51
|
Gazulla CR, Auladell A, Ruiz-González C, Junger PC, Royo-Llonch M, Duarte CM, Gasol JM, Sánchez O, Ferrera I. Global diversity and distribution of aerobic anoxygenic phototrophs in the tropical and subtropical oceans. Environ Microbiol 2022; 24:2222-2238. [PMID: 35084095 DOI: 10.1111/1462-2920.15835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/17/2021] [Accepted: 10/29/2021] [Indexed: 01/04/2023]
Abstract
The aerobic anoxygenic phototrophic (AAP) bacteria are common in most marine environments but their global diversity and biogeography remain poorly characterized. Here, we analyzed AAP communities across 113 globally-distributed surface ocean stations sampled during the Malaspina Expedition in the tropical and subtropical ocean. By means of amplicon sequencing of the pufM gene, a genetic marker for this functional group, we show that AAP communities along the surface ocean were mainly composed of members of the Halieaceae (Gammaproteobacteria), which were adapted to a large range of environmental conditions, and of different clades of the Alphaproteobacteria, which seemed to dominate under particular circumstances, such as in the oligotrophic gyres. AAP taxa were spatially structured within each of the studied oceans, with communities from adjacent stations sharing more taxonomic similarities. AAP communities were composed of a large pool of rare members and several habitat specialists. When compared to the surface ocean prokaryotic and picoeukaryotic communities, it appears that AAP communities display an idiosyncratic global biogeographical pattern, dominated by selection processes and less influenced by dispersal limitation. Our study contributes to the understanding of how AAP communities are distributed in the horizontal dimension and the mechanisms underlying their distribution across the global surface ocean.
Collapse
Affiliation(s)
- Carlota R Gazulla
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Catalunya, 08193, Spain.,Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, 08003, Spain
| | - Adrià Auladell
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, 08003, Spain
| | - Clara Ruiz-González
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, 08003, Spain
| | - Pedro C Junger
- Department of Hydrobiology (DHB), Laboratory of Microbial Processes and Biodiversity (LMPB), Universidade Federal de São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil
| | - Marta Royo-Llonch
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, 08003, Spain
| | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Josep M Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Catalunya, 08003, Spain.,Centre for Marine Ecosystems Research, School of Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Olga Sánchez
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Catalunya, 08193, Spain
| | - Isabel Ferrera
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, IEO-CSIC, 29640 Fuengirola, Málaga, Spain
| |
Collapse
|
52
|
Khot V, Zorz J, Gittins DA, Chakraborty A, Bell E, Bautista MA, Paquette AJ, Hawley AK, Novotnik B, Hubert CRJ, Strous M, Bhatnagar S. CANT-HYD: A Curated Database of Phylogeny-Derived Hidden Markov Models for Annotation of Marker Genes Involved in Hydrocarbon Degradation. Front Microbiol 2022; 12:764058. [PMID: 35069469 PMCID: PMC8767102 DOI: 10.3389/fmicb.2021.764058] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/08/2021] [Indexed: 02/04/2023] Open
Abstract
Many pathways for hydrocarbon degradation have been discovered, yet there are no dedicated tools to identify and predict the hydrocarbon degradation potential of microbial genomes and metagenomes. Here we present the Calgary approach to ANnoTating HYDrocarbon degradation genes (CANT-HYD), a database of 37 HMMs of marker genes involved in anaerobic and aerobic degradation pathways of aliphatic and aromatic hydrocarbons. Using this database, we identify understudied or overlooked hydrocarbon degradation potential in many phyla. We also demonstrate its application in analyzing high-throughput sequence data by predicting hydrocarbon utilization in large metagenomic datasets from diverse environments. CANT-HYD is available at https://github.com/dgittins/CANT-HYD-HydrocarbonBiodegradation.
Collapse
Affiliation(s)
- Varada Khot
- Energy Bioengineering and Geomicrobiology Group, Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Jackie Zorz
- Energy Bioengineering and Geomicrobiology Group, Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Daniel A Gittins
- Energy Bioengineering and Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Anirban Chakraborty
- Energy Bioengineering and Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Emma Bell
- Energy Bioengineering and Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - María A Bautista
- Energy Bioengineering and Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Alexandre J Paquette
- Energy Bioengineering and Geomicrobiology Group, Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Alyse K Hawley
- Energy Bioengineering and Geomicrobiology Group, Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Breda Novotnik
- Energy Bioengineering and Geomicrobiology Group, Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Casey R J Hubert
- Energy Bioengineering and Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Marc Strous
- Energy Bioengineering and Geomicrobiology Group, Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Srijak Bhatnagar
- Energy Bioengineering and Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
53
|
Berg JS, Ahmerkamp S, Pjevac P, Hausmann B, Milucka J, Kuypers MMM. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6517451. [PMID: 35094062 PMCID: PMC9075580 DOI: 10.1093/femsre/fuac006] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 12/01/2022] Open
Abstract
Oxygen (O2) is the ultimate oxidant on Earth and its respiration confers such an energetic advantage that microorganisms have evolved the capacity to scavenge O2 down to nanomolar concentrations. The respiration of O2 at extremely low levels is proving to be common to diverse microbial taxa, including organisms formerly considered strict anaerobes. Motivated by recent advances in O2 sensing and DNA/RNA sequencing technologies, we performed a systematic review of environmental metatranscriptomes revealing that microbial respiration of O2 at nanomolar concentrations is ubiquitous and drives microbial activity in seemingly anoxic aquatic habitats. These habitats were key to the early evolution of life and are projected to become more prevalent in the near future due to anthropogenic-driven environmental change. Here, we summarize our current understanding of aerobic microbial respiration under apparent anoxia, including novel processes, their underlying biochemical pathways, the involved microorganisms, and their environmental importance and evolutionary origin.
Collapse
Affiliation(s)
- Jasmine S Berg
- Corrresponding author: Géopolis, Quartier Unil-Mouline, Université de Lausanne, 1015 Lausanne, Switzerland. E-mail:
| | - Soeren Ahmerkamp
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen 2359, Germany
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna and the Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna 1090, Austria
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1090, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna 1090, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - Jana Milucka
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen 2359, Germany
| | - Marcel M M Kuypers
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen 2359, Germany
| |
Collapse
|
54
|
Karthikeyan S, Hatt JK, Kim M, Spain JC, Huettel M, Kostka JE, Konstantinidis KT. A novel, divergent alkane monooxygenase (alkB) clade involved in crude oil biodegradation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:830-840. [PMID: 34672103 DOI: 10.1111/1758-2229.13018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Alkanes are ubiquitous in marine ecosystems and originate from diverse sources ranging from natural oil seeps to anthropogenic inputs and biogenic production by cyanobacteria. Enzymes that degrade cyanobacterial alkanes (typically C15-C17 compounds) such as the alkane monooxygenase (AlkB) are widespread, but it remains unclear whether or not AlkB variants exist that specialize in degradation of crude oil from natural or accidental spills, a much more complex mixture of long-chain hydrocarbons. In the present study, large-scale analysis of available metagenomic and genomic data from the Gulf of Mexico (GoM) oil spill revealed a novel, divergent AlkB clade recovered from genomes with no cultured representatives that was dramatically increased in abundance in crude-oil impacted ecosystems. In contrast, the AlkB clades associated with biotransformation of cyanobacterial alkanes belonged to 'canonical' or hydrocarbonoclastic clades, and based on metatranscriptomics data and compared to the novel clade, were much more weakly expressed during crude oil biodegradation in laboratory mesocosms. The absence of this divergent AlkB clade in metagenomes of uncontaminated samples from the global ocean survey but not from the GoM as well as its frequent horizontal gene transfer indicated a priming effect of the Gulf for crude oil biodegradation likely driven by natural oil seeps.
Collapse
Affiliation(s)
- Smruthi Karthikeyan
- Department of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Janet K Hatt
- Department of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Minjae Kim
- Department of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jim C Spain
- Center for Environmental Diagnostics & Bioremediation, University of West Florida, 11000 University Parkway, Pensacola, FL, USA
| | - Markus Huettel
- Department of Earth, Ocean and Atmospheric Sciences, Florida State University, Tallahassee, FL, USA
| | - Joel E Kostka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Konstantinos T Konstantinidis
- Department of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
55
|
Milivojević T, Rahman SN, Raposo D, Siccha M, Kucera M, Morard R. High variability in SSU rDNA gene copy number among planktonic foraminifera revealed by single-cell qPCR. ISME COMMUNICATIONS 2021; 1:63. [PMID: 36750661 PMCID: PMC9723665 DOI: 10.1038/s43705-021-00067-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 01/09/2023]
Abstract
Metabarcoding has become the workhorse of community ecology. Sequencing a taxonomically informative DNA fragment from environmental samples gives fast access to community composition across taxonomic groups, but it relies on the assumption that the number of sequences for each taxon correlates with its abundance in the sampled community. However, gene copy number varies among and within taxa, and the extent of this variability must therefore be considered when interpreting community composition data derived from environmental sequencing. Here we measured with single-cell qPCR the SSU rDNA gene copy number of 139 specimens of five species of planktonic foraminifera. We found that the average gene copy number varied between of ~4000 to ~50,000 gene copies between species, and individuals of the same species can carry between ~300 to more than 350,000 gene copies. This variability cannot be explained by differences in cell size and considering all plausible sources of bias, we conclude that this variability likely reflects dynamic genomic processes acting during the life cycle. We used the observed variability to model its impact on metabarcoding and found that the application of a correcting factor at species level may correct the derived relative abundances, provided sufficiently large populations have been sampled.
Collapse
Affiliation(s)
- Tamara Milivojević
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, 28359, Bremen, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Shirin Nurshan Rahman
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, 28359, Bremen, Germany
| | - Débora Raposo
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, 28359, Bremen, Germany
| | - Michael Siccha
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, 28359, Bremen, Germany
| | - Michal Kucera
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, 28359, Bremen, Germany
| | - Raphaël Morard
- MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, 28359, Bremen, Germany.
| |
Collapse
|
56
|
Marchet C, Kerbiriou M, Limasset A. BLight: efficient exact associative structure for k-mers. Bioinformatics 2021; 37:2858-2865. [PMID: 33821954 DOI: 10.1093/bioinformatics/btab217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 02/18/2021] [Accepted: 04/01/2021] [Indexed: 02/02/2023] Open
Abstract
MOTIVATION A plethora of methods and applications share the fundamental need to associate information to words for high-throughput sequence analysis. Doing so for billions of k-mers is commonly a scalability problem, as exact associative indexes can be memory expensive. Recent works take advantage of overlaps between k-mers to leverage this challenge. Yet, existing data structures are either unable to associate information to k-mers or are not lightweight enough. RESULTS We present BLight, a static and exact data structure able to associate unique identifiers to k-mers and determine their membership in a set without false positive that scales to huge k-mer sets with a low memory cost. This index combines an extremely compact representation along with very fast queries. Besides, its construction is efficient and needs no additional memory. Our implementation achieves to index the k-mers from the human genome using 8 GB of RAM (23 bits per k-mer) within 10 min and the k-mers from the large axolotl genome using 63 GB of memory (27 bits per k-mer) within 76 min. Furthermore, while being memory efficient, the index provides a very high throughput: 1.4 million queries per second on a single CPU or 16.1 million using 12 cores. Finally, we also present how BLight can practically represent metagenomic and transcriptomic sequencing data to highlight its wide applicative range. AVAILABILITY AND IMPLEMENTATION We wrote the BLight index as an open source C++ library under the AGPL3 license available at github.com/Malfoy/BLight. It is designed as a user-friendly library and comes along with code usage samples.
Collapse
Affiliation(s)
- Camille Marchet
- University of Lille, CRIStAL CNRS, UMR 9189 - F-59000 Lille, France
| | - Mael Kerbiriou
- University of Lille, CRIStAL CNRS, UMR 9189 - F-59000 Lille, France
| | - Antoine Limasset
- University of Lille, CRIStAL CNRS, UMR 9189 - F-59000 Lille, France
| |
Collapse
|
57
|
Microbiome Studies from Saudi Arabia over the Last 10 Years: Achievements, Gaps, and Future Directions. Microorganisms 2021; 9:microorganisms9102021. [PMID: 34683342 PMCID: PMC8537179 DOI: 10.3390/microorganisms9102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
In the past ten years, microbiome studies have shown tremendous potentiality for implementation of understanding microbiome structures and functions of various biomes and application of this knowledge for human betterment. Saudi Arabia is full of geographical, ecological, ethnical, and industrial diversities and scientific capacities. Therefore, there is a great potential in Saudi Arabia to conduct and implement microbiome-based research and applications. However, there is no review available on where Saudi Arabia stands with respect to global microbiome research trends. This review highlights the metagenome-assisted microbiome research from Saudi Arabia compared to the global focuses on microbiome research. Further, it also highlights the gaps and areas that should be focused on by Saudi microbiome researchers and the possible initiatives to be taken by Saudi government and universities. This literature review shows that the global trends of microbiome research cover a broad spectrum of human and animal health conditions and diseases, environmental and antimicrobial resistance surveillance, surveillance of food and food processing, production of novel industrial enzymes and bioactive pharmaceutical products, and space applications. However, Saudi microbiome studies are mostly confined to very few aspects of health (human and animal) and environment/ecology in last ten years, without much application. Therefore, Saudi Arabia should focus more on applied microbiome research through government, academic, and industry initiatives and global cooperation to match the global trends.
Collapse
|
58
|
Tang K, Wang W, Sun Y, Zhou Y, Wang P, Guo Y, Wang X. Prophage Tracer: precisely tracing prophages in prokaryotic genomes using overlapping split-read alignment. Nucleic Acids Res 2021; 49:e128. [PMID: 34551431 PMCID: PMC8682789 DOI: 10.1093/nar/gkab824] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023] Open
Abstract
The life cycle of temperate phages includes a lysogenic cycle stage when the phage integrates into the host genome and becomes a prophage. However, the identification of prophages that are highly divergent from known phages remains challenging. In this study, by taking advantage of the lysis-lysogeny switch of temperate phages, we designed Prophage Tracer, a tool for recognizing active prophages in prokaryotic genomes using short-read sequencing data, independent of phage gene similarity searching. Prophage Tracer uses the criterion of overlapping split-read alignment to recognize discriminative reads that contain bacterial (attB) and phage (attP) att sites representing prophage excision signals. Performance testing showed that Prophage Tracer could predict known prophages with precise boundaries, as well as novel prophages. Two novel prophages, dsDNA and ssDNA, encoding highly divergent major capsid proteins, were identified in coral-associated bacteria. Prophage Tracer is a reliable data mining tool for the identification of novel temperate phages and mobile genetic elements. The code for the Prophage Tracer is publicly available at https://github.com/WangLab-SCSIO/Prophage_Tracer.
Collapse
Affiliation(s)
- Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yamin Sun
- Research Center for Functional Genomics and Biochip, 23 Hongda St., Tianjin 300457, China
| | - Yiqing Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
59
|
Minardi D, Ryder D, Del Campo J, Garcia Fonseca V, Kerr R, Mortensen S, Pallavicini A, Bass D. Improved high throughput protocol for targeting eukaryotic symbionts in metazoan and eDNA samples. Mol Ecol Resour 2021; 22:664-678. [PMID: 34549891 PMCID: PMC9292944 DOI: 10.1111/1755-0998.13509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023]
Abstract
Eukaryote symbionts of animals are major drivers of ecosystems not only because of their diversity and host interactions from variable pathogenicity but also through different key roles such as commensalism and to different types of interdependence. However, molecular investigations of metazoan eukaryomes require minimising coamplification of homologous host genes. In this study we (1) identified a previously published “antimetazoan” reverse primer to theoretically enable amplification of a wider range of microeukaryotic symbionts, including more evolutionarily divergent sequence types, (2) evaluated in silico several antimetazoan primer combinations, and (3) optimised the application of the best performing primer pair for high throughput sequencing (HTS) by comparing one‐step and two‐step PCR amplification approaches, testing different annealing temperatures and evaluating the taxonomic profiles produced by HTS and data analysis. The primer combination 574*F – UNonMet_DB tested in silico showed the largest diversity of nonmetazoan sequence types in the SILVA database and was also the shortest available primer combination for broadly‐targeting antimetazoan amplification across the 18S rRNA gene V4 region. We demonstrate that the one‐step PCR approach used for library preparation produces significantly lower proportions of metazoan reads, and a more comprehensive coverage of host‐associated microeukaryote reads than the two‐step approach. Using higher PCR annealing temperatures further increased the proportion of nonmetazoan reads in all sample types tested. The resulting V4 region amplicons were taxonomically informative even when only the forward read is analysed. This region also revealed a diversity of known and putatively parasitic lineages and a wider diversity of host‐associated eukaryotes.
Collapse
Affiliation(s)
- Diana Minardi
- Centre for Environment, Fisheries and Aquaculture Research, Weymouth, Dorset, UK.,Cefas, International Centre for Aquatic Animal Health, Weymouth, Dorset, UK
| | - David Ryder
- Centre for Environment, Fisheries and Aquaculture Research, Weymouth, Dorset, UK.,Cefas, International Centre for Aquatic Animal Health, Weymouth, Dorset, UK
| | - Javier Del Campo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Vera Garcia Fonseca
- Centre for Environment, Fisheries and Aquaculture Research, Weymouth, Dorset, UK.,Cefas, International Centre for Aquatic Animal Health, Weymouth, Dorset, UK
| | - Rose Kerr
- Centre for Environment, Fisheries and Aquaculture Research, Weymouth, Dorset, UK.,Cefas, International Centre for Aquatic Animal Health, Weymouth, Dorset, UK
| | | | | | - David Bass
- Centre for Environment, Fisheries and Aquaculture Research, Weymouth, Dorset, UK.,Cefas, International Centre for Aquatic Animal Health, Weymouth, Dorset, UK.,Department of Life Sciences, The Natural History Museum, London, UK
| |
Collapse
|
60
|
Vad J, Barnhill KA, Kazanidis G, Roberts JM. Human impacts on deep-sea sponge grounds: Applying environmental omics to monitoring. ADVANCES IN MARINE BIOLOGY 2021; 89:53-78. [PMID: 34583815 DOI: 10.1016/bs.amb.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sponges (Phylum Porifera) are the oldest extant Metazoans. In the deep sea, sponges can occur at high densities forming habitats known as sponge grounds. Sponge grounds can extend over large areas of up to hundreds of km2 and are biodiversity hotspots. However, as human activities, including deep-water hydrocarbon extraction, continue to expand into areas harbouring sponge grounds, understanding how anthropogenic impacts affect sponges and the ecosystem services they provide at multiple biological scales (community, individual and (sub)cellular levels) is key for achieving sustainable management. This chapter (1) provides an update to the chapter of Advances in Marine Biology Volume 79 entitled "Potential Impacts of Offshore Oil and Gas Activities on Deep-Sea Sponges and the Habitats They Form" and (2) discusses the use of omics as a future tool for deep-sea ecosystem monitoring. While metagenomics and (meta)transcriptomics studies have contributed to improve our understanding of sponge biology in recent years, metabolomics analysis has mostly been used to identify natural products. The sponge metabolome, therefore, remains vastly unknown despite the fact that the metabolome is a key link between the genotype and phenotype, giving us a unique new insight to how key components of an ecosystem are functioning. As the fraction of the metabolome released into the seawater, the sponge exometabolome has only just started to be characterised in comparative environmental metabolomic studies. Yet, the sponge exometabolome constitute a unique opportunity for the identification of biomarkers of sponge health as compounds can be measured in seawater, bypassing the need for physical samples which can still be difficult to collect in the deep sea. Within sponge grounds, the characterisation of a shared sponge exometabolome could lead to the identification of biomarkers of ecosystem functioning and overall health. Challenges remain in establishing omics approaches in environmental monitoring but constant technological advances and reduction in costs means these techniques will become widely available in the future.
Collapse
Affiliation(s)
- Johanne Vad
- Changing Ocean Research Group, School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom.
| | - Kelsey Archer Barnhill
- Changing Ocean Research Group, School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Georgios Kazanidis
- Changing Ocean Research Group, School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
| | - J Murray Roberts
- Changing Ocean Research Group, School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
61
|
Muriel-Millán LF, Millán-López S, Pardo-López L. Biotechnological applications of marine bacteria in bioremediation of environments polluted with hydrocarbons and plastics. Appl Microbiol Biotechnol 2021; 105:7171-7185. [PMID: 34515846 DOI: 10.1007/s00253-021-11569-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022]
Abstract
Marine ecosystems are some of the most adverse environments on Earth and contain a considerable portion of the global bacterial population, and some of these bacterial species play pivotal roles in several biogeochemical cycles. Marine bacteria have developed different molecular mechanisms to address fluctuating environmental conditions, such as changes in nutrient availability, salinity, temperature, pH, and pressure, making them attractive for use in diverse biotechnology applications. Although more than 99% of marine bacteria cannot be cultivated with traditional microbiological techniques, several species have been successfully isolated and grown in the laboratory, facilitating investigations of their biotechnological potential. Some of these applications may contribute to addressing some current global problems, such as environmental contamination by hydrocarbons and synthetic plastics. In this review, we first summarize and analyze recently published information about marine bacterial diversity. Then, we discuss new literature regarding the isolation and characterization of marine bacterial strains able to degrade hydrocarbons and petroleum-based plastics, and species able to produce biosurfactants. We also describe some current limitations for the implementation of these biotechnological tools, but also we suggest some strategies that may contribute to overcoming them. KEY POINTS: • Marine bacteria have a great metabolic capacity to degrade hydrocarbons in harsh conditions. • Marine environments are an important source of new bacterial plastic-degrading enzymes. • Secondary metabolites from marine bacteria have diverse potential applications in biotechnology.
Collapse
Affiliation(s)
- Luis Felipe Muriel-Millán
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico.
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad Universitaria, CDMX, Mexico.
| | - Sofía Millán-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Liliana Pardo-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| |
Collapse
|
62
|
Chaffron S, Delage E, Budinich M, Vintache D, Henry N, Nef C, Ardyna M, Zayed AA, Junger PC, Galand PE, Lovejoy C, Murray AE, Sarmento H, Acinas SG, Babin M, Iudicone D, Jaillon O, Karsenti E, Wincker P, Karp-Boss L, Sullivan MB, Bowler C, de Vargas C, Eveillard D. Environmental vulnerability of the global ocean epipelagic plankton community interactome. SCIENCE ADVANCES 2021; 7:eabg1921. [PMID: 34452910 PMCID: PMC8397264 DOI: 10.1126/sciadv.abg1921] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/09/2021] [Indexed: 05/05/2023]
Abstract
Marine plankton form complex communities of interacting organisms at the base of the food web, which sustain oceanic biogeochemical cycles and help regulate climate. Although global surveys are starting to reveal ecological drivers underlying planktonic community structure and predicted climate change responses, it is unclear how community-scale species interactions will be affected by climate change. Here, we leveraged Tara Oceans sampling to infer a global ocean cross-domain plankton co-occurrence network-the community interactome-and used niche modeling to assess its vulnerabilities to environmental change. Globally, this revealed a plankton interactome self-organized latitudinally into marine biomes (Trades, Westerlies, Polar) and more connected poleward. Integrated niche modeling revealed biome-specific community interactome responses to environmental change and forecasted the most affected lineages for each community. These results provide baseline approaches to assess community structure and organismal interactions under climate scenarios while identifying plausible plankton bioindicators for ocean monitoring of climate change.
Collapse
Affiliation(s)
- Samuel Chaffron
- Université de Nantes, CNRS UMR 6004, LS2N, F-44000 Nantes, France.
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
| | - Erwan Delage
- Université de Nantes, CNRS UMR 6004, LS2N, F-44000 Nantes, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
| | - Marko Budinich
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Damien Vintache
- Université de Nantes, CNRS UMR 6004, LS2N, F-44000 Nantes, France
| | - Nicolas Henry
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Charlotte Nef
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Mathieu Ardyna
- Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230, Villefranche-sur-Mer, Paris, France
| | - Ahmed A Zayed
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Pedro C Junger
- Department of Hydrobiology, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, 13565-905 São Carlos, SP, Brazil
| | - Pierre E Galand
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Banyuls-sur-Mer, 66500 Paris, France
| | - Connie Lovejoy
- Département de biologie, Faculté des sciences et Institut de biologie intégrative et des systèmes (IBIS) 1030, ave de la Médecine, Université Laval, Québec, QC, Canada
| | - Alison E Murray
- Division of Earth and Ecosystem Science, Desert Research Institute, Reno, NV 89512, USA
| | - Hugo Sarmento
- Department of Hydrobiology, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, 13565-905 São Carlos, SP, Brazil
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona 08003, Spain
| | - Marcel Babin
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230, Villefranche-sur-Mer, Paris, France
- Takuvik International Research Laboratory, Université Laval and CNRS, Québec, QC, Canada
| | - Daniele Iudicone
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy
| | - Olivier Jaillon
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry, 91057 Paris, France
| | - Eric Karsenti
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Patrick Wincker
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry, 91057 Paris, France
| | - Lee Karp-Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA
| | - Chris Bowler
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Colomban de Vargas
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Damien Eveillard
- Université de Nantes, CNRS UMR 6004, LS2N, F-44000 Nantes, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris, France
| |
Collapse
|
63
|
Cordier T, Alonso‐Sáez L, Apothéloz‐Perret‐Gentil L, Aylagas E, Bohan DA, Bouchez A, Chariton A, Creer S, Frühe L, Keck F, Keeley N, Laroche O, Leese F, Pochon X, Stoeck T, Pawlowski J, Lanzén A. Ecosystems monitoring powered by environmental genomics: A review of current strategies with an implementation roadmap. Mol Ecol 2021; 30:2937-2958. [PMID: 32416615 PMCID: PMC8358956 DOI: 10.1111/mec.15472] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/25/2020] [Accepted: 05/06/2020] [Indexed: 01/02/2023]
Abstract
A decade after environmental scientists integrated high-throughput sequencing technologies in their toolbox, the genomics-based monitoring of anthropogenic impacts on the biodiversity and functioning of ecosystems is yet to be implemented by regulatory frameworks. Despite the broadly acknowledged potential of environmental genomics to this end, technical limitations and conceptual issues still stand in the way of its broad application by end-users. In addition, the multiplicity of potential implementation strategies may contribute to a perception that the routine application of this methodology is premature or "in development", hence restraining regulators from binding these tools into legal frameworks. Here, we review recent implementations of environmental genomics-based methods, applied to the biomonitoring of ecosystems. By taking a general overview, without narrowing our perspective to particular habitats or groups of organisms, this paper aims to compare, review and discuss the strengths and limitations of four general implementation strategies of environmental genomics for monitoring: (a) Taxonomy-based analyses focused on identification of known bioindicators or described taxa; (b) De novo bioindicator analyses; (c) Structural community metrics including inferred ecological networks; and (d) Functional community metrics (metagenomics or metatranscriptomics). We emphasise the utility of the three latter strategies to integrate meiofauna and microorganisms that are not traditionally utilised in biomonitoring because of difficult taxonomic identification. Finally, we propose a roadmap for the implementation of environmental genomics into routine monitoring programmes that leverage recent analytical advancements, while pointing out current limitations and future research needs.
Collapse
Affiliation(s)
- Tristan Cordier
- Department of Genetics and EvolutionScience IIIUniversity of GenevaGenevaSwitzerland
| | - Laura Alonso‐Sáez
- AZTIMarine ResearchBasque Research and Technology Alliance (BRTA)Spain
| | | | - Eva Aylagas
- Red Sea Research Center (RSRC)Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - David A. Bohan
- AgroécologieINRAEUniversity of BourgogneUniversity Bourgogne Franche‐ComtéDijonFrance
| | | | - Anthony Chariton
- Department of Biological SciencesMacquarie UniversitySydneyNSWAustralia
| | - Simon Creer
- School of Natural SciencesBangor UniversityGwyneddUK
| | - Larissa Frühe
- Department of EcologyTechnische Universität KaiserslauternKaiserslauternGermany
| | | | - Nigel Keeley
- Benthic Resources and Processes GroupInstitute of Marine ResearchTromsøNorway
| | - Olivier Laroche
- Benthic Resources and Processes GroupInstitute of Marine ResearchTromsøNorway
| | - Florian Leese
- Aquatic Ecosystem ResearchFaculty of BiologyUniversity of Duisburg‐EssenEssenGermany
- Centre for Water and Environmental Research (ZWU)University of Duisburg‐EssenEssenGermany
| | - Xavier Pochon
- Coastal & Freshwater GroupCawthron InstituteNelsonNew Zealand
- Institute of Marine ScienceUniversity of AucklandWarkworthNew Zealand
| | - Thorsten Stoeck
- Department of EcologyTechnische Universität KaiserslauternKaiserslauternGermany
| | - Jan Pawlowski
- Department of Genetics and EvolutionScience IIIUniversity of GenevaGenevaSwitzerland
- ID‐Gene EcodiagnosticsGenevaSwitzerland
- Institute of OceanologyPolish Academy of SciencesSopotPoland
| | - Anders Lanzén
- AZTIMarine ResearchBasque Research and Technology Alliance (BRTA)Spain
- Basque Foundation for ScienceIKERBASQUEBilbaoSpain
| |
Collapse
|
64
|
Phage-encoded ten-eleven translocation dioxygenase (TET) is active in C5-cytosine hypermodification in DNA. Proc Natl Acad Sci U S A 2021; 118:2026742118. [PMID: 34155108 PMCID: PMC8256090 DOI: 10.1073/pnas.2026742118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chemical tailoring of canonical bases expands the functionality of DNA in the same manner that posttranscriptional and -translational modifications enhance functional diversity in RNA and proteins. We describe the activities of ten-eleven translocation dioxygenase (TET)-like iron(II)- and 2-oxo-glutarate–dependent 5mC dioxygenases that are encoded by several bacteriophages to enable hypermodification of C5-methyl cytosine bases in their DNA. Phage TETs act on methylation marks deposited within GpC sequences by functionally-associated cytosine 5-methyltransferases. The hydroxymethyl groups installed are further elaborated by tailoring enzymes, thereby decorating the phage DNA with diverse, complex modifications. These modifications are predicted to have protective roles against host defenses during viral infection. TET/JBP (ten-eleven translocation/base J binding protein) enzymes are iron(II)- and 2-oxo-glutarate–dependent dioxygenases that are found in all kingdoms of life and oxidize 5-methylpyrimidines on the polynucleotide level. Despite their prevalence, few examples have been biochemically characterized. Among those studied are the metazoan TET enzymes that oxidize 5-methylcytosine in DNA to hydroxy, formyl, and carboxy forms and the euglenozoa JBP dioxygenases that oxidize thymine in the first step of base J biosynthesis. Both enzymes have roles in epigenetic regulation. It has been hypothesized that all TET/JBPs have their ancestral origins in bacteriophages, but only eukaryotic orthologs have been described. Here we demonstrate the 5mC-dioxygenase activity of several phage TETs encoded within viral metagenomes. The clustering of these TETs in a phylogenetic tree correlates with the sequence specificity of their genomically cooccurring cytosine C5-methyltransferases, which install the methyl groups upon which TETs operate. The phage TETs favor Gp5mC dinucleotides over the 5mCpG sites targeted by the eukaryotic TETs and are found within gene clusters specifying complex cytosine modifications that may be important for DNA packaging and evasion of host restriction.
Collapse
|
65
|
Liao ML, Li GY, Wang J, Marshall DJ, Hui TY, Ma SY, Zhang YM, Helmuth B, Dong YW. Physiological determinants of biogeography: The importance of metabolic depression to heat tolerance. GLOBAL CHANGE BIOLOGY 2021; 27:2561-2579. [PMID: 33666308 DOI: 10.1111/gcb.15578] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/25/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
A quantitative understanding of physiological thermal responses is vital for forecasting species distributional shifts in response to climate change. Many studies have focused on metabolic rate as a global metric for analyzing the sublethal effects of changing environments on physiology. Thermal performance curves (TPCs) have been suggested as a viable analytical framework, but standard TPCs may not fully capture physiological responses, due in part to failure to consider the process of metabolic depression. We derived a model based on the nonlinear regression of biological temperature-dependent rate processes and built a heart rate data set for 26 species of intertidal molluscs distributed from 33°S to ~40°N. We then calculated physiological thermal performance limits with continuous heating using T 1 / 2 H , the temperature at which heart rate is decreased to 50% of the maximal rate, as a more realistic measure of upper thermal limits. Results indicate that heat-induced metabolic depression of cardiac performance is a common adaptive response that allows tolerance of harsh environments. Furthermore, our model accounted for the high inter-individual variability in the shape of cardiac TPCs. We then used these TPCs to calculate physiological thermal safety margins (pTSM), the difference between the maximal operative temperature (95th percentile of field temperatures) and T 1 / 2 H of each individual. Using pTSMs, we developed a physiological species distribution model (pSDM) to forecast future geographic distributions. pSDM results indicate that climate-induced species range shifts are potentially less severe than predicted by a simple correlative SDM. Species with metabolic depression below the optimum temperature will be more thermal resistant at their warm trailing edges. High intraspecific variability further suggests that models based on species-level vulnerability to environmental change may be problematic. This multi-scale, mechanistic understanding that incorporates metabolic depression and inter-individual variability in thermal response enables better predictions about the relationship between thermal stress and species distributions.
Collapse
Affiliation(s)
- Ming-Ling Liao
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Gao-Yang Li
- School of Environment, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Jie Wang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - David J Marshall
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Tin Yan Hui
- Swire Institute of Marine Science, the University of Hong Kong, HKSAR, China
| | - Shu-Yang Ma
- Fisheries College, Ocean University of China, Qingdao, China
| | - Yi-Min Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Brian Helmuth
- Marine Science Center, Northeastern University, Nahant, MA, USA
| | - Yun-Wei Dong
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
66
|
Russo ET, Laio A, Punta M. Density Peak clustering of protein sequences associated to a Pfam clan reveals clear similarities and interesting differences with respect to manual family annotation. BMC Bioinformatics 2021; 22:121. [PMID: 33711918 PMCID: PMC7955657 DOI: 10.1186/s12859-021-04013-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/09/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The identification of protein families is of outstanding practical importance for in silico protein annotation and is at the basis of several bioinformatic resources. Pfam is possibly the most well known protein family database, built in many years of work by domain experts with extensive use of manual curation. This approach is generally very accurate, but it is quite time consuming and it may suffer from a bias generated from the hand-curation itself, which is often guided by the available experimental evidence. RESULTS We introduce a procedure that aims to identify automatically putative protein families. The procedure is based on Density Peak Clustering and uses as input only local pairwise alignments between protein sequences. In the experiment we present here, we ran the algorithm on about 4000 full-length proteins with at least one domain classified by Pfam as belonging to the Pseudouridine synthase and Archaeosine transglycosylase (PUA) clan. We obtained 71 automatically-generated sequence clusters with at least 100 members. While our clusters were largely consistent with the Pfam classification, showing good overlap with either single or multi-domain Pfam family architectures, we also observed some inconsistencies. The latter were inspected using structural and sequence based evidence, which suggested that the automatic classification captured evolutionary signals reflecting non-trivial features of protein family architectures. Based on this analysis we identified a putative novel pre-PUA domain as well as alternative boundaries for a few PUA or PUA-associated families. As a first indication that our approach was unlikely to be clan-specific, we performed the same analysis on the P53 clan, obtaining comparable results. CONCLUSIONS The clustering procedure described in this work takes advantage of the information contained in a large set of pairwise alignments and successfully identifies a set of putative families and family architectures in an unsupervised manner. Comparison with the Pfam classification highlights significant overlap and points to interesting differences, suggesting that our new algorithm could have potential in applications related to automatic protein classification. Testing this hypothesis, however, will require further experiments on large and diverse sequence datasets.
Collapse
Affiliation(s)
| | | | - Marco Punta
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG UK
- Present Address: Center for Omics Sciences, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| |
Collapse
|
67
|
Arribas P, Andújar C, Bidartondo MI, Bohmann K, Coissac É, Creer S, deWaard JR, Elbrecht V, Ficetola GF, Goberna M, Kennedy S, Krehenwinkel H, Leese F, Novotny V, Ronquist F, Yu DW, Zinger L, Creedy TJ, Meramveliotakis E, Noguerales V, Overcast I, Morlon H, Vogler AP, Papadopoulou A, Emerson BC. Connecting high-throughput biodiversity inventories: Opportunities for a site-based genomic framework for global integration and synthesis. Mol Ecol 2021; 30:1120-1135. [PMID: 33432777 PMCID: PMC7986105 DOI: 10.1111/mec.15797] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 01/03/2023]
Abstract
High-throughput sequencing (HTS) is increasingly being used for the characterization and monitoring of biodiversity. If applied in a structured way, across broad geographical scales, it offers the potential for a much deeper understanding of global biodiversity through the integration of massive quantities of molecular inventory data generated independently at local, regional and global scales. The universality, reliability and efficiency of HTS data can potentially facilitate the seamless linking of data among species assemblages from different sites, at different hierarchical levels of diversity, for any taxonomic group and regardless of prior taxonomic knowledge. However, collective international efforts are required to optimally exploit the potential of site-based HTS data for global integration and synthesis, efforts that at present are limited to the microbial domain. To contribute to the development of an analogous strategy for the nonmicrobial terrestrial domain, an international symposium entitled "Next Generation Biodiversity Monitoring" was held in November 2019 in Nicosia (Cyprus). The symposium brought together evolutionary geneticists, ecologists and biodiversity scientists involved in diverse regional and global initiatives using HTS as a core tool for biodiversity assessment. In this review, we summarize the consensus that emerged from the 3-day symposium. We converged on the opinion that an effective terrestrial Genomic Observatories network for global biodiversity integration and synthesis should be spatially led and strategically united under the umbrella of the metabarcoding approach. Subsequently, we outline an HTS-based strategy to collectively build an integrative framework for site-based biodiversity data generation.
Collapse
Affiliation(s)
- Paula Arribas
- Island Ecology and Evolution Research GroupInstituto de Productos Naturales y Agrobiología (IPNA‐CSIC)San Cristóbal de la LagunaSpain
| | - Carmelo Andújar
- Island Ecology and Evolution Research GroupInstituto de Productos Naturales y Agrobiología (IPNA‐CSIC)San Cristóbal de la LagunaSpain
| | - Martin I. Bidartondo
- Department of Life SciencesImperial College LondonLondonUK
- Comparative Plant and Fungal BiologyRoyal Botanic GardensLondonUK
| | - Kristine Bohmann
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, Globe InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Éric Coissac
- Université Grenoble Alpes, CNRS, Université Savoie Mont BlancLECA, Laboratoire d’Ecologie AlpineGrenobleFrance
| | - Simon Creer
- School of Natural SciencesBangor UniversityGwyneddUK
| | - Jeremy R. deWaard
- Centre for Biodiversity GenomicsUniversity of GuelphGuelphCanada
- School of Environmental SciencesUniversity of GuelphGuelphCanada
| | - Vasco Elbrecht
- Centre for Biodiversity Monitoring (ZBM)Zoological Research Museum Alexander KoenigBonnGermany
| | - Gentile F. Ficetola
- Université Grenoble Alpes, CNRS, Université Savoie Mont BlancLECA, Laboratoire d’Ecologie AlpineGrenobleFrance
- Department of Environmental Sciences and PolicyUniversity of MilanoMilanoItaly
| | - Marta Goberna
- Department of Environment and AgronomyINIAMadridSpain
| | - Susan Kennedy
- Biodiversity and Biocomplexity UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonJapan
- Department of BiogeographyTrier UniversityTrierGermany
| | | | - Florian Leese
- Aquatic Ecosystem Research, Faculty of BiologyUniversity of Duisburg‐EssenEssenGermany
- Centre for Water and Environmental Research (ZWU) EssenUniversity of Duisburg‐EssenEssenGermany
| | - Vojtech Novotny
- Biology Centre, Institute of EntomologyCzech Academy of SciencesCeske BudejoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Fredrik Ronquist
- Department of Bioinformatics and GeneticsSwedish Museum of Natural HistoryStockholmSweden
| | - Douglas W. Yu
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Lucie Zinger
- Institut de Biologie de l’ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERMUniversité PSLParisFrance
| | | | | | | | - Isaac Overcast
- Institut de Biologie de l’ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERMUniversité PSLParisFrance
- Division of Vertebrate ZoologyAmerican Museum of Natural HistoryNew YorkUSA
| | - Hélène Morlon
- Institut de Biologie de l’ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERMUniversité PSLParisFrance
| | - Alfried P. Vogler
- Department of Life SciencesImperial College LondonLondonUK
- Department of Life SciencesNatural History MuseumLondonUK
| | | | - Brent C. Emerson
- Island Ecology and Evolution Research GroupInstituto de Productos Naturales y Agrobiología (IPNA‐CSIC)San Cristóbal de la LagunaSpain
| |
Collapse
|
68
|
Ruiz-Perez CA, Bertagnolli AD, Tsementzi D, Woyke T, Stewart FJ, Konstantinidis KT. Description of Candidatus Mesopelagibacter carboxydoxydans and Candidatus Anoxipelagibacter denitrificans: Nitrate-reducing SAR11 genera that dominate mesopelagic and anoxic marine zones. Syst Appl Microbiol 2021; 44:126185. [PMID: 33676264 DOI: 10.1016/j.syapm.2021.126185] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/25/2020] [Accepted: 12/09/2020] [Indexed: 11/29/2022]
Abstract
The diverse and ubiquitous members of the SAR11 lineage (Alphaproteobacteria) represent up to 30-40% of the surface and mesopelagic oceanic microbial communities. However, the molecular and ecological mechanisms that differentiate closely related, yet distinct, SAR11 members that often co-occur under similar environmental conditions remain speculative. Recently, two mesopelagic and oxygen minimum zone (OMZ)-associated subclades of SAR11 (Ic and IIa.A) were described using single-cell amplified genomes (SAGs) linked to nitrate reduction in OMZs. In this current study, the collection of genomes belonging to these two subclades was expanded with thirteen new metagenome-assembled genomes (MAGs), thus providing a more detailed phylogenetic and functional characterization of these subclades. Gene content-based predictions of metabolic functions revealed similarities in central carbon metabolism between subclades Ic and IIa.A and surface SAR11 clades, with small variations in central pathways. These variations included more versatile sulfur assimilation pathways, as well as a previously predicted capacity for nitrate reduction that conferred unique versatility on mesopelagic-adapted clades compared to their surface counterparts. Finally, consistent with previously reported abundances of carbon monoxide (CO) in surface and mesopelagic waters, subclades Ia (surface) and Ic (mesopelagic) have the genetic potential to oxidize carbon monoxide (CO), presumably taking advantage of this abundant compound as an electron donor. Based on genomic analyses, environmental distribution and metabolic reconstruction, we propose two new SAR11 genera, Ca. Mesopelagibacter carboxydoxydans (subclade Ic) and Ca. Anoxipelagibacter denitrificans (subclade IIa.A), which represent members of the mesopelagic and OMZ-adapted SAR11 clades.
Collapse
Affiliation(s)
- Carlos A Ruiz-Perez
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anthony D Bertagnolli
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Despina Tsementzi
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, One Cyclotron Road, Mail Stop 91R0183, Berkeley, CA 94720, USA
| | - Frank J Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, USA; Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Konstantinos T Konstantinidis
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Center for Bioinformatics and Computational Genomics, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
69
|
Vernette C, Henry N, Lecubin J, de Vargas C, Hingamp P, Lescot M. The Ocean barcode atlas: A web service to explore the biodiversity and biogeography of marine organisms. Mol Ecol Resour 2021; 21:1347-1358. [PMID: 33434383 DOI: 10.1111/1755-0998.13322] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/09/2020] [Accepted: 01/05/2021] [Indexed: 01/04/2023]
Abstract
The Ocean Barcode Atlas (OBA) is a user friendly web service designed for biologists who wish to explore the biodiversity and biogeography of marine organisms locked in otherwise difficult to mine planetary scale DNA metabarcode data sets. Using just a web browser, a comprehensive picture of the diversity of a taxon or a barcode sequence is visualized graphically on world maps and interactive charts. Interactive results panels allow dynamic threshold adjustments and the display of diversity results in their environmental context measured at the time of sampling (temperature, oxygen, latitude, etc). Ecological analyses such as alpha and beta-diversity plots are produced via publication quality vector graphics representations. Currently, the Ocean Barcode Altas is deployed online with the (i) Tara Oceans eukaryotic 18S-V9 rDNA metabarcodes; (ii) Tara Oceans 16S/18S rRNA mi Tags; and (iii) 16S-V4 V5 metabarcodes collected during the Malaspina-2010 expedition. Additional prokaryotic or eukaryotic plankton barcode data sets will be added upon availability, given they provide the required complement of barcodes (including raw reads to compute barcode abundance) associated with their contextual environmental variables. Ocean Barcode Atlas is a freely-available web service at: http://oba.mio.osupytheas.fr/ocean-atlas/.
Collapse
Affiliation(s)
- Caroline Vernette
- Aix Marseille Université, Université de Toulon, IRD, CNRS, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Nicolas Henry
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France.,Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M ECOMAP, UMR 7144, Roscoff, France
| | | | - Colomban de Vargas
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France.,Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M ECOMAP, UMR 7144, Roscoff, France
| | - Pascal Hingamp
- Aix Marseille Université, Université de Toulon, IRD, CNRS, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Magali Lescot
- Aix Marseille Université, Université de Toulon, IRD, CNRS, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| |
Collapse
|
70
|
Kumar Awasthi M, Ravindran B, Sarsaiya S, Chen H, Wainaina S, Singh E, Liu T, Kumar S, Pandey A, Singh L, Zhang Z. Metagenomics for taxonomy profiling: tools and approaches. Bioengineered 2020; 11:356-374. [PMID: 32149573 PMCID: PMC7161568 DOI: 10.1080/21655979.2020.1736238] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/25/2022] Open
Abstract
The study of metagenomics is an emerging field that identifies the total genetic materials in an organism along with the set of all genetic materials like deoxyribonucleic acid and ribose nucleic acid, which play a key role with the maintenance of cellular functions. The best part of this technology is that it gives more flexibility to environmental microbiologists to instantly pioneer the immense genetic variability of microbial communities. However, it is intensively complex to identify the suitable sequencing measures of any specific gene that can exclusively indicate the involvement of microbial metagenomes and be able to advance valuable results about these communities. This review provides an overview of the metagenomic advancement that has been advantageous for aggregation of more knowledge about specific genes, microbial communities and its metabolic pathways. More specific drawbacks of metagenomes technology mainly depend on sequence-based analysis. Therefore, this 'targeted based metagenomics' approach will give comprehensive knowledge about the ecological, evolutionary and functional sequence of significantly important genes that naturally exist in living beings either human, animal and microorganisms from distinctive ecosystems.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, China
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - B. Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, South Korea
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hongyu Chen
- Institute of Biology, Freie Universität Berlin Altensteinstr, Berlin, Germany
| | - Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Ekta Singh
- CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, China
| |
Collapse
|
71
|
Berglund F, Böhm ME, Martinsson A, Ebmeyer S, Österlund T, Johnning A, Larsson DGJ, Kristiansson E. Comprehensive screening of genomic and metagenomic data reveals a large diversity of tetracycline resistance genes. Microb Genom 2020; 6:mgen000455. [PMID: 33125315 PMCID: PMC7725328 DOI: 10.1099/mgen.0.000455] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/27/2020] [Indexed: 12/11/2022] Open
Abstract
Tetracyclines are broad-spectrum antibiotics used to prevent or treat a variety of bacterial infections. Resistance is often mediated through mobile resistance genes, which encode one of the three main mechanisms: active efflux, ribosomal target protection or enzymatic degradation. In the last few decades, a large number of new tetracycline-resistance genes have been discovered in clinical settings. These genes are hypothesized to originate from environmental and commensal bacteria, but the diversity of tetracycline-resistance determinants that have not yet been mobilized into pathogens is unknown. In this study, we aimed to characterize the potential tetracycline resistome by screening genomic and metagenomic data for novel resistance genes. By using probabilistic models, we predicted 1254 unique putative tetracycline resistance genes, representing 195 gene families (<70 % amino acid sequence identity), whereof 164 families had not been described previously. Out of 17 predicted genes selected for experimental verification, 7 induced a resistance phenotype in an Escherichia coli host. Several of the predicted genes were located on mobile genetic elements or in regions that indicated mobility, suggesting that they easily can be shared between bacteria. Furthermore, phylogenetic analysis indicated several events of horizontal gene transfer between bacterial phyla. Our results also suggested that acquired efflux pumps originate from proteobacterial species, while ribosomal protection genes have been mobilized from Firmicutes and Actinobacteria. This study significantly expands the knowledge of known and putatively novel tetracycline resistance genes, their mobility and evolutionary history. The study also provides insights into the unknown resistome and genes that may be encountered in clinical settings in the future.
Collapse
Affiliation(s)
- Fanny Berglund
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Maria-Elisabeth Böhm
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anton Martinsson
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Stefan Ebmeyer
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tobias Österlund
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Anna Johnning
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Systems and Data Analysis, Fraunhofer-Chalmers Centre, Chalmers Science Park, Gothenburg, Sweden
| | - D. G. Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
72
|
Duarte CM, Ngugi DK, Alam I, Pearman J, Kamau A, Eguiluz VM, Gojobori T, Acinas SG, Gasol JM, Bajic V, Irigoien X. Sequencing effort dictates gene discovery in marine microbial metagenomes. Environ Microbiol 2020; 22:4589-4603. [PMID: 32743860 PMCID: PMC7756799 DOI: 10.1111/1462-2920.15182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/02/2020] [Accepted: 07/31/2020] [Indexed: 01/09/2023]
Abstract
Massive metagenomic sequencing combined with gene prediction methods were previously used to compile the gene catalogue of the ocean and host-associated microbes. Global expeditions conducted over the past 15 years have sampled the ocean to build a catalogue of genes from pelagic microbes. Here we undertook a large sequencing effort of a perturbed Red Sea plankton community to uncover that the rate of gene discovery increases continuously with sequencing effort, with no indication that the retrieved 2.83 million non-redundant (complete) genes predicted from the experiment represented a nearly complete inventory of the genes present in the sampled community (i.e., no evidence of saturation). The underlying reason is the Pareto-like distribution of the abundance of genes in the plankton community, resulting in a very long tail of millions of genes present at remarkably low abundances, which can only be retrieved through massive sequencing. Microbial metagenomic projects retrieve a variable number of unique genes per Tera base-pair (Tbp), with a median value of 14.7 million unique genes per Tbp sequenced across projects. The increase in the rate of gene discovery in microbial metagenomes with sequencing effort implies that there is ample room for new gene discovery in further ocean and holobiont sequencing studies.
Collapse
Affiliation(s)
- Carlos M. Duarte
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Centre (RSRC)Thuwal23955‐6900Saudi Arabia
- King Abdullah University of Science and Technology (KAUST)Computational Bioscience Research Center (CBRC), Thuwal, 23955‐6900, Saudi ArabiaThuwal23955‐6900Saudi Arabia
| | - David K. Ngugi
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Centre (RSRC)Thuwal23955‐6900Saudi Arabia
- Leibniz Institute DSMZ ‐ German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstrasse 7B, D‐38124BraunschweigGermany
| | - Intikhab Alam
- King Abdullah University of Science and Technology (KAUST)Computational Bioscience Research Center (CBRC), Thuwal, 23955‐6900, Saudi ArabiaThuwal23955‐6900Saudi Arabia
| | - John Pearman
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Centre (RSRC)Thuwal23955‐6900Saudi Arabia
| | - Allan Kamau
- Leibniz Institute DSMZ ‐ German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstrasse 7B, D‐38124BraunschweigGermany
| | - Victor M. Eguiluz
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC‐UIB), E07122Palma de MallorcaSpain
| | - Takashi Gojobori
- Leibniz Institute DSMZ ‐ German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstrasse 7B, D‐38124BraunschweigGermany
| | | | - Josep M. Gasol
- Institut de Ciències del Mar, CSICBarcelonaSpain
- Centre for Marine Ecosystems Research, Edith Cowan UniversityJoondalupAustralia
| | - Vladimir Bajic
- Leibniz Institute DSMZ ‐ German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstrasse 7B, D‐38124BraunschweigGermany
| | - Xabier Irigoien
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Centre (RSRC)Thuwal23955‐6900Saudi Arabia
- AZTI – Marine Research, Herrera Kaia, Portualdea z/gPasaia (Gipuzkoa)20110Spain
| |
Collapse
|
73
|
Laso‐Jadart R, Sugier K, Petit E, Labadie K, Peterlongo P, Ambroise C, Wincker P, Jamet J, Madoui M. Investigating population-scale allelic differential expression in wild populations of Oithona similis (Cyclopoida, Claus, 1866). Ecol Evol 2020; 10:8894-8905. [PMID: 32884665 PMCID: PMC7452778 DOI: 10.1002/ece3.6588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Acclimation allowed by variation in gene or allele expression in natural populations is increasingly understood as a decisive mechanism, as much as adaptation, for species evolution. However, for small eukaryotic organisms, as species from zooplankton, classical methods face numerous challenges. Here, we propose the concept of allelic differential expression at the population-scale (psADE) to investigate the variation in allele expression in natural populations. We developed a novel approach to detect psADE based on metagenomic and metatranscriptomic data from environmental samples. This approach was applied on the widespread marine copepod, Oithona similis, by combining samples collected during the Tara Oceans expedition (2009-2013) and de novo transcriptome assemblies. Among a total of 25,768 single nucleotide variants (SNVs) of O. similis, 572 (2.2%) were affected by psADE in at least one population (FDR < 0.05). The distribution of SNVs under psADE in different populations is significantly shaped by population genomic differentiation (Pearson r = 0.87, p = 5.6 × 10-30), supporting a partial genetic control of psADE. Moreover, a significant amount of SNVs (0.6%) were under both selection and psADE (p < .05), supporting the hypothesis that natural selection and psADE tends to impact common loci. Population-scale allelic differential expression offers new insights into the gene regulation control in populations and its link with natural selection.
Collapse
Affiliation(s)
- Romuald Laso‐Jadart
- Génomique Métabolique, GenoscopeInstitut François Jacob, CEA, CNRS, Univ EvryUniversité Paris‐SaclayEvryFrance
- Research Federation for the study of Global Ocean Systems Ecology and EvolutionFR2022/Tara Oceans GO‐SEEParisFrance
| | - Kevin Sugier
- Génomique Métabolique, GenoscopeInstitut François Jacob, CEA, CNRS, Univ EvryUniversité Paris‐SaclayEvryFrance
| | - Emmanuelle Petit
- CEA, GenoscopeInstitut de Biologie François JacobUniversité Paris‐SaclayEvryFrance
| | - Karine Labadie
- CEA, GenoscopeInstitut de Biologie François JacobUniversité Paris‐SaclayEvryFrance
| | | | | | - Patrick Wincker
- Génomique Métabolique, GenoscopeInstitut François Jacob, CEA, CNRS, Univ EvryUniversité Paris‐SaclayEvryFrance
- Research Federation for the study of Global Ocean Systems Ecology and EvolutionFR2022/Tara Oceans GO‐SEEParisFrance
| | - Jean‐Louis Jamet
- Mediterranean Institute of Oceanology (MIO)AMU‐UTLN UM110CNRS UMR7294, IRDUMR235Equipe Ecologie Marine et Biodiversité (EMBIO)Université de ToulonToulon Cedex 9France
| | - Mohammed‐Amin Madoui
- Génomique Métabolique, GenoscopeInstitut François Jacob, CEA, CNRS, Univ EvryUniversité Paris‐SaclayEvryFrance
- Research Federation for the study of Global Ocean Systems Ecology and EvolutionFR2022/Tara Oceans GO‐SEEParisFrance
| |
Collapse
|
74
|
Sanz-Sáez I, Salazar G, Sánchez P, Lara E, Royo-Llonch M, Sà EL, Lucena T, Pujalte MJ, Vaqué D, Duarte CM, Gasol JM, Pedrós-Alió C, Sánchez O, Acinas SG. Diversity and distribution of marine heterotrophic bacteria from a large culture collection. BMC Microbiol 2020; 20:207. [PMID: 32660423 PMCID: PMC7359222 DOI: 10.1186/s12866-020-01884-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/26/2020] [Indexed: 01/09/2023] Open
Abstract
Background Isolation of marine microorganisms is fundamental to gather information about their physiology, ecology and genomic content. To date, most of the bacterial isolation efforts have focused on the photic ocean leaving the deep ocean less explored. We have created a marine culture collection of heterotrophic bacteria (MARINHET) using a standard marine medium comprising a total of 1561 bacterial strains, and covering a variety of oceanographic regions from different seasons and years, from 2009 to 2015. Specifically, our marine collection contains isolates from both photic (817) and aphotic layers (744), including the mesopelagic (362) and the bathypelagic (382), from the North Western Mediterranean Sea, the North and South Atlantic Ocean, the Indian, the Pacific, and the Arctic Oceans. We described the taxonomy, the phylogenetic diversity and the biogeography of a fraction of the marine culturable microorganisms to enhance our knowledge about which heterotrophic marine isolates are recurrently retrieved across oceans and along different depths. Results The partial sequencing of the 16S rRNA gene of all isolates revealed that they mainly affiliate with the classes Alphaproteobacteria (35.9%), Gammaproteobacteria (38.6%), and phylum Bacteroidetes (16.5%). In addition, Alteromonas and Erythrobacter genera were found the most common heterotrophic bacteria in the ocean growing in solid agar medium. When comparing all photic, mesopelagic, and bathypelagic isolates sequences retrieved from different stations, 37% of them were 100% identical. This percentage increased up to 59% when mesopelagic and bathypelagic strains were grouped as the aphotic dataset and compared to the photic dataset of isolates, indicating the ubiquity of some bacterial isolates along different ocean depths. Finally, we isolated three strains that represent a new species, and the genome comparison and phenotypic characterization of two of these strains (ISS653 and ISS1889) concluded that they belong to a new species within the genus Mesonia. Conclusions Overall, this study highlights the relevance of culture-dependent studies, with focus on marine isolated bacteria from different oceanographic regions and depths, to provide a more comprehensive view of the culturable marine bacteria as part of the total marine microbial diversity.
Collapse
Affiliation(s)
- Isabel Sanz-Sáez
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), 08003, Barcelona, Spain
| | - Guillem Salazar
- Department of Biology, Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, CH-8093, Zurich, Switzerland
| | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), 08003, Barcelona, Spain
| | - Elena Lara
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), 08003, Barcelona, Spain.,Institute of Marine Sciences (CNR-ISMAR), National Research Council, Castello 2737/F Arsenale-Tesa 104, 30122, Venezia, Italy
| | - Marta Royo-Llonch
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), 08003, Barcelona, Spain
| | - Elisabet L Sà
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), 08003, Barcelona, Spain
| | - Teresa Lucena
- Departamento de Microbiología y Ecología and Colección Española de Cultivos Tipo (CECT), Universitat de València, Valencia, Spain
| | - María J Pujalte
- Departamento de Microbiología y Ecología and Colección Española de Cultivos Tipo (CECT), Universitat de València, Valencia, Spain
| | - Dolors Vaqué
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), 08003, Barcelona, Spain
| | - Carlos M Duarte
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), 08003, Barcelona, Spain
| | - Carlos Pedrós-Alió
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Olga Sánchez
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), 08003, Barcelona, Spain.
| |
Collapse
|
75
|
Gonzalez-Serrano R, Dunne M, Rosselli R, Martin-Cuadrado AB, Grosboillot V, Zinsli LV, Roda-Garcia JJ, Loessner MJ, Rodriguez-Valera F. Alteromonas Myovirus V22 Represents a New Genus of Marine Bacteriophages Requiring a Tail Fiber Chaperone for Host Recognition. mSystems 2020; 5:e00217-20. [PMID: 32518192 PMCID: PMC7289586 DOI: 10.1128/msystems.00217-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/20/2020] [Indexed: 12/24/2022] Open
Abstract
Marine phages play a variety of critical roles in regulating the microbial composition of our oceans. Despite constituting the majority of genetic diversity within these environments, there are relatively few isolates with complete genome sequences or in-depth analyses of their host interaction mechanisms, such as characterization of their receptor binding proteins (RBPs). Here, we present the 92,760-bp genome of the Alteromonas-targeting phage V22. Genomic and morphological analyses identify V22 as a myovirus; however, due to a lack of sequence similarity to any other known myoviruses, we propose that V22 be classified as the type phage of a new Myoalterovirus genus within the Myoviridae family. V22 shows gene homology and synteny with two different subfamilies of phages infecting enterobacteria, specifically within the structural region of its genome. To improve our understanding of the V22 adsorption process, we identified putative RBPs (gp23, gp24, and gp26) and tested their ability to decorate the V22 propagation strain, Alteromonas mediterranea PT11, as recombinant green fluorescent protein (GFP)-tagged constructs. Only GFP-gp26 was capable of bacterial recognition and identified as the V22 RBP. Interestingly, production of functional GFP-gp26 required coexpression with the downstream protein gp27. GFP-gp26 could be expressed alone but was incapable of host recognition. By combining size-exclusion chromatography with fluorescence microscopy, we reveal how gp27 is not a component of the final RBP complex but instead is identified as a new type of phage-encoded intermolecular chaperone that is essential for maturation of the gp26 RBP.IMPORTANCE Host recognition by phage-encoded receptor binding proteins (RBPs) constitutes the first step in all phage infections and the most critical determinant of host specificity. By characterizing new types of RBPs and identifying their essential chaperones, we hope to expand the repertoire of known phage-host recognition machineries. Due to their genetic plasticity, studying RBPs and their associated chaperones can shed new light onto viral evolution affecting phage-host interactions, which is essential for fields such as phage therapy or biotechnology. In addition, since marine phages constitute one of the most important reservoirs of noncharacterized genetic diversity on the planet, their genomic and functional characterization may be of paramount importance for the discovery of novel genes with potential applications.
Collapse
Affiliation(s)
| | - Matthew Dunne
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Riccardo Rosselli
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht University, Den Burg, The Netherlands
- Laboratory for Theoretical and Computer Studies of Biological Macromolecules and Genomes, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | | | - Léa V Zinsli
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Juan J Roda-Garcia
- Evolutionary Genomics Group, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Universidad Miguel Hernández, San Juan de Alicante, Spain
- Laboratory for Theoretical and Computer Studies of Biological Macromolecules and Genomes, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
76
|
Vannier T, Hingamp P, Turrel F, Tanet L, Lescot M, Timsit Y. Diversity and evolution of bacterial bioluminescence genes in the global ocean. NAR Genom Bioinform 2020; 2:lqaa018. [PMID: 33575578 PMCID: PMC7671414 DOI: 10.1093/nargab/lqaa018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/14/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022] Open
Abstract
Although bioluminescent bacteria are the most abundant and widely distributed of all light-emitting organisms, the biological role and evolutionary history of bacterial luminescence are still shrouded in mystery. Bioluminescence has so far been observed in the genomes of three families of Gammaproteobacteria in the form of canonical lux operons that adopt the CDAB(F)E(G) gene order. LuxA and luxB encode the two subunits of bacterial luciferase responsible for light-emission. Our deep exploration of public marine environmental databases considerably expands this view by providing a catalog of new lux homolog sequences, including 401 previously unknown luciferase-related genes. It also reveals a broader diversity of the lux operon organization, which we observed in previously undescribed configurations such as CEDA, CAED and AxxCE. This expanded operon diversity provides clues for deciphering lux operon evolution and propagation within the bacterial domain. Leveraging quantitative tracking of marine bacterial genes afforded by planetary scale metagenomic sampling, our study also reveals that the novel lux genes and operons described herein are more abundant in the global ocean than the canonical CDAB(F)E(G) operon.
Collapse
Affiliation(s)
- Thomas Vannier
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Pascal Hingamp
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Floriane Turrel
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
| | - Lisa Tanet
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
| | - Magali Lescot
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Youri Timsit
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| |
Collapse
|
77
|
Ibarbalz FM, Henry N, Brandão MC, Martini S, Busseni G, Byrne H, Coelho LP, Endo H, Gasol JM, Gregory AC, Mahé F, Rigonato J, Royo-Llonch M, Salazar G, Sanz-Sáez I, Scalco E, Soviadan D, Zayed AA, Zingone A, Labadie K, Ferland J, Marec C, Kandels S, Picheral M, Dimier C, Poulain J, Pisarev S, Carmichael M, Pesant S, Babin M, Boss E, Iudicone D, Jaillon O, Acinas SG, Ogata H, Pelletier E, Stemmann L, Sullivan MB, Sunagawa S, Bopp L, de Vargas C, Karp-Boss L, Wincker P, Lombard F, Bowler C, Zinger L. Global Trends in Marine Plankton Diversity across Kingdoms of Life. Cell 2020; 179:1084-1097.e21. [PMID: 31730851 PMCID: PMC6912166 DOI: 10.1016/j.cell.2019.10.008] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/22/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022]
Abstract
The ocean is home to myriad small planktonic organisms that underpin the functioning of marine ecosystems. However, their spatial patterns of diversity and the underlying drivers remain poorly known, precluding projections of their responses to global changes. Here we investigate the latitudinal gradients and global predictors of plankton diversity across archaea, bacteria, eukaryotes, and major virus clades using both molecular and imaging data from Tara Oceans. We show a decline of diversity for most planktonic groups toward the poles, mainly driven by decreasing ocean temperatures. Projections into the future suggest that severe warming of the surface ocean by the end of the 21st century could lead to tropicalization of the diversity of most planktonic groups in temperate and polar regions. These changes may have multiple consequences for marine ecosystem functioning and services and are expected to be particularly significant in key areas for carbon sequestration, fisheries, and marine conservation. Video Abstract
Most epipelagic planktonic groups exhibit a poleward decline of diversity No latitudinal diversity gradient was observed below the photic zone Temperature emerges as the best predictor of epipelagic plankton diversity Global warming may increase plankton diversity, particularly at high latitudes
Collapse
Affiliation(s)
- Federico M Ibarbalz
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France
| | - Nicolas Henry
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, 29680 Roscoff, France; Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Manoela C Brandão
- Sorbonne Université, CNRS, UMR 7093, Institut de la Mer de Villefranche-sur-Mer, Laboratoire d'Océanographie de Villefranche, 06230 Villefranche-sur-Mer, France
| | - Séverine Martini
- Sorbonne Université, CNRS, UMR 7093, Institut de la Mer de Villefranche-sur-Mer, Laboratoire d'Océanographie de Villefranche, 06230 Villefranche-sur-Mer, France
| | - Greta Busseni
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Hannah Byrne
- Department of Earth and Planetary Sciences, Harvard University, 20 Oxford St., Cambridge, MA 02138, USA
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Hisashi Endo
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-CSIC, Pg. Marítim de la Barceloneta, 37-49 Barcelona E08003, Spain; Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, WA, Australia
| | - Ann C Gregory
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Frédéric Mahé
- CIRAD, UMR BGPI, 34398, Montpellier, France; BGPI, Université Montpellier, CIRAD, IRD, Montpellier SupAgro, Montpellier, France
| | - Janaina Rigonato
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, Évry, France
| | - Marta Royo-Llonch
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-CSIC, Pg. Marítim de la Barceloneta, 37-49 Barcelona E08003, Spain
| | - Guillem Salazar
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Isabel Sanz-Sáez
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-CSIC, Pg. Marítim de la Barceloneta, 37-49 Barcelona E08003, Spain
| | - Eleonora Scalco
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Dodji Soviadan
- Sorbonne Université, CNRS, UMR 7093, Institut de la Mer de Villefranche-sur-Mer, Laboratoire d'Océanographie de Villefranche, 06230 Villefranche-sur-Mer, France
| | - Ahmed A Zayed
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Adriana Zingone
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Karine Labadie
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l'Énergie Atomique (CEA), Université Paris-Saclay, Évry, France
| | - Joannie Ferland
- Takuvik Joint International Laboratory (UMI3376), Université Laval (Canada) - CNRS (France), Université Laval, Québec, QC G1V 0A6, Canada
| | - Claudie Marec
- Takuvik Joint International Laboratory (UMI3376), Université Laval (Canada) - CNRS (France), Université Laval, Québec, QC G1V 0A6, Canada
| | - Stefanie Kandels
- Structural and Computational Biology, European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany; Directors' Research European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Marc Picheral
- Sorbonne Université, CNRS, UMR 7093, Institut de la Mer de Villefranche-sur-Mer, Laboratoire d'Océanographie de Villefranche, 06230 Villefranche-sur-Mer, France
| | - Céline Dimier
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France; Sorbonne Université, CNRS, UMR 7093, Institut de la Mer de Villefranche-sur-Mer, Laboratoire d'Océanographie de Villefranche, 06230 Villefranche-sur-Mer, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, Évry, France
| | - Sergey Pisarev
- Shirshov Institute of Oceanology of the Russian Academy of Sciences, 36 Nakhimovsky Prosp., 117997 Moscow, Russia
| | - Margaux Carmichael
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, 29680 Roscoff, France
| | - Stéphane Pesant
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany; PANGAEA, Data Publisher for Earth and Environmental Science, University of Bremen, Bremen, Germany
| | | | - Marcel Babin
- Takuvik Joint International Laboratory (UMI3376), Université Laval (Canada) - CNRS (France), Université Laval, Québec, QC G1V 0A6, Canada
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Daniele Iudicone
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Olivier Jaillon
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France; Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, Évry, France
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-CSIC, Pg. Marítim de la Barceloneta, 37-49 Barcelona E08003, Spain
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Eric Pelletier
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France; Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, Évry, France
| | - Lars Stemmann
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France; Sorbonne Université, CNRS, UMR 7093, Institut de la Mer de Villefranche-sur-Mer, Laboratoire d'Océanographie de Villefranche, 06230 Villefranche-sur-Mer, France
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA; Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA; Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, USA
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Laurent Bopp
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France; LMD/IPSL, ENS, PSL Research University, École Polytechnique, Sorbonne Université, CNRS, Paris, France
| | - Colomban de Vargas
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, 29680 Roscoff, France; Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Lee Karp-Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Patrick Wincker
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France; Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, Évry, France
| | - Fabien Lombard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France; Sorbonne Université, CNRS, UMR 7093, Institut de la Mer de Villefranche-sur-Mer, Laboratoire d'Océanographie de Villefranche, 06230 Villefranche-sur-Mer, France
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France; Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France.
| | - Lucie Zinger
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, 75005 Paris, France.
| |
Collapse
|
78
|
Espinoza JL, Shah N, Singh S, Nelson KE, Dupont CL. Applications of weighted association networks applied to compositional data in biology. Environ Microbiol 2020; 22:3020-3038. [PMID: 32436334 DOI: 10.1111/1462-2920.15091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022]
Abstract
Next-generation sequencing technologies have generated, and continue to produce, an increasingly large corpus of biological data. The data generated are inherently compositional as they convey only relative information dependent upon the capacity of the instrument, experimental design and technical bias. There is considerable information to be gained through network analysis by studying the interactions between components within a system. Network theory methods using compositional data are powerful approaches for quantifying relationships between biological components and their relevance to phenotype, environmental conditions or other external variables. However, many of the statistical assumptions used for network analysis are not designed for compositional data and can bias downstream results. In this mini-review, we illustrate the utility of network theory in biological systems and investigate modern techniques while introducing researchers to frameworks for implementation. We overview (1) compositional data analysis, (2) data transformations and (3) network theory along with insight on a battery of network types including static-, temporal-, sample-specific- and differential-networks. The intention of this mini-review is not to provide a comprehensive overview of network methods, rather to introduce microbiology researchers to (semi)-unsupervised data-driven approaches for inferring latent structures that may give insight into biological phenomena or abstract mechanics of complex systems.
Collapse
Affiliation(s)
- Josh L Espinoza
- J. Craig Venter Institute, La Jolla, USA.,Applied Sciences, Durban University of Technology, Durban, South Africa
| | | | - Suren Singh
- Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Karen E Nelson
- J. Craig Venter Institute, La Jolla, USA.,Applied Sciences, Durban University of Technology, Durban, South Africa.,J. Craig Venter Institute, Rockville, USA
| | | |
Collapse
|
79
|
Mitchell AL, Almeida A, Beracochea M, Boland M, Burgin J, Cochrane G, Crusoe MR, Kale V, Potter SC, Richardson LJ, Sakharova E, Scheremetjew M, Korobeynikov A, Shlemov A, Kunyavskaya O, Lapidus A, Finn RD. MGnify: the microbiome analysis resource in 2020. Nucleic Acids Res 2020; 48:D570-D578. [PMID: 31696235 PMCID: PMC7145632 DOI: 10.1093/nar/gkz1035] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022] Open
Abstract
MGnify (http://www.ebi.ac.uk/metagenomics) provides a free to use platform for the assembly, analysis and archiving of microbiome data derived from sequencing microbial populations that are present in particular environments. Over the past 2 years, MGnify (formerly EBI Metagenomics) has more than doubled the number of publicly available analysed datasets held within the resource. Recently, an updated approach to data analysis has been unveiled (version 5.0), replacing the previous single pipeline with multiple analysis pipelines that are tailored according to the input data, and that are formally described using the Common Workflow Language, enabling greater provenance, reusability, and reproducibility. MGnify's new analysis pipelines offer additional approaches for taxonomic assertions based on ribosomal internal transcribed spacer regions (ITS1/2) and expanded protein functional annotations. Biochemical pathways and systems predictions have also been added for assembled contigs. MGnify's growing focus on the assembly of metagenomic data has also seen the number of datasets it has assembled and analysed increase six-fold. The non-redundant protein database constructed from the proteins encoded by these assemblies now exceeds 1 billion sequences. Meanwhile, a newly developed contig viewer provides fine-grained visualisation of the assembled contigs and their enriched annotations.
Collapse
Affiliation(s)
- Alex L Mitchell
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Alexandre Almeida
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.,Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Martin Beracochea
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Miguel Boland
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Josephine Burgin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Guy Cochrane
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Michael R Crusoe
- Common Workflow Language, a project of the Software Freedom Conservancy, Inc. 137 Montague Street, Suite 380, Brooklyn, NY 11201-3548, USA
| | - Varsha Kale
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Simon C Potter
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Lorna J Richardson
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ekaterina Sakharova
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Maxim Scheremetjew
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Anton Korobeynikov
- Center for Algorithmic Biotechnologies, Saint Petersburg State University, Russia
| | - Alex Shlemov
- Center for Algorithmic Biotechnologies, Saint Petersburg State University, Russia
| | - Olga Kunyavskaya
- Center for Algorithmic Biotechnologies, Saint Petersburg State University, Russia
| | - Alla Lapidus
- Center for Algorithmic Biotechnologies, Saint Petersburg State University, Russia
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| |
Collapse
|
80
|
Sunagawa S, Acinas SG, Bork P, Bowler C, Eveillard D, Gorsky G, Guidi L, Iudicone D, Karsenti E, Lombard F, Ogata H, Pesant S, Sullivan MB, Wincker P, de Vargas C. Tara Oceans: towards global ocean ecosystems biology. Nat Rev Microbiol 2020; 18:428-445. [PMID: 32398798 DOI: 10.1038/s41579-020-0364-5] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2020] [Indexed: 12/14/2022]
Abstract
A planetary-scale understanding of the ocean ecosystem, particularly in light of climate change, is crucial. Here, we review the work of Tara Oceans, an international, multidisciplinary project to assess the complexity of ocean life across comprehensive taxonomic and spatial scales. Using a modified sailing boat, the team sampled plankton at 210 globally distributed sites at depths down to 1,000 m. We describe publicly available resources of molecular, morphological and environmental data, and discuss how an ecosystems biology approach has expanded our understanding of plankton diversity and ecology in the ocean as a planetary, interconnected ecosystem. These efforts illustrate how global-scale concepts and data can help to integrate biological complexity into models and serve as a baseline for assessing ecosystem changes and the future habitability of our planet in the Anthropocene epoch.
Collapse
Affiliation(s)
- Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland.
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institute of Marine Sciences-CSIC, Barcelona, Spain
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany.,Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Chris Bowler
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | | | - Damien Eveillard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Université de Nantes, CNRS, UMR6004, LS2N, Nantes, France
| | - Gabriel Gorsky
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | - Lionel Guidi
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | | | - Eric Karsenti
- Institut de Biologie de l'ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Directors' Research, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Fabien Lombard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Stephane Pesant
- PANGAEA, University of Bremen, Bremen, Germany.,MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.,Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Patrick Wincker
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France.,Génomique Métabolique, Genoscope, Institut de Biologie Francois Jacob, Commissariat à l'Énergie Atomique, CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Colomban de Vargas
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France. .,Sorbonne Université and CNRS, UMR 7144 (AD2M), ECOMAP, Station Biologique de Roscoff, Roscoff, France.
| |
Collapse
|
81
|
Muñoz-Marín MC, Gómez-Baena G, López-Lozano A, Moreno-Cabezuelo JA, Díez J, García-Fernández JM. Mixotrophy in marine picocyanobacteria: use of organic compounds by Prochlorococcus and Synechococcus. THE ISME JOURNAL 2020; 14:1065-1073. [PMID: 32034281 PMCID: PMC7174365 DOI: 10.1038/s41396-020-0603-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 12/23/2022]
Abstract
Marine picocyanobacteria of the Prochlorococcus and Synechococcus genera have been longtime considered as autotrophic organisms. However, compelling evidence published over the last 15 years shows that these organisms can use different organic compounds containing key elements to survive in oligotrophic oceans, such as N (amino acids, amino sugars), S (dimethylsulfoniopropionate, DMSP), or P (ATP). Furthermore, marine picocyanobacteria can also take up glucose and use it as a source of carbon and energy, despite the fact that this compound is devoid of limiting elements and can also be synthesized by using standard metabolic pathways. This review will outline the main findings suggesting mixotrophy in the marine picocyanobacteria Prochlorococcus and Synechococcus, and its ecological relevance for these important primary producers.
Collapse
Affiliation(s)
- M C Muñoz-Marín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Edificio Severo Ochoa, planta 1, ala Este, Campus de Rabanales, Universidad de Córdoba, 14071, Córdoba, Spain
| | - G Gómez-Baena
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Edificio Severo Ochoa, planta 1, ala Este, Campus de Rabanales, Universidad de Córdoba, 14071, Córdoba, Spain
| | - A López-Lozano
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Edificio Severo Ochoa, planta 1, ala Este, Campus de Rabanales, Universidad de Córdoba, 14071, Córdoba, Spain
| | - J A Moreno-Cabezuelo
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Edificio Severo Ochoa, planta 1, ala Este, Campus de Rabanales, Universidad de Córdoba, 14071, Córdoba, Spain
| | - J Díez
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Edificio Severo Ochoa, planta 1, ala Este, Campus de Rabanales, Universidad de Córdoba, 14071, Córdoba, Spain
| | - J M García-Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Edificio Severo Ochoa, planta 1, ala Este, Campus de Rabanales, Universidad de Córdoba, 14071, Córdoba, Spain.
| |
Collapse
|
82
|
Logares R, Deutschmann IM, Junger PC, Giner CR, Krabberød AK, Schmidt TSB, Rubinat-Ripoll L, Mestre M, Salazar G, Ruiz-González C, Sebastián M, de Vargas C, Acinas SG, Duarte CM, Gasol JM, Massana R. Disentangling the mechanisms shaping the surface ocean microbiota. MICROBIOME 2020; 8:55. [PMID: 32312331 PMCID: PMC7171866 DOI: 10.1186/s40168-020-00827-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 03/13/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND The ocean microbiota modulates global biogeochemical cycles and changes in its configuration may have large-scale consequences. Yet, the underlying ecological mechanisms structuring it are unclear. Here, we investigate how fundamental ecological mechanisms (selection, dispersal and ecological drift) shape the smallest members of the tropical and subtropical surface-ocean microbiota: prokaryotes and minute eukaryotes (picoeukaryotes). Furthermore, we investigate the agents exerting abiotic selection on this assemblage as well as the spatial patterns emerging from the action of ecological mechanisms. To explore this, we analysed the composition of surface-ocean prokaryotic and picoeukaryotic communities using DNA-sequence data (16S- and 18S-rRNA genes) collected during the circumglobal expeditions Malaspina-2010 and TARA-Oceans. RESULTS We found that the two main components of the tropical and subtropical surface-ocean microbiota, prokaryotes and picoeukaryotes, appear to be structured by different ecological mechanisms. Picoeukaryotic communities were predominantly structured by dispersal-limitation, while prokaryotic counterparts appeared to be shaped by the combined action of dispersal-limitation, selection and drift. Temperature-driven selection appeared as a major factor, out of a few selected factors, influencing species co-occurrence networks in prokaryotes but not in picoeukaryotes, indicating that association patterns may contribute to understand ocean microbiota structure and response to selection. Other measured abiotic variables seemed to have limited selective effects on community structure in the tropical and subtropical ocean. Picoeukaryotes displayed a higher spatial differentiation between communities and a higher distance decay when compared to prokaryotes, consistent with a scenario of higher dispersal limitation in the former after considering environmental heterogeneity. Lastly, random dynamics or drift seemed to have a more important role in structuring prokaryotic communities than picoeukaryotic counterparts. CONCLUSIONS The differential action of ecological mechanisms seems to cause contrasting biogeography, in the tropical and subtropical ocean, among the smallest surface plankton, prokaryotes and picoeukaryotes. This suggests that the idiosyncrasy of the main constituents of the ocean microbiota should be considered in order to understand its current and future configuration, which is especially relevant in a context of global change, where the reaction of surface ocean plankton to temperature increase is still unclear. Video Abstract.
Collapse
Affiliation(s)
- Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalonia Spain
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, 0316 Oslo, Norway
| | - Ina M. Deutschmann
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalonia Spain
| | - Pedro C. Junger
- Laboratory of Microbial Processes & Biodiversity (LMPB), Department of Hydrobiology (DHB), Universidade Federal de São Carlos (UFSCar), São Carlos, 13565-905 SP Brazil
| | - Caterina R. Giner
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalonia Spain
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4 Canada
| | - Anders K. Krabberød
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, 0316 Oslo, Norway
| | - Thomas S. B. Schmidt
- European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Laura Rubinat-Ripoll
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe EPEP, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Mireia Mestre
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalonia Spain
- Centro de Investigación Oceanográfica COPAS Sur-Austral, Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile
- Centro FONDAP de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Guillem Salazar
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalonia Spain
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Marta Sebastián
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalonia Spain
- Oceanography and Global Change Institute, IOCAG, University of Las Palmas de Gran Canaria, ULPGC, 35214 Gran Canaria, Spain
| | - Colomban de Vargas
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Equipe EPEP, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Silvia G. Acinas
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalonia Spain
| | - Carlos M. Duarte
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal, Saudi Arabia
| | - Josep M. Gasol
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalonia Spain
- Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, Joondalup, WA Australia
| | - Ramon Massana
- Institute of Marine Sciences (ICM), CSIC, 08003 Barcelona, Catalonia Spain
| |
Collapse
|
83
|
Enzymes to unravel bioproducts architecture. Biotechnol Adv 2020; 41:107546. [PMID: 32275940 DOI: 10.1016/j.biotechadv.2020.107546] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/20/2020] [Accepted: 04/03/2020] [Indexed: 11/20/2022]
Abstract
Enzymes are essential and ubiquitous biocatalysts involved in various metabolic pathways and used in many industrial processes. Here, we reframe enzymes not just as biocatalysts transforming bioproducts but also as sensitive probes for exploring the structure and composition of complex bioproducts, like meat tissue, dairy products and plant materials, in both food and non-food bioprocesses. This review details the global strategy and presents the most recent investigations to prepare and use enzymes as relevant probes, with a focus on glycoside-hydrolases involved in plant deconstruction and proteases and lipases involved in food digestion. First, to expand the enzyme repertoire to fit bioproduct complexity, novel enzymes are mined from biodiversity and can be artificially engineered. Enzymes are further characterized by exploring sequence/structure/dynamics/function relationships together with the environmental factors influencing enzyme interactions with their substrates. Then, the most advanced experimental and theoretical approaches developed for exploring bioproducts at various scales (from nanometer to millimeter) using active and inactive enzymes as probes are illustrated. Overall, combining multimodal and multiscale approaches brings a better understanding of native-form or transformed bioproduct architecture and composition, and paves the way to mainstream the use of enzymes as probes.
Collapse
|
84
|
Sigamani S, Perumal M, Thivakaran GA, Thangavel B, Kandasamy K. DNA barcoding of macrofauna act as a tool for assessing marine ecosystem. MARINE POLLUTION BULLETIN 2020; 152:107891. [PMID: 27423443 DOI: 10.1016/j.marpolbul.2016.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/09/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
Nowadays, marine ecosystem monitoring and assessment are increasingly depending on variety of molecular tools. With these background, DNA barcoding play a key role in species identification with increasing speed and accuracy, and although the suitability for developing genetic tools like genomic AMBI (gAMBI). Presently we have submitted 13 benthic polychaete species using mtCOI to GenBank. Of these, nine species were newly submitted, and hence they act as a benchmark and reference organism for identifying respective polychaete species worldwide in the near future. Based on that, our study results tend to be helpful for motivating among the researcher in order to implementing the genomic AMBI (gAMBI).
Collapse
Affiliation(s)
- Sivaraj Sigamani
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India.
| | - Murugesan Perumal
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| | | | - Balasubramanian Thangavel
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| | - Kathiresan Kandasamy
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| |
Collapse
|
85
|
Al-Shayeb B, Sachdeva R, Chen LX, Ward F, Munk P, Devoto A, Castelle CJ, Olm MR, Bouma-Gregson K, Amano Y, He C, Méheust R, Brooks B, Thomas A, Lavy A, Matheus-Carnevali P, Sun C, Goltsman DSA, Borton MA, Sharrar A, Jaffe AL, Nelson TC, Kantor R, Keren R, Lane KR, Farag IF, Lei S, Finstad K, Amundson R, Anantharaman K, Zhou J, Probst AJ, Power ME, Tringe SG, Li WJ, Wrighton K, Harrison S, Morowitz M, Relman DA, Doudna JA, Lehours AC, Warren L, Cate JHD, Santini JM, Banfield JF. Clades of huge phages from across Earth's ecosystems. Nature 2020; 578:425-431. [PMID: 32051592 PMCID: PMC7162821 DOI: 10.1038/s41586-020-2007-4] [Citation(s) in RCA: 285] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 01/02/2020] [Indexed: 12/31/2022]
Abstract
Bacteriophages typically have small genomes1 and depend on their bacterial hosts for replication2. Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is-to our knowledge-the largest phage genome to be described to date. Thirty-five genomes were manually curated to completion (circular and no gaps). Expanded genetic repertoires include diverse and previously undescribed CRISPR-Cas systems, transfer RNAs (tRNAs), tRNA synthetases, tRNA-modification enzymes, translation-initiation and elongation factors, and ribosomal proteins. The CRISPR-Cas systems of phages have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. In addition, some phages may repurpose bacterial CRISPR-Cas systems to eliminate competing phages. We phylogenetically define the major clades of huge phages from human and other animal microbiomes, as well as from oceans, lakes, sediments, soils and the built environment. We conclude that the large gene inventories of huge phages reflect a conserved biological strategy, and that the phages are distributed across a broad bacterial host range and across Earth's ecosystems.
Collapse
Affiliation(s)
- Basem Al-Shayeb
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Rohan Sachdeva
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Lin-Xing Chen
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Fred Ward
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Patrick Munk
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Audra Devoto
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Cindy J Castelle
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Matthew R Olm
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Keith Bouma-Gregson
- Earth and Planetary Science, University of California Berkeley, Berkeley, CA, USA
| | - Yuki Amano
- Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, Tokai-mura, Japan
| | - Christine He
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Raphaël Méheust
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Brandon Brooks
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Alex Thomas
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Adi Lavy
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | | | - Christine Sun
- Department of Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | | | - Mikayla A Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Allison Sharrar
- Earth and Planetary Science, University of California Berkeley, Berkeley, CA, USA
| | - Alexander L Jaffe
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Tara C Nelson
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Rose Kantor
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Ray Keren
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Katherine R Lane
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Ibrahim F Farag
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Shufei Lei
- Earth and Planetary Science, University of California Berkeley, Berkeley, CA, USA
| | - Kari Finstad
- Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA
| | - Ronald Amundson
- Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA
| | - Karthik Anantharaman
- Earth and Planetary Science, University of California Berkeley, Berkeley, CA, USA
| | | | - Alexander J Probst
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Mary E Power
- Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | | | - Wen-Jun Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Kelly Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sue Harrison
- Centre for Bioprocess Engineering Research, University of Cape Town, Cape Town, South Africa
| | - Michael Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David A Relman
- Department of Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | - Jennifer A Doudna
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Anne-Catherine Lehours
- Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
| | - Lesley Warren
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Jamie H D Cate
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Joanne M Santini
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA.
- Earth and Planetary Science, University of California Berkeley, Berkeley, CA, USA.
- Environmental Science, Policy and Management, University of California Berkeley, Berkeley, CA, USA.
- School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
86
|
Zhang Y, Pavlovska M, Stoica E, Prekrasna I, Yang J, Slobodnik J, Zhang X, Dykyi E. Holistic pelagic biodiversity monitoring of the Black Sea via eDNA metabarcoding approach: From bacteria to marine mammals. ENVIRONMENT INTERNATIONAL 2020; 135:105307. [PMID: 31881429 DOI: 10.1016/j.envint.2019.105307] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
As the largest semi-closed marine ecosystem in the world, the Black Sea has been heavily affected by human activities for a long time. Describing the biodiversity of multi-trophic biota in pelagic zone of the Black Sea and identifying the dominant environmental factors are prerequisites for protecting the sustainability of ecosystems. However, up to now, the taxonomic and distributional information about the Black Sea biota is not clear. Here, we employed a Tree-of-Life metabarcoding to analyze the biodiversity of eight communities in the Black Sea, investigated their biogeographical distribution, and further analyzed the influence of biological and abiotic factors on biota on large scales. We found that, (1) Over 8900 OTUs were detected in the Black Sea, of which 630 species were identified, covering the holistic biota from single-celled (bacteria 5620 OTUs 141 species; algae 1096 OTUs 185 species; protozoa 546 OTUs 146 species) to multicellular organisms (invertebrate metazoans 150 OTUs 34 species; fishes 1369 OTUs 76 species; large marine mammals 39 OTUs 5 species). (2) Higher trophic organisms (fishes and large mammals) distributed more evenly in space than the lower (microorganisms, protozoa and invertebrates). For lower trophic organisms, the vertical stratification was more obvious than the horizontal stratification (vertical p < 0.02, horizontal p < 0.05). (3) The bottom trophic organisms (bacteria and algae) of the food web significantly affected the distribution and composition of the others through biological interactions (Mantel p < 0.05). (4) At the level of abiotic factors, the effect of local species sorting on the composition of communities was 15% higher than that of mass dispersal effect. For the first time, this study monitored and profiled the holistic biodiversity in the pelagic zone of the Black Sea, and provided technological advances and preliminary knowledge for the ongoing Black Sea ecosystem protection efforts.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mariia Pavlovska
- Ukrainian Scientific Center of Ecology of the Sea, 89 Frantsuzsky Blvd., 65009 Odesa, Ukraine; State Institution National Antarctic Scientific Center, Taras Shevchenko Blvd., 16, 01601 Kyiv, Ukraine
| | - Elena Stoica
- National Institute for Marine Research and Development "Grigore Antipa", Blvd. Mamaia no. 300, RO-900581 Constanţa 3, Romania
| | - Ievgeniia Prekrasna
- Ukrainian Scientific Center of Ecology of the Sea, 89 Frantsuzsky Blvd., 65009 Odesa, Ukraine; State Institution National Antarctic Scientific Center, Taras Shevchenko Blvd., 16, 01601 Kyiv, Ukraine
| | - Jianghua Yang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | | | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Evgen Dykyi
- Ukrainian Scientific Center of Ecology of the Sea, 89 Frantsuzsky Blvd., 65009 Odesa, Ukraine; State Institution National Antarctic Scientific Center, Taras Shevchenko Blvd., 16, 01601 Kyiv, Ukraine
| |
Collapse
|
87
|
Abstract
Diatoms are key phytoplankton in the modern ocean that are involved in numerous biotic interactions, ranging from symbiosis to predation and viral infection, which have considerable effects on global biogeochemical cycles. However, despite recent large-scale studies of plankton, we are still lacking a comprehensive picture of the diversity of diatom biotic interactions in the marine microbial community. Through the ecological interpretation of both inferred microbial association networks and available knowledge on diatom interactions compiled in an open-access database, we propose an ecosystems approach for exploring diatom interactions in the ocean. Diatoms are a major component of phytoplankton, believed to be responsible for around 20% of the annual primary production on Earth. As abundant and ubiquitous organisms, they are known to establish biotic interactions with many other members of plankton. Through analyses of cooccurrence networks derived from the Tara Oceans expedition that take into account both biotic and abiotic factors in shaping the spatial distributions of species, we show that only 13% of diatom pairwise associations are driven by environmental conditions; the vast majority are independent of abiotic factors. In contrast to most other plankton groups, on a global scale, diatoms display a much higher proportion of negative correlations with other organisms, particularly toward potential predators and parasites, suggesting that their biogeography is constrained by top-down pressure. Genus-level analyses indicate that abundant diatoms are not necessarily the most connected and that species-specific abundance distribution patterns lead to negative associations with other organisms. In order to move forward in the biological interpretation of cooccurrence networks, an open-access extensive literature survey of diatom biotic interactions was compiled, of which 18.5% were recovered in the computed network. This result reveals the extent of what likely remains to be discovered in the field of planktonic biotic interactions, even for one of the best-known organismal groups. IMPORTANCE Diatoms are key phytoplankton in the modern ocean that are involved in numerous biotic interactions, ranging from symbiosis to predation and viral infection, which have considerable effects on global biogeochemical cycles. However, despite recent large-scale studies of plankton, we are still lacking a comprehensive picture of the diversity of diatom biotic interactions in the marine microbial community. Through the ecological interpretation of both inferred microbial association networks and available knowledge on diatom interactions compiled in an open-access database, we propose an ecosystems approach for exploring diatom interactions in the ocean.
Collapse
|
88
|
Leconte J, Benites LF, Vannier T, Wincker P, Piganeau G, Jaillon O. Genome Resolved Biogeography of Mamiellales. Genes (Basel) 2020; 11:E66. [PMID: 31936086 PMCID: PMC7016971 DOI: 10.3390/genes11010066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/24/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
Among marine phytoplankton, Mamiellales encompass several species from the genera Micromonas, Ostreococcus and Bathycoccus, which are important contributors to primary production. Previous studies based on single gene markers described their wide geographical distribution but led to discussion because of the uneven taxonomic resolution of the method. Here, we leverage genome sequences for six Mamiellales species, two from each genus Micromonas, Ostreococcus and Bathycoccus, to investigate their distribution across 133 stations sampled during the Tara Oceans expedition. Our study confirms the cosmopolitan distribution of Mamiellales and further suggests non-random distribution of species, with two triplets of co-occurring genomes associated with different temperatures: Ostreococcuslucimarinus, Bathycoccusprasinos and Micromonaspusilla were found in colder waters, whereas Ostreococcus spp. RCC809, Bathycoccus spp. TOSAG39-1 and Micromonascommoda were more abundant in warmer conditions. We also report the distribution of the two candidate mating-types of Ostreococcus for which the frequency of sexual reproduction was previously assumed to be very low. Indeed, both mating types were systematically detected together in agreement with either frequent sexual reproduction or the high prevalence of a diploid stage. Altogether, these analyses provide novel insights into Mamiellales' biogeography and raise novel testable hypotheses about their life cycle and ecology.
Collapse
Affiliation(s)
- Jade Leconte
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l′Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France; (J.L.); (T.V.); (P.W.)
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - L. Felipe Benites
- Observatoire Océanologique, UMR 7232 Biologie Intégrative des Organismes Marins BIOM, CNRS, Sorbonne Université, F-66650 Banyuls-sur-Mer, France;
| | - Thomas Vannier
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l′Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France; (J.L.); (T.V.); (P.W.)
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l′Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France; (J.L.); (T.V.); (P.W.)
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Gwenael Piganeau
- Observatoire Océanologique, UMR 7232 Biologie Intégrative des Organismes Marins BIOM, CNRS, Sorbonne Université, F-66650 Banyuls-sur-Mer, France;
| | - Olivier Jaillon
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l′Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, 91057 Évry, France; (J.L.); (T.V.); (P.W.)
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| |
Collapse
|
89
|
Abstract
Photosynthesis evolved in the ocean more than 2 billion years ago and is now performed by a wide range of evolutionarily distinct organisms, including both prokaryotes and eukaryotes. Our appreciation of their abundance, distributions, and contributions to primary production in the ocean has been increasing since they were first discovered in the seventeenth century and has now been enhanced by data emerging from the Tara Oceans project, which performed a comprehensive worldwide sampling of plankton in the upper layers of the ocean between 2009 and 2013. Largely using recent data from Tara Oceans, here we review the geographic distributions of phytoplankton in the global ocean and their diversity, abundance, and standing stock biomass. We also discuss how omics-based information can be incorporated into studies of photosynthesis in the ocean and show the likely importance of mixotrophs and photosymbionts.
Collapse
Affiliation(s)
- Juan José Pierella Karlusich
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université de Recherche Paris Sciences et Lettres (Université PSL), 75005 Paris, France;
| | - Federico M Ibarbalz
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université de Recherche Paris Sciences et Lettres (Université PSL), 75005 Paris, France;
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université de Recherche Paris Sciences et Lettres (Université PSL), 75005 Paris, France;
| |
Collapse
|
90
|
Kraemer S, Ramachandran A, Colatriano D, Lovejoy C, Walsh DA. Diversity and biogeography of SAR11 bacteria from the Arctic Ocean. THE ISME JOURNAL 2020; 14:79-90. [PMID: 31501503 PMCID: PMC6908578 DOI: 10.1038/s41396-019-0499-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/30/2019] [Accepted: 08/17/2019] [Indexed: 11/09/2022]
Abstract
The Arctic Ocean is relatively isolated from other oceans and consists of strongly stratified water masses with distinct histories, nutrient, temperature, and salinity characteristics, therefore providing an optimal environment to investigate local adaptation. The globally distributed SAR11 bacterial group consists of multiple ecotypes that are associated with particular marine environments, yet relatively little is known about Arctic SAR11 diversity. Here, we examined SAR11 diversity using ITS analysis and metagenome-assembled genomes (MAGs). Arctic SAR11 assemblages were comprised of the S1a, S1b, S2, and S3 clades, and structured by water mass and depth. The fresher surface layer was dominated by an ecotype (S3-derived P3.2) previously associated with Arctic and brackish water. In contrast, deeper waters of Pacific origin were dominated by the P2.3 ecotype of the S2 clade, within which we identified a novel subdivision (P2.3s1) that was rare outside the Arctic Ocean. Arctic S2-derived SAR11 MAGs were restricted to high latitudes and included MAGs related to the recently defined S2b subclade, a finding consistent with bi-polar ecotypes and Arctic endemism. These results place the stratified Arctic Ocean into the SAR11 global biogeography and have identified SAR11 lineages for future investigation of adaptive evolution in the Arctic Ocean.
Collapse
Affiliation(s)
- Susanne Kraemer
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada
| | - Arthi Ramachandran
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada
| | - David Colatriano
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada
| | - Connie Lovejoy
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS) and Québec-Océan, Université Laval, Quebec City, QC, G1K 7P4, Canada
| | - David A Walsh
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada.
| |
Collapse
|
91
|
Sordino P, D'Aniello S, Pelletier E, Wincker P, Nittoli V, Stemmann L, Mazzocchi MG, Lombard F, Iudicone D, Caputi L. Into the bloom: Molecular response of pelagic tunicates to fluctuating food availability. Mol Ecol 2019; 29:292-307. [PMID: 31793138 DOI: 10.1111/mec.15321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/07/2023]
Abstract
The planktonic tunicates appendicularians and thaliaceans are highly efficient filter feeders on a wide range of prey size including bacteria and have shorter generation times than any other marine grazers. These traits allow some tunicate species to reach high population densities and ensure their success in a favourable environment. However, there are still few studies focusing on which genes and gene pathways are associated with responses of pelagic tunicates to environmental variability. Herein, we present the effect of food availability increase on tunicate community and gene expression at the Marquesas Islands (South-East Pacific Ocean). By using data from the Tara Oceans expedition, we show that changes in phytoplankton density and composition trigger the success of a dominant larvacean species (an undescribed appendicularian). Transcriptional signature to the autotroph bloom suggests key functions in specific physiological processes, i.e., energy metabolism, muscle contraction, membrane trafficking, and proteostasis. The relative abundance of reverse transcription-related Pfams was lower at bloom conditions, suggesting a link with adaptive genetic diversity in tunicates in natural ecosystems. Downstream of the bloom, pelagic tunicates were outcompeted by copepods. Our work represents the first metaomics study of the biological effects of phytoplankton bloom on a key zooplankton taxon.
Collapse
Affiliation(s)
| | | | - Eric Pelletier
- CEA - Institut Francois Jacob, Genoscope, Evry, France.,CNRS, UMR, Evry, France.,Université d'Evry Val d'Essonne, Université Paris-Saclay, Evry, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, Paris, France
| | - Patrick Wincker
- CEA - Institut Francois Jacob, Genoscope, Evry, France.,CNRS, UMR, Evry, France.,Université d'Evry Val d'Essonne, Université Paris-Saclay, Evry, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, Paris, France
| | | | - Lars Stemmann
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, Paris, France.,CNRS, UMR 7093, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, Sorbonne Université, Villefranche-sur-Mer, France
| | | | - Fabien Lombard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, Paris, France.,CNRS, UMR 7093, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, Sorbonne Université, Villefranche-sur-Mer, France
| | | | | |
Collapse
|
92
|
Hübler R, Key FM, Warinner C, Bos KI, Krause J, Herbig A. HOPS: automated detection and authentication of pathogen DNA in archaeological remains. Genome Biol 2019; 20:280. [PMID: 31842945 PMCID: PMC6913047 DOI: 10.1186/s13059-019-1903-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 11/27/2019] [Indexed: 01/28/2023] Open
Abstract
High-throughput DNA sequencing enables large-scale metagenomic analyses of complex biological systems. Such analyses are not restricted to present-day samples and can also be applied to molecular data from archaeological remains. Investigations of ancient microbes can provide valuable information on past bacterial commensals and pathogens, but their molecular detection remains a challenge. Here, we present HOPS (Heuristic Operations for Pathogen Screening), an automated bacterial screening pipeline for ancient DNA sequences that provides detailed information on species identification and authenticity. HOPS is a versatile tool for high-throughput screening of DNA from archaeological material to identify candidates for genome-level analyses.
Collapse
Affiliation(s)
- Ron Hübler
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Felix M Key
- Max Planck Institute for the Science of Human History, Jena, Germany. .,Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. .,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | | | - Kirsten I Bos
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Alexander Herbig
- Max Planck Institute for the Science of Human History, Jena, Germany.
| |
Collapse
|
93
|
López-Escardó D, Grau-Bové X, Guillaumet-Adkins A, Gut M, Sieracki ME, Ruiz-Trillo I. Reconstruction of protein domain evolution using single-cell amplified genomes of uncultured choanoflagellates sheds light on the origin of animals. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190088. [PMID: 31587642 PMCID: PMC6792448 DOI: 10.1098/rstb.2019.0088] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2019] [Indexed: 12/25/2022] Open
Abstract
Understanding the origins of animal multicellularity is a fundamental biological question. Recent genome data have unravelled the role that co-option of pre-existing genes played in the origin of animals. However, there were also some important genetic novelties at the onset of Metazoa. To have a clear understanding of the specific genetic innovations and how they appeared, we need the broadest taxon sampling possible, especially among early-branching animals and their unicellular relatives. Here, we take advantage of single-cell genomics to expand our understanding of the genomic diversity of choanoflagellates, the sister-group to animals. With these genomes, we have performed an updated and taxon-rich reconstruction of protein evolution from the Last Eukaryotic Common Ancestor (LECA) to animals. Our novel data re-defines the origin of some genes previously thought to be metazoan-specific, like the POU transcription factor, which we show appeared earlier in evolution. Moreover, our data indicate that the acquisition of new genes at the stem of Metazoa was mainly driven by duplications and protein domain rearrangement processes at the stem of Metazoa. Furthermore, our analysis allowed us to reveal protein domains that are essential to the maintenance of animal multicellularity. Our analyses also demonstrate the utility of single-cell genomics from uncultured taxa to address evolutionary questions. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- David López-Escardó
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
- Institut de Ciències del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Xavier Grau-Bové
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Amy Guillaumet-Adkins
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | | | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
94
|
Royo-Llonch M, Sánchez P, González JM, Pedrós-Alió C, Acinas SG. Ecological and functional capabilities of an uncultured Kordia sp. Syst Appl Microbiol 2019; 43:126045. [PMID: 31831198 DOI: 10.1016/j.syapm.2019.126045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/28/2019] [Accepted: 11/12/2019] [Indexed: 01/07/2023]
Abstract
Cultivable bacteria represent only a fraction of the diversity in microbial communities. However, the official procedures for classification and characterization of a novel prokaryotic species still rely on isolates. Nevertheless, due to single cell genomics, it is possible to retrieve genomes from environmental samples by sequencing them individually, and to assign specific genes to a specific taxon, regardless of their ability to grow in culture. In this study, a complete description was performed for uncultured Kordia sp. TARA_039_SRF, a proposed novel species within the genus Kordia, using culture-independent techniques. The type material was a high-quality draft genome (94.97% complete, 4.65% gene redundancy) co-assembled using ten nearly identical single amplified genomes (SAGs) from surface seawater in the North Indian Ocean during the Tara Oceans Expedition. The assembly process was optimized to obtain the best possible assembly metrics and a less fragmented genome. The closest relative of the species was Kordia periserrulae, which shared 97.56% similarity of the 16S rRNA gene, 75% orthologs and 89.13% average nucleotide identity. The functional potential of the proposed novel species included proteorhodopsin, the ability to incorporate nitrate, cytochrome oxidases with high affinity for oxygen, and CAZymes that were unique features within the genus. Its abundance at different depths and size fractions was also evaluated together with its functional annotation, revealing that its putative ecological niche could be particles of phytoplanktonic origin. It could putatively attach to these particles and consume them while sinking to the deeper and oxygen depleted layers of the North Indian Ocean.
Collapse
Affiliation(s)
- M Royo-Llonch
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC, Barcelona, Spain
| | - P Sánchez
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC, Barcelona, Spain
| | - J M González
- Department of Microbiology, University of La Laguna, La Laguna, Spain
| | - C Pedrós-Alió
- Systems Biology Program, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - S G Acinas
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC, Barcelona, Spain.
| |
Collapse
|
95
|
Salazar G, Paoli L, Alberti A, Huerta-Cepas J, Ruscheweyh HJ, Cuenca M, Field CM, Coelho LP, Cruaud C, Engelen S, Gregory AC, Labadie K, Marec C, Pelletier E, Royo-Llonch M, Roux S, Sánchez P, Uehara H, Zayed AA, Zeller G, Carmichael M, Dimier C, Ferland J, Kandels S, Picheral M, Pisarev S, Poulain J, Acinas SG, Babin M, Bork P, Bowler C, de Vargas C, Guidi L, Hingamp P, Iudicone D, Karp-Boss L, Karsenti E, Ogata H, Pesant S, Speich S, Sullivan MB, Wincker P, Sunagawa S. Gene Expression Changes and Community Turnover Differentially Shape the Global Ocean Metatranscriptome. Cell 2019; 179:1068-1083.e21. [PMID: 31730850 PMCID: PMC6912165 DOI: 10.1016/j.cell.2019.10.014] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/26/2019] [Accepted: 10/11/2019] [Indexed: 12/02/2022]
Abstract
Ocean microbial communities strongly influence the biogeochemistry, food webs, and climate of our planet. Despite recent advances in understanding their taxonomic and genomic compositions, little is known about how their transcriptomes vary globally. Here, we present a dataset of 187 metatranscriptomes and 370 metagenomes from 126 globally distributed sampling stations and establish a resource of 47 million genes to study community-level transcriptomes across depth layers from pole-to-pole. We examine gene expression changes and community turnover as the underlying mechanisms shaping community transcriptomes along these axes of environmental variation and show how their individual contributions differ for multiple biogeochemically relevant processes. Furthermore, we find the relative contribution of gene expression changes to be significantly lower in polar than in non-polar waters and hypothesize that in polar regions, alterations in community activity in response to ocean warming will be driven more strongly by changes in organismal composition than by gene regulatory mechanisms. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Guillem Salazar
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich 8093, Switzerland
| | - Lucas Paoli
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich 8093, Switzerland
| | - Adriana Alberti
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, Evry, France; Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid 28223, Spain; Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich 8093, Switzerland
| | - Miguelangel Cuenca
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich 8093, Switzerland
| | - Christopher M Field
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich 8093, Switzerland
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China; Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Corinne Cruaud
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France; Genoscope, Institut de biologie François-Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Stefan Engelen
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France; Genoscope, Institut de biologie François-Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Ann C Gregory
- Department of Microbiology, the Ohio State University, Columbus, OH 43210, USA
| | - Karine Labadie
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France; Genoscope, Institut de biologie François-Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Claudie Marec
- Département de biologie, Université Laval, QC G1V 0A6, Canada; Laboratoire d'Oceanographie Physique et Spatiale, UMR 6523, CNRS-IFREMER-IRD-UBO, Plouzané, France
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, Evry, France; Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France
| | - Marta Royo-Llonch
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-CSIC, Barcelona 08003, Spain
| | - Simon Roux
- Department of Microbiology, the Ohio State University, Columbus, OH 43210, USA
| | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-CSIC, Barcelona 08003, Spain
| | - Hideya Uehara
- Institute for Chemical Research, Kyoto Univerisity, Gokasho, Uji 611-0011, Japan; Hewlett-Packard Japan, 2-2-1, Ojima, Koto-ku, Tokyo 136-8711, Japan
| | - Ahmed A Zayed
- Department of Microbiology, the Ohio State University, Columbus, OH 43210, USA
| | - Georg Zeller
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Margaux Carmichael
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France; Sorbonne Université & CNRS, UMR 7144 (AD2M), ECOMAP, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France
| | - Céline Dimier
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France; Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefanche, LOV, Villefranche-sur-mer 06230, France; Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris 75005, France
| | - Joannie Ferland
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France; Takuvik Joint International Laboratory, CNRS-Université Laval, QC G1V 0A6, Canada
| | - Stefanie Kandels
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Marc Picheral
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France; Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefanche, LOV, Villefranche-sur-mer 06230, France
| | - Sergey Pisarev
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow 117997, Russia
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, Evry, France; Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-CSIC, Barcelona 08003, Spain
| | - Marcel Babin
- Takuvik Joint International Laboratory, CNRS-Université Laval, QC G1V 0A6, Canada
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg 69117, Germany; Max Delbrück Centre for Molecular Medicine, Berlin 13125, Germany; Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Chris Bowler
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France; Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris 75005, France
| | - Colomban de Vargas
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France; Sorbonne Université & CNRS, UMR 7144 (AD2M), ECOMAP, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France
| | - Lionel Guidi
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France; Sorbonne Université & CNRS, UMR 7144 (AD2M), ECOMAP, Station Biologique de Roscoff, Place Georges Teissier, Roscoff 29680, France; Department of Oceanography, University of Hawaii, Honolulu, HI 96822, USA
| | - Pascal Hingamp
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France; Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | | | - Lee Karp-Boss
- School of Marine Sciences, University of Maine, Orono, ME 04469, USA
| | - Eric Karsenti
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris 75005, France; Directors' Research European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto Univerisity, Gokasho, Uji 611-0011, Japan
| | - Stephane Pesant
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany; PANGAEA, Data Publisher for Earth and Environmental Science, University of Bremen, Bremen, Germany
| | | | - Matthew B Sullivan
- Department of Microbiology, the Ohio State University, Columbus, OH 43210, USA; Department of Civil, Environmental and Geodetic Engineering, the Ohio State University, Columbus, OH 43214, USA; Center for RNA Biology, the Ohio State University, Columbus, OH 43214, USA
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, Evry, France; Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/GOSEE, 3 Rue Michel-Ange, Paris 75016, France
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich 8093, Switzerland.
| |
Collapse
|
96
|
Wang Y, Shi Q, Yang P, Zhang C, Mortuza SM, Xue Z, Ning K, Zhang Y. Fueling ab initio folding with marine metagenomics enables structure and function predictions of new protein families. Genome Biol 2019; 20:229. [PMID: 31676016 PMCID: PMC6825341 DOI: 10.1186/s13059-019-1823-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 09/13/2019] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION The ocean microbiome represents one of the largest microbiomes and produces nearly half of the primary energy on the planet through photosynthesis or chemosynthesis. Using recent advances in marine genomics, we explore new applications of oceanic metagenomes for protein structure and function prediction. RESULTS By processing 1.3 TB of high-quality reads from the Tara Oceans data, we obtain 97 million non-redundant genes. Of the 5721 Pfam families that lack experimental structures, 2801 have at least one member associated with the oceanic metagenomics dataset. We apply C-QUARK, a deep-learning contact-guided ab initio structure prediction pipeline, to model 27 families, where 20 are predicted to have a reliable fold with estimated template modeling score (TM-score) at least 0.5. Detailed analyses reveal that the abundance of microbial genera in the ocean is highly correlated to the frequency of occurrence in the modeled Pfam families, suggesting the significant role of the Tara Oceans genomes in the contact-map prediction and subsequent ab initio folding simulations. Of interesting note, PF15461, which has a majority of members coming from ocean-related bacteria, is identified as an important photosynthetic protein by structure-based function annotations. The pipeline is extended to a set of 417 Pfam families, built on the combination of Tara with other metagenomics datasets, which results in 235 families with an estimated TM-score over 0.5. CONCLUSIONS These results demonstrate a new avenue to improve the capacity of protein structure and function modeling through marine metagenomics, especially for difficult proteins with few homologous sequences.
Collapse
Affiliation(s)
- Yan Wang
- College of Life Science and Technology and College of Software, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Qiang Shi
- College of Life Science and Technology and College of Software, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Pengshuo Yang
- College of Life Science and Technology and College of Software, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - S M Mortuza
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Zhidong Xue
- College of Life Science and Technology and College of Software, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| | - Kang Ning
- College of Life Science and Technology and College of Software, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
97
|
Russo E, d'Ippolito G, Fontana A, Sarno D, D'Alelio D, Busseni G, Ianora A, von Elert E, Carotenuto Y. Density-dependent oxylipin production in natural diatom communities: possible implications for plankton dynamics. ISME JOURNAL 2019; 14:164-177. [PMID: 31611654 PMCID: PMC6908693 DOI: 10.1038/s41396-019-0518-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 01/17/2023]
Abstract
Oxylipins are important signal transduction lipoxygenase-derived products of fatty acids that regulate a variety of physiological and pathological processes in plants and animals. In marine diatoms, these molecules can be highly bioactive, impacting zooplankton grazers, bacteria and other phytoplankton. However, the ultimate cause for oxylipin production in diatoms is still poorly understood, from an evolutionary perspective. Here we analysed production of particulate linear oxygenated fatty acids (LOFAs, previously named non-volatile oxylipins) from natural phytoplankton collected weekly for 1 year. We demonstrate for the first time that diatoms are the main LOFA producers in natural phytoplankton assemblages. Interestingly, LOFA-per-cell production decreased with increasing diatom density and was not due to major changes in diatom community composition. An inverse relation was confirmed at a global scale by analysing diatom lipoxygenase unigenes and metagenomes from Tara Oceans datasets. A network analysis suggested that different LOFAs could contribute to modulate co-variations of different diatom taxa. Overall, we offer new insights in diatom chemical ecology, possibly explaining the evolution of oxylipin synthesis in diatoms.
Collapse
Affiliation(s)
- Ennio Russo
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale, 80121, Napoli, Italy
| | - Giuliana d'Ippolito
- Consiglio Nazionale delle Ricerche, Institute of Bio-molecular Chemistry, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Angelo Fontana
- Consiglio Nazionale delle Ricerche, Institute of Bio-molecular Chemistry, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Diana Sarno
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale, 80121, Napoli, Italy
| | - Domenico D'Alelio
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale, 80121, Napoli, Italy
| | - Greta Busseni
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale, 80121, Napoli, Italy
| | - Adrianna Ianora
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale, 80121, Napoli, Italy
| | - Eric von Elert
- Aquatic Chemical Ecology Group, Institute for Zoology, Universität zu Köln, Zülpicher Straße 47b, D-50674, Köln, Germany
| | - Ylenia Carotenuto
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Villa Comunale, 80121, Napoli, Italy.
| |
Collapse
|
98
|
Benites LF, Poulton N, Labadie K, Sieracki ME, Grimsley N, Piganeau G. Single cell ecogenomics reveals mating types of individual cells and ssDNA viral infections in the smallest photosynthetic eukaryotes. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190089. [PMID: 31587637 DOI: 10.1098/rstb.2019.0089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Planktonic photosynthetic organisms of the class Mamiellophyceae include the smallest eukaryotes (less than 2 µm), are globally distributed and form the basis of coastal marine ecosystems. Eight complete fully annotated 13-22 Mb genomes from three genera, Ostreococcus, Bathycoccus and Micromonas, are available from previously isolated clonal cultured strains and provide an ideal resource to explore the scope and challenges of analysing single cell amplified genomes (SAGs) isolated from a natural environment. We assembled data from 12 SAGs sampled during the Tara Oceans expedition to gain biological insights about their in situ ecology, which might be lost by isolation and strain culture. Although the assembled nuclear genomes were incomplete, they were large enough to infer the mating types of four Ostreococcus SAGs. The systematic occurrence of sequences from the mitochondria and chloroplast, representing less than 3% of the total cell's DNA, intimates that SAGs provide suitable substrates for detection of non-target sequences, such as those of virions. Analysis of the non-Mamiellophyceae assemblies, following filtering out cross-contaminations during the sequencing process, revealed two novel 1.6 and 1.8 kb circular DNA viruses, and the presence of specific Bacterial and Oomycete sequences suggests that these organisms might co-occur with the Mamiellales. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- L Felipe Benites
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, 66650 Banyuls-sur-Mer, France
| | - Nicole Poulton
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, USA
| | - Karine Labadie
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l'Energie Atomique, université Paris Saclay, 9105 Evry, France
| | | | - Nigel Grimsley
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, 66650 Banyuls-sur-Mer, France
| | - Gwenael Piganeau
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, 66650 Banyuls-sur-Mer, France
| |
Collapse
|
99
|
Castillo YM, Mangot J, Benites LF, Logares R, Kuronishi M, Ogata H, Jaillon O, Massana R, Sebastián M, Vaqué D. Assessing the viral content of uncultured picoeukaryotes in the global‐ocean by single cell genomics. Mol Ecol 2019; 28:4272-4289. [DOI: 10.1111/mec.15210] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Yaiza M. Castillo
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| | - Jean‐François Mangot
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| | - Luiz Felipe Benites
- Integrative Biology of Marine Organisms (BIOM) CNRS Oceanological Observatory of Banyuls Sorbonne University Banyuls‐sur‐Mer France
| | - Ramiro Logares
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| | - Megumi Kuronishi
- Bioinformatic Center Institute for Chemical Research Kyoto University Uji Japan
| | - Hiroyuki Ogata
- Bioinformatic Center Institute for Chemical Research Kyoto University Uji Japan
| | - Olivier Jaillon
- Génomique Métabolique Genoscope Institut de biologie François Jacob CEA CNRS Université d'Evry Université Paris‐Saclay Evry France
| | - Ramon Massana
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| | - Marta Sebastián
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
- Institute of Oceanography and Global Change (IOCAG) University of Las Palmas de Gran Canaria Telde Spain
| | - Dolors Vaqué
- Department of Marine Biology and Oceanography Institute of Marine Sciences (ICM) CSIC Barcelona Spain
| |
Collapse
|
100
|
Planes S, Allemand D, Agostini S, Banaigs B, Boissin E, Boss E, Bourdin G, Bowler C, Douville E, Flores JM, Forcioli D, Furla P, Galand PE, Ghiglione JF, Gilson E, Lombard F, Moulin C, Pesant S, Poulain J, Reynaud S, Romac S, Sullivan MB, Sunagawa S, Thomas OP, Troublé R, de Vargas C, Vega Thurber R, Voolstra CR, Wincker P, Zoccola D, the Tara Pacific Consortium. The Tara Pacific expedition-A pan-ecosystemic approach of the "-omics" complexity of coral reef holobionts across the Pacific Ocean. PLoS Biol 2019; 17:e3000483. [PMID: 31545807 PMCID: PMC6776362 DOI: 10.1371/journal.pbio.3000483] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/03/2019] [Indexed: 02/01/2023] Open
Abstract
Coral reefs are the most diverse habitats in the marine realm. Their productivity, structural complexity, and biodiversity critically depend on ecosystem services provided by corals that are threatened because of climate change effects-in particular, ocean warming and acidification. The coral holobiont is composed of the coral animal host, endosymbiotic dinoflagellates, associated viruses, bacteria, and other microeukaryotes. In particular, the mandatory photosymbiosis with microalgae of the family Symbiodiniaceae and its consequences on the evolution, physiology, and stress resilience of the coral holobiont have yet to be fully elucidated. The functioning of the holobiont as a whole is largely unknown, although bacteria and viruses are presumed to play roles in metabolic interactions, immunity, and stress tolerance. In the context of climate change and anthropogenic threats on coral reef ecosystems, the Tara Pacific project aims to provide a baseline of the "-omics" complexity of the coral holobiont and its ecosystem across the Pacific Ocean and for various oceanographically distinct defined areas. Inspired by the previous Tara Oceans expeditions, the Tara Pacific expedition (2016-2018) has applied a pan-ecosystemic approach on coral reefs throughout the Pacific Ocean, drawing an east-west transect from Panama to Papua New Guinea and a south-north transect from Australia to Japan, sampling corals throughout 32 island systems with local replicates. Tara Pacific has developed and applied state-of-the-art technologies in very-high-throughput genetic sequencing and molecular analysis to reveal the entire microbial and chemical diversity as well as functional traits associated with coral holobionts, together with various measures on environmental forcing. This ambitious project aims at revealing a massive amount of novel biodiversity, shedding light on the complex links between genomes, transcriptomes, metabolomes, organisms, and ecosystem functions in coral reefs and providing a reference of the biological state of modern coral reefs in the Anthropocene.
Collapse
Affiliation(s)
- Serge Planes
- Laboratoire d’Excellence “CORAIL,” PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans-GOSEE, Paris, France
- * E-mail:
| | - Denis Allemand
- Centre Scientifique de Monaco, Monte Carlo, Principality of Monaco
| | | | - Bernard Banaigs
- Laboratoire d’Excellence “CORAIL,” PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | - Emilie Boissin
- Laboratoire d’Excellence “CORAIL,” PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, Maine, United States of America
| | - Guillaume Bourdin
- School of Marine Sciences, University of Maine, Orono, Maine, United States of America
- Sorbonne Université, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | - Chris Bowler
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans-GOSEE, Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - J. Michel Flores
- Weizmann Institute of Science, Dept. Earth and Planetary Science, Rehovot, Israel
| | - Didier Forcioli
- Université Côte d'Azur-CNRS-INSERM, IRCAN, Medical School, Nice, France and Department of Medical Genetics, CHU of Nice, Nice, France
| | - Paola Furla
- Université Côte d'Azur-CNRS-INSERM, IRCAN, Medical School, Nice, France and Department of Medical Genetics, CHU of Nice, Nice, France
| | - Pierre E. Galand
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans-GOSEE, Paris, France
- Sorbonne Université, CNRS, Laboratoire d’Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls sur mer, France
| | - Jean-François Ghiglione
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans-GOSEE, Paris, France
- Sorbonne Université Laboratoire d’Océanographie Microbienne LOMIC, UMR 7621, Observatoire Océanologique de Banyuls, Banyuls sur mer, France
| | - Eric Gilson
- Université Côte d'Azur-CNRS-INSERM, IRCAN, Medical School, Nice, France and Department of Medical Genetics, CHU of Nice, Nice, France
| | - Fabien Lombard
- Sorbonne Université, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
| | | | - Stephane Pesant
- PANGEA, Data Publisher for Earth and Environment Science, Bremen, Germany
- MARUM—Center for Marine Environmental Sciences, Universität Bremen, Bremen, Germany
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | | | - Sarah Romac
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans-GOSEE, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Matthew B. Sullivan
- Departments of Microbiology and Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Shinichi Sunagawa
- Department of Biology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Olivier P. Thomas
- Marine Biodiscovery Laboratory, School of Chemistry and Ryan Institute, National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Romain Troublé
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans-GOSEE, Paris, France
- La Fondation Tara Expéditions, “Base Tara” 11, Paris, France
| | - Colomban de Vargas
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans-GOSEE, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Rebecca Vega Thurber
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | | | - Patrick Wincker
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans-GOSEE, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Didier Zoccola
- Centre Scientifique de Monaco, Monte Carlo, Principality of Monaco
| | | |
Collapse
|