril
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Valter Lombardi
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Iván Carrera
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Lola Corzo
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Iván Tellado
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Jerzy Leszek
- Department of Psychiatry, Medical University of Wroclaw, Pasteura 10, 50-229 Wroclaw, Poland
| | - Adam McKay
- EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, Camilo José Cela University, 15165 Bergondo, Spain
| | - Masatoshi Takeda
- Department of Psychiatry and Behavioral Sciences, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| |
Collapse
|
79
|
Abstract
The maintenance of genomic integrity requires the precise identification and repair of DNA damage. Since DNA is packaged and condensed into higher order chromatin, the events associated with DNA damage recognition and repair are orchestrated within the layers of chromatin. Very similar to transcription, during DNA repair, chromatin remodelling events and histone modifications act in concert to 'open' and relax chromatin structure so that repair proteins can gain access to DNA damage sites. One such histone mark critical for maintaining chromatin structure is acetylated lysine 16 of histone H4 (AcH4K16), a modification that can disrupt higher order chromatin organization and convert it into a more 'relaxed' configuration. We have recently shown that impaired H4K16 acetylation delays the accumulation of repair proteins to double strand break (DSB) sites which results in defective genome maintenance and accelerated aging in a laminopathy-based premature aging mouse model. These results support the idea that epigenetic factors may directly contribute to genomic instability and aging by regulating the efficiency of DSB repair. In this article, the interplay between epigenetic misregulation, defective DNA repair and aging is discussed.
Collapse
|
80
|
Wang CT, Chen YC, Wang YY, Huang MH, Yen TL, Li H, Liang CJ, Sang TK, Ciou SC, Yuh CH, Wang CY, Brummel TJ, Wang HD. Reduced neuronal expression of ribose-5-phosphate isomerase enhances tolerance to oxidative stress, extends lifespan, and attenuates polyglutamine toxicity in Drosophila. Aging Cell 2012; 11:93-103. [PMID: 22040003 DOI: 10.1111/j.1474-9726.2011.00762.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Aging and age-related diseases can be viewed as the result of the lifelong accumulation of stress insults. The identification of mutant strains and genes that are responsive to stress and can alter longevity profiles provides new therapeutic targets for age-related diseases. Here we reported that a Drosophila strain with reduced expression of ribose-5-phosphate isomerase (rpi), EP2456, exhibits increased resistance to oxidative stress and enhanced lifespan. In addition, the strain also displays higher levels of NADPH. The knockdown of rpi in neurons by double-stranded RNA interference recapitulated the lifespan extension and oxidative stress resistance in Drosophila. This manipulation was also found to ameliorate the effects of genetic manipulations aimed at creating a model for studying Huntington's disease by overexpression of polyglutamine in the eye, suggesting that modulating rpi levels could serve as a treatment for normal aging as well as for polyglutamine neurotoxicity.
Collapse
Affiliation(s)
- Ching-Tzu Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Gray SG. The Potential of Epigenetic Compounds in Treating Diabetes. EPIGENETICS IN HUMAN DISEASE 2012:331-367. [DOI: 10.1016/b978-0-12-388415-2.00017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
82
|
Abstract
AbstractAlthough the pathophysiology of neurodegenerative diseases is distinct for each disease, considerable evidence suggests that a single manipulation, dietary restriction, is strikingly protective against a wide range of such diseases. Thus pharmacological mimetics of dietary restrictions could prove widely protective across a range of neurodegenerative diseases. The PPAR transcription complex functions to re-program gene expression in response to nutritional deprivation as well as in response to a wide variety of lipophilic compounds. In mammals there are three PPAR homologs, which dimerize with RXR homologs and recruit coactivators Pgc1-alpha and Creb-binding protein (Cbp). PPARs are currently of clinical interest mainly because PPAR activators are approved for use in humans to reduce lipidemia and to improve glucose control in Type 2 diabetic patients. However, pharmacological enhancement of the activity of the PPAR complex is neuroprotective across a wide variety of models for neuropathological processes, including stroke, Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. Conversely activity of the PPAR transcriptional complex is reduced in a variety of neuropathological processes. The main mechanisms mediating the neuroprotective effects of the PPAR transcription complex appear to be re-routing metabolism away from glucose metabolism and toward alternative subtrates, and reduction in inflammatory processes. Recent evidence suggests that the PPAR transcriptional complex may also mediate protective effects of dietary restriction on neuropathological processes. Thus this complex represents one of the most promising for the development of pharmacological treatment of neurodegenerative diseases.
Collapse
|
83
|
Geng S, Zhou S, Glowacki J. Age-related decline in osteoblastogenesis and 1α-hydroxylase/CYP27B1 in human mesenchymal stem cells: stimulation by parathyroid hormone. Aging Cell 2011; 10:962-71. [PMID: 21824271 DOI: 10.1111/j.1474-9726.2011.00735.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
With aging, there is a decline in bone mass and in osteoblast differentiation of human mesenchymal stem cells (hMSCs) in vitro. Osteoblastogenesis can be stimulated with 1,25-dihydroxyvitamin D(3) [1,25(OH)(2) D(3) ] and, in some hMSCs, by the precursor 25-hydroxyvitamin D(3) (25OHD(3) ). CYP27B1/1α-hydroxylase activates 25OHD(3) and, to a variable degree, hMSCs express CYP27B1. In this study, we tested the hypotheses (i) that age affects responsiveness to 25OHD(3) and expression/activity of CYP27B1 in hMSCs and (ii) that parathyroid hormone (PTH) upregulates CYP27B1 in hMSCs, as it does in renal cells. There were age-related declines in osteoblastogenesis (n=8, P=0.0286) and in CYP27B1 gene expression (n=27, r= -0.498; P=0.008) in hMSCs. Unlike hMSCs from young subjects (≤50 years), hMSCs from older subjects (≥55 years) were resistant to 25OHD(3) stimulation of osteoblastogenesis. PTH1-34 (100 nm) provided hMSCs with responsiveness to 25OHD(3) (P=0.0313, Wilcoxon matched pairs test) and with two episodes of increased 1,25(OH)(2) D(3) synthesis, of cAMP response element binding protein (CREB) activation, and of CYP27B1 upregulation. Both increases in CYP27B1 expression by PTH were obliterated by CREB-siRNA or KG-501 (which specifically inhibits the downstream binding of activated CREB). Only the second period of CREB signaling was diminished by AG1024, an inhibitor of insulin-like growth factor-I receptor kinase. Thus, PTH stimulated hMSCs from elders with responsiveness to 25OHD(3) by upregulating expression/activity of CYP27B1 and did so through CREB and IGF-I pathways.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | | | |
Collapse
|
84
|
Lublin A, Isoda F, Patel H, Yen K, Nguyen L, Hajje D, Schwartz M, Mobbs C. FDA-approved drugs that protect mammalian neurons from glucose toxicity slow aging dependent on cbp and protect against proteotoxicity. PLoS One 2011; 6:e27762. [PMID: 22114686 PMCID: PMC3218048 DOI: 10.1371/journal.pone.0027762] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/24/2011] [Indexed: 12/14/2022] Open
Abstract
Screening a library of drugs with known safety profiles in humans yielded 30 drugs that reliably protected mammalian neurons against glucose toxicity. Subsequent screening demonstrated that 6 of these 30 drugs increase lifespan in C. elegans: caffeine, ciclopirox olamine, tannic acid, acetaminophen, bacitracin, and baicalein. Every drug significantly reduced the age-dependent acceleration of mortality rate. These protective effects were blocked by RNAi inhibition of cbp-1 in adults only, which also blocks protective effects of dietary restriction. Only 2 drugs, caffeine and tannic acid, exhibited a similar dependency on DAF-16. Caffeine, tannic acid, and bacitracin also reduced pathology in a transgenic model of proteotoxicity associated with Alzheimer's disease. These results further support a key role for glucose toxicity in driving age-related pathologies and for CBP-1 in protection against age-related pathologies. These results also provide novel lead compounds with known safety profiles in human for treatment of age-related diseases, including Alzheimer's disease and diabetic complications.
Collapse
Affiliation(s)
- Alex Lublin
- Fishberg Center for Neurobiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Fumiko Isoda
- Fishberg Center for Neurobiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Harshil Patel
- Fishberg Center for Neurobiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Kelvin Yen
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Linda Nguyen
- Fishberg Center for Neurobiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Daher Hajje
- Fishberg Center for Neurobiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Marc Schwartz
- Fishberg Center for Neurobiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Charles Mobbs
- Fishberg Center for Neurobiology, Mount Sinai School of Medicine, New York, New York, United States of America
| |
Collapse
|
85
|
Abstract
It has long been understood that many of the same manipulations that increase longevity in Caenorhabditis elegans also increase resistance to various acute stressors, and vice-versa; moreover these findings hold in more complex organisms as well. Nevertheless, the mechanistic relationship between these phenotypes remains unclear, and in many cases the overlap between stress resistance and longevity is inexact. Here we review the known connections between stress resistance and longevity, discuss instances in which these connections are absent, and summarize the theoretical explanations that have been posited for these phenomena.
Collapse
Affiliation(s)
- Katherine I. Zhou
- Department of Molecular, Cellular and Developmental Biology, PO Box 208103, Yale University, New Haven, CT 06520
| | - Zachary Pincus
- Department of Molecular, Cellular and Developmental Biology, PO Box 208103, Yale University, New Haven, CT 06520
| | - Frank J. Slack
- Department of Molecular, Cellular and Developmental Biology, PO Box 208103, Yale University, New Haven, CT 06520
| |
Collapse
|
86
|
Krishnan V, Chow MZY, Wang Z, Zhang L, Liu B, Liu X, Zhou Z. Histone H4 lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24-deficient mice. Proc Natl Acad Sci U S A 2011; 108:12325-30. [PMID: 21746928 PMCID: PMC3145730 DOI: 10.1073/pnas.1102789108] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Specific point mutations in lamin A gene have been shown to accelerate aging in humans and mice. Particularly, a de novo mutation at G608G position impairs lamin A processing to produce the mutant protein progerin, which causes the Hutchinson Gilford progeria syndrome. The premature aging phenotype of Hutchinson Gilford progeria syndrome is largely recapitulated in mice deficient for the lamin A-processing enzyme, Zmpste24. We have previously reported that Zmpste24 deficiency results in genomic instability and early cellular senescence due to the delayed recruitment of repair proteins to sites of DNA damage. Here, we further investigate the molecular mechanism underlying delayed DNA damage response and identify a histone acetylation defect in Zmpste24(-/-) mice. Specifically, histone H4 was hypoacetylated at a lysine 16 residue (H4K16), and this defect was attributed to the reduced association of a histone acetyltransferase, Mof, to the nuclear matrix. Given the reversible nature of epigenetic changes, rescue experiments performed either by Mof overexpression or by histone deacetylase inhibition promoted repair protein recruitment to DNA damage sites and substantially ameliorated aging-associated phenotypes, both in vitro and in vivo. The life span of Zmpste24(-/-) mice was also extended with the supplementation of a histone deacetylase inhibitor, sodium butyrate, to drinking water. Consistent with recent data showing age-dependent buildup of unprocessable lamin A in physiological aging, aged wild-type mice also showed hypoacetylation of H4K16. The above results shed light on how chromatin modifications regulate the DNA damage response and suggest that the reversal of epigenetic marks could make an attractive therapeutic target against laminopathy-based progeroid pathologies.
Collapse
Affiliation(s)
- Vaidehi Krishnan
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, Center of Development, Reproduction and Growth, University of Hong Kong, Hong Kong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117456
| | - Maggie Zi Ying Chow
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, Center of Development, Reproduction and Growth, University of Hong Kong, Hong Kong
| | - Zimei Wang
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, Center of Development, Reproduction and Growth, University of Hong Kong, Hong Kong
- Department of Biochemistry and Molecular Medicine, School of Medicine, Shenzhen University, Shenzhen 518060, China; and
| | - Le Zhang
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, Center of Development, Reproduction and Growth, University of Hong Kong, Hong Kong
| | - Baohua Liu
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, Center of Development, Reproduction and Growth, University of Hong Kong, Hong Kong
- Institute for Aging Research, Guang Dong Medical College, Dongguan, China
| | - Xinguang Liu
- Institute for Aging Research, Guang Dong Medical College, Dongguan, China
| | - Zhongjun Zhou
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, Center of Development, Reproduction and Growth, University of Hong Kong, Hong Kong
| |
Collapse
|
87
|
Alic N, Andrews TD, Giannakou ME, Papatheodorou I, Slack C, Hoddinott MP, Cochemé HM, Schuster EF, Thornton JM, Partridge L. Genome-wide dFOXO targets and topology of the transcriptomic response to stress and insulin signalling. Mol Syst Biol 2011; 7:502. [PMID: 21694719 PMCID: PMC3159968 DOI: 10.1038/msb.2011.36] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/17/2011] [Indexed: 01/15/2023] Open
Abstract
FoxO transcription factors, inhibited by insulin/insulin-like growth factor signalling (IIS), are crucial players in numerous organismal processes including lifespan. Using genomic tools, we uncover over 700 direct dFOXO targets in adult female Drosophila. dFOXO is directly required for transcription of several IIS components and interacting pathways, such as TOR, in the wild-type fly. The genomic locations occupied by dFOXO in adults are different from those observed in larvae or cultured cells. These locations remain unchanged upon activation by stresses or reduced IIS, but the binding is increased and additional targets activated upon genetic reduction in IIS. We identify the part of the IIS transcriptional response directly controlled by dFOXO and the indirect effects and show that parts of the transcriptional response to IIS reduction do not require dfoxo. Promoter analyses revealed GATA and other forkhead factors as candidate mediators of the indirect and dfoxo-independent effects. We demonstrate genome-wide evolutionary conservation of dFOXO targets between the fly and the worm Caenorhabditis elegans, enriched for a second tier of regulators including the dHR96/daf-12 nuclear hormone receptor.
Collapse
Affiliation(s)
- Nazif Alic
- Institute of Healthy Ageing, and GEE, University College London, London, UK
| | - T Daniel Andrews
- EMBL—European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Maria E Giannakou
- Institute of Healthy Ageing, and GEE, University College London, London, UK
| | - Irene Papatheodorou
- Institute of Healthy Ageing, and GEE, University College London, London, UK
- EMBL—European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Cathy Slack
- Institute of Healthy Ageing, and GEE, University College London, London, UK
| | - Matthew P Hoddinott
- Institute of Healthy Ageing, and GEE, University College London, London, UK
- Max-Planck Institute for the Biology of Ageing, ZMMK Forschungsgebäude, Köln, Germany
| | - Helena M Cochemé
- Institute of Healthy Ageing, and GEE, University College London, London, UK
| | - Eugene F Schuster
- Institute of Healthy Ageing, and GEE, University College London, London, UK
| | - Janet M Thornton
- EMBL—European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Linda Partridge
- Institute of Healthy Ageing, and GEE, University College London, London, UK
- Max-Planck Institute for the Biology of Ageing, ZMMK Forschungsgebäude, Köln, Germany
| |
Collapse
|
88
|
Poplawski MM, Mastaitis JW, Isoda F, Grosjean F, Zheng F, Mobbs CV. Reversal of diabetic nephropathy by a ketogenic diet. PLoS One 2011; 6:e18604. [PMID: 21533091 PMCID: PMC3080383 DOI: 10.1371/journal.pone.0018604] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 03/11/2011] [Indexed: 01/15/2023] Open
Abstract
Intensive insulin therapy and protein restriction delay the development of nephropathy in a variety of conditions, but few interventions are known to reverse nephropathy. Having recently observed that the ketone 3-beta-hydroxybutyric acid (3-OHB) reduces molecular responses to glucose, we hypothesized that a ketogenic diet, which produces prolonged elevation of 3-OHB, may reverse pathological processes caused by diabetes. To address this hypothesis, we assessed if prolonged maintenance on a ketogenic diet would reverse nephropathy produced by diabetes. In mouse models for both Type 1 (Akita) and Type 2 (db/db) diabetes, diabetic nephropathy (as indicated by albuminuria) was allowed to develop, then half the mice were switched to a ketogenic diet. After 8 weeks on the diet, mice were sacrificed to assess gene expression and histology. Diabetic nephropathy, as indicated by albumin/creatinine ratios as well as expression of stress-induced genes, was completely reversed by 2 months maintenance on a ketogenic diet. However, histological evidence of nephropathy was only partly reversed. These studies demonstrate that diabetic nephropathy can be reversed by a relatively simple dietary intervention. Whether reduced glucose metabolism mediates the protective effects of the ketogenic diet remains to be determined.
Collapse
Affiliation(s)
- Michal M. Poplawski
- Fishberg Center for Neurobiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Jason W. Mastaitis
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Fumiko Isoda
- Fishberg Center for Neurobiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Fabrizio Grosjean
- Department of Geriatrics and Palliative Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Feng Zheng
- Department of Geriatrics and Palliative Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Charles V. Mobbs
- Fishberg Center for Neurobiology, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
89
|
Yen K, Narasimhan SD, Tissenbaum HA. DAF-16/Forkhead box O transcription factor: many paths to a single Fork(head) in the road. Antioxid Redox Signal 2011; 14:623-34. [PMID: 20673162 PMCID: PMC3021330 DOI: 10.1089/ars.2010.3490] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Caenorhabditis elegans Forkhead box O transcription factor (FOXO) homolog DAF-16 functions as a central mediator of multiple biological processes such as longevity, development, fat storage, stress resistance, and reproduction. In C. elegans, similar to other systems, DAF-16 functions as the downstream target of a conserved, well-characterized insulin/insulin-like growth factor (IGF)-1 signaling pathway. This cascade is comprised of an insulin/IGF-1 receptor, which signals through a conserved PI 3-kinase/AKT pathway that ultimately downregulates DAF-16/FOXO activity. Importantly, studies have shown that multiple pathways intersect with the insulin/IGF-1 signaling pathway and impinge on DAF-16 for their regulation. Therefore, in C. elegans, the single FOXO family member, DAF-16, integrates signals from several pathways and then regulates its many downstream target genes.
Collapse
Affiliation(s)
- Kelvin Yen
- Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
90
|
Future Trends in the Pharmacogenomics of Brain Disorders and Dementia: Influence of APOE and CYP2D6 Variants. Pharmaceuticals (Basel) 2010. [PMCID: PMC4034082 DOI: 10.3390/ph3103040] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
About 80% of functional genes in the human genome are expressed in the brain and over 1,200 different genes have been associated with the pathogenesis of CNS disorders and dementia. Pharmacogenetic studies of psychotropic drug response have focused on determining the relationship between variations in specific candidate genes and the positive and adverse effects of drug treatment. Approximately, 18% of neuroleptics are substrates of CYP1A2 enzymes, 40% of CYP2D6, and 23% of CYP3A4; 24% of antidepressants are substrates of CYP1A2 enzymes, 5% of CYP2B6, 38% of CYP2C19, 85% of CYP2D6, and 38% of CYP3A4; 7% of benzodiazepines are substrates of CYP2C19 enzymes, 20% of CYP2D6, and 95% of CYP3A4. 10-20% of Western populations are defective in genes of the CYP superfamily; and the pharmacogenomic response of psychotropic drugs also depends on genetic variants associated with dementia. Prospective studies with anti-dementia drugs or with multifactorial strategies have revealed that the therapeutic response to conventional drugs in Alzheimer’s disease is genotype-specific. The disease-modifying effects (cognitive performance, biomarker modification) of therapeutic intervention are APOE-dependent, with APOE-4 carriers acting as the worst responders (APOE-3/3 > APOE-3/4 > APOE-4/4). APOE-CYP2D6 interactions also influence the therapeutic outcome in patients with dementia.
Collapse
|