51
|
CRISPR/Cas9 mediated deletion of the adenosine A2A receptor enhances CAR T cell efficacy. Nat Commun 2021; 12:3236. [PMID: 34050151 PMCID: PMC8163771 DOI: 10.1038/s41467-021-23331-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
Adenosine is an immunosuppressive factor that limits anti-tumor immunity through the suppression of multiple immune subsets including T cells via activation of the adenosine A2A receptor (A2AR). Using both murine and human chimeric antigen receptor (CAR) T cells, here we show that targeting A2AR with a clinically relevant CRISPR/Cas9 strategy significantly enhances their in vivo efficacy, leading to improved survival of mice. Effects evoked by CRISPR/Cas9 mediated gene deletion of A2AR are superior to shRNA mediated knockdown or pharmacological blockade of A2AR. Mechanistically, human A2AR-edited CAR T cells are significantly resistant to adenosine-mediated transcriptional changes, resulting in enhanced production of cytokines including IFNγ and TNF, and increased expression of JAK-STAT signaling pathway associated genes. A2AR deficient CAR T cells are well tolerated and do not induce overt pathologies in mice, supporting the use of CRISPR/Cas9 to target A2AR for the improvement of CAR T cell function in the clinic.
Collapse
|
52
|
Zhang X, Zhao L, Jin R, Li M, Li MS, Li R, Liang X. CRISPR/Cas9-Mediated α-ENaC Knockout in a Murine Pancreatic β-Cell Line. Front Genet 2021; 12:664799. [PMID: 33868391 PMCID: PMC8047203 DOI: 10.3389/fgene.2021.664799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/08/2021] [Indexed: 12/27/2022] Open
Abstract
Many ion channels participate in controlling insulin synthesis and secretion of pancreatic β-cells. Epithelial sodium channel (ENaC) expressed in human pancreatic tissue, but the biological role of ENaC in pancreatic β-cells is still unclear. Here, we applied the CRISPR/Cas9 gene editing technique to knockout α-ENaC gene in a murine pancreatic β-cell line (MIN6 cell). Four single-guide RNA (sgRNA) sites were designed for the exons of α-ENaC. The sgRNA1 and sgRNA3 with the higher activity were constructed and co-transfected into MIN6 cells. Through processing a series of experiment flow included drug screening, cloning, and sequencing, the α-ENaC gene-knockout (α-ENaC−/−) in MIN6 cells were obtained. Compared with the wild-type MIN6 cells, the cell viability and insulin content were significantly increased in α-ENaC−/− MIN6 cells. Therefore, α-ENaC−/− MIN6 cells generated by CRISPR/Cas9 technology added an effective tool to study the biological function of α-ENaC in pancreatic β-cells.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Lihua Zhao
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Runbing Jin
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Min Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Mei-Shuang Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Rongfeng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Xiubin Liang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Department of Nephrology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
53
|
Karottki KJLC, Hefzi H, Li S, Pedersen LE, Spahn PN, Joshi C, Ruckerbauer D, Bort JAH, Thomas A, Lee JS, Borth N, Lee GM, Kildegaard HF, Lewis NE. A metabolic CRISPR-Cas9 screen in Chinese hamster ovary cells identifies glutamine-sensitive genes. Metab Eng 2021; 66:114-122. [PMID: 33813034 DOI: 10.1016/j.ymben.2021.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 12/20/2022]
Abstract
Media and feed optimization have fueled many-fold improvements in mammalian biopharmaceutical production, but genome editing offers an emerging avenue for further enhancing cell metabolism and bioproduction. However, the complexity of metabolism, involving thousands of genes, makes it unclear which engineering strategies will result in desired traits. Here we present a comprehensive pooled CRISPR screen for CHO cell metabolism, including ~16,000 gRNAs against ~2500 metabolic enzymes and regulators. Using this screen, we identified a glutamine response network in CHO cells. Glutamine is particularly important since it is often over-fed to drive increased TCA cycle flux, but toxic ammonia may accumulate. With the screen we found one orphan glutamine-responsive gene with no clear connection to our network. Knockout of this novel and poorly characterized lipase, Abhd11, substantially increased growth in glutamine-free media by altering the regulation of the TCA cycle. Thus, the screen provides an invaluable targeted platform to comprehensively study genes involved in any metabolic trait, and elucidate novel regulators of metabolism.
Collapse
Affiliation(s)
| | - Hooman Hefzi
- The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, USA; Department of Pediatrics, University of California, San Diego, USA; Department of Bioengineering, University of California, San Diego, USA
| | - Songyuan Li
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Lasse Ebdrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Philipp N Spahn
- The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, USA; Department of Pediatrics, University of California, San Diego, USA
| | - Chintan Joshi
- The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, USA; Department of Pediatrics, University of California, San Diego, USA
| | - David Ruckerbauer
- Austrian Centre of Industrial Biotechnology, Vienna, Austria; University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Alex Thomas
- The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, USA
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Nicole Borth
- Austrian Centre of Industrial Biotechnology, Vienna, Austria; University of Natural Resources and Life Sciences, Vienna, Austria
| | - Gyun Min Lee
- Department of Biological Sciences, Kaist, 291 Daehak-Ro, Yuseong-Gu, Daejeon, 305-701, Republic of Korea
| | | | - Nathan E Lewis
- The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, USA; Department of Pediatrics, University of California, San Diego, USA; Department of Bioengineering, University of California, San Diego, USA; National Biologics Facility, Technical University of Denmark, Denmark.
| |
Collapse
|
54
|
Ohashi M, Hayes M, McChesney K, Johannsen E. Epstein-Barr virus nuclear antigen 3C (EBNA3C) interacts with the metabolism sensing C-terminal binding protein (CtBP) repressor to upregulate host genes. PLoS Pathog 2021; 17:e1009419. [PMID: 33720992 PMCID: PMC7993866 DOI: 10.1371/journal.ppat.1009419] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/25/2021] [Accepted: 02/22/2021] [Indexed: 12/04/2022] Open
Abstract
Epstein-Barr virus (EBV) infection is associated with the development of specific types of lymphoma and some epithelial cancers. EBV infection of resting B-lymphocytes in vitro drives them to proliferate as lymphoblastoid cell lines (LCLs) and serves as a model for studying EBV lymphomagenesis. EBV nuclear antigen 3C (EBNA3C) is one of the genes required for LCL growth and previous work has suggested that suppression of the CDKN2A encoded tumor suppressor p16INK4A and possibly p14ARF is central to EBNA3C’s role in this growth transformation. To directly assess whether loss of p16 and/or p14 was sufficient to explain EBNA3C growth effects, we used CRISPR/Cas9 to disrupt specific CDKN2A exons in EBV transformed LCLs. Disruption of p16 specific exon 1α and the p16/p14 shared exon 2 were each sufficient to restore growth in the absence of EBNA3C. Using EBNA3C conditional LCLs knocked out for either exon 1α or 2, we identified EBNA3C induced and repressed genes. By trans-complementing with EBNA3C mutants, we determined specific genes that require EBNA3C interaction with RBPJ or CtBP for their regulation. Unexpectedly, interaction with the CtBP repressor was required not only for repression, but also for EBNA3C induction of many host genes. Contrary to previously proposed models, we found that EBNA3C does not recruit CtBP to the promoters of these genes. Instead, our results suggest that CtBP is bound to these promoters in the absence of EBNA3C and that EBNA3C interaction with CtBP interferes with the repressive function of CtBP, leading to EBNA3C mediated upregulation. Epstein-Barr virus (EBV) is a gammaherpesvirus that establishes lifelong infection in about 95% of adult humans. EBV infection is usually benign, but can rarely result in several different malignancies, particularly lymphomas. EBV infection of resting B-lymphocytes in the laboratory drives them to proliferate as lymphoblastoid cell lines (LCLs), a model for EBV lymphomagenesis. In this manuscript we study how one EBV protein expressed in LCLs, EBNA3C, contributes to B lymphocyte transformation. Prior work has established that EBNA3C turns off the CDKN2A gene, but there is disagreement regarding the relative importance of silencing the two CDKN2A gene products: p14 and p16. Using a CRISPR/Cas9 gene editing strategy we confirm that p16 knock-out rescues LCL growth in the absence of EBNA3C even in the presence of wildtype p14. We then use these knock-out LCLs to identify EBNA3C regulated genes and uncover extensive growth-independent changes in B lymphocytes due to the EBNA3C transcription factor. We also discover an unexpected role for the CtBP repressor protein in EBNA3C gene upregulation. Contrary to prior models, we do not observe CtBP recruitment to target genes by EBNA3C. Instead, our data are consistent with EBNA3C interfering with the ability of pre-bound CtBP to repress genes.
Collapse
Affiliation(s)
- Makoto Ohashi
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mitchell Hayes
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kyle McChesney
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eric Johannsen
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
55
|
Jiang H, Hu C, Chen M. The Advantages of Connectivity Map Applied in Traditional Chinese Medicine. Front Pharmacol 2021; 12:474267. [PMID: 33776757 PMCID: PMC7991830 DOI: 10.3389/fphar.2021.474267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 01/11/2021] [Indexed: 01/11/2023] Open
Abstract
Amid the establishment and optimization of Connectivity Map (CMAP), the functional relationships among drugs, genes, and diseases are further explored. This biological database has been widely used to identify drugs with common mechanisms, repurpose existing drugs, discover the molecular mechanisms of unknown drugs, and find potential drugs for some diseases. Research on traditional Chinese medicine (TCM) has entered a new era in the wake of the development of bioinformatics and other subjects including network pharmacology, proteomics, metabolomics, herbgenomics, and so on. TCM gradually conforms to modern science, but there is still a torrent of limitations. In recent years, CMAP has shown its distinct advantages in the study of the components of TCM and the synergetic mechanism of TCM formulas; hence, the combination of them is inevitable.
Collapse
Affiliation(s)
- Huimin Jiang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Cheng Hu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meijuan Chen
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
56
|
Gomes de Oliveira AG, Dubovichenko MV, ElDeeb AA, Wanjohi J, Zablotskaya S, Kolpashchikov DM. RNA-Cleaving DNA Thresholder Controlled by Concentrations of miRNA Cancer Marker. Chembiochem 2021; 22:1750-1754. [PMID: 33433948 DOI: 10.1002/cbic.202000769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/30/2020] [Indexed: 11/10/2022]
Abstract
Oligonucleotide gene therapy (OGT) agents suppress specific mRNAs in cells and thus reduce the expression of targeted genes. The ability to unambiguously distinguish cancer from healthy cells can solve the low selectivity problem of OGT agents. Cancer RNA markers are expressed in both healthy and cancer cells with a higher expression level in cancer cells. We have designed a DNA-based construct, named DNA thresholder (DTh) that cleaves targeted RNA only at high concentrations of cancer marker RNA and demonstrates low cleavage activity at low marker concentrations. The RNA-cleaving activity can be adjusted within one order of magnitude of the cancer marker RNA concentration by simply redesigning DTh. Importantly, DTh recognizes cancer marker RNA, while cleaving targeted RNA; this offers a possibility to suppress vital genes exclusively in cancer cells, thus triggering their death. DTh is a prototype of computation-inspired molecular device for controlling gene expression and cancer treatment.
Collapse
Affiliation(s)
- Andrey Giovanni Gomes de Oliveira
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Mikhail V Dubovichenko
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Ahmed A ElDeeb
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Joseph Wanjohi
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Sofia Zablotskaya
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Dmitry M Kolpashchikov
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.,Chemistry Department, University of Central Florida, 32816-2366, Orlando, FL, USA.,Burnett School of Biomedical Sciences, University of Central Florida, 32816, Orlando, FL, USA
| |
Collapse
|
57
|
Yang YC, Sugden B. Epstein-Barr Virus Limits the Accumulation of IPO7, an Essential Gene Product. Front Microbiol 2021; 12:643327. [PMID: 33664726 PMCID: PMC7920963 DOI: 10.3389/fmicb.2021.643327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/25/2021] [Indexed: 01/19/2023] Open
Abstract
Epstein-Barr virus (EBV) encodes more than 40 miRNAs that target cellular mRNAs to aid its infection, replication, and maintenance in individual cells and in its human host. Importin-7 (IPO7), also termed Imp7 or RanBPM7, is a nucleocytoplasmic transport protein that has been frequently identified as a target for two of these viral miRNAs. How the viral life cycle might benefit from regulating IPO7 has been unclear, though. We demonstrate with CRISPR-Cas9 mutagenesis that IPO7 is essential in at least three cells lines and that increasing its levels of expression inhibits growth of infected cells. EBV thus regulates the level of IPO7 to limit its accumulation consistent with its being required for survival of its host cell.
Collapse
Affiliation(s)
- Ya-Chun Yang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Bill Sugden
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
58
|
Ghavami S, Pandi A. CRISPR interference and its applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 180:123-140. [PMID: 33934834 DOI: 10.1016/bs.pmbts.2021.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sequence-specific control of gene expression is a powerful tool for identifying and studying gene functions and cellular processes. CRISPR interference (CRISPRi) is an RNA-based method for highly specific silencing of the transcription in prokaryotic or eukaryotic cells. The typical CRISPRi system is a type II CRISPR (clustered regularly interspaced palindromic repeats) machinery of Streptococcus pyogenes. CRISPRi requires two main components: A catalytically inactivated Cas9, namely dCas9 and a guide RNA (sgRNA). These two components associate and form a DNA recognition complex. The dCas9/sgRNA complex then specifically binds to the target DNA complementary with the sgRNA and sterically prevents the association of the promoter or transcription factors with their trans-acting sequences or blocks the transcription elongation. This chapter discusses CRISPRi structure, mechanism and its applications.
Collapse
Affiliation(s)
| | - Amir Pandi
- Department of Biochemistry and Synthetic Metabolism, Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
59
|
Shimada K, Bachman JA, Muhlich JL, Mitchison TJ. shinyDepMap, a tool to identify targetable cancer genes and their functional connections from Cancer Dependency Map data. eLife 2021; 10:57116. [PMID: 33554860 PMCID: PMC7924953 DOI: 10.7554/elife.57116] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 02/06/2021] [Indexed: 12/15/2022] Open
Abstract
Individual cancers rely on distinct essential genes for their survival. The Cancer Dependency Map (DepMap) is an ongoing project to uncover these gene dependencies in hundreds of cancer cell lines. To make this drug discovery resource more accessible to the scientific community, we built an easy-to-use browser, shinyDepMap (https://labsyspharm.shinyapps.io/depmap). shinyDepMap combines CRISPR and shRNA data to determine, for each gene, the growth reduction caused by knockout/knockdown and the selectivity of this effect across cell lines. The tool also clusters genes with similar dependencies, revealing functional relationships. shinyDepMap can be used to (1) predict the efficacy and selectivity of drugs targeting particular genes; (2) identify maximally sensitive cell lines for testing a drug; (3) target hop, that is, navigate from an undruggable protein with the desired selectivity profile, such as an activated oncogene, to more druggable targets with a similar profile; and (4) identify novel pathways driving cancer cell growth and survival.
Collapse
Affiliation(s)
- Kenichi Shimada
- Laboratory of Systems Pharmacology and Department of Systems Biology, Harvard Medical School, Boston, United States
| | - John A Bachman
- Laboratory of Systems Pharmacology and Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Jeremy L Muhlich
- Laboratory of Systems Pharmacology and Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Timothy J Mitchison
- Laboratory of Systems Pharmacology and Department of Systems Biology, Harvard Medical School, Boston, United States
| |
Collapse
|
60
|
Chandrasekaran SN, Ceulemans H, Boyd JD, Carpenter AE. Image-based profiling for drug discovery: due for a machine-learning upgrade? Nat Rev Drug Discov 2021; 20:145-159. [PMID: 33353986 PMCID: PMC7754181 DOI: 10.1038/s41573-020-00117-w] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 12/20/2022]
Abstract
Image-based profiling is a maturing strategy by which the rich information present in biological images is reduced to a multidimensional profile, a collection of extracted image-based features. These profiles can be mined for relevant patterns, revealing unexpected biological activity that is useful for many steps in the drug discovery process. Such applications include identifying disease-associated screenable phenotypes, understanding disease mechanisms and predicting a drug's activity, toxicity or mechanism of action. Several of these applications have been recently validated and have moved into production mode within academia and the pharmaceutical industry. Some of these have yielded disappointing results in practice but are now of renewed interest due to improved machine-learning strategies that better leverage image-based information. Although challenges remain, novel computational technologies such as deep learning and single-cell methods that better capture the biological information in images hold promise for accelerating drug discovery.
Collapse
Affiliation(s)
| | - Hugo Ceulemans
- Discovery Data Sciences, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Justin D Boyd
- High Content Imaging Technology Center, Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
61
|
Cetin R, Quandt E, Kaulich M. Functional Genomics Approaches to Elucidate Vulnerabilities of Intrinsic and Acquired Chemotherapy Resistance. Cells 2021; 10:cells10020260. [PMID: 33525637 PMCID: PMC7912423 DOI: 10.3390/cells10020260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Drug resistance is a commonly unavoidable consequence of cancer treatment that results in therapy failure and disease relapse. Intrinsic (pre-existing) or acquired resistance mechanisms can be drug-specific or be applicable to multiple drugs, resulting in multidrug resistance. The presence of drug resistance is, however, tightly coupled to changes in cellular homeostasis, which can lead to resistance-coupled vulnerabilities. Unbiased gene perturbations through RNAi and CRISPR technologies are invaluable tools to establish genotype-to-phenotype relationships at the genome scale. Moreover, their application to cancer cell lines can uncover new vulnerabilities that are associated with resistance mechanisms. Here, we discuss targeted and unbiased RNAi and CRISPR efforts in the discovery of drug resistance mechanisms by focusing on first-in-line chemotherapy and their enforced vulnerabilities, and we present a view forward on which measures should be taken to accelerate their clinical translation.
Collapse
Affiliation(s)
- Ronay Cetin
- Institute of Biochemistry II, Goethe University Frankfurt-Medical Faculty, University Hospital, 60590 Frankfurt am Main, Germany;
| | - Eva Quandt
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Barcelona, Spain;
| | - Manuel Kaulich
- Institute of Biochemistry II, Goethe University Frankfurt-Medical Faculty, University Hospital, 60590 Frankfurt am Main, Germany;
- Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, 60590 Frankfurt am Main, Germany
- Correspondence: ; Tel.: +49-(0)-69-6301-5450
| |
Collapse
|
62
|
Grand Moursel L, Visser M, Servant G, Durmus S, Zuurmond AM. CRISPRing future medicines. Expert Opin Drug Discov 2021; 16:463-473. [PMID: 33322954 DOI: 10.1080/17460441.2021.1850687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: The ability to engineer mammalian genomes in a quick and cost-effective way has led to rapid adaptation of CRISPR technology in biomedical research. CRISPR-based engineering has the potential to accelerate drug discovery, to support the reduction of high attrition rate in drug development and to enhance development of cell and gene-based therapies.Areas covered: How CRISPR technology is transforming drug discovery is discussed in this review. From target identification to target validation in both in vitro and in vivo models, CRISPR technology is positively impacting the early stages of drug development by providing a straightforward way to genome engineering. This property also attracted attention for CRISPR application in the cell and gene therapy area.Expert opinion: CRISPR technology is rapidly becoming the preferred tool for genome engineering and nowadays it is hard to imagine the drug discovery pipeline without this technology. With the years to come, CRISPR technology will undoubtedly be further refined and will flourish into a mature technology that will play a key role in supporting genome engineering requirements in the drug discovery pipeline as well as in cell and gene therapy development.
Collapse
Affiliation(s)
| | - Mijke Visser
- Charles River Laboratories, Leiden, The Netherlands
| | | | - Selvi Durmus
- Charles River Laboratories, Leiden, The Netherlands
| | | |
Collapse
|
63
|
Kantor A, McClements ME, Peddle CF, Fry LE, Salman A, Cehajic-Kapetanovic J, Xue K, MacLaren RE. CRISPR genome engineering for retinal diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:29-79. [PMID: 34175046 DOI: 10.1016/bs.pmbts.2021.01.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Novel gene therapy treatments for inherited retinal diseases have been at the forefront of translational medicine over the past couple of decades. Since the discovery of CRISPR mechanisms and their potential application for the treatment of inherited human conditions, it seemed inevitable that advances would soon be made using retinal models of disease. The development of CRISPR technology for gene therapy and its increasing potential to selectively target disease-causing nucleotide changes has been rapid. In this chapter, we discuss the currently available CRISPR toolkit and how it has been and can be applied in the future for the treatment of inherited retinal diseases. These blinding conditions have until now had limited opportunity for successful therapeutic intervention, but the discovery of CRISPR has created new hope of achieving such, as we discuss within this chapter.
Collapse
Affiliation(s)
- Ariel Kantor
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom.
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Caroline F Peddle
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Lewis E Fry
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Ahmed Salman
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
64
|
Chang X, Sun D, Shi D, Wang G, Chen Y, Zhang K, Tan H, Liu J, Liu B, Ouyang L. Design, synthesis, and biological evaluation of quinazolin-4(3 H)-one derivatives co-targeting poly(ADP-ribose) polymerase-1 and bromodomain containing protein 4 for breast cancer therapy. Acta Pharm Sin B 2021; 11:156-180. [PMID: 33532187 PMCID: PMC7838034 DOI: 10.1016/j.apsb.2020.06.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/08/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
This study was aimed to design the first dual-target small-molecule inhibitor co-targeting poly (ADP-ribose) polymerase-1 (PARP1) and bromodomain containing protein 4 (BRD4), which had important cross relation in the global network of breast cancer, reflecting the synthetic lethal effect. A series of new BRD4 and PARP1 dual-target inhibitors were discovered and synthesized by fragment-based combinatorial screening and activity assays that together led to the chemical optimization. Among these compounds, 19d was selected and exhibited micromole enzymatic potencies against BRD4 and PARP1, respectively. Compound 19d was further shown to efficiently modulate the expression of BRD4 and PARP1. Subsequently, compound 19d was found to induce breast cancer cell apoptosis and stimulate cell cycle arrest at G1 phase. Following pharmacokinetic studies, compound 19d showed its antitumor activity in breast cancer susceptibility gene 1/2 (BRCA1/2) wild-type MDA-MB-468 and MCF-7 xenograft models without apparent toxicity and loss of body weight. These results together demonstrated that a highly potent dual-targeted inhibitor was successfully synthesized and indicated that co-targeting of BRD4 and PARP1 based on the concept of synthetic lethality would be a promising therapeutic strategy for breast cancer.
Collapse
Key Words
- BC, breast cancer
- BET, bromodomain and extra-terminal domain
- BRCA1/2, breast cancer susceptibility gene 1/2
- BRD4
- BRD4, bromodomain 4
- CDK4/6, cyclin-dependent kinase 4/6
- DSB, DNA double-strand break
- Dual-target inhibitor
- EGFR, epidermal growth factor receptor
- ELISA, enzyme linked immunosorbent assay
- ER, estrogen receptor
- ESI-HR-MS, high-resolution mass spectra
- FDA, U.S. Food and Drug Administration
- FITC, fluorescein isothiocyanate isomer I
- HE, hematoxylin-eosin
- HPLC, high-performance liquid chromatography
- HR, homologous recombination
- HRD, homologous recombination deficiency
- IHC, immunohistochemistry
- NHEJ, nonhomologous end-joining
- PARP1
- PARP1, poly(ADP-ribose) polymerase-1
- PI, propidium iodide
- PK, pharmacokinetics
- PPI, protein−protein interaction
- Quinazolin-4(3H)-one derivatives
- SAR, structure–activity relationship
- SOP, standard operation process
- Synthetic lethality
- TCGA, the cancer genome atlas
- TGI, tumor growth inhibition
- TLC, thin-layer chromatography
- TNBC, triple-negative breast cancer
- TR-FRET, time-resolved fluorescence resonance energy transfer.
- shRNA, short hairpin RNA
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jie Liu
- Corresponding authors. Tel./fax: +86 28 85503817 (Jie Liu), +86 28 85164063 (Bo Liu), +86 28 85503817 (Liang Ouyang).
| | - Bo Liu
- Corresponding authors. Tel./fax: +86 28 85503817 (Jie Liu), +86 28 85164063 (Bo Liu), +86 28 85503817 (Liang Ouyang).
| | - Liang Ouyang
- Corresponding authors. Tel./fax: +86 28 85503817 (Jie Liu), +86 28 85164063 (Bo Liu), +86 28 85503817 (Liang Ouyang).
| |
Collapse
|
65
|
Functional Screening Techniques to Identify Long Non-Coding RNAs as Therapeutic Targets in Cancer. Cancers (Basel) 2020; 12:cancers12123695. [PMID: 33317042 PMCID: PMC7763270 DOI: 10.3390/cancers12123695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Long non-coding RNAs (lncRNAs) are a recently discovered class of molecules in the cell, with potential to be utilized as therapeutic targets in cancer. A number of lncRNAs have been described to play important roles in tumor progression and drive molecular processes involved in cell proliferation, apoptosis or invasion. However, the vast majority of lncRNAs have not been studied in the context of cancer thus far. With the advent of CRISPR/Cas genome editing, high-throughput functional screening approaches to identify lncRNAs that impact cancer growth are becoming more accessible. Here, we review currently available methods to study hundreds to thousands of lncRNAs in parallel to elucidate their role in tumorigenesis and cancer progression. Abstract Recent technological advancements such as CRISPR/Cas-based systems enable multiplexed, high-throughput screening for new therapeutic targets in cancer. While numerous functional screens have been performed on protein-coding genes to date, long non-coding RNAs (lncRNAs) represent an emerging class of potential oncogenes and tumor suppressors, with only a handful of large-scale screens performed thus far. Here, we review in detail currently available screening approaches to identify new lncRNA drivers of tumorigenesis and tumor progression. We discuss the various approaches of genomic and transcriptional targeting using CRISPR/Cas9, as well as methods to post-transcriptionally target lncRNAs via RNA interference (RNAi), antisense oligonucleotides (ASOs) and CRISPR/Cas13. We discuss potential advantages, caveats and future applications of each method to provide an overview and guide on investigating lncRNAs as new therapeutic targets in cancer.
Collapse
|
66
|
Schaack GA, Mehle A. Experimental Approaches to Identify Host Factors Important for Influenza Virus. Cold Spring Harb Perspect Med 2020; 10:a038521. [PMID: 31871241 PMCID: PMC7706581 DOI: 10.1101/cshperspect.a038521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An ever-expanding toolkit of experimental methods provides the means to discover and characterize host factors important for influenza virus. Here, we describe common methods for investigating genetic relationships and physical interactions between virus and host. A comprehensive knowledge of host:virus interactions is key to understanding how influenza virus exploits the host cell and to potentially identify vulnerabilities that may be manipulated to prevent or treat disease.
Collapse
Affiliation(s)
- Grace A Schaack
- Department of Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, Wisconsin 53706, USA
| | - Andrew Mehle
- Department of Medical Microbiology and Immunology, University of Wisconsin Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
67
|
Xue Y, Ding MQ, Lu X. Learning to encode cellular responses to systematic perturbations with deep generative models. NPJ Syst Biol Appl 2020; 6:35. [PMID: 33159077 PMCID: PMC7648057 DOI: 10.1038/s41540-020-00158-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 10/07/2020] [Indexed: 11/09/2022] Open
Abstract
Cellular signaling systems play a vital role in maintaining homeostasis when a cell is exposed to different perturbations. Components of the systems are organized as hierarchical networks, and perturbing different components often leads to transcriptomic profiles that exhibit compositional statistical patterns. Mining such patterns to investigate how cellular signals are encoded is an important problem in systems biology, where artificial intelligence techniques can be of great assistance. Here, we investigated the capability of deep generative models (DGMs) to modeling signaling systems and learn representations of cellular states underlying transcriptomic responses to diverse perturbations. Specifically, we show that the variational autoencoder and the supervised vector-quantized variational autoencoder can accurately regenerate gene expression data in response to perturbagen treatments. The models can learn representations that reveal the relationships between different classes of perturbagens and enable mappings between drugs and their target genes. In summary, DGMs can adequately learn and depict how cellular signals are encoded. The resulting representations have broad applications, demonstrating the power of artificial intelligence in systems biology and precision medicine.
Collapse
Affiliation(s)
- Yifan Xue
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15206, USA
| | - Michael Q Ding
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15206, USA
| | - Xinghua Lu
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15206, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15206, USA.
| |
Collapse
|
68
|
Liu S, Harmston N, Glaser TL, Wong Y, Zhong Z, Madan B, Virshup DM, Petretto E. Wnt-regulated lncRNA discovery enhanced by in vivo identification and CRISPRi functional validation. Genome Med 2020; 12:89. [PMID: 33092630 PMCID: PMC7580003 DOI: 10.1186/s13073-020-00788-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Wnt signaling is an evolutionarily conserved developmental pathway that is frequently hyperactivated in cancer. While multiple protein-coding genes regulated by Wnt signaling are known, the functional lncRNAs regulated by Wnt signaling have not been systematically characterized. METHODS We comprehensively mapped Wnt-regulated lncRNAs from an orthotopic Wnt-addicted pancreatic cancer model and examined the response of lncRNAs to Wnt inhibition between in vivo and in vitro cancer models. We further annotated and characterized these Wnt-regulated lncRNAs using existing genomic classifications (using data from FANTOM5) in the context of Wnt signaling and inferred their role in cancer pathogenesis (using GWAS and expression data from the TCGA). To functionally validate Wnt-regulated lncRNAs, we performed CRISPRi screens to assess their role in cancer cell proliferation both in vivo and in vitro. RESULTS We identified 3633 lncRNAs, of which 1503 were regulated by Wnt signaling in an orthotopic Wnt-addicted pancreatic cancer model. These lncRNAs were much more sensitive to changes in Wnt signaling in xenografts than in cultured cells. Our analysis suggested that Wnt signaling inhibition could influence the co-expression relationship of Wnt-regulated lncRNAs and their eQTL-linked protein-coding genes. Wnt-regulated lncRNAs were also implicated in specific gene networks involved in distinct biological processes that contribute to the pathogenesis of cancers. Consistent with previous genome-wide lncRNA CRISPRi screens, around 1% (13/1503) of the Wnt-regulated lncRNAs were found to modify cancer cell growth in vitro. This included CCAT1 and LINC00263, previously reported to regulate cancer growth. Using an in vivo CRISPRi screen, we doubled the discovery rate, identifying twice as many Wnt-regulated lncRNAs (25/1503) that had a functional effect on cancer cell growth. CONCLUSIONS Our study demonstrates the value of studying lncRNA functions in vivo, provides a valuable resource of lncRNAs regulated by Wnt signaling, and establishes a framework for systematic discovery of functional lncRNAs.
Collapse
Affiliation(s)
- Shiyang Liu
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | | | - Trudy Lee Glaser
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Yunka Wong
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Zheng Zhong
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Babita Madan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA.
| | - Enrico Petretto
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.
- MRC London Institute of Medical Sciences, Imperial College London, London, UK.
| |
Collapse
|
69
|
Application of CRISPR/Cas9-Based Reverse Genetics in Leishmania braziliensis: Conserved Roles for HSP100 and HSP23. Genes (Basel) 2020; 11:genes11101159. [PMID: 33007987 PMCID: PMC7601497 DOI: 10.3390/genes11101159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 01/18/2023] Open
Abstract
The protozoan parasite Leishmania (Viannia) braziliensis (L. braziliensis) is the main cause of human tegumentary leishmaniasis in the New World, a disease affecting the skin and/or mucosal tissues. Despite its importance, the study of the unique biology of L. braziliensis through reverse genetics analyses has so far lagged behind in comparison with Old World Leishmania spp. In this study, we successfully applied a cloning-free, PCR-based CRISPR–Cas9 technology in L. braziliensis that was previously developed for Old World Leishmania major and New World L. mexicana species. As proof of principle, we demonstrate the targeted replacement of a transgene (eGFP) and two L. braziliensis single-copy genes (HSP23 and HSP100). We obtained homozygous Cas9-free HSP23- and HSP100-null mutants in L. braziliensis that matched the phenotypes reported previously for the respective L. donovani null mutants. The function of HSP23 is indeed conserved throughout the Trypanosomatida as L. majorHSP23 null mutants could be complemented phenotypically with transgenes from a range of trypanosomatids. In summary, the feasibility of genetic manipulation of L. braziliensis by CRISPR–Cas9-mediated gene editing sets the stage for testing the role of specific genes in that parasite’s biology, including functional studies of virulence factors in relevant animal models to reveal novel therapeutic targets to combat American tegumentary leishmaniasis.
Collapse
|
70
|
Schenke D, Cai D. Applications of CRISPR/Cas to Improve Crop Disease Resistance: Beyond Inactivation of Susceptibility Factors. iScience 2020; 23:101478. [PMID: 32891884 PMCID: PMC7479627 DOI: 10.1016/j.isci.2020.101478] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/25/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Current crop production systems are prone to increasing pathogen pressure. Fundamental understanding of molecular plant-pathogen interactions, the availability of crop and pathogen genomic information, as well as emerging genome editing permits a novel approach for breeding of crop disease resistance. We describe here strategies to identify new targets for resistance breeding with focus on interruption of the compatible plant-pathogen interaction by CRISPR/Cas-mediated genome editing. Basically, crop genome editing can be applied in several ways to achieve this goal. The most common approach focuses on the "simple" knockout by non-homologous end joining repair of plant susceptibility factors required for efficient host colonization. However, genome re-writing via homology-directed repair or base editing can also prevent host manipulation by changing the targets of pathogen-derived effectors or molecules beyond recognition, which also decreases plant susceptibility. We conclude that genome editing by CRISPR/Cas will become increasingly indispensable to generate in relatively short time beneficial resistance traits in crops to meet upcoming challenges.
Collapse
Affiliation(s)
- Dirk Schenke
- Institute of Phytopathology, Department of Molecular Phytopathology and Biotechnology, Christian-Albrechts-University of Kiel, Hermann Rodewald Str. 9, 24118 Kiel, Germany
| | - Daguang Cai
- Institute of Phytopathology, Department of Molecular Phytopathology and Biotechnology, Christian-Albrechts-University of Kiel, Hermann Rodewald Str. 9, 24118 Kiel, Germany
| |
Collapse
|
71
|
Kushawah G, Hernandez-Huertas L, Abugattas-Nuñez del Prado J, Martinez-Morales JR, DeVore ML, Hassan H, Moreno-Sanchez I, Tomas-Gallardo L, Diaz-Moscoso A, Monges DE, Guelfo JR, Theune WC, Brannan EO, Wang W, Corbin TJ, Moran AM, Sánchez Alvarado A, Málaga-Trillo E, Takacs CM, Bazzini AA, Moreno-Mateos MA. CRISPR-Cas13d Induces Efficient mRNA Knockdown in Animal Embryos. Dev Cell 2020; 54:805-817.e7. [DOI: 10.1016/j.devcel.2020.07.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/27/2020] [Accepted: 07/16/2020] [Indexed: 02/08/2023]
|
72
|
Kumar A, Mali P. Mapping regulators of cell fate determination: Approaches and challenges. APL Bioeng 2020; 4:031501. [PMID: 32637855 PMCID: PMC7332300 DOI: 10.1063/5.0004611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022] Open
Abstract
Given the limited regenerative capacities of most organs, strategies are needed to efficiently generate large numbers of parenchymal cells capable of integration into the diseased organ. Although it was initially thought that terminally differentiated cells lacked the ability to transdifferentiate, it has since been shown that cellular reprogramming of stromal cells to parenchymal cells through direct lineage conversion holds great potential for the replacement of post-mitotic parenchymal cells lost to disease. To this end, an assortment of genetic, chemical, and mechanical cues have been identified to reprogram cells to different lineages both in vitro and in vivo. However, some key challenges persist that limit broader applications of reprogramming technologies. These include: (1) low reprogramming efficiencies; (2) incomplete functional maturation of derived cells; and (3) difficulty in determining the typically multi-factor combinatorial recipes required for successful transdifferentiation. To improve efficiency by comprehensively identifying factors that regulate cell fate, large scale genetic and chemical screening methods have thus been utilized. Here, we provide an overview of the underlying concept of cell reprogramming as well as the rationale, considerations, and limitations of high throughput screening methods. We next follow with a summary of unique hits that have been identified by high throughput screens to induce reprogramming to various parenchymal lineages. Finally, we discuss future directions of applying this technology toward human disease biology via disease modeling, drug screening, and regenerative medicine.
Collapse
Affiliation(s)
- Aditya Kumar
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
73
|
Kantor A, McClements ME, MacLaren RE. CRISPR-Cas9 DNA Base-Editing and Prime-Editing. Int J Mol Sci 2020; 21:E6240. [PMID: 32872311 PMCID: PMC7503568 DOI: 10.3390/ijms21176240] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
Many genetic diseases and undesirable traits are due to base-pair alterations in genomic DNA. Base-editing, the newest evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas-based technologies, can directly install point-mutations in cellular DNA without inducing a double-strand DNA break (DSB). Two classes of DNA base-editors have been described thus far, cytosine base-editors (CBEs) and adenine base-editors (ABEs). Recently, prime-editing (PE) has further expanded the CRISPR-base-edit toolkit to all twelve possible transition and transversion mutations, as well as small insertion or deletion mutations. Safe and efficient delivery of editing systems to target cells is one of the most paramount and challenging components for the therapeutic success of BEs. Due to its broad tropism, well-studied serotypes, and reduced immunogenicity, adeno-associated vector (AAV) has emerged as the leading platform for viral delivery of genome editing agents, including DNA-base-editors. In this review, we describe the development of various base-editors, assess their technical advantages and limitations, and discuss their therapeutic potential to treat debilitating human diseases.
Collapse
Affiliation(s)
- Ariel Kantor
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK; (M.E.M.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Michelle E. McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK; (M.E.M.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK; (M.E.M.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
74
|
Nosala C, Hagen KD, Hilton N, Chase TM, Jones K, Loudermilk R, Nguyen K, Dawson SC. Disc-associated proteins mediate the unusual hyperstability of the ventral disc in Giardia lamblia. J Cell Sci 2020; 133:jcs.227355. [PMID: 32661087 DOI: 10.1242/jcs.227355] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/29/2020] [Indexed: 12/26/2022] Open
Abstract
Giardia lamblia, a widespread parasitic protozoan, attaches to the host gastrointestinal epithelium by using the ventral disc, a complex microtubule (MT) organelle. The 'cup-like' disc is formed by a spiral MT array that scaffolds numerous disc-associated proteins (DAPs) and higher-order protein complexes. In interphase, the disc is hyperstable and has limited MT dynamics; however, it remains unclear how DAPs confer these properties. To investigate mechanisms of hyperstability, we confirmed the disc-specific localization of over 50 new DAPs identified by using both a disc proteome and an ongoing GFP localization screen. DAPs localize to specific disc regions and many lack similarity to known proteins. By screening 14 CRISPRi-mediated DAP knockdown (KD) strains for defects in hyperstability and MT dynamics, we identified two strains - DAP5188KD and DAP6751KD -with discs that dissociate following high-salt fractionation. Discs in the DAP5188KD strain were also sensitive to treatment with the MT-polymerization inhibitor nocodazole. Thus, we confirm here that at least two of the 87 known DAPs confer hyperstable properties to the disc MTs, and we anticipate that other DAPs contribute to disc MT stability, nucleation and assembly.
Collapse
Affiliation(s)
- Christopher Nosala
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Kari D Hagen
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Nicholas Hilton
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Tiffany M Chase
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Kelci Jones
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Rita Loudermilk
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Kristofer Nguyen
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Scott C Dawson
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
75
|
Spreafico R, Soriaga LB, Grosse J, Virgin HW, Telenti A. Advances in Genomics for Drug Development. Genes (Basel) 2020; 11:E942. [PMID: 32824125 PMCID: PMC7465049 DOI: 10.3390/genes11080942] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022] Open
Abstract
Drug development (target identification, advancing drug leads to candidates for preclinical and clinical studies) can be facilitated by genetic and genomic knowledge. Here, we review the contribution of population genomics to target identification, the value of bulk and single cell gene expression analysis for understanding the biological relevance of a drug target, and genome-wide CRISPR editing for the prioritization of drug targets. In genomics, we discuss the different scope of genome-wide association studies using genotyping arrays, versus exome and whole genome sequencing. In transcriptomics, we discuss the information from drug perturbation and the selection of biomarkers. For CRISPR screens, we discuss target discovery, mechanism of action and the concept of gene to drug mapping. Harnessing genetic support increases the probability of drug developability and approval.
Collapse
Affiliation(s)
| | | | | | | | - Amalio Telenti
- Vir Biotechnology, Inc., San Francisco, CA 94158, USA; (R.S.); (L.B.S.); (J.G.); (H.W.V.)
| |
Collapse
|
76
|
Lin X, Chemparathy A, La Russa M, Daley T, Qi LS. Computational Methods for Analysis of Large-Scale CRISPR Screens. Annu Rev Biomed Data Sci 2020. [DOI: 10.1146/annurev-biodatasci-020520-113523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Large-scale CRISPR-Cas pooled screens have shown great promise to investigate functional links between genotype and phenotype at the genome-wide scale. In addition to technological advancement, there is a need to develop computational methods to analyze the large datasets obtained from high-throughput CRISPR screens. Many computational methods have been developed to identify reliable gene hits from various screens. In this review, we provide an overview of the technology development of CRISPR screening platforms, with a focus on recent advances in computational methods to identify and model gene effects using CRISPR screen datasets. We also discuss existing challenges and opportunities for future computational methods development.
Collapse
Affiliation(s)
- Xueqiu Lin
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | | | - Marie La Russa
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Timothy Daley
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
- Department of Statistics, Stanford University, Stanford, California 94305, USA
| | - Lei S. Qi
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
- Department of Chemical and Systems Biology and ChEM-H (Chemistry, Engineering, and Medicine for Human Health), Stanford University, Stanford, California 94305, USA
| |
Collapse
|
77
|
Girish V, Sheltzer JM. A CRISPR Competition Assay to Identify Cancer Genetic Dependencies. Bio Protoc 2020; 10:e3682. [PMID: 33659353 DOI: 10.21769/bioprotoc.3682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/29/2020] [Accepted: 05/28/2020] [Indexed: 11/02/2022] Open
Abstract
The CRISPR/Cas9 system is a powerful tool for genome editing, wherein the RNA-guided nuclease Cas9 can be directed to introduce double-stranded breaks (DSBs) at a targeted locus. In mammalian cells, these DSBs are typically repaired through error-prone processes, resulting in insertions or deletions (indels) at the targeted locus. Researchers can use these Cas9-mediated lesions to probe the consequences of loss-of-function perturbations in genes of interest. Here, we describe an optimized protocol to identify specific genes required for cancer cell fitness through a CRISPR-mediated cellular competition assay. Identifying these genetic dependencies is of utmost importance, as they provide potential targets for anti-cancer drug development. This protocol provides researchers with a robust and scalable approach to investigate gene dependencies in a variety of cell lines and cancer types and to validate the results of high-throughput or whole-genome screens.
Collapse
Affiliation(s)
- Vishruth Girish
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jason M Sheltzer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
78
|
Haley B, Roudnicky F. Functional Genomics for Cancer Drug Target Discovery. Cancer Cell 2020; 38:31-43. [PMID: 32442401 DOI: 10.1016/j.ccell.2020.04.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/06/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022]
Abstract
Functional genomics describes a field of biology that uses a range of approaches for assessing gene function with high-throughput molecular, genetic, and cellular technologies. The near limitless potential for applying these concepts to study the activities of all genetic loci has completely upended how today's cancer biologists tackle drug target discovery. We provide an overview of contemporary functional genomics platforms, highlighting areas of distinction and complementarity across technologies, so as to aid in the development or interpretation of cancer-focused screening efforts.
Collapse
Affiliation(s)
- Benjamin Haley
- Molecular Biology Department, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Filip Roudnicky
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland.
| |
Collapse
|
79
|
Vega-Loza A, Van C, M Moreno A, Aleman F. Gene therapies to reduce chronic pain: are we there yet? Pain Manag 2020; 10:209-212. [PMID: 32677877 DOI: 10.2217/pmt-2020-0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/28/2020] [Indexed: 02/02/2023] Open
Affiliation(s)
- Andrea Vega-Loza
- Navega Therapeutics, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Christina Van
- Navega Therapeutics, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Ana M Moreno
- Navega Therapeutics, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Fernando Aleman
- Navega Therapeutics, 3210 Merryfield Row, San Diego, CA 92121, USA
| |
Collapse
|
80
|
Bowden AR, Morales-Juarez DA, Sczaniecka-Clift M, Agudo MM, Lukashchuk N, Thomas JC, Jackson SP. Parallel CRISPR-Cas9 screens clarify impacts of p53 on screen performance. eLife 2020; 9:e55325. [PMID: 32441252 PMCID: PMC7244323 DOI: 10.7554/elife.55325] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
CRISPR-Cas9 genome engineering has revolutionised high-throughput functional genomic screens. However, recent work has raised concerns regarding the performance of CRISPR-Cas9 screens using TP53 wild-type human cells due to a p53-mediated DNA damage response (DDR) limiting the efficiency of generating viable edited cells. To directly assess the impact of cellular p53 status on CRISPR-Cas9 screen performance, we carried out parallel CRISPR-Cas9 screens in wild-type and TP53 knockout human retinal pigment epithelial cells using a focused dual guide RNA library targeting 852 DDR-associated genes. Our work demonstrates that although functional p53 status negatively affects identification of significantly depleted genes, optimal screen design can nevertheless enable robust screen performance. Through analysis of our own and published screen data, we highlight key factors for successful screens in both wild-type and p53-deficient cells.
Collapse
Affiliation(s)
- Anne Ramsay Bowden
- Wellcome/Cancer Research UK Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | - David A Morales-Juarez
- Wellcome/Cancer Research UK Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | | | - Maria Martin Agudo
- Wellcome/Cancer Research UK Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | - Natalia Lukashchuk
- Wellcome/Cancer Research UK Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | - John Christopher Thomas
- Wellcome/Cancer Research UK Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| | - Stephen P Jackson
- Wellcome/Cancer Research UK Gurdon Institute, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
81
|
Huang L, Tian H, Luo J, Song N, Wu J. CRISPR/Cas9 Based Knockout of miR-145 Affects Intracellular Fatty Acid Metabolism by Targeting INSIG1 in Goat Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5138-5146. [PMID: 32299216 DOI: 10.1021/acs.jafc.0c00845] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
MiR-145 modulates fatty acid metabolism by regulating the expression of fatty acid metabolism-related genes in goat mammary epithelial cells. Previous studies using RNAi methods have clarified the function of miR-145 in lipogenesis. However, there are limiting factors such as short-term and inconsistent inhibition efficiency in RNAi method. On the basis of previous miR-145 functional studies, this study aims to knock out miR-145 and validate the function using CRISPR/Cas9 technology. We successfully obtained the single cell clone which had single nucleotide deletion around the Drosha processing site. The expression of miR-145 was significantly decreased, and the mRNA and protein expression of target gene INSIG1 were both increased by RT-qPCR and Western blot. The expression of fatty acid metabolism-associated gene (DGAT1, AGPAT6, TIP47, ADFP, CD36, ACSL1, ATGL, ACOX, CPT1A, FADS2, ELOVL5, PPARA, SCD1, FASN, and ACACA) were decreased. The contents of triacylglycerol and cholesterol were significantly inhibited. The percentage of C17:0 and C18:0 saturated fatty acid increased. Taken together, these data suggested that knockout of miR-145 could inhibit TAG and cholesterol contents and affect fatty acid composition through regulating the expression of fatty acid metabolism-related genes. These findings provide a sufficient theoretical basis for improving goat milk quality by miR-145.
Collapse
Affiliation(s)
- Lian Huang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, P. R. China
| | - Huibin Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, P. R. China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, P. R. China
| | - Ning Song
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, P. R. China
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, P. R. China
| |
Collapse
|
82
|
Baddal B. Next-generation technologies for studying host-pathogen interactions: a focus on dual transcriptomics, CRISPR/Cas9 screening and organs-on-chips. Pathog Dis 2020; 77:5593955. [PMID: 31626299 DOI: 10.1093/femspd/ftz060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022] Open
Abstract
Pathogens constantly interact with their hosts and the environment, and therefore have evolved unique virulence mechanisms to target and breach host defense barriers and manipulate host immune response to establish an infection. Advances in technologies that allow genome mining, gene editing such as CRISPR/Cas9, genomic, epigenomic and transcriptomic studies such as dual RNA-seq, coupled with bioinformatics, have accelerated the field of host-pathogen interactions within a broad range of infection models. Underpinning of the molecular changes that accompany invasion of eukaryotic cells with pathogenic microorganisms at the intersection of host, pathogen and their local environment has provided a better understanding of infectious disease mechanisms and antimicrobial strategies. The recent evolution of physiologically relevant three-dimensional (3-D) tissue/organ models and microfluidic organ-on-chip devices also provided a window to a more predictive framework of infectious disease processes. These approaches combined hold the potential to highly impact discovery of novel drug targets and vaccine candidates of the future. Here, we review three of the available and emerging technologies-dual RNA-seq, CRISPR/Cas9 screening and organs-on-chips, applicable to the high throughput study and deciphering of interaction networks between pathogens and their hosts that are critical for the development of novel therapeutics.
Collapse
Affiliation(s)
- Buket Baddal
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Near East Boulevard, Nicosia 99010, Cyprus
| |
Collapse
|
83
|
Peddle CF, Fry LE, McClements ME, MacLaren RE. CRISPR Interference-Potential Application in Retinal Disease. Int J Mol Sci 2020; 21:E2329. [PMID: 32230903 PMCID: PMC7177328 DOI: 10.3390/ijms21072329] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
The treatment of dominantly inherited retinal diseases requires silencing of the pathogenic allele. RNA interference to suppress gene expression suffers from wide-spread off-target effects, while CRISPR-mediated gene disruption creates permanent changes in the genome. CRISPR interference uses a catalytically inactive 'dead' Cas9 directed by a guide RNA to block transcription of chosen genes without disrupting the DNA. It is highly specific and potentially reversible, increasing its safety profile as a therapy. Pre-clinical studies have demonstrated the versatility of CRISPR interference for gene silencing both in vivo and in ex vivo modification of iPSCs for transplantation. Applying CRISPR interference techniques for the treatment of autosomal dominant inherited retinal diseases is promising but there are few in vivo studies to date. This review details how CRISPR interference might be used to treat retinal diseases and addresses potential challenges for clinical translation.
Collapse
Affiliation(s)
- Caroline F. Peddle
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK; (L.E.F.); (M.E.M.); (R.E.M.)
| | - Lewis E. Fry
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK; (L.E.F.); (M.E.M.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Michelle E. McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK; (L.E.F.); (M.E.M.); (R.E.M.)
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK; (L.E.F.); (M.E.M.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
84
|
Ding M, Tyrchan C, Bäck E, Östling J, Schubert S, McCrae C. Combined siRNA and Small-Molecule Phenotypic Screening Identifies Targets Regulating Rhinovirus Replication in Primary Human Bronchial Epithelial Cells. SLAS DISCOVERY 2020; 25:634-645. [PMID: 32189556 DOI: 10.1177/2472555220909726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human rhinovirus (RV) is the most common cause of acute upper respiratory tract infections and has recently been shown to play a significant role in exacerbations of asthma and chronic obstructive pulmonary disease (COPD). There is a significant unmet medical need for agents for the prevention and/or treatment of exacerbations triggered by human RV infection. Phenotypic drug discovery programs using different perturbation modalities, for example, siRNA, small-molecule compounds, and CRISPR, hold significant value for identifying novel drug targets. We have previously reported the identification of lanosterol synthase as a novel regulator of RV2 replication through a phenotypic screen of a library of siRNAs against druggable genes in normal human bronchial epithelial (NHBE) cells. Here, we describe a follow-up phenotypic screen of small-molecule compounds that are annotated to be pharmacological regulators of target genes that were identified to significantly affect RV2 replication in the siRNA primary screen of 10,500 druggable genes. Two hundred seventy small-molecule compounds selected for interacting with 122 target gene hits were screened in the primary RV2 assay in NHBE cells by quantifying viral replication via in situ hybridization followed by secondary quantitative PCR-based assays for RV2, RV14, and RV16. The described follow-up phenotypic screening allowed us to identify Fms-related tyrosine kinase 4 (FLT4) as a novel target regulating RV replication. We demonstrate that a combination of siRNA and small-molecule compound screening models is a useful phenotypic drug discovery approach for the identification of novel drug targets.
Collapse
Affiliation(s)
- Mei Ding
- Discovery Sciences, Research and Early Development, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Christian Tyrchan
- Medicinal Chemistry, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Elisabeth Bäck
- Discovery Sciences, Research and Early Development, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Jörgen Östling
- Bioscience, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | | | - Christopher McCrae
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), R&D BioPharmaceuticals, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
85
|
Schwarzer R, Gramatica A, Greene WC. Reduce and Control: A Combinatorial Strategy for Achieving Sustained HIV Remissions in the Absence of Antiretroviral Therapy. Viruses 2020; 12:v12020188. [PMID: 32046251 PMCID: PMC7077203 DOI: 10.3390/v12020188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/23/2022] Open
Abstract
Human immunodeficiency virus (HIV-1) indefinitely persists, despite effective antiretroviral therapy (ART), within a small pool of latently infected cells. These cells often display markers of immunologic memory and harbor both replication-competent and -incompetent proviruses at approximately a 1:100 ratio. Although complete HIV eradication is a highly desirable goal, this likely represents a bridge too far for our current and foreseeable technologies. A more tractable goal involves engineering a sustained viral remission in the absence of ART––a “functional cure.” In this setting, HIV remains detectable during remission, but the size of the reservoir is small and the residual virus is effectively controlled by an engineered immune response or other intervention. Biological precedence for such an approach is found in the post-treatment controllers (PTCs), a rare group of HIV-infected individuals who, following ART withdrawal, do not experience viral rebound. PTCs are characterized by a small reservoir, greatly reduced inflammation, and the presence of a poorly understood immune response that limits viral rebound. Our goal is to devise a safe and effective means for replicating durable post-treatment control on a global scale. This requires devising methods to reduce the size of the reservoir and to control replication of this residual virus. In the following sections, we will review many of the approaches and tools that likely will be important for implementing such a “reduce and control” strategy and for achieving a PTC-like sustained HIV remission in the absence of ART.
Collapse
|
86
|
Podkalicka P, Mucha O, Kruczek S, Biela A, Andrysiak K, Stępniewski J, Mikulski M, Gałęzowski M, Sitarz K, Brzózka K, Józkowicz A, Dulak J, Łoboda A. Synthetically Lethal Interactions of Heme Oxygenase-1 and Fumarate Hydratase Genes. Biomolecules 2020; 10:biom10010143. [PMID: 31963199 PMCID: PMC7023083 DOI: 10.3390/biom10010143] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/26/2022] Open
Abstract
Elevated expression of heme oxygenase-1 (HO-1, encoded by HMOX1) is observed in various types of tumors. Hence, it is suggested that HO-1 may serve as a potential target in anticancer therapies. A novel approach to inhibit HO-1 is related to the synthetic lethality of this enzyme and fumarate hydratase (FH). In the current study, we aimed to validate the effect of genetic and pharmacological inhibition of HO-1 in cells isolated from patients suffering from hereditary leiomyomatosis and renal cell carcinoma (HLRCC)-an inherited cancer syndrome, caused by FH deficiency. Initially, we confirmed that UOK 262, UOK 268, and NCCFH1 cell lines are characterized by non-active FH enzyme, high expression of Nrf2 transcription factor-regulated genes, including HMOX1 and attenuated oxidative phosphorylation. Later, we demonstrated that shRNA-mediated genetic inhibition of HMOX1 resulted in diminished viability and proliferation of cancer cells. Chemical inhibition of HO activity using commercially available inhibitors, zinc and tin metalloporphyrins as well as recently described new imidazole-based compounds, especially SLV-11199, led to decreased cancer cell viability and clonogenic potential. In conclusion, the current study points out the possible relevance of HO-1 inhibition as a potential anti-cancer treatment in HLRCC. However, further studies revealing the molecular mechanisms are still needed.
Collapse
Affiliation(s)
- Paulina Podkalicka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (P.P.); (O.M.); (S.K.); (A.B.); (K.A.); (J.S.); (A.J.); (J.D.)
| | - Olga Mucha
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (P.P.); (O.M.); (S.K.); (A.B.); (K.A.); (J.S.); (A.J.); (J.D.)
| | - Szczepan Kruczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (P.P.); (O.M.); (S.K.); (A.B.); (K.A.); (J.S.); (A.J.); (J.D.)
| | - Anna Biela
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (P.P.); (O.M.); (S.K.); (A.B.); (K.A.); (J.S.); (A.J.); (J.D.)
| | - Kalina Andrysiak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (P.P.); (O.M.); (S.K.); (A.B.); (K.A.); (J.S.); (A.J.); (J.D.)
| | - Jacek Stępniewski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (P.P.); (O.M.); (S.K.); (A.B.); (K.A.); (J.S.); (A.J.); (J.D.)
| | - Maciej Mikulski
- Ryvu Therapeutics S.A., Bobrzyńskiego 14, 30-348 Kraków, Poland; (M.M.); (M.G.); (K.S.); (K.B.)
| | - Michał Gałęzowski
- Ryvu Therapeutics S.A., Bobrzyńskiego 14, 30-348 Kraków, Poland; (M.M.); (M.G.); (K.S.); (K.B.)
| | - Kamil Sitarz
- Ryvu Therapeutics S.A., Bobrzyńskiego 14, 30-348 Kraków, Poland; (M.M.); (M.G.); (K.S.); (K.B.)
| | - Krzysztof Brzózka
- Ryvu Therapeutics S.A., Bobrzyńskiego 14, 30-348 Kraków, Poland; (M.M.); (M.G.); (K.S.); (K.B.)
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (P.P.); (O.M.); (S.K.); (A.B.); (K.A.); (J.S.); (A.J.); (J.D.)
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (P.P.); (O.M.); (S.K.); (A.B.); (K.A.); (J.S.); (A.J.); (J.D.)
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (P.P.); (O.M.); (S.K.); (A.B.); (K.A.); (J.S.); (A.J.); (J.D.)
- Correspondence:
| |
Collapse
|
87
|
Abstract
Long noncoding RNAs (lncRNAs) have emerged as important regulators of gene expression networks. Over 50,000 lncRNA loci have been annotated in the human genome, but only a subset has been involved in regulation of key cellular processes, organismal development, and diseases. Hence, the functional role for the majority of the lncRNA genes remains unknown. With the recent developments of different CRISPR/Cas9 technologies, the function of lncRNAs can now be examined. CRISPR interference (CRISPRi) is one of these methods that can be used to inhibit the expression of any genomic locus including lncRNAs. This system utilizes catalytically inactive (d)Cas9 fused to KRAB repression domain and single guide RNA against targeted genomic locus. Since CRISPRi has negligible off-target effects and does not involve changes in the underlying genomic DNA sequence, it represents a valuable addition to the existing armamentarium used to investigate lncRNA biology.
Collapse
Affiliation(s)
- Lovorka Stojic
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, London, UK.
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
88
|
Li QV, Rosen BP, Huangfu D. Decoding pluripotency: Genetic screens to interrogate the acquisition, maintenance, and exit of pluripotency. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1464. [PMID: 31407519 PMCID: PMC6898739 DOI: 10.1002/wsbm.1464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/31/2019] [Accepted: 07/17/2019] [Indexed: 01/25/2023]
Abstract
Pluripotent stem cells have the ability to unlimitedly self-renew and differentiate to any somatic cell lineage. A number of systems biology approaches have been used to define this pluripotent state. Complementary to systems level characterization, genetic screens offer a unique avenue to functionally interrogate the pluripotent state and identify the key players in pluripotency acquisition and maintenance, exit of pluripotency, and lineage differentiation. Here we review how genetic screens have helped us decode pluripotency regulation. We will summarize results from RNA interference (RNAi) based screens, discuss recent advances in CRISPR/Cas-based genetic perturbation methods, and how these advances have made it possible to more comprehensively interrogate pluripotency and differentiation through genetic screens. Such investigations will not only provide a better understanding of this unique developmental state, but may enhance our ability to use pluripotent stem cells as an experimental model to study human development and disease progression. Functional interrogation of pluripotency also provides a valuable roadmap for utilizing genetic perturbation to gain systems level understanding of additional cellular states, from later stages of development to pathological disease states. This article is categorized under: Developmental Biology > Stem Cell Biology and Regeneration Developmental Biology > Developmental Processes in Health and Disease Biological Mechanisms > Cell Fates.
Collapse
Affiliation(s)
- Qing V. Li
- Sloan Kettering Institute, 1275 York Avenue, New York, New York 10065, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
- These authors contributed equally
| | - Bess P. Rosen
- Sloan Kettering Institute, 1275 York Avenue, New York, New York 10065, USA
- Weill Graduate School of Medical Sciences at Cornell University, 1300 York Avenue, New York, New York 10065, USA
- These authors contributed equally
| | - Danwei Huangfu
- Sloan Kettering Institute, 1275 York Avenue, New York, New York 10065, USA
| |
Collapse
|
89
|
Barrass SV, Butcher SJ. Advances in high-throughput methods for the identification of virus receptors. Med Microbiol Immunol 2019; 209:309-323. [PMID: 31865406 PMCID: PMC7248041 DOI: 10.1007/s00430-019-00653-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/02/2019] [Indexed: 12/26/2022]
Abstract
Viruses have evolved many mechanisms to invade host cells and establish successful infections. The interaction between viral attachment proteins and host cell receptors is the first and decisive step in establishing such infections, initiating virus entry into the host cells. Therefore, the identification of host receptors is fundamental in understanding pathogenesis and tissue tropism. Furthermore, receptor identification can inform the development of antivirals, vaccines, and diagnostic technologies, which have a substantial impact on human health. Nevertheless, due to the complex nature of virus entry, the redundancy in receptor usage, and the limitations in current identification methods, many host receptors remain elusive. Recent advances in targeted gene perturbation, high-throughput screening, and mass spectrometry have facilitated the discovery of virus receptors in recent years. In this review, we compare the current methods used within the field to identify virus receptors, focussing on genomic- and interactome-based approaches.
Collapse
Affiliation(s)
- Sarah V Barrass
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme and Helsinki Institute of Life Sciences, Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| | - Sarah J Butcher
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme and Helsinki Institute of Life Sciences, Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| |
Collapse
|
90
|
Szalai B, Subramanian V, Holland CH, Alföldi R, Puskás LG, Saez-Rodriguez J. Signatures of cell death and proliferation in perturbation transcriptomics data-from confounding factor to effective prediction. Nucleic Acids Res 2019; 47:10010-10026. [PMID: 31552418 PMCID: PMC6821211 DOI: 10.1093/nar/gkz805] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 01/27/2023] Open
Abstract
Transcriptional perturbation signatures are valuable data sources for functional genomics. Linking perturbation signatures to screenings opens the possibility to model cellular phenotypes from expression data and to identify efficacious drugs. We linked perturbation transcriptomics data from the LINCS-L1000 project with cell viability information upon genetic (Achilles project) and chemical (CTRP screen) perturbations yielding more than 90 000 signature–viability pairs. An integrated analysis showed that the cell viability signature is a major factor underlying perturbation signatures. The signature is linked to transcription factors regulating cell death, proliferation and division time. We used the cell viability–signature relationship to predict viability from transcriptomics signatures, and identified and validated compounds that induce cell death in tumor cell lines. We showed that cellular toxicity can lead to unexpected similarity of signatures, confounding mechanism of action discovery. Consensus compound signatures predicted cell-specific drug sensitivity, even if the signature is not measured in the same cell line, and outperformed conventional drug-specific features. Our results can help in understanding mechanisms behind cell death and removing confounding factors of transcriptomic perturbation screens. To interactively browse our results and predict cell viability in new gene expression samples, we developed CEVIChE (CEll VIability Calculator from gene Expression; https://saezlab.shinyapps.io/ceviche/).
Collapse
Affiliation(s)
- Bence Szalai
- RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), 52074 Aachen, Germany.,Semmelweis University, Faculty of Medicine, Department of Physiology, H-1094 Budapest, Hungary
| | - Vigneshwari Subramanian
- RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), 52074 Aachen, Germany
| | - Christian H Holland
- RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), 52074 Aachen, Germany.,Heidelberg University, Faculty of Medicine and Heidelberg University Hospital, Institute of Computational Biomedicine, Bioquant, 69120 Heidelberg, Germany
| | | | | | - Julio Saez-Rodriguez
- RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), 52074 Aachen, Germany.,Heidelberg University, Faculty of Medicine and Heidelberg University Hospital, Institute of Computational Biomedicine, Bioquant, 69120 Heidelberg, Germany
| |
Collapse
|
91
|
Decaestecker W, Buono RA, Pfeiffer ML, Vangheluwe N, Jourquin J, Karimi M, Van Isterdael G, Beeckman T, Nowack MK, Jacobs TB. CRISPR-TSKO: A Technique for Efficient Mutagenesis in Specific Cell Types, Tissues, or Organs in Arabidopsis. THE PLANT CELL 2019; 31:2868-2887. [PMID: 31562216 DOI: 10.1101/474981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/25/2019] [Indexed: 05/26/2023]
Abstract
Detailed functional analyses of many fundamentally important plant genes via conventional loss-of-function approaches are impeded by the severe pleiotropic phenotypes resulting from these losses. In particular, mutations in genes that are required for basic cellular functions and/or reproduction often interfere with the generation of homozygous mutant plants, precluding further functional studies. To overcome this limitation, we devised a clustered regularly interspaced short palindromic repeats (CRISPR)-based tissue-specific knockout system, CRISPR-TSKO, enabling the generation of somatic mutations in particular plant cell types, tissues, and organs. In Arabidopsis (Arabidopsis thaliana), CRISPR-TSKO mutations in essential genes caused well-defined, localized phenotypes in the root cap, stomatal lineage, or entire lateral roots. The modular cloning system developed in this study allows for the efficient selection, identification, and functional analysis of mutant lines directly in the first transgenic generation. The efficacy of CRISPR-TSKO opens avenues for discovering and analyzing gene functions in the spatial and temporal contexts of plant life while avoiding the pleiotropic effects of system-wide losses of gene function.
Collapse
Affiliation(s)
- Ward Decaestecker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Rafael Andrade Buono
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Marie L Pfeiffer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Nick Vangheluwe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Joris Jourquin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Mansour Karimi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Gert Van Isterdael
- VIB Flow Core, VIB Center for Inflammation Research, Technologiepark 71, B-9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
92
|
Decaestecker W, Buono RA, Pfeiffer ML, Vangheluwe N, Jourquin J, Karimi M, Van Isterdael G, Beeckman T, Nowack MK, Jacobs TB. CRISPR-TSKO: A Technique for Efficient Mutagenesis in Specific Cell Types, Tissues, or Organs in Arabidopsis. THE PLANT CELL 2019; 31:2868-2887. [PMID: 31562216 PMCID: PMC6925012 DOI: 10.1105/tpc.19.00454] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/23/2019] [Accepted: 09/25/2019] [Indexed: 05/18/2023]
Abstract
Detailed functional analyses of many fundamentally important plant genes via conventional loss-of-function approaches are impeded by the severe pleiotropic phenotypes resulting from these losses. In particular, mutations in genes that are required for basic cellular functions and/or reproduction often interfere with the generation of homozygous mutant plants, precluding further functional studies. To overcome this limitation, we devised a clustered regularly interspaced short palindromic repeats (CRISPR)-based tissue-specific knockout system, CRISPR-TSKO, enabling the generation of somatic mutations in particular plant cell types, tissues, and organs. In Arabidopsis (Arabidopsis thaliana), CRISPR-TSKO mutations in essential genes caused well-defined, localized phenotypes in the root cap, stomatal lineage, or entire lateral roots. The modular cloning system developed in this study allows for the efficient selection, identification, and functional analysis of mutant lines directly in the first transgenic generation. The efficacy of CRISPR-TSKO opens avenues for discovering and analyzing gene functions in the spatial and temporal contexts of plant life while avoiding the pleiotropic effects of system-wide losses of gene function.
Collapse
Affiliation(s)
- Ward Decaestecker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Rafael Andrade Buono
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Marie L Pfeiffer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Nick Vangheluwe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Joris Jourquin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Mansour Karimi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Gert Van Isterdael
- VIB Flow Core, VIB Center for Inflammation Research, Technologiepark 71, B-9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
93
|
Combined gene essentiality scoring improves the prediction of cancer dependency maps. EBioMedicine 2019; 50:67-80. [PMID: 31732481 PMCID: PMC6923492 DOI: 10.1016/j.ebiom.2019.10.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022] Open
Abstract
Background Probing genetic dependencies of cancer cells can improve our understanding of tumour development and progression, as well as identify potential drug targets. CRISPR-Cas9-based and shRNA-based genetic screening are commonly utilized to identify essential genes that affect cancer growth. However, systematic methods leveraging these genetic screening techniques to derive consensus cancer dependency maps for individual cancer cell lines are lacking. Finding In this work, we first explored the CRISPR-Cas9 and shRNA gene essentiality profiles in 42 cancer cell lines representing 10 cancer types. We observed limited consistency between the essentiality profiles of these two screens at the genome scale. To improve consensus on the cancer dependence map, we developed a computational model called combined essentiality score (CES) to integrate the genetic essentiality profiles from CRISPR-Cas9 and shRNA screens, while accounting for the molecular features of the genes. We found that the CES method outperformed the existing gene essentiality scoring approaches in terms of ability to detect cancer essential genes. We further demonstrated the power of the CES method in adjusting for screen-specific biases and predicting genetic dependencies in individual cancer cell lines. Interpretation Systematic comparison of the CRISPR-Cas9 and shRNA gene essentiality profiles showed the limitation of relying on a single technique to identify cancer essential genes. The CES method provides an integrated framework to leverage both genetic screening techniques as well as molecular feature data to determine gene essentiality more accurately for cancer cells.
Collapse
|
94
|
Synthetic lethality as an engine for cancer drug target discovery. Nat Rev Drug Discov 2019; 19:23-38. [DOI: 10.1038/s41573-019-0046-z] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 12/25/2022]
|
95
|
Splicing regulatory factors in breast cancer hallmarks and disease progression. Oncotarget 2019; 10:6021-6037. [PMID: 31666932 PMCID: PMC6800274 DOI: 10.18632/oncotarget.27215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/29/2019] [Indexed: 12/31/2022] Open
Abstract
By regulating transcript isoform expression levels, alternative splicing provides an additional layer of protein control. Recent studies show evidence that cancer cells use different splicing events to fulfill their requirements in order to develop, progress and metastasize. However, there has been less attention for the role of the complex catalyzing the complicated multistep splicing reaction: the spliceosome. The spliceosome consists of multiple sub-complexes in total comprising 244 proteins or splice factors and 5 associated RNA molecules. Here we discuss the role of splice factors in the oncogenic processes tumors cells need to fulfill their oncogenic properties (the so-called the hallmarks of cancer). Despite the fact that splice factors have been investigated only recently, they seem to play a prominent role in already five hallmarks of cancer: angiogenesis, resisting cell death, sustaining proliferation, deregulating cellular energetics and invasion and metastasis formation by affecting major signaling pathways such as epithelial-to-mesenchymal transition, the Warburg effect, DNA damage response and hormone receptor dependent proliferation. Moreover, we could relate expression of representative genes of four other hallmarks (enabling replicative mortality, genomic instability, avoiding immune destruction and evading growth suppression) to splice factor levels in human breast cancer tumors, suggesting that also these hallmarks could be regulated by splice factors. Since many splice factors are involved in multiple hallmarks of cancer, inhibiting splice factors might provide a new layer of oncogenic control and a powerful method to combat breast cancer progression.
Collapse
|
96
|
Liu JQ, Li T. CRISPR-Cas9-mediated loss-of-function screens. FRONTIERS IN LIFE SCIENCE 2019. [DOI: 10.1080/21553769.2019.1670739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Jia-qing Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Tao Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| |
Collapse
|
97
|
Lin A, Giuliano CJ, Palladino A, John KM, Abramowicz C, Yuan ML, Sausville EL, Lukow DA, Liu L, Chait AR, Galluzzo ZC, Tucker C, Sheltzer JM. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci Transl Med 2019; 11:eaaw8412. [PMID: 31511426 PMCID: PMC7717492 DOI: 10.1126/scitranslmed.aaw8412] [Citation(s) in RCA: 442] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/19/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
Ninety-seven percent of drug-indication pairs that are tested in clinical trials in oncology never advance to receive U.S. Food and Drug Administration approval. While lack of efficacy and dose-limiting toxicities are the most common causes of trial failure, the reason(s) why so many new drugs encounter these problems is not well understood. Using CRISPR-Cas9 mutagenesis, we investigated a set of cancer drugs and drug targets in various stages of clinical testing. We show that-contrary to previous reports obtained predominantly with RNA interference and small-molecule inhibitors-the proteins ostensibly targeted by these drugs are nonessential for cancer cell proliferation. Moreover, the efficacy of each drug that we tested was unaffected by the loss of its putative target, indicating that these compounds kill cells via off-target effects. By applying a genetic target-deconvolution strategy, we found that the mischaracterized anticancer agent OTS964 is actually a potent inhibitor of the cyclin-dependent kinase CDK11 and that multiple cancer types are addicted to CDK11 expression. We suggest that stringent genetic validation of the mechanism of action of cancer drugs in the preclinical setting may decrease the number of therapies tested in human patients that fail to provide any clinical benefit.
Collapse
Affiliation(s)
- Ann Lin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Christopher J Giuliano
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Ann Palladino
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kristen M John
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Hofstra University, Hempstead, NY 11549, USA
| | - Connor Abramowicz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- New York Institute of Technology, Glen Head, NY 11545, USA
| | - Monet Lou Yuan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Syosset High School, Syosset, NY 11791, USA
| | - Erin L Sausville
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Devon A Lukow
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Luwei Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | - Clara Tucker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Jason M Sheltzer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
98
|
Paulo DF, Williamson ME, Arp AP, Li F, Sagel A, Skoda SR, Sanchez-Gallego J, Vasquez M, Quintero G, Pérez de León AA, Belikoff EJ, Azeredo-Espin AML, McMillan WO, Concha C, Scott MJ. Specific Gene Disruption in the Major Livestock Pests Cochliomyia hominivorax and Lucilia cuprina Using CRISPR/Cas9. G3 (BETHESDA, MD.) 2019; 9:3045-3055. [PMID: 31340950 PMCID: PMC6723136 DOI: 10.1534/g3.119.400544] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023]
Abstract
Cochliomyia hominivorax and Lucilia cuprina are major pests of livestock. Their larvae infest warm-blooded vertebrates and feed on host's tissues, resulting in severe industry losses. As they are serious pests, considerable effort has been made to develop genomic resources and functional tools aiming to improve their management and control. Here, we report a significant addition to the pool of genome manipulation tools through the establishment of efficient CRISPR/Cas9 protocols for the generation of directed and inheritable modifications in the genome of these flies. Site-directed mutations were introduced in the C hominivorax and L cuprina yellow genes (ChY and LcY) producing lightly pigmented adults. High rates of somatic mosaicism were induced when embryos were injected with Cas9 ribonucleoprotein complexes (RNPs) pre-assembled with guide RNAs (sgRNAs) at high concentrations. Adult flies carrying disrupted yellow alleles lacked normal pigmentation (brown body phenotype) and efficiently transmitted the mutated alleles to the subsequent generation, allowing the rapid creation of homozygous strains for reverse genetics of candidate loci. We next used our established CRISPR protocol to disrupt the C hominivorax transformer gene (Chtra). Surviving females carrying mutations in the Chtra locus developed mosaic phenotypes of transformed ovipositors with characteristics of male genitalia while exhibiting abnormal reproductive tissues. The CRISPR protocol described here is a significant improvement on the existing toolkit of molecular methods in calliphorids. Our results also suggest that Cas9-based systems targeting Chtra and Lctra could be an effective means for controlling natural populations of these important pests.
Collapse
Affiliation(s)
- Daniel F Paulo
- Centre for Molecular Biology and Genetic Engineering, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas
- Laboratory of Ecological and Evolutionary Genomics, Smithsonian Tropical Research Institute, Gamboa, Panama
| | - Megan E Williamson
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh NC
| | - Alex P Arp
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Kerrville TX, and
| | - Fang Li
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh NC
| | - Agustin Sagel
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Screwworm Research Site, Pacora, Panama
| | - Steven R Skoda
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Screwworm Research Site, Pacora, Panama
| | - Joel Sanchez-Gallego
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Screwworm Research Site, Pacora, Panama
| | - Mario Vasquez
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Screwworm Research Site, Pacora, Panama
| | - Gladys Quintero
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Screwworm Research Site, Pacora, Panama
| | - Adalberto A Pérez de León
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Kerrville TX, and
| | - Esther J Belikoff
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh NC
| | - Ana M L Azeredo-Espin
- Centre for Molecular Biology and Genetic Engineering, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas
| | - W Owen McMillan
- Laboratory of Ecological and Evolutionary Genomics, Smithsonian Tropical Research Institute, Gamboa, Panama
| | - Carolina Concha
- Laboratory of Ecological and Evolutionary Genomics, Smithsonian Tropical Research Institute, Gamboa, Panama
| | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh NC
| |
Collapse
|
99
|
Giuliano CJ, Lin A, Girish V, Sheltzer JM. Generating Single Cell-Derived Knockout Clones in Mammalian Cells with CRISPR/Cas9. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2019; 128:e100. [PMID: 31503414 PMCID: PMC6741428 DOI: 10.1002/cpmb.100] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CRISPR/Cas9 technology enables the rapid generation of loss-of-function mutations in a targeted gene in mammalian cells. A single cell harboring those mutations can be used to establish a new cell line, thereby creating a CRISPR-induced knockout clone. These clonal cell lines serve as crucial tools for exploring protein function, analyzing the consequences of gene loss, and investigating the specificity of biological reagents. However, the successful derivation of knockout clones can be technically challenging and may be complicated by multiple factors, including incomplete target ablation and interclonal heterogeneity. Here, we describe optimized protocols and plasmids for generating clonal knockouts in mammalian cell lines. We provide strategies for guide RNA design, CRISPR delivery, and knockout validation that facilitate the derivation of true knockout clones and are amenable to multiplexed gene targeting. These protocols will be broadly useful for researchers seeking to apply CRISPR to study gene function in mammalian cells. © 2019 The Authors.
Collapse
Affiliation(s)
- Christopher J. Giuliano
- Cold Spring Harbor LaboratoryCold Spring HarborNew York
- Stony Brook UniversityStony BrookNew York
- Massachusetts Institute of TechnologyCambridgeMassachusetts
| | - Ann Lin
- Cold Spring Harbor LaboratoryCold Spring HarborNew York
- Stony Brook UniversityStony BrookNew York
| | - Vishruth Girish
- Cold Spring Harbor LaboratoryCold Spring HarborNew York
- Stony Brook UniversityStony BrookNew York
| | | |
Collapse
|
100
|
Application of CRISPR-Cas9 Screening Technologies to Study Mitochondrial Biology in Healthy and Disease States. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:269-277. [DOI: 10.1007/978-981-13-8367-0_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|