51
|
Xu J, Shu Y, Yao G, Zhang Y, Niu W, Zhang Y, Ma X, Jin H, Zhang F, Shi S, Wang Y, Song W, Dai S, Cheng L, Zhang X, Xie W, Hsueh AJ, Sun Y. Parental methylome reprogramming in human uniparental blastocysts reveals germline memory transition. Genome Res 2021; 31:1519-1530. [PMID: 34330789 PMCID: PMC8415376 DOI: 10.1101/gr.273318.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 07/22/2021] [Indexed: 11/24/2022]
Abstract
Uniparental embryos derived from only the mother (gynogenetic [GG]) or the father (androgenetic [AG]) are unique models for studying genomic imprinting and parental contributions to embryonic development. Human parthenogenetic embryos can be obtained following artificial activation of unfertilized oocytes, but the production of AG embryos by injection of two sperm into one denucleated oocyte leads to an extra centriole, resulting in multipolar spindles, abnormal cell division, and developmental defects. Here, we improved androgenote production by transferring the male pronucleus from one zygote into another haploid androgenote to prevent extra centrioles and successfully generated human diploid AG embryos capable of developing into blastocysts with an identifiable inner cell mass (ICM) and trophectoderm (TE). The GG embryos were also generated. The zygotic genome was successfully activated in both the AG and GG embryos. DNA methylome analysis showed that the GG blastocysts partially retain the oocyte transcription-dependent methylation pattern, whereas the AG blastocyst methylome showed more extensive demethylation. The methylation states of most known imprinted differentially methylated regions (DMRs) were recapitulated in the AG and GG blastocysts. Novel candidate imprinted DMRs were also identified. The production of uniparental human embryos followed by transcriptome and methylome analysis is valuable for identifying parental contributions and epigenome memory transitions during early human development.
Collapse
Affiliation(s)
- Jiawei Xu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Yimin Shu
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Guidong Yao
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Yu Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenbin Niu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Yile Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Xueshan Ma
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Haixia Jin
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Fuli Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Senlin Shi
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Yang Wang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Wenyan Song
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Shanjun Dai
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Luyao Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Xiangyang Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Aaron J Hsueh
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Yingpu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| |
Collapse
|
52
|
Building Pluripotency Identity in the Early Embryo and Derived Stem Cells. Cells 2021; 10:cells10082049. [PMID: 34440818 PMCID: PMC8391114 DOI: 10.3390/cells10082049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
The fusion of two highly differentiated cells, an oocyte with a spermatozoon, gives rise to the zygote, a single totipotent cell, which has the capability to develop into a complete, fully functional organism. Then, as development proceeds, a series of programmed cell divisions occur whereby the arising cells progressively acquire their own cellular and molecular identity, and totipotency narrows until when pluripotency is achieved. The path towards pluripotency involves transcriptome modulation, remodeling of the chromatin epigenetic landscape to which external modulators contribute. Both human and mouse embryos are a source of different types of pluripotent stem cells whose characteristics can be captured and maintained in vitro. The main aim of this review is to address the cellular properties and the molecular signature of the emerging cells during mouse and human early development, highlighting similarities and differences between the two species and between the embryos and their cognate stem cells.
Collapse
|
53
|
Anvar Z, Chakchouk I, Demond H, Sharif M, Kelsey G, Van den Veyver IB. DNA Methylation Dynamics in the Female Germline and Maternal-Effect Mutations That Disrupt Genomic Imprinting. Genes (Basel) 2021; 12:genes12081214. [PMID: 34440388 PMCID: PMC8394515 DOI: 10.3390/genes12081214] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Genomic imprinting is an epigenetic marking process that results in the monoallelic expression of a subset of genes. Many of these ‘imprinted’ genes in mice and humans are involved in embryonic and extraembryonic growth and development, and some have life-long impacts on metabolism. During mammalian development, the genome undergoes waves of (re)programming of DNA methylation and other epigenetic marks. Disturbances in these events can cause imprinting disorders and compromise development. Multi-locus imprinting disturbance (MLID) is a condition by which imprinting defects touch more than one locus. Although most cases with MLID present with clinical features characteristic of one imprinting disorder. Imprinting defects also occur in ‘molar’ pregnancies-which are characterized by highly compromised embryonic development-and in other forms of reproductive compromise presenting clinically as infertility or early pregnancy loss. Pathogenic variants in some of the genes encoding proteins of the subcortical maternal complex (SCMC), a multi-protein complex in the mammalian oocyte, are responsible for a rare subgroup of moles, biparental complete hydatidiform mole (BiCHM), and other adverse reproductive outcomes which have been associated with altered imprinting status of the oocyte, embryo and/or placenta. The finding that defects in a cytoplasmic protein complex could have severe impacts on genomic methylation at critical times in gamete or early embryo development has wider implications beyond these relatively rare disorders. It signifies a potential for adverse maternal physiology, nutrition, or assisted reproduction to cause epigenetic defects at imprinted or other genes. Here, we review key milestones in DNA methylation patterning in the female germline and the embryo focusing on humans. We provide an overview of recent findings regarding DNA methylation deficits causing BiCHM, MLID, and early embryonic arrest. We also summarize identified SCMC mutations with regard to early embryonic arrest, BiCHM, and MLID.
Collapse
Affiliation(s)
- Zahra Anvar
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; (Z.A.); (I.C.); (M.S.)
- Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Imen Chakchouk
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; (Z.A.); (I.C.); (M.S.)
- Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Hannah Demond
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK;
| | - Momal Sharif
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; (Z.A.); (I.C.); (M.S.)
- Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK;
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
- Correspondence: (G.K.); (I.B.V.d.V.); Tel.: +44-1223-496332 (G.K.); +832-824-8125 (I.B.V.d.V.)
| | - Ignatia B. Van den Veyver
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; (Z.A.); (I.C.); (M.S.)
- Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (G.K.); (I.B.V.d.V.); Tel.: +44-1223-496332 (G.K.); +832-824-8125 (I.B.V.d.V.)
| |
Collapse
|
54
|
Vaisvila R, Ponnaluri VKC, Sun Z, Langhorst BW, Saleh L, Guan S, Dai N, Campbell MA, Sexton BS, Marks K, Samaranayake M, Samuelson JC, Church HE, Tamanaha E, Corrêa IR, Pradhan S, Dimalanta ET, Evans TC, Williams L, Davis TB. Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA. Genome Res 2021; 31:1280-1289. [PMID: 34140313 PMCID: PMC8256858 DOI: 10.1101/gr.266551.120] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 05/06/2021] [Indexed: 01/15/2023]
Abstract
Bisulfite sequencing detects 5mC and 5hmC at single-base resolution. However, bisulfite treatment damages DNA, which results in fragmentation, DNA loss, and biased sequencing data. To overcome these problems, enzymatic methyl-seq (EM-seq) was developed. This method detects 5mC and 5hmC using two sets of enzymatic reactions. In the first reaction, TET2 and T4-BGT convert 5mC and 5hmC into products that cannot be deaminated by APOBEC3A. In the second reaction, APOBEC3A deaminates unmodified cytosines by converting them to uracils. Therefore, these three enzymes enable the identification of 5mC and 5hmC. EM-seq libraries were compared with bisulfite-converted DNA, and each library type was ligated to Illumina adaptors before conversion. Libraries were made using NA12878 genomic DNA, cell-free DNA, and FFPE DNA over a range of DNA inputs. The 5mC and 5hmC detected in EM-seq libraries were similar to those of bisulfite libraries. However, libraries made using EM-seq outperformed bisulfite-converted libraries in all specific measures examined (coverage, duplication, sensitivity, etc.). EM-seq libraries displayed even GC distribution, better correlations across DNA inputs, increased numbers of CpGs within genomic features, and accuracy of cytosine methylation calls. EM-seq was effective using as little as 100 pg of DNA, and these libraries maintained the described advantages over bisulfite sequencing. EM-seq library construction, using challenging samples and lower DNA inputs, opens new avenues for research and clinical applications.
Collapse
Affiliation(s)
| | | | - Zhiyi Sun
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | | | - Lana Saleh
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Shengxi Guan
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Nan Dai
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | | | - Brittany S Sexton
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Katherine Marks
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Mala Samaranayake
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - James C Samuelson
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Heidi E Church
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Esta Tamanaha
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Ivan R Corrêa
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Sriharsa Pradhan
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | | | - Thomas C Evans
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Louise Williams
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| | - Theodore B Davis
- New England Biolabs, Incorporated, Ipswich, Massachusetts 01938, USA
| |
Collapse
|
55
|
Au Yeung WK, Maruyama O, Sasaki H. A convolutional neural network-based regression model to infer the epigenetic crosstalk responsible for CG methylation patterns. BMC Bioinformatics 2021; 22:341. [PMID: 34162326 PMCID: PMC8220828 DOI: 10.1186/s12859-021-04272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 06/15/2021] [Indexed: 12/02/2022] Open
Abstract
Background Epigenetic modifications, including CG methylation (a major form of DNA methylation) and histone modifications, interact with each other to shape their genomic distribution patterns. However, the entire picture of the epigenetic crosstalk regulating the CG methylation pattern is unknown especially in cells that are available only in a limited number, such as mammalian oocytes. Most machine learning approaches developed so far aim at finding DNA sequences responsible for the CG methylation patterns and were not tailored for studying the epigenetic crosstalk.
Results We built a machine learning model named epiNet to predict CG methylation patterns based on other epigenetic features, such as histone modifications, but not DNA sequence. Using epiNet, we identified biologically relevant epigenetic crosstalk between histone H3K36me3, H3K4me3, and CG methylation in mouse oocytes. This model also predicted the altered CG methylation pattern of mutant oocytes having perturbed histone modification, was applicable to cross-species prediction of the CG methylation pattern of human oocytes, and identified the epigenetic crosstalk potentially important in other cell types. Conclusions Our findings provide insight into the epigenetic crosstalk regulating the CG methylation pattern in mammalian oocytes and other cells. The use of epiNet should help to design or complement biological experiments in epigenetics studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04272-8.
Collapse
Affiliation(s)
- Wan Kin Au Yeung
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Osamu Maruyama
- Faculty of Design, Kyushu University, Fukuoka, 815-0032, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
56
|
Abstract
Genomic imprinting is the monoallelic expression of a gene based on parent of origin and is a consequence of differential epigenetic marking between the male and female germlines. Canonically, genomic imprinting is mediated by allelic DNA methylation. However, recently it has been shown that maternal H3K27me3 can result in DNA methylation-independent imprinting, termed "noncanonical imprinting." In this review, we compare and contrast what is currently known about the underlying mechanisms, the role of endogenous retroviral elements, and the conservation of canonical and noncanonical genomic imprinting.
Collapse
Affiliation(s)
- Courtney W Hanna
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| |
Collapse
|
57
|
Yang M, Tao X, Scott K, Zhan Y, Scott RT, Seli E. Evaluation of genome-wide DNA methylation profile of human embryos with different developmental competences. Hum Reprod 2021; 36:1682-1690. [PMID: 33846747 DOI: 10.1093/humrep/deab074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
STUDY QUESTION Do embryos with different developmental competence exhibit different DNA methylation profiles at the blastocyst stage? SUMMARY ANSWER We established genome-wide DNA methylome analysis for embryo trophectoderm (TE) biopsy samples and our findings demonstrated correlation of methylation profile of trophectoderm with euploidy status and with maternal age, indicating that genome-wide methylation level might be negatively correlated with embryo quality. WHAT IS KNOWN ALREADY DNA methylation is a fundamental epigenetic regulatory mechanism that affects differentiation of cells into their future lineages during pre-implantation embryo development. Currently there is no established approach available to assess the epigenetic status of the human preimplantation embryo during routine IVF treatment. STUDY DESIGN, SIZE, DURATION In total, we collected trophectoderm biopsy samples from 30 randomly selected human blastocysts and conducted whole-genome bisulfite sequencing (WGBS) to evaluate their DNA methylation profile. Nested linear models were used to assess association between DNA methylation level and ploidy status (aneuploidy [n = 20] vs. euploidy [n = 10]), maternal age (29.4-42.5 years old), and time of blastulation (day 5 [n = 16] vs. day 6 [n = 14]), using embryo identity as a covariate. PARTICIPANTS/MATERIALS, SETTING, METHODS TE biopsy samples were obtained and submitted to bisulfite conversion. For WGBS, whole-genome sequencing libraries were then generated from the converted genome. An average of 75 million reads were obtained for each sample, and about 63% of the reads aligned to human reference. An average of 40 million reads used for the final analysis after the unconverted reads were filtered out. MAIN RESULTS AND THE ROLE OF CHANCE We revealed an increase of genome-wide DNA methylation level in aneuploid embryo TE biopsies compared to euploid embryos (25.4% ± 3.2% vs. 24.7% ± 3.2%, P < 0.005). We also found genome-wide DNA methylation level to be increased with the maternal age (P < 0.005). On a chromosomal scale, we found monosomic embryos have lower methylation levels on the involved chromosome while no drastic change was observed for the involved chromosome in trisomies. Additionally, we revealed that WGBS data precisely revealed the chromosome copy number variance. LIMITATIONS, REASONS FOR CAUTION Though our results demonstrated a negative correlation of genome-wide methylation level and embryo quality, further WGBS analysis on a greater number of embryos and specific investigation of its correlation with implantation and live birth are needed before any practical use of this approach for evaluation of embryo competence. WIDER IMPLICATIONS OF THE FINDINGS This study revealed a change in genome-wide DNA methylation profile among embryos with different developmental potentials, reinforcing the critical role of DNA methylation in early development. STUDY FUNDING/COMPETING INTEREST(S) No external funding was received for this study. Intramural funding was provided by the Foundation for Embryonic Competence (FEC). E.S. is a consultant for and receives research funding from the Foundation for Embryonic Competence; he is also co-founder and a shareholder of ACIS LLC and coholds patent US2019/055906 issued for utilizing electrical resistance measurement for assessing cell viability and cell membrane piercing. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Min Yang
- The Foundation for Embryonic Competence, Basking Ridge, NJ, USA
| | - Xin Tao
- The Foundation for Embryonic Competence, Basking Ridge, NJ, USA
| | - Katherine Scott
- The Foundation for Embryonic Competence, Basking Ridge, NJ, USA
| | - Yiping Zhan
- The Foundation for Embryonic Competence, Basking Ridge, NJ, USA
| | - Richard T Scott
- IVIRMA, New Jersey, Basking Ridge, NJ, USA.,Thomas Jefferson University, Philadelphia, PA, USA
| | - Emre Seli
- IVIRMA, New Jersey, Basking Ridge, NJ, USA.,Department of Obstetrics, Gynecology and Reproductive Science, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
58
|
Kagami M, Hara-Isono K, Matsubara K, Nakabayashi K, Narumi S, Fukami M, Ohkubo Y, Saitsu H, Takada S, Ogata T. ZNF445: a homozygous truncating variant in a patient with Temple syndrome and multilocus imprinting disturbance. Clin Epigenetics 2021; 13:119. [PMID: 34039421 PMCID: PMC8157728 DOI: 10.1186/s13148-021-01106-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/18/2021] [Indexed: 11/12/2022] Open
Abstract
Background ZNF445, as well as ZFP57, is involved in the postfertilization methylation maintenance of multiple imprinting-associated differentially methylated regions (iDMRs). Thus, ZNF445 pathogenic variants are predicted to cause multilocus imprinting disturbances (MLIDs), as do ZFP57 pathogenic variants. In particular, the MEG3/DLK1:IG-DMR would be affected, because the postzygotic methylation imprint of the MEG3/DLK1:IG-DMR is maintained primarily by ZNF445, whereas that of most iDMRs is preserved by both ZFP57 and ZNF445 or primarily by ZFP57. Results We searched for a ZNF445 variant(s) in six patients with various imprinting disorders (IDs) caused by epimutations and MLIDs revealed by pyrosequencing for nine iDMRs, without a selection for the original IDs. Re-analysis of the previously obtained whole exome sequencing data identified a homozygous ZNF445 variant (NM_181489.6:c.2803C>T:p.(Gln935*)) producing a truncated protein missing two of 14 zinc finger domains in a patient with Temple syndrome and MLID. In this patient, array-based genomewide methylation analysis revealed severe hypomethylation of most CpGs at the MEG3:TSS-DMR, moderate hypomethylation of roughly two-thirds of CpGs at the H19/IGF2:IG-DMR, and mild-to-moderate hypomethylation of a few CpGs at the DIRAS3:TSS-DMR, MEST:alt-TSS-DMR, IGF2:Ex9-DMR, IGF2:alt-TSS, and GNAS-AS1:TSS-DMR. Furthermore, bisulfite sequencing analysis for the MEG3/DLK1:IG-DMR delineated a markedly hypomethylated segment (CG-A). The heterozygous parents were clinically normal and had virtually no aberrant methylation pattern. Conclusions We identified a ZNF445 pathogenic variant for the first time. Since ZNF445 binds to the MEG3/DLK1:IG-DMR and other iDMRs affected in this patient, the development of Temple syndrome and MLID would primarily be explained by the ZNF445 variant. Furthermore, CG-A may be the target site for ZNF445 within the MEG3/DLK1:IG-DMR. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01106-5.
Collapse
Affiliation(s)
- Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
| | - Kaori Hara-Isono
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Satoshi Narumi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Yumiko Ohkubo
- Department of Pediatrics, Shizuoka Saiseikai Hospital, Oshika 1-1-1, Suruga-ku, Shizuoka, 422-8527, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan. .,Department of Pediatrics, Shizuoka Saiseikai Hospital, Oshika 1-1-1, Suruga-ku, Shizuoka, 422-8527, Japan. .,Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan. .,Department of Pediatrics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan. .,Department of Pediatrics, Hamamatsu Medical Center, Tomitsuka 328, Naka-ku, Hamamatsu, 432-8580, Japan.
| |
Collapse
|
59
|
Low levels of sulfur and cobalt during the pre- and periconceptional periods affect the oocyte yield of donors and the DNA methylome of preimplantation bovine embryos. J Dev Orig Health Dis 2021; 13:231-243. [PMID: 33941306 DOI: 10.1017/s2040174421000222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Maternal nutrition is critical in mammalian development, influencing the epigenetic reprogramming of gametes, embryos, and fetal programming. We evaluated the effects of different levels of sulfur (S) and cobalt (Co) in the maternal diet throughout the pre- and periconceptional periods on the biochemical and reproductive parameters of the donors and the DNA methylome of the progeny in Bos indicus cattle. The low-S/Co group differed from the control with respect to homocysteine, folic acid, B12, insulin growth factor 1, and glucose. The oocyte yield was lower in heifers from the low S/Co group than that in the control heifers. Embryos from the low-S/Co group exhibited 2320 differentially methylated regions (DMRs) across the genome compared with the control embryos. We also characterized candidate DMRs linked to the DNMT1 and DNMT3B genes in the blood and sperm cells of the adult progeny. A DMR located in DNMT1 that was identified in embryos remained differentially methylated in the sperm of the progeny from the low-S/Co group. Therefore, we associated changes in specific compounds in the maternal diet with DNA methylation modifications in the progeny. Our results help to elucidate the impact of maternal nutrition on epigenetic reprogramming in livestock, opening new avenues of research to study the effect of disturbed epigenetic patterns in early life on health and fertility in adulthood. Considering that cattle are physiologically similar to humans with respect to gestational length, our study may serve as a model for studies related to the developmental origin of health and disease in humans.
Collapse
|
60
|
Ye M, Yang ZY, Zhang Y, Xing YX, Xie QG, Zhou JH, Wang L, Xie W, Kee K, Chian RC. Single-cell multiomic analysis of in vivo and in vitro matured human oocytes. Hum Reprod 2021; 35:886-900. [PMID: 32325493 DOI: 10.1093/humrep/deaa044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/03/2020] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Are there any differences between in vivo (IVV) and in vitro (IVT) matured metaphase II (MII) oocytes at the molecular level? SUMMARY ANSWER Between IVV and IVT oocytes, 507 differentially expressed genes (DEGs) were identified; the non-CpG methylomes were significantly different, but the CpG methylomes and genomic copy number variations (CNVs) were similar. WHAT IS KNOWN ALREADY A previous study using microarray and single-cell RNA-seq analysis revealed that numerous genes were differentially expressed between IVV and IVT oocytes. Independent studies of DNA methylation profiling in human oocytes have revealed negative correlations between gene transcription and the DNA methylation level at gene promoter regions. No study has compared global CpG or non-CpG methylation between these two groups of oocytes. Although a high level of aneuploidy has been reported in MII oocytes, no direct comparison of IVV and IVT oocytes based on single-cell sequencing data has been performed. STUDY DESIGN, SIZE, DURATION We collected eight IVV oocytes from six patients and seven IVT oocytes from seven patients and then analysed each oocyte using the previously established single-cell triple omics sequencing (scTrioseq) analysis to determine associations among the transcriptome, DNA methylome and chromosome ploidy in the oocytes. PARTICIPANTS/MATERIALS, SETTING, METHODS All IVV oocytes were donated by patients who received 150 IU gonadotropin per day from the third day of their menstrual cycle, followed by GnRH antagonist after 5 days of gonadotropin stimulation. All IVT oocytes were from immature oocytes which were donated by volunteers undergoing delivery by caesarean section then cultured in oocyte maturation medium containing 75 mIU/ml hMG for 24 to 48 h. Every single oocyte was analysed using the previously established single-cell multiomic sequencing analysis. MAIN RESULTS AND THE ROLE OF CHANCE There were 507 genes differentially expressed between the IVV (n = 8) and IVT (n = 7) oocytes, even though their global transcriptome profiles were similar. The enriched genes in IVV oocytes were related to the cell cycle process while those in IVT oocytes were related to mitochondrial respiration biogenesis. Although the global CpG methylation of the two groups of oocytes was similar, the non-CpG methylation level in IVV oocytes was higher than that in IVT oocytes. A high aneuploidy ratio was found in both groups, but the aneuploidy did not affect transcription according to the correlation analysis. LARGE-SCALE DATA N/A. LIMITATIONS AND REASONS FOR CAUTION Due to the difficulty in collecting MII oocytes, especially IVV matured oocytes, the sample size was limited. WIDER IMPLICATIONS OF THE FINDINGS Our findings indicate that single-cell multiomic sequencing can be utilised to examine the similarity and differences between IVV and IVT matured MII oocytes. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Ministry of Science and Technology of China, National Key R&D Program of China (No. 2017YFC1001601). The donated oocytes were collected by Shanghai Tenth People's Hospital. The authors declare no competing interests.
Collapse
Affiliation(s)
- Min Ye
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, P. R. of China
| | - Zhi-Yong Yang
- Center for Reproductive Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. of China.,Tongji University School of Medicine, Shanghai, 200092, P. R. of China
| | - Yu Zhang
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, P. R. of China.,MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Ya-Xin Xing
- Center for Reproductive Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. of China
| | - Qi-Gui Xie
- Center for Reproductive Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. of China
| | - Jian-Hong Zhou
- Center for Reproductive Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. of China
| | - Ling Wang
- Center for Reproductive Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. of China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, P. R. of China.,MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing 100084, China
| | - KehKooi Kee
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, P. R. of China
| | - Ri-Cheng Chian
- Center for Reproductive Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. of China
| |
Collapse
|
61
|
Sen M, Mooijman D, Chialastri A, Boisset JC, Popovic M, Heindryckx B, Chuva de Sousa Lopes SM, Dey SS, van Oudenaarden A. Strand-specific single-cell methylomics reveals distinct modes of DNA demethylation dynamics during early mammalian development. Nat Commun 2021; 12:1286. [PMID: 33627650 PMCID: PMC7904860 DOI: 10.1038/s41467-021-21532-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/29/2021] [Indexed: 11/12/2022] Open
Abstract
DNA methylation (5mC) is central to cellular identity. The global erasure of 5mC from the parental genomes during preimplantation mammalian development is critical to reset the methylome of gametes to the cells in the blastocyst. While active and passive modes of demethylation have both been suggested to play a role in this process, the relative contribution of these two mechanisms to 5mC erasure remains unclear. Here, we report a single-cell method (scMspJI-seq) that enables strand-specific quantification of 5mC, allowing us to systematically probe the dynamics of global demethylation. When applied to mouse embryonic stem cells, we identified substantial cell-to-cell strand-specific 5mC heterogeneity, with a small group of cells displaying asymmetric levels of 5mCpG between the two DNA strands of a chromosome suggesting loss of maintenance methylation. Next, in preimplantation mouse embryos, we discovered that methylation maintenance is active till the 16-cell stage followed by passive demethylation in a fraction of cells within the early blastocyst at the 32-cell stage of development. Finally, human preimplantation embryos qualitatively show temporally delayed yet similar demethylation dynamics as mouse embryos. Collectively, these results demonstrate that scMspJI-seq is a sensitive and cost-effective method to map the strand-specific genome-wide patterns of 5mC in single cells.
Collapse
Affiliation(s)
- Maya Sen
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dylan Mooijman
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alex Chialastri
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Jean-Charles Boisset
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mina Popovic
- Ghent-Fertility and Stem cell Team (G-FaST), Department of Reproductive Medicine, Ghent University Hospital, 9000, Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem cell Team (G-FaST), Department of Reproductive Medicine, Ghent University Hospital, 9000, Ghent, Belgium
| | - Susana M Chuva de Sousa Lopes
- Ghent-Fertility and Stem cell Team (G-FaST), Department of Reproductive Medicine, Ghent University Hospital, 9000, Ghent, Belgium
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Siddharth S Dey
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - Alexander van Oudenaarden
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
62
|
Li D, Shu X, Zhu P, Pei D. Chromatin accessibility dynamics during cell fate reprogramming. EMBO Rep 2021; 22:e51644. [PMID: 33480184 PMCID: PMC7857421 DOI: 10.15252/embr.202051644] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/05/2020] [Accepted: 12/14/2020] [Indexed: 01/19/2023] Open
Abstract
Genome architecture and chromatin dynamics govern the fate and identify of a cell. Recent advances in mapping chromatin landscapes offer valuable tools for the acquisition of accurate information regarding chromatin dynamics. Here we discuss recent findings linking chromatin dynamics to cell fate control. Specifically, chromatin undergoes a binary off/on switch during iPSC reprogramming, closing and opening loci occupied by somatic and pluripotency transcription factors, respectively. This logic of a binary off/on switch may also be operational in cell fate control during normal development and implies that further approaches could potentially be developed to direct cell fate changes both in vitro and in vivo.
Collapse
Affiliation(s)
- Dongwei Li
- CAS Key Laboratory of Regenerative BiologySouth China Institutes for Stem Cell Biology and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangzhou Regenerative Medicine and Health GUANGDONG LaboratoryGuangzhou Institutes of Biomedicine and HealthChinese Academic of SciencesGuangzhouChina
| | - Xiaodong Shu
- CAS Key Laboratory of Regenerative BiologySouth China Institutes for Stem Cell Biology and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangzhou Regenerative Medicine and Health GUANGDONG LaboratoryGuangzhou Institutes of Biomedicine and HealthChinese Academic of SciencesGuangzhouChina
| | - Ping Zhu
- Guangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative BiologySouth China Institutes for Stem Cell Biology and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative MedicineSouth China Stem Cell and Regenerative MedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
- Guangzhou Regenerative Medicine and Health GUANGDONG LaboratoryGuangzhou Institutes of Biomedicine and HealthChinese Academic of SciencesGuangzhouChina
- Laboratory of Cell Fate ControlSchool of Life SciencesWestlake UniversityHangzhouChina
| |
Collapse
|
63
|
Greenberg MVC. Get Out and Stay Out: New Insights Into DNA Methylation Reprogramming in Mammals. Front Cell Dev Biol 2021; 8:629068. [PMID: 33490089 PMCID: PMC7817772 DOI: 10.3389/fcell.2020.629068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Vertebrate genomes are marked by notably high levels of 5-cytosine DNA methylation (5meC). The clearest function of DNA methylation among members of the subphylum is repression of potentially deleterious transposable elements (TEs). However, enrichment in the bodies of protein coding genes and pericentromeric heterochromatin indicate an important role for 5meC in those genomic compartments as well. Moreover, DNA methylation plays an important role in silencing of germline-specific genes. Impaired function of major components of DNA methylation machinery results in lethality in fish, amphibians and mammals. Despite such apparent importance, mammals exhibit a dramatic loss and regain of DNA methylation in early embryogenesis prior to implantation, and then again in the cells specified for the germline. In this minireview we will highlight recent studies that shine light on two major aspects of embryonic DNA methylation reprogramming: (1) The mechanism of DNA methylation loss after fertilization and (2) the protection of discrete loci from ectopic DNA methylation deposition during reestablishment. Finally, we will conclude with some extrapolations for the evolutionary underpinnings of such extraordinary events that seemingly put the genome under unnecessary risk during a particularly vulnerable window of development.
Collapse
Affiliation(s)
- Maxim V C Greenberg
- Centre National de la Recherche Scientifique, Institut Jacques Monod, Université de Paris, Paris, France
| |
Collapse
|
64
|
Abhishek S, Nakarakanti NK, Deeksha W, Rajakumara E. Mechanistic insights into recognition of symmetric methylated cytosines in CpG and non-CpG DNA by UHRF1 SRA. Int J Biol Macromol 2021; 170:514-522. [PMID: 33359809 DOI: 10.1016/j.ijbiomac.2020.12.149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/25/2022]
Abstract
Non-CpG DNA methylation (non-mCpG) is enriched in the genome of brain neurons and germline cells in mammals. Accumulation of non-mCpG during postnatal brain development correlates with gene regulation and inactivation of distal regulatory elements. Recently, UHRF1 has been found to contribute to de novo non-CpG methylation, however, whether UHRF1 could recognize non-mCpG is unknown. Here, we have demonstrated through calorimetric measurements that the UHRF1 SRA can recognize mCpH and fully-mCpHpG, types of non-mCpG. Our ITC binding studies endorse the preferential reading of hemi-mCpG by UHRF1 SRA and also show 6-fold weaker binding for fully-mCpG than hemi-mCpG. Despite presence of symmetrical (5-methyl cytosine) 5mCs, stoichiometry of 1:1 for UHRF1 SRA binding to fully-mCpG indicates that UHRF1 SRA may not form a stable complex with fully-mCpG DNA. Contrarily, UHRF1 SRA recognizes fully-mCpHpG with a stoichiometry of 2:1 protein to DNA duplex with binding affinity higher than fully-mCpG. Our crystal structure of UHRF1 SRA bound to fully-mCpHpG DNA reveals dual flip-out mechanism of 5mC recognition. Metadynamics studies corroborates with ITC data that UHRF1 SRA could not form a stable complex with fully-mCpG DNA. Altogether, this study demonstrates that UHRF1 SRA recognizes non-mCpG DNA and exhibits contrasting mechanisms for hemi-mCpG and fully-mCpHpG DNA recognition.
Collapse
Affiliation(s)
- Suman Abhishek
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Naveen Kumar Nakarakanti
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Waghela Deeksha
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Eerappa Rajakumara
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India.
| |
Collapse
|
65
|
Navas LE, Carnero A. NAD + metabolism, stemness, the immune response, and cancer. Signal Transduct Target Ther 2021; 6:2. [PMID: 33384409 PMCID: PMC7775471 DOI: 10.1038/s41392-020-00354-w] [Citation(s) in RCA: 267] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
NAD+ was discovered during yeast fermentation, and since its discovery, its important roles in redox metabolism, aging, and longevity, the immune system and DNA repair have been highlighted. A deregulation of the NAD+ levels has been associated with metabolic diseases and aging-related diseases, including neurodegeneration, defective immune responses, and cancer. NAD+ acts as a cofactor through its interplay with NADH, playing an essential role in many enzymatic reactions of energy metabolism, such as glycolysis, oxidative phosphorylation, fatty acid oxidation, and the TCA cycle. NAD+ also plays a role in deacetylation by sirtuins and ADP ribosylation during DNA damage/repair by PARP proteins. Finally, different NAD hydrolase proteins also consume NAD+ while converting it into ADP-ribose or its cyclic counterpart. Some of these proteins, such as CD38, seem to be extensively involved in the immune response. Since NAD cannot be taken directly from food, NAD metabolism is essential, and NAMPT is the key enzyme recovering NAD from nicotinamide and generating most of the NAD cellular pools. Because of the complex network of pathways in which NAD+ is essential, the important role of NAD+ and its key generating enzyme, NAMPT, in cancer is understandable. In the present work, we review the role of NAD+ and NAMPT in the ways that they may influence cancer metabolism, the immune system, stemness, aging, and cancer. Finally, we review some ongoing research on therapeutic approaches.
Collapse
Affiliation(s)
- Lola E Navas
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBER de Cancer, Sevilla, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain. .,CIBER de Cancer, Sevilla, Spain.
| |
Collapse
|
66
|
Svoboda LK, Neier K, Wang K, Cavalcante RG, Rygiel CA, Tsai Z, Jones TR, Liu S, Goodrich JM, Lalancette C, Colacino JA, Sartor MA, Dolinoy DC. Tissue and sex-specific programming of DNA methylation by perinatal lead exposure: implications for environmental epigenetics studies. Epigenetics 2020; 16:1102-1122. [PMID: 33164632 DOI: 10.1080/15592294.2020.1841872] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Early developmental environment can influence long-term health through reprogramming of the epigenome. Human environmental epigenetics studies rely on surrogate tissues, such as blood, to assess the effects of environment on disease-relevant but inaccessible target tissues. However, the extent to which environment-induced epigenetic changes are conserved between these tissues is unclear. A better understanding of this conservation is imperative for effective design and interpretation of human environmental epigenetics studies. The Toxicant Exposures and Responses by Genomic and Epigenomic Regulators of Transcription (TaRGET II) consortium was established by the National Institute of Environmental Health Sciences to address the utility of surrogate tissues as proxies for toxicant-induced epigenetic changes in target tissues. We and others have recently reported that perinatal exposure to lead (Pb) is associated with adverse metabolic outcomes. Here, we investigated the sex-specific effects of perinatal exposure to a human environmentally relevant level of Pb on DNA methylation in paired liver and blood samples from adult mice using enhanced reduced-representation bisulphite sequencing. Although Pb exposure ceased at 3 weeks of age, we observed thousands of sex-specific differentially methylated cytosines in the blood and liver of Pb-exposed animals at 5 months of age, including 44 genomically imprinted loci. We observed significant tissue overlap in the genes mapping to differentially methylated cytosines. A small but significant subset of Pb-altered genes exhibit basal sex differences in gene expression in the mouse liver. Collectively, these data identify potential molecular targets for Pb-induced metabolic diseases, and inform the design of more robust human environmental epigenomics studies.
Collapse
Affiliation(s)
- Laurie K Svoboda
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Kari Neier
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School Palmer Commons, Ann Arbor, MI, USA
| | | | - Christine A Rygiel
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Zing Tsai
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School Palmer Commons, Ann Arbor, MI, USA
| | - Tamara R Jones
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Siyu Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School Palmer Commons, Ann Arbor, MI, USA
| | - Jaclyn M Goodrich
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Claudia Lalancette
- Epigenomics Core, University of Michigan, Medical School, Ann Arbor, MI, USA
| | - Justin A Colacino
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.,Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Maureen A Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School Palmer Commons, Ann Arbor, MI, USA.,Department of Biostatistics, University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.,Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| |
Collapse
|
67
|
Murase Y, Yabuta Y, Ohta H, Yamashiro C, Nakamura T, Yamamoto T, Saitou M. Long-term expansion with germline potential of human primordial germ cell-like cells in vitro. EMBO J 2020; 39:e104929. [PMID: 32954504 DOI: 10.15252/embj.2020104929] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/22/2022] Open
Abstract
Human germ cells perpetuate human genetic and epigenetic information. However, the underlying mechanism remains elusive, due to a lack of appropriate experimental systems. Here, we show that human primordial germ cell-like cells (hPGCLCs) derived from human-induced pluripotent stem cells (hiPSCs) can be propagated to at least ~106 -fold over a period of 4 months under a defined condition in vitro. During expansion, hPGCLCs maintain an early hPGC-like transcriptome and preserve their genome-wide DNA methylation profiles, most likely due to retention of maintenance DNA methyltransferase activity. These characteristics contrast starkly with those of mouse PGCLCs, which, under an analogous condition, show a limited propagation (up to ~50-fold) and persist only around 1 week, yet undergo cell-autonomous genome-wide DNA demethylation. Importantly, upon aggregation culture with mouse embryonic ovarian somatic cells in xenogeneic-reconstituted ovaries, expanded hPGCLCs initiate genome-wide DNA demethylation and differentiate into oogonia/gonocyte-like cells, demonstrating their germline potential. By creating a paradigm for hPGCLC expansion, our study uncovers critical divergences in expansion potential and the mechanism for epigenetic reprogramming between the human and mouse germ cell lineage.
Collapse
Affiliation(s)
- Yusuke Murase
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukihiro Yabuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Ohta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chika Yamashiro
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomonori Nakamura
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuya Yamamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,AMED-CREST, AMED, Tokyo, Japan.,Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
68
|
Klobučar T, Kreibich E, Krueger F, Arez M, Pólvora-Brandão D, von Meyenn F, da Rocha ST, Eckersley-Maslin M. IMPLICON: an ultra-deep sequencing method to uncover DNA methylation at imprinted regions. Nucleic Acids Res 2020; 48:e92. [PMID: 32621604 PMCID: PMC7498334 DOI: 10.1093/nar/gkaa567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/16/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022] Open
Abstract
Genomic imprinting is an epigenetic phenomenon leading to parental allele-specific expression. Dosage of imprinted genes is crucial for normal development and its dysregulation accounts for several human disorders. This unusual expression pattern is mostly dictated by differences in DNA methylation between parental alleles at specific regulatory elements known as imprinting control regions (ICRs). Although several approaches can be used for methylation inspection, we lack an easy and cost-effective method to simultaneously measure DNA methylation at multiple imprinted regions. Here, we present IMPLICON, a high-throughput method measuring DNA methylation levels at imprinted regions with base-pair resolution and over 1000-fold coverage. We adapted amplicon bisulfite-sequencing protocols to design IMPLICON for ICRs in adult tissues of inbred mice, validating it in hybrid mice from reciprocal crosses for which we could discriminate methylation profiles in the two parental alleles. Lastly, we developed a human version of IMPLICON and detected imprinting errors in embryonic and induced pluripotent stem cells. We also provide rules and guidelines to adapt this method for investigating the DNA methylation landscape of any set of genomic regions. In summary, IMPLICON is a rapid, cost-effective and scalable method, which could become the gold standard in both imprinting research and diagnostics.
Collapse
Affiliation(s)
- Tajda Klobučar
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Elisa Kreibich
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Felix Krueger
- Bioinformatics Group, Babraham Institute, Cambridge CB22 3AT, UK
| | - Maria Arez
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Duarte Pólvora-Brandão
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | | - Simão Teixeira da Rocha
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | |
Collapse
|
69
|
Shibata S, Kobayashi EH, Kobayashi N, Oike A, Okae H, Arima T. Unique features and emerging in vitro models of human placental development. Reprod Med Biol 2020; 19:301-313. [PMID: 33071632 PMCID: PMC7542016 DOI: 10.1002/rmb2.12347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Background The placenta is an essential organ for the normal development of mammalian fetuses. Most of our knowledge on the molecular mechanisms of placental development has come from the analyses of mice, especially histopathological examination of knockout mice. Choriocarcinoma and immortalized cell lines have also been used for basic research on the human placenta. However, these cells are quite different from normal trophoblast cells. Methods In this review, we first provide an overview of mouse and human placental development with particular focus on the differences in the anatomy, transcription factor networks, and epigenetic characteristics between these species. Next, we discuss pregnancy complications associated with abnormal placentation. Finally, we introduce emerging in vitro models to study the human placenta, including human trophoblast stem (TS) cells, trophoblast and endometrium organoids, and artificial embryos. Main findings The placental structure and development differ greatly between humans and mice. The recent establishment of human TS cells and trophoblast and endometrial organoids enhances our understanding of the mechanisms underlying human placental development. Conclusion These in vitro models will greatly advance our understanding of human placental development and potentially contribute to the elucidation of the causes of infertility and other pregnancy complications.
Collapse
Affiliation(s)
- Shun Shibata
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Eri H Kobayashi
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Norio Kobayashi
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Akira Oike
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Hiroaki Okae
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Takahiro Arima
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| |
Collapse
|
70
|
Dissecting the epigenomic dynamics of human fetal germ cell development at single-cell resolution. Cell Res 2020; 31:463-477. [PMID: 32884136 PMCID: PMC8115345 DOI: 10.1038/s41422-020-00401-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/09/2020] [Indexed: 12/14/2022] Open
Abstract
Proper development of fetal germ cells (FGCs) is vital for the precise transmission of genetic and epigenetic information through generations. The transcriptional landscapes of human FGC development have been revealed; however, the epigenetic reprogramming process of FGCs remains elusive. Here, we profiled the genome-wide DNA methylation and chromatin accessibility of human FGCs at different phases as well as gonadal niche cells at single-cell resolution. First, we found that DNA methylation levels of FGCs changed in a temporal manner, whereas FGCs at different phases in the same embryo exhibited comparable DNA methylation levels and patterns. Second, we revealed the phase-specific chromatin accessibility signatures at the promoter regions of a large set of critical transcription factors and signaling pathway genes. We also identified potential distal regulatory elements including enhancers in FGCs. Third, compared with other hominid-specific retrotransposons, SVA_D might have a broad spectrum of binding capacity for transcription factors, including SOX15 and SOX17. Finally, using an in vitro culture system of human FGCs, we showed that the BMP signaling pathway promoted the cell proliferation of FGCs, and regulated the WNT signaling pathway by orchestrating the chromatin accessibility of its ligand genes. Our single-cell epigenomic atlas and functional assays provide valuable insights for understanding the strongly heterogeneous, unsynchronized, yet highly robust nature of human germ cell development.
Collapse
|
71
|
Abstract
Mammalian fertilization begins with the fusion of two specialized gametes, followed by major epigenetic remodeling leading to the formation of a totipotent embryo. During the development of the pre-implantation embryo, precise reprogramming progress is a prerequisite for avoiding developmental defects or embryonic lethality, but the underlying molecular mechanisms remain elusive. For the past few years, unprecedented breakthroughs have been made in mapping the regulatory network of dynamic epigenomes during mammalian early embryo development, taking advantage of multiple advances and innovations in low-input genome-wide chromatin analysis technologies. The aim of this review is to highlight the most recent progress in understanding the mechanisms of epigenetic remodeling during early embryogenesis in mammals, including DNA methylation, histone modifications, chromatin accessibility and 3D chromatin organization.
Collapse
|
72
|
Cinkornpumin JK, Kwon SY, Guo Y, Hossain I, Sirois J, Russett CS, Tseng HW, Okae H, Arima T, Duchaine TF, Liu W, Pastor WA. Naive Human Embryonic Stem Cells Can Give Rise to Cells with a Trophoblast-like Transcriptome and Methylome. Stem Cell Reports 2020; 15:198-213. [PMID: 32619492 PMCID: PMC7363941 DOI: 10.1016/j.stemcr.2020.06.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 01/01/2023] Open
Abstract
Human embryonic stem cells (hESCs) readily differentiate to somatic or germ lineages but have impaired ability to form extra-embryonic lineages such as placenta or yolk sac. Here, we demonstrate that naive hESCs can be converted into cells that exhibit the cellular and molecular phenotypes of human trophoblast stem cells (hTSCs) derived from human placenta or blastocyst. The resulting "transdifferentiated" hTSCs show reactivation of core placental genes, acquisition of a placenta-like methylome, and the ability to differentiate to extravillous trophoblasts and syncytiotrophoblasts. Modest differences are observed between transdifferentiated and placental hTSCs, most notably in the expression of certain imprinted loci. These results suggest that naive hESCs can differentiate to extra-embryonic lineage and demonstrate a new way of modeling human trophoblast specification and placental methylome establishment.
Collapse
Affiliation(s)
| | - Sin Young Kwon
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Yixin Guo
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Road, Haining 314400, China
| | - Ishtiaque Hossain
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Jacinthe Sirois
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Colleen S Russett
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Hsin-Wei Tseng
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Hiroaki Okae
- Department of Informative Genetics, Environment and Genome Research Centre, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Centre, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Thomas F Duchaine
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Wanlu Liu
- Department of Orthopedic of the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China; Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Road, Haining 314400, China
| | - William A Pastor
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; The Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
73
|
Gao Y, Li L, Yuan P, Zhai F, Ren Y, Yan L, Li R, Lian Y, Zhu X, Wu X, Kee K, Wen L, Qiao J, Tang F. 5-Formylcytosine landscapes of human preimplantation embryos at single-cell resolution. PLoS Biol 2020; 18:e3000799. [PMID: 32730243 PMCID: PMC7419013 DOI: 10.1371/journal.pbio.3000799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 08/11/2020] [Accepted: 07/13/2020] [Indexed: 12/21/2022] Open
Abstract
Epigenetic dynamics, such as DNA methylation and chromatin accessibility, have been extensively explored in human preimplantation embryos. However, the active demethylation process during this crucial period remains largely unexplored. In this study, we use single-cell chemical-labeling-enabled C-to-T conversion sequencing (CLEVER-seq) to quantify the DNA 5-formylcytosine (5fC) levels of human preimplantation embryos. We find that 5-formylcytosine phosphate guanine (5fCpG) exhibits genomic element-specific distribution features and is enriched in L1 and endogenous retrovirus-K (ERVK), the subfamilies of repeat elements long interspersed nuclear elements (LINEs) and long terminal repeats (LTRs), respectively. Unlike in mice, paired pronuclei in the same zygote present variable difference of 5fCpG levels, although the male pronuclei experience stronger global demethylation. The nucleosome-occupied regions show a higher 5fCpG level compared with nucleosome-depleted ones, suggesting the role of 5fC in organizing nucleosome position. Collectively, our work offers a valuable resource for ten-eleven translocation protein family (TET)-dependent active demethylation-related study during human early embryonic development.
Collapse
Affiliation(s)
- Yun Gao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
- Biomedical Pioneering Innovaiton Center, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing, China
| | - Lin Li
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Peng Yuan
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Fan Zhai
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Yixin Ren
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Liying Yan
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Rong Li
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Ying Lian
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Xiaohui Zhu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Xinglong Wu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
- Biomedical Pioneering Innovaiton Center, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Kehkooi Kee
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Lu Wen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
- Biomedical Pioneering Innovaiton Center, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing, China
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
- Biomedical Pioneering Innovaiton Center, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
74
|
Yamazawa K, Inoue T, Sakemi Y, Nakashima T, Yamashita H, Khono K, Fujita H, Enomoto K, Nakabayashi K, Hata K, Nakashima M, Matsunaga T, Nakamura A, Matsubara K, Ogata T, Kagami M. Loss of imprinting of the human-specific imprinted gene ZNF597 causes prenatal growth retardation and dysmorphic features: implications for phenotypic overlap with Silver-Russell syndrome. J Med Genet 2020; 58:427-432. [PMID: 32576657 PMCID: PMC8142457 DOI: 10.1136/jmedgenet-2020-107019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND ZNF597, encoding a zinc-finger protein, is the human-specific maternally expressed imprinted gene located on 16p13.3. The parent-of-origin expression of ZNF597 is regulated by the ZNF597:TSS-DMR, of which only the paternal allele acquires methylation during postimplantation period. Overexpression of ZNF597 may contribute to some of the phenotypes associated with maternal uniparental disomy of chromosome 16 (UPD(16)mat), and some patients with UPD(16)mat presenting with Silver-Russell syndrome (SRS) phenotype have recently been reported. METHODS A 6-year-old boy presented with prenatal growth restriction, macrocephaly at birth, forehead protrusion in infancy and clinodactyly of the fifth finger. Methylation, expression, microsatellite marker, single nucleotide polymorphism array and trio whole-exome sequencing analyses were conducted. RESULTS Isolated hypomethylation of the ZNF597:TSS-DMR and subsequent loss of imprinting and overexpression of ZNF597 were confirmed in the patient. Epigenetic alterations, such as UPD including UPD(16)mat and other methylation defects, were excluded. Pathogenic sequence or copy number variants affecting his phenotypes were not identified, indicating that primary epimutation occurred postzygotically. CONCLUSION We report the first case of isolated ZNF597 imprinting defect, showing phenotypic overlap with SRS despite not satisfying the clinical SRS criteria. A novel imprinting disorder entity involving the ZNF597 imprinted domain can be speculated.
Collapse
Affiliation(s)
- Kazuki Yamazawa
- Medical Genetics Center, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Takanobu Inoue
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, University of Tokyo, Tokyo, Japan
| | - Yoshihiro Sakemi
- Department of Pediatrics, National Hospital Organization Kokura Medical Center, Kitakyushu, Japan
| | - Toshinori Nakashima
- Department of Pediatrics, National Hospital Organization Kokura Medical Center, Kitakyushu, Japan
| | - Hironori Yamashita
- Department of Pediatrics, National Hospital Organization Kokura Medical Center, Kitakyushu, Japan
| | | | | | | | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Moeko Nakashima
- Medical Genetics Center, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Tatsuo Matsunaga
- Medical Genetics Center, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Akie Nakamura
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
75
|
Bogolyubova I, Bogolyubov D. Heterochromatin Morphodynamics in Late Oogenesis and Early Embryogenesis of Mammals. Cells 2020; 9:cells9061497. [PMID: 32575486 PMCID: PMC7348780 DOI: 10.3390/cells9061497] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
During the period of oocyte growth, chromatin undergoes global rearrangements at both morphological and molecular levels. An intriguing feature of oogenesis in some mammalian species is the formation of a heterochromatin ring-shaped structure, called the karyosphere or surrounded "nucleolus", which is associated with the periphery of the nucleolus-like bodies (NLBs). Morphologically similar heterochromatin structures also form around the nucleolus-precursor bodies (NPBs) in zygotes and persist for several first cleavage divisions in blastomeres. Despite recent progress in our understanding the regulation of gene silencing/expression during early mammalian development, as well as the molecular mechanisms that underlie chromatin condensation and heterochromatin structure, the biological significance of the karyosphere and its counterparts in early embryos is still elusive. We pay attention to both the changes of heterochromatin morphology and to the molecular mechanisms that can affect the configuration and functional activity of chromatin. We briefly discuss how DNA methylation, post-translational histone modifications, alternative histone variants, and some chromatin-associated non-histone proteins may be involved in the formation of peculiar heterochromatin structures intimately associated with NLBs and NPBs, the unique nuclear bodies of oocytes and early embryos.
Collapse
|
76
|
The role and mechanisms of DNA methylation in the oocyte. Essays Biochem 2020; 63:691-705. [PMID: 31782490 PMCID: PMC6923320 DOI: 10.1042/ebc20190043] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/27/2022]
Abstract
Epigenetic information in the mammalian oocyte has the potential to be transmitted to the next generation and influence gene expression; this occurs naturally in the case of imprinted genes. Therefore, it is important to understand how epigenetic information is patterned during oocyte development and growth. Here, we review the current state of knowledge of de novo DNA methylation mechanisms in the oocyte: how a distinctive gene-body methylation pattern is created, and the extent to which the DNA methylation machinery reads chromatin states. Recent epigenomic studies building on advances in ultra-low input chromatin profiling methods, coupled with genetic studies, have started to allow a detailed interrogation of the interplay between DNA methylation establishment and chromatin states; however, a full mechanistic description awaits.
Collapse
|
77
|
Argyraki M, Damdimopoulou P, Chatzimeletiou K, Grimbizis GF, Tarlatzis BC, Syrrou M, Lambropoulos A. In-utero stress and mode of conception: impact on regulation of imprinted genes, fetal development and future health. Hum Reprod Update 2020; 25:777-801. [PMID: 31633761 DOI: 10.1093/humupd/dmz025] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/04/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Genomic imprinting is an epigenetic gene regulatory mechanism; disruption of this process during early embryonic development can have major consequences on both fetal and placental development. The periconceptional period and intrauterine life are crucial for determining long-term susceptibility to diseases. Treatments and procedures in assisted reproductive technologies (ART) and adverse in-utero environments may modify the methylation levels of genomic imprinting regions, including insulin-like growth factor 2 (IGF2)/H19, mesoderm-specific transcript (MEST), and paternally expressed gene 10 (PEG10), affecting the development of the fetus. ART, maternal psychological stress, and gestational exposures to chemicals are common stressors suspected to alter global epigenetic patterns including imprinted genes. OBJECTIVE AND RATIONALE Our objective is to highlight the effect of conception mode and maternal psychological stress on fetal development. Specifically, we monitor fetal programming, regulation of imprinted genes, fetal growth, and long-term disease risk, using the imprinted genes IGF2/H19, MEST, and PEG10 as examples. The possible role of environmental chemicals in genomic imprinting is also discussed. SEARCH METHODS A PubMed search of articles published mostly from 2005 to 2019 was conducted using search terms IGF2/H19, MEST, PEG10, imprinted genes, DNA methylation, gene expression, and imprinting disorders (IDs). Studies focusing on maternal prenatal stress, psychological well-being, environmental chemicals, ART, and placental/fetal development were evaluated and included in this review. OUTCOMES IGF2/H19, MEST, and PEG10 imprinted genes have a broad developmental effect on fetal growth and birth weight variation. Their disruption is linked to pregnancy complications, metabolic disorders, cognitive impairment, and cancer. Adverse early environment has a major impact on the developing fetus, affecting mostly growth, the structure, and subsequent function of the hypothalamic-pituitary-adrenal axis and neurodevelopment. Extensive evidence suggests that the gestational environment has an impact on epigenetic patterns including imprinting, which can lead to adverse long-term outcomes in the offspring. Environmental stressors such as maternal prenatal psychological stress have been found to associate with altered DNA methylation patterns in placenta and to affect fetal development. Studies conducted during the past decades have suggested that ART pregnancies are at a higher risk for a number of complications such as birth defects and IDs. ART procedures involve multiple steps that are conducted during critical windows for imprinting establishment and maintenance, necessitating long-term evaluation of children conceived through ART. Exposure to environmental chemicals can affect placental imprinting and fetal growth both in humans and in experimental animals. Therefore, their role in imprinting should be better elucidated, considering the ubiquitous exposure to these chemicals. WIDER IMPLICATIONS Dysregulation of imprinted genes is a plausible mechanism linking stressors such as maternal psychological stress, conception using ART, and chemical exposures with fetal growth. It is expected that a greater understanding of the role of imprinted genes and their regulation in fetal development will provide insights for clinical prevention and management of growth and IDs. In a broader context, evidence connecting impaired imprinted gene function to common diseases such as cancer is increasing. This implies early regulation of imprinting may enable control of long-term human health, reducing the burden of disease in the population in years to come.
Collapse
Affiliation(s)
- Maria Argyraki
- First Department of Obstetrics and Gynecology, Laboratory of Genetics, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Pauliina Damdimopoulou
- Karolinska Institutet, Department of Clinical Sciences, Intervention and Technology, Unit of Obstetrics and Gynecology, K57 Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | - Katerina Chatzimeletiou
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Grigoris F Grimbizis
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Basil C Tarlatzis
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Maria Syrrou
- Department of Biology, Laboratory of Biology, School of Health Sciences, University of Ioannina, Dourouti University Campus, 45110, Ioannina, Greece
| | - Alexandros Lambropoulos
- First Department of Obstetrics and Gynecology, Laboratory of Genetics, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| |
Collapse
|
78
|
Fend-Guella DL, von Kopylow K, Spiess AN, Schulze W, Salzbrunn A, Diederich S, El Hajj N, Haaf T, Zechner U, Linke M. The DNA methylation profile of human spermatogonia at single-cell- and single-allele-resolution refutes its role in spermatogonial stem cell function and germ cell differentiation. Mol Hum Reprod 2020; 25:283-294. [PMID: 30892608 DOI: 10.1093/molehr/gaz017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/06/2019] [Accepted: 03/15/2019] [Indexed: 12/20/2022] Open
Abstract
Human spermatogonial stem cells (hSSCs) have potential in fertility preservation of prepubertal boys or in treatment of male adults suffering from meiotic arrest. Prior to therapeutic application, in vitro propagation of rare hSSCs is mandatory. As the published data points to epigenetic alterations in long-term cell culture of spermatogonia (SPG), an initial characterisation of their DNA methylation state is important. Testicular biopsies from five adult normogonadotropic patients were converted into aggregate-free cell suspensions. FGFR3-positive (FGFR3+) SPG, resembling a very early stem cell state, were labelled with magnetic beads and isolated in addition to unlabelled SPG (FGFR3-). DNA methylation was assessed by limiting dilution bisulfite pyrosequencing for paternally imprinted (H19 and MEG3), maternally imprinted (KCNQ1OT1, PEG3, and SNRPN), pluripotency (POU5F1/OCT4 and NANOG), and spermatogonial/hSSC marker (FGFR3, GFRA1, PLZF, and L1TD1) genes on either single cells or pools of 10 cells. Both spermatogonial subpopulations exhibited a methylation pattern largely equivalent to sperm, with hypomethylation of hSSC marker and maternally imprinted genes and hypermethylation of pluripotency and paternally imprinted genes. Interestingly, we detected fine differences between the two spermatogonial subpopulations, which were reflected by an inverse methylation pattern of imprinted genes, i.e. decreasing methylation in hypomethylated genes and increasing methylation in hypermethylated genes, from FGFR3+ through FGFR3- SPG to sperm. Limitations of this study are due to it not being performed on a genome-wide level and being based on previously published regulatory gene regions. However, the concordance of DNA methylation between SPG and sperm implies that hSSC regulation and germ cell differentiation do not occur at the DNA methylation level.
Collapse
Affiliation(s)
- Desiree Lucia Fend-Guella
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kathrein von Kopylow
- Department of Andrology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | - Wolfgang Schulze
- Medizinisches Versorgungszentrum Fertility Center Hamburg GmbH, Amedes Group, Hamburg, Germany
| | - Andrea Salzbrunn
- Department of Andrology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Diederich
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nady El Hajj
- Institute of Human Genetics, Biocenter, Julius Maximilians University, Würzburg, Germany.,College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Thomas Haaf
- Institute of Human Genetics, Biocenter, Julius Maximilians University, Würzburg, Germany
| | - Ulrich Zechner
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Senckenberg Center of Human Genetics, Facharztzentrum Frankfurt-Nordend gGmbH, Frankfurt, Germany
| | - Matthias Linke
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
79
|
Ivanova E, Canovas S, Garcia-Martínez S, Romar R, Lopes JS, Rizos D, Sanchez-Calabuig MJ, Krueger F, Andrews S, Perez-Sanz F, Kelsey G, Coy P. DNA methylation changes during preimplantation development reveal inter-species differences and reprogramming events at imprinted genes. Clin Epigenetics 2020; 12:64. [PMID: 32393379 PMCID: PMC7216732 DOI: 10.1186/s13148-020-00857-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/23/2020] [Indexed: 02/08/2023] Open
Abstract
Preimplantation embryos experience profound resetting of epigenetic information inherited from the gametes. Genome-wide analysis at single-base resolution has shown similarities but also species differences between human and mouse preimplantation embryos in DNA methylation patterns and reprogramming. Here, we have extended such analysis to two key livestock species, the pig and the cow. We generated genome-wide DNA methylation and whole-transcriptome datasets from gametes to blastocysts in both species. In oocytes from both species, a distinctive bimodal methylation landscape is present, with hypermethylated domains prevalent over hypomethylated domains, similar to human, while in the mouse the proportions are reversed.An oocyte-like pattern of methylation persists in the cleavage stages, albeit with some reduction in methylation level, persisting to blastocysts in cow, while pig blastocysts have a highly hypomethylated landscape. In the pig, there was evidence of transient de novo methylation at the 8-16 cell stages of domains unmethylated in oocytes, revealing a complex dynamic of methylation reprogramming. The methylation datasets were used to identify germline differentially methylated regions (gDMRs) of known imprinted genes and for the basis of detection of novel imprinted loci. Strikingly in the pig, we detected a consistent reduction in gDMR methylation at the 8-16 cell stages, followed by recovery to the blastocyst stage, suggesting an active period of imprint stabilization in preimplantation embryos. Transcriptome analysis revealed absence of expression in oocytes of both species of ZFP57, a key factor in the mouse for gDMR methylation maintenance, but presence of the alternative imprint regulator ZNF445. In conclusion, our study reveals species differences in DNA methylation reprogramming and suggests that porcine or bovine models may be closer to human in key aspects than in the mouse model.
Collapse
Affiliation(s)
- Elena Ivanova
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Sebastian Canovas
- Physiology of Reproduction Group, Departamento de Fisiología, Universidad de Murcia, Campus Mare Nostrum, 30100, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria, IMIB-Arrixaca-UMU, 30120, Murcia, Spain
| | - Soledad Garcia-Martínez
- Physiology of Reproduction Group, Departamento de Fisiología, Universidad de Murcia, Campus Mare Nostrum, 30100, Murcia, Spain
| | - Raquel Romar
- Physiology of Reproduction Group, Departamento de Fisiología, Universidad de Murcia, Campus Mare Nostrum, 30100, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria, IMIB-Arrixaca-UMU, 30120, Murcia, Spain
| | - Jordana S Lopes
- Physiology of Reproduction Group, Departamento de Fisiología, Universidad de Murcia, Campus Mare Nostrum, 30100, Murcia, Spain
| | | | | | - Felix Krueger
- Bioinformatics Group, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Simon Andrews
- Bioinformatics Group, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Fernando Perez-Sanz
- Instituto Murciano de Investigación Biosanitaria, IMIB-Arrixaca-UMU, 30120, Murcia, Spain
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
| | - Pilar Coy
- Physiology of Reproduction Group, Departamento de Fisiología, Universidad de Murcia, Campus Mare Nostrum, 30100, Murcia, Spain.
- Instituto Murciano de Investigación Biosanitaria, IMIB-Arrixaca-UMU, 30120, Murcia, Spain.
| |
Collapse
|
80
|
Gell JJ, Liu W, Sosa E, Chialastri A, Hancock G, Tao Y, Wamaitha SE, Bower G, Dey SS, Clark AT. An Extended Culture System that Supports Human Primordial Germ Cell-like Cell Survival and Initiation of DNA Methylation Erasure. Stem Cell Reports 2020; 14:433-446. [PMID: 32059791 PMCID: PMC7066331 DOI: 10.1016/j.stemcr.2020.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 01/30/2023] Open
Abstract
The development of an in vitro system in which human primordial germ cell-like cells (hPGCLCs) are generated from human pluripotent stem cells (hPSCs) has been invaluable to further our understanding of human primordial germ cell (hPGC) specification. However, the means to evaluate the next fundamental steps in germ cell development have not been well established. In this study we describe a two dimensional extended culture system that promotes proliferation of specified hPGCLCs, without reversion to a pluripotent state. We demonstrate that hPGCLCs in extended culture undergo partial epigenetic reprogramming, mirroring events described in hPGCs in vivo, including a genome-wide reduction in DNA methylation and maintenance of depleted H3K9me2. This extended culture system provides a new approach for expanding the number of hPGCLCs for downstream technologies, including transplantation, molecular screening, or possibly the differentiation of hPGCLCs into gametes by in vitro gametogenesis.
Collapse
Affiliation(s)
- Joanna J Gell
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA; David Geffen School of Medicine, Department of Pediatrics, Division of Hematology-Oncology, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Wanlu Liu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou 310058, P. R. China
| | - Enrique Sosa
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alex Chialastri
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA; Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Grace Hancock
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yu Tao
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sissy E Wamaitha
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Grace Bower
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Siddharth S Dey
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA; Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA; Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Amander T Clark
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
81
|
Vukic M, Wu H, Daxinger L. Making headway towards understanding how epigenetic mechanisms contribute to early-life effects. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180126. [PMID: 30966890 DOI: 10.1098/rstb.2018.0126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It has become clear that in addition to the DNA sequence there is another layer of information, termed epigenetic modifications, that can influence phenotypes and traits. In particular, environmental epigenomics, which addresses the effect of the environment on the epigenome and human health, is becoming an area of great interest for many researchers working in different scientific fields. In this review, we will consider the current evidence that early-life environmental signals can have long-term effects on the epigenome. We will further evaluate how recent technological advances may enable us to unravel the molecular mechanisms underlying these phenomena, which will be crucial for understanding heritability in health and disease. This article is part of the theme issue 'Developing differences: early-life effects and evolutionary medicine'.
Collapse
Affiliation(s)
- Maja Vukic
- Department of Human Genetics, Leiden University Medical Centre , Einthovenweg 20, 2333 ZC Leiden , The Netherlands
| | - Haoyu Wu
- Department of Human Genetics, Leiden University Medical Centre , Einthovenweg 20, 2333 ZC Leiden , The Netherlands
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Centre , Einthovenweg 20, 2333 ZC Leiden , The Netherlands
| |
Collapse
|
82
|
Kiefer H, Perrier JP. DNA methylation in bull spermatozoa: evolutionary impacts, interindividual variability, and contribution to the embryo. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The DNA methylome of spermatozoa results from a unique epigenetic reprogramming crucial for chromatin compaction and the protection of the paternal genetic heritage. Although bull semen is widely used for artificial insemination (AI), little is known about the sperm epigenome in cattle. The purpose of this review is to synthetize recent work on the bull sperm methylome in light of the knowledge accumulated in humans and model species. We will address sperm-specific DNA methylation features and their potential evolutionary impacts, with particular emphasis on hypomethylated regions and repetitive elements. We will review recent examples of interindividual variability and intra-individual plasticity of the bull sperm methylome as related to fertility and age, respectively. Finally, we will address paternal methylome reprogramming after fertilization, as well as the mechanisms potentially involved in epigenetic inheritance, and provide some examples of disturbances that alter the dynamics of reprogramming in cattle. Because the selection of AI bulls is closely based on their genotypes, we will also discuss the complex interplay between sequence polymorphism and DNA methylation, which represents both a difficulty in addressing the role of DNA methylation in shaping phenotypes and an opportunity to better understand genome plasticity.
Collapse
Affiliation(s)
- Hélène Kiefer
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en-Josas, France
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en-Josas, France
| | - Jean-Philippe Perrier
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en-Josas, France
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en-Josas, France
| |
Collapse
|
83
|
Abstract
The mammalian genome experiences profound setting and resetting of epigenetic patterns during the life-course. This is understood best for DNA methylation: the specification of germ cells, gametogenesis, and early embryo development are characterised by phases of widespread erasure and rewriting of methylation. While mitigating against intergenerational transmission of epigenetic information, these processes must also ensure correct genomic imprinting that depends on faithful and long-term memory of gamete-derived methylation states in the next generation. This underscores the importance of understanding the mechanisms of methylation programming in the germline.
De novo methylation in the oocyte is of particular interest because of its intimate association with transcription, which results in a bimodal methylome unique amongst mammalian cells. Moreover, this methylation landscape is entirely set up in a non-dividing cell, making the oocyte a fascinating model system in which to explore mechanistic determinants of methylation. Here, we summarise current knowledge on the oocyte DNA methylome and how it is established, focussing on recent insights from knockout models in the mouse that explore the interplay between methylation and chromatin states. We also highlight some remaining paradoxes and enigmas, in particular the involvement of non-nuclear factors for correct
de novo methylation.
Collapse
Affiliation(s)
- Hannah Demond
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
84
|
Kühnel T, Heinz HSB, Utz N, Božić T, Horsthemke B, Steenpass L. A human somatic cell culture system for modelling gene silencing by transcriptional interference. Heliyon 2020; 6:e03261. [PMID: 32021933 PMCID: PMC6994850 DOI: 10.1016/j.heliyon.2020.e03261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 11/30/2022] Open
Abstract
Transcriptional interference and transcription through regulatory elements (transcriptional read-through) are implicated in gene silencing and the establishment of DNA methylation. Transcriptional read-through is needed to seed DNA methylation at imprinted genes in the germ line and can lead to aberrant gene silencing by DNA methylation in human disease. To enable the study of parameters and factors influencing transcriptional interference and transcriptional read-through at human promoters, we established a somatic cell culture system. At two promoters of imprinted genes (UBE3A and SNRPN) and two promoters shown to be silenced by aberrant transcriptional read-through in human disease (MSH2 and HBA2) we tested, if transcriptional read-through is sufficient for gene repression and the acquisition of DNA methylation. Induction of transcriptional read-through from the doxycycline-inducible CMV promoter resulted in consistent repression of all downstream promoters, independent of promoter type and orientation. Repression was dependent on ongoing transcription, since withdrawal of induction resulted in reactivation. DNA methylation was not acquired at any of the promoters. Overexpression of DNMT3A and DNMT3L, factors needed for DNA methylation establishment in oocytes, was still not sufficient for the induction of DNA methylation. This indicates that induction of DNA methylation has more complex requirements than transcriptional read-through and the presence of de novo DNA methyltransferases.
Collapse
Affiliation(s)
- Theresa Kühnel
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
| | - Helena Sophie Barbara Heinz
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
| | - Nadja Utz
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
- Present address: Institute of Neuropathology, Justus Liebig University Giessen, Aulweg 128, 35392 Giessen, Germany
| | - Tanja Božić
- Helmholtz Institute for Biomedical Engineering, Division of Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstr. 20, 52074 Aachen, Germany
| | - Bernhard Horsthemke
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
| | - Laura Steenpass
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Hufelandstr 55, 45147 Essen, Germany
- Corresponding author.
| |
Collapse
|
85
|
Lees JG, Gardner DK, Harvey AJ. Nicotinamide adenine dinucleotide induces a bivalent metabolism and maintains pluripotency in human embryonic stem cells. Stem Cells 2020; 38:624-638. [PMID: 32003519 DOI: 10.1002/stem.3152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+ ) and its precursor metabolites are emerging as important regulators of both cell metabolism and cell state. Interestingly, the role of NAD+ in human embryonic stem cell (hESC) metabolism and the regulation of pluripotent cell state is unresolved. Here we show that NAD+ simultaneously increases hESC mitochondrial oxidative metabolism and partially suppresses glycolysis and stimulates amino acid turnover, doubling the consumption of glutamine. Concurrent with this metabolic remodeling, NAD+ increases hESC pluripotent marker expression and proliferation, inhibits BMP4-induced differentiation and reduces global histone 3 lysine 27 trimethylation, plausibly inducing an intermediate naïve-to-primed bivalent metabolism and pluripotent state. Furthermore, maintenance of NAD+ recycling via malate aspartate shuttle activity is identified as an absolute requirement for hESC self-renewal, responsible for 80% of the oxidative capacity of hESC mitochondria. Our findings implicate NAD+ in the regulation of cell state, suggesting that the hESC pluripotent state is dependent upon cellular NAD+ .
Collapse
Affiliation(s)
- Jarmon G Lees
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.,O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine at St Vincent's Hospital, Melbourne Medical School, The University of Melbourne, Fitzroy, Victoria, Australia
| | - David K Gardner
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Alexandra J Harvey
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
86
|
Mani S, Ghosh J, Coutifaris C, Sapienza C, Mainigi M. Epigenetic changes and assisted reproductive technologies. Epigenetics 2020; 15:12-25. [PMID: 31328632 PMCID: PMC6961665 DOI: 10.1080/15592294.2019.1646572] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/02/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
Children conceived by Assisted Reproductive Technologies (ART) are at moderately increased risk for a number of undesirable outcomes, including low birth weight. Whether the additional risk is associated with specific procedures used in ART or biological factors that are intrinsic to infertility has been the subject of much debate, as has the mechanism by which ART or infertility might influence this risk. The potential effect of ART clinical and laboratory procedures on the gamete and embryo epigenomes heads the list of mechanistic candidates that might explain the association between ART and undesirable clinical outcomes. The reason for this focus is that the developmental time points at which ART clinical and laboratory procedures are implemented are precisely the time points at which large-scale reorganization of the epigenome takes place during normal development. In this manuscript, we review the many human studies comparing the epigenomes of ART children with children conceived in vivo, as well as assess the potential of individual ART clinical and laboratory procedures to alter the epigenome.
Collapse
Affiliation(s)
- Sneha Mani
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jayashri Ghosh
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, USA
| | - Christos Coutifaris
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Carmen Sapienza
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, USA
| | - Monica Mainigi
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
87
|
Demond H, Anvar Z, Jahromi BN, Sparago A, Verma A, Davari M, Calzari L, Russo S, Jahromi MA, Monk D, Andrews S, Riccio A, Kelsey G. A KHDC3L mutation resulting in recurrent hydatidiform mole causes genome-wide DNA methylation loss in oocytes and persistent imprinting defects post-fertilisation. Genome Med 2019; 11:84. [PMID: 31847873 PMCID: PMC6918611 DOI: 10.1186/s13073-019-0694-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022] Open
Abstract
Background Maternal effect mutations in the components of the subcortical maternal complex (SCMC) of the human oocyte can cause early embryonic failure, gestational abnormalities and recurrent pregnancy loss. Enigmatically, they are also associated with DNA methylation abnormalities at imprinted genes in conceptuses: in the devastating gestational abnormality biparental complete hydatidiform mole (BiCHM) or in multi-locus imprinting disease (MLID). However, the developmental timing, genomic extent and mechanistic basis of these imprinting defects are unknown. The rarity of these disorders and the possibility that methylation defects originate in oocytes have made these questions very challenging to address. Methods Single-cell bisulphite sequencing (scBS-seq) was used to assess methylation in oocytes from a patient with BiCHM identified to be homozygous for an inactivating mutation in the human SCMC component KHDC3L. Genome-wide methylation analysis of a preimplantation embryo and molar tissue from the same patient was also performed. Results High-coverage scBS-seq libraries were obtained from five KHDC3Lc.1A>G oocytes, which revealed a genome-wide deficit of DNA methylation compared with normal human oocytes. Importantly, germline differentially methylated regions (gDMRs) of imprinted genes were affected similarly to other sequence features that normally become methylated in oocytes, indicating no selectivity towards imprinted genes. A range of methylation losses was observed across genomic features, including gDMRs, indicating variable sensitivity to defects in the SCMC. Genome-wide analysis of a pre-implantation embryo and molar tissue from the same patient showed that following fertilisation methylation defects at imprinted genes persist, while most non-imprinted regions of the genome recover near-normal methylation post-implantation. Conclusions We show for the first time that the integrity of the SCMC is essential for de novo methylation in the female germline. These findings have important implications for understanding the role of the SCMC in DNA methylation and for the origin of imprinting defects, for counselling affected families, and will help inform future therapeutic approaches.
Collapse
Affiliation(s)
- Hannah Demond
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Zahra Anvar
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. .,Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. .,Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', Consiglio Nazionale delle Ricerche (CNR), Naples, Italy.
| | - Bahia Namavar Jahromi
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Angela Sparago
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Ankit Verma
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', Consiglio Nazionale delle Ricerche (CNR), Naples, Italy.,Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Maryam Davari
- Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,IVF Section, Ghadir-Mother and Child Hospital of Shiraz, Shiraz, Iran
| | - Luciano Calzari
- Medical Cytogenetics and Molecular Genetics Laboratory, Centro di Ricerche e Tecnologie Biomediche IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Silvia Russo
- Medical Cytogenetics and Molecular Genetics Laboratory, Centro di Ricerche e Tecnologie Biomediche IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | | | - David Monk
- Imprinting and Cancer Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Cambridge, UK
| | - Andrea Riccio
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', Consiglio Nazionale delle Ricerche (CNR), Naples, Italy. .,Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Caserta, Italy.
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge, UK. .,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
88
|
Bogutz AB, Brind'Amour J, Kobayashi H, Jensen KN, Nakabayashi K, Imai H, Lorincz MC, Lefebvre L. Evolution of imprinting via lineage-specific insertion of retroviral promoters. Nat Commun 2019; 10:5674. [PMID: 31831741 PMCID: PMC6908575 DOI: 10.1038/s41467-019-13662-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/14/2019] [Indexed: 01/09/2023] Open
Abstract
Imprinted genes are expressed from a single parental allele, with the other allele often silenced by DNA methylation (DNAme) established in the germline. While species-specific imprinted orthologues have been documented, the molecular mechanisms underlying the evolutionary switch from biallelic to imprinted expression are unknown. During mouse oogenesis, gametic differentially methylated regions (gDMRs) acquire DNAme in a transcription-guided manner. Here we show that oocyte transcription initiating in lineage-specific endogenous retroviruses (ERVs) is likely responsible for DNAme establishment at 4/6 mouse-specific and 17/110 human-specific imprinted gDMRs. The latter are divided into Catarrhini- or Hominoidea-specific gDMRs embedded within transcripts initiating in ERVs specific to these primate lineages. Strikingly, imprinting of the maternally methylated genes Impact and Slc38a4 was lost in the offspring of female mice harboring deletions of the relevant murine-specific ERVs upstream of these genes. Our work reveals an evolutionary mechanism whereby maternally silenced genes arise from biallelically expressed progenitors. Although many species-specific imprinted genes have been identified, how the evolutionary switch from biallelic to imprinted expression occurs is still unknown. Here authors find that lineage-specific ERVs active as oocyte promoters can induce de novo DNA methylation at gDMRs and imprinting.
Collapse
Affiliation(s)
- Aaron B Bogutz
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Julie Brind'Amour
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Hisato Kobayashi
- Department of Embryology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kristoffer N Jensen
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Kazuhiko Nakabayashi
- Division of Developmental Genomics, Research Institute, National Center for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan
| | - Hiroo Imai
- Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Matthew C Lorincz
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Louis Lefebvre
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
89
|
Abstract
DNA methylation at the 5-position of cytosine (5mC) plays vital roles in mammalian development. DNA methylation is catalyzed by DNA methyltransferases (DNMTs), and the two DNMT families, DNMT3 and DNMT1, are responsible for methylation establishment and maintenance, respectively. Since their discovery, biochemical and structural studies have revealed the key mechanisms underlying how DNMTs catalyze de novo and maintenance DNA methylation. In particular, recent development of low-input genomic and epigenomic technologies has deepened our understanding of DNA methylation regulation in germ lines and early stage embryos. In this review, we first describe the methylation machinery including the DNMTs and their essential cofactors. We then discuss how DNMTs are recruited to or excluded from certain genomic elements. Lastly, we summarize recent understanding of the regulation of DNA methylation dynamics in mammalian germ lines and early embryos with a focus on both mice and humans.
Collapse
Affiliation(s)
- Zhiyuan Chen
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA; , .,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA; , .,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
90
|
Farhadova S, Gomez-Velazquez M, Feil R. Stability and Lability of Parental Methylation Imprints in Development and Disease. Genes (Basel) 2019; 10:genes10120999. [PMID: 31810366 PMCID: PMC6947649 DOI: 10.3390/genes10120999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
DNA methylation plays essential roles in mammals. Of particular interest are parental methylation marks that originate from the oocyte or the sperm, and bring about mono-allelic gene expression at defined chromosomal regions. The remarkable somatic stability of these parental imprints in the pre-implantation embryo—where they resist global waves of DNA demethylation—is not fully understood despite the importance of this phenomenon. After implantation, some methylation imprints persist in the placenta only, a tissue in which many genes are imprinted. Again here, the underlying epigenetic mechanisms are not clear. Mouse studies have pinpointed the involvement of transcription factors, covalent histone modifications, and histone variants. These and other features linked to the stability of methylation imprints are instructive as concerns their conservation in humans, in which different congenital disorders are caused by perturbed parental imprints. Here, we discuss DNA and histone methylation imprints, and why unravelling maintenance mechanisms is important for understanding imprinting disorders in humans.
Collapse
|
91
|
Hanna CW, Pérez-Palacios R, Gahurova L, Schubert M, Krueger F, Biggins L, Andrews S, Colomé-Tatché M, Bourc’his D, Dean W, Kelsey G. Endogenous retroviral insertions drive non-canonical imprinting in extra-embryonic tissues. Genome Biol 2019; 20:225. [PMID: 31665063 PMCID: PMC6819472 DOI: 10.1186/s13059-019-1833-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Genomic imprinting is an epigenetic phenomenon that allows a subset of genes to be expressed mono-allelically based on the parent of origin and is typically regulated by differential DNA methylation inherited from gametes. Imprinting is pervasive in murine extra-embryonic lineages, and uniquely, the imprinting of several genes has been found to be conferred non-canonically through maternally inherited repressive histone modification H3K27me3. However, the underlying regulatory mechanisms of non-canonical imprinting in post-implantation development remain unexplored. RESULTS We identify imprinted regions in post-implantation epiblast and extra-embryonic ectoderm (ExE) by assaying allelic histone modifications (H3K4me3, H3K36me3, H3K27me3), gene expression, and DNA methylation in reciprocal C57BL/6 and CAST hybrid embryos. We distinguish loci with DNA methylation-dependent (canonical) and independent (non-canonical) imprinting by assaying hybrid embryos with ablated maternally inherited DNA methylation. We find that non-canonical imprints are localized to endogenous retrovirus-K (ERVK) long terminal repeats (LTRs), which act as imprinted promoters specifically in extra-embryonic lineages. Transcribed ERVK LTRs are CpG-rich and located in close proximity to gene promoters, and imprinting status is determined by their epigenetic patterning in the oocyte. Finally, we show that oocyte-derived H3K27me3 associated with non-canonical imprints is not maintained beyond pre-implantation development at these elements and is replaced by secondary imprinted DNA methylation on the maternal allele in post-implantation ExE, while being completely silenced by bi-allelic DNA methylation in the epiblast. CONCLUSIONS This study reveals distinct epigenetic mechanisms regulating non-canonical imprinted gene expression between embryonic and extra-embryonic development and identifies an integral role for ERVK LTR repetitive elements.
Collapse
Affiliation(s)
- Courtney W. Hanna
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | | | - Lenka Gahurova
- University of South Bohemia, Ceske Budejovice, Czech Republic
- Institute of Animal Physiology and Genetics, ASCR, Libechov, Czech Republic
| | - Michael Schubert
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | - Maria Colomé-Tatché
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | | | - Wendy Dean
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Present Address: Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
92
|
Saenz-de-Juano MD, Ivanova E, Romero S, Lolicato F, Sánchez F, Van Ranst H, Krueger F, Segonds-Pichon A, De Vos M, Andrews S, Smitz J, Kelsey G, Anckaert E. DNA methylation and mRNA expression of imprinted genes in blastocysts derived from an improved in vitro maturation method for oocytes from small antral follicles in polycystic ovary syndrome patients. Hum Reprod 2019; 34:1640-1649. [PMID: 31398248 DOI: 10.1093/humrep/dez121] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/04/2019] [Accepted: 06/17/2019] [Indexed: 11/08/2023] Open
Abstract
STUDY QUESTION Does imprinted DNA methylation or imprinted gene expression differ between human blastocysts from conventional ovarian stimulation (COS) and an optimized two-step IVM method (CAPA-IVM) in age-matched polycystic ovary syndrome (PCOS) patients? SUMMARY ANSWER No significant differences in imprinted DNA methylation and gene expression were detected between COS and CAPA-IVM blastocysts. WHAT IS KNOWN ALREADY Animal models have revealed alterations in DNA methylation maintenance at imprinted germline differentially methylated regions (gDMRs) after use of ARTs. This effect increases as more ART interventions are applied to oocytes or embryos. IVM is a minimal-stimulation ART with reduced hormone-related side effects and risks for patients. CAPA-IVM is an improved IVM system that includes a pre-maturation step (CAPA), followed by an IVM step, both in the presence of physiological compounds that promote oocyte developmental capacity. STUDY DESIGN, SIZE, DURATION For DNA methylation analysis 20 CAPA-IVM blastocysts were compared to 12 COS blastocysts. For RNA-Seq analysis a separate set of 15 CAPA-IVM blastocysts were compared to 5 COS blastocysts. PARTICIPANTS/MATERIALS, SETTING, METHODS COS embryos originated from 12 patients with PCOS (according to Rotterdam criteria) who underwent conventional ovarian stimulation. For CAPA-IVM 23 women were treated for 3-5 days with highly purified hMG (HP-hMG) and no hCG trigger was given before oocyte retrieval. Oocytes were first cultured in pre-maturation medium (CAPA for 24 h containing C-type natriuretic peptide), followed by an IVM step (30 h) in medium containing FSH and Amphiregulin. After ICSI, Day 5 or 6 embryos in both groups were vitrified and used for post-bisulphite adaptor tagging (PBAT) DNA methylation analysis or RNA-seq gene expression analysis of individual embryos. Data from specific genes and gDMRs were extracted from the PABT and RNA-seq datasets. MAIN RESULTS AND THE ROLE OF CHANCE CAPA-IVM blastocysts showed similar rates of methylation and gene expression at gDMRs compared to COS embryos. In addition, expression of major epigenetic regulators was similar between the groups. LIMITATIONS, REASONS FOR CAUTION The embryos from the COS group were generated in a range of culture media. The CAPA-IVM embryos were all generated using the same sperm donor. The DNA methylation level of gDMRs in purely in vivo-derived human blastocysts is not known. WIDER IMPLICATIONS OF THE FINDINGS A follow-up of children born after CAPA-IVM is important as it is for other new ARTs, which are generally introduced into clinical practice without prior epigenetic safety studies on human blastocysts. CAPA-IVM opens new perspectives for patient-friendly ART in PCOS. STUDY FUNDING/COMPETING INTEREST(S) IVM research at the Vrije Universiteit Brussel has been supported by grants from the Institute for the Promotion of Innovation by Science and Technology in Flanders (Agentschap voor Innovatie door Wetenschap en Technologie-IWT, project 110680), the Fund for Research Flanders (Fonds voor Wetenschappelijk Onderzoek-Vlaanderen-FWO-AL 679 project, project G.0343.13), the Belgian Foundation Against Cancer (HOPE project, Dossier C69Ref Nr 2016-119) and the Vrije Universiteit Brussel (IOF Project 4R-ART Nr 2042). Work in G.K.'s laboratory is supported by the UK Biotechnology and Biological Sciences Research Council and Medical Research Council. The authors have no conflicts of interest.
Collapse
Affiliation(s)
- M D Saenz-de-Juano
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Switzerland
| | - E Ivanova
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - S Romero
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Reproductive Biology and Fertility Preservation, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - F Lolicato
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Fertilab Barcelona, Via Augusta, 237-239, Barcelona 08021, Spain
| | - F Sánchez
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Reproductive Biology and Fertility Preservation, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - H Van Ranst
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - F Krueger
- Bioinformatics Unit, The Babraham Institute, Cambridge, UK
| | | | - M De Vos
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Centre for Reproductive Medicine, UZ Brussel, Brussels 1090, Belgium
| | - S Andrews
- Bioinformatics Unit, The Babraham Institute, Cambridge, UK
| | - J Smitz
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - G Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - E Anckaert
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
93
|
Wen L, Tang F. Human Germline Cell Development: from the Perspective of Single-Cell Sequencing. Mol Cell 2019; 76:320-328. [PMID: 31563431 DOI: 10.1016/j.molcel.2019.08.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 01/01/2023]
Abstract
Germline cells are the beginning of new individuals in multicellular animals, including humans. Our understanding of these cell types is limited by the difficulty of analyzing the precious and heterogeneous germline tissue samples. The rapid development of single-cell sequencing technologies provides a chance for comprehensive profiling of the omics dynamics of human germline development. In this review, we discuss progress in analyzing the development of human germline cells, including preimplantation and implantation embryos, fetal germ cells (FGCs), and adult spermatogenesis by single-cell transcriptome and epigenome sequencing technologies.
Collapse
Affiliation(s)
- Lu Wen
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), College of Life Sciences, Peking University, Beijing 100871, China.
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
94
|
Mathers TC, Mugford ST, Percival-Alwyn L, Chen Y, Kaithakottil G, Swarbreck D, Hogenhout SA, van Oosterhout C. Sex-specific changes in the aphid DNA methylation landscape. Mol Ecol 2019; 28:4228-4241. [PMID: 31472081 PMCID: PMC6857007 DOI: 10.1111/mec.15216] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/22/2019] [Indexed: 12/15/2022]
Abstract
Aphids present an ideal system to study epigenetics as they can produce diverse, but genetically identical, morphs in response to environmental stimuli. Here, using whole genome bisulphite sequencing and transcriptome sequencing of the green peach aphid (Myzus persicae), we present the first detailed analysis of cytosine methylation in an aphid and investigate differences in the methylation and transcriptional landscapes of male and asexual female morphs. We found that methylation primarily occurs in a CG dinucleotide (CpG) context and that exons are highly enriched for methylated CpGs, particularly at the 3' end of genes. Methylation is positively associated with gene expression, and methylated genes are more stably expressed than unmethylated genes. Male and asexual female morphs have distinct methylation profiles. Strikingly, these profiles are divergent between the sex chromosome and the autosomes; autosomal genes are hypomethylated in males compared to asexual females, whereas genes belonging to the sex chromosome, which is haploid in males, are hypermethylated. Overall, we found correlated changes in methylation and gene expression between males and asexual females, and this correlation was particularly strong for genes located on the sex chromosome. Our results suggest that differential methylation of sex-biased genes plays a role in aphid sexual differentiation.
Collapse
Affiliation(s)
- Thomas C Mathers
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Sam T Mugford
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Yazhou Chen
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
95
|
Germ cell-mediated mechanisms of epigenetic inheritance. Semin Cell Dev Biol 2019; 97:116-122. [PMID: 31404658 DOI: 10.1016/j.semcdb.2019.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 01/07/2023]
Abstract
It is well established that lifestyle and other environmental factors have the potential to shape our own health and future. Research from the last two decades, however, provides mounting evidence that parental exposures or experiences such as dietary challenges, toxin exposure, or stress can impact the health and future of our offspring. There are indications that both the paternal and maternal germline are able to store information of the parental environment and pass certain information on to their progeny. These intergenerational effects are mediated by epigenetic mechanisms. This review summarizes and discusses insights into germline epigenetic plasticity caused by environmental stimuli and how such alterations are transmitted to induce a stable phenotype in the offspring.
Collapse
|
96
|
The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 2019; 20:590-607. [PMID: 31399642 DOI: 10.1038/s41580-019-0159-6] [Citation(s) in RCA: 1304] [Impact Index Per Article: 217.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2019] [Indexed: 12/22/2022]
Abstract
DNA methylation is of paramount importance for mammalian embryonic development. DNA methylation has numerous functions: it is implicated in the repression of transposons and genes, but is also associated with actively transcribed gene bodies and, in some cases, with gene activation per se. In recent years, sensitive technologies have been developed that allow the interrogation of DNA methylation patterns from a small number of cells. The use of these technologies has greatly improved our knowledge of DNA methylation dynamics and heterogeneity in embryos and in specific tissues. Combined with genetic analyses, it is increasingly apparent that regulation of DNA methylation erasure and (re-)establishment varies considerably between different developmental stages. In this Review, we discuss the mechanisms and functions of DNA methylation and demethylation in both mice and humans at CpG-rich promoters, gene bodies and transposable elements. We highlight the dynamic erasure and re-establishment of DNA methylation in embryonic, germline and somatic cell development. Finally, we provide insights into DNA methylation gained from studying genetic diseases.
Collapse
|
97
|
Xavier MJ, Roman SD, Aitken RJ, Nixon B. Transgenerational inheritance: how impacts to the epigenetic and genetic information of parents affect offspring health. Hum Reprod Update 2019; 25:518-540. [DOI: 10.1093/humupd/dmz017] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/19/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022] Open
Abstract
Abstract
BACKGROUND
A defining feature of sexual reproduction is the transmission of genomic information from both parents to the offspring. There is now compelling evidence that the inheritance of such genetic information is accompanied by additional epigenetic marks, or stable heritable information that is not accounted for by variations in DNA sequence. The reversible nature of epigenetic marks coupled with multiple rounds of epigenetic reprogramming that erase the majority of existing patterns have made the investigation of this phenomenon challenging. However, continual advances in molecular methods are allowing closer examination of the dynamic alterations to histone composition and DNA methylation patterns that accompany development and, in particular, how these modifications can occur in an individual’s germline and be transmitted to the following generation. While the underlying mechanisms that permit this form of transgenerational inheritance remain unclear, it is increasingly apparent that a combination of genetic and epigenetic modifications plays major roles in determining the phenotypes of individuals and their offspring.
OBJECTIVE AND RATIONALE
Information pertaining to transgenerational inheritance was systematically reviewed focusing primarily on mammalian cells to the exclusion of inheritance in plants, due to inherent differences in the means by which information is transmitted between generations. The effects of environmental factors and biological processes on both epigenetic and genetic information were reviewed to determine their contribution to modulating inheritable phenotypes.
SEARCH METHODS
Articles indexed in PubMed were searched using keywords related to transgenerational inheritance, epigenetic modifications, paternal and maternal inheritable traits and environmental and biological factors influencing transgenerational modifications. We sought to clarify the role of epigenetic reprogramming events during the life cycle of mammals and provide a comprehensive review of how the genomic and epigenomic make-up of progenitors may determine the phenotype of its descendants.
OUTCOMES
We found strong evidence supporting the role of DNA methylation patterns, histone modifications and even non-protein-coding RNA in altering the epigenetic composition of individuals and producing stable epigenetic effects that were transmitted from parents to offspring, in both humans and rodent species. Multiple genomic domains and several histone modification sites were found to resist demethylation and endure genome-wide reprogramming events. Epigenetic modifications integrated into the genome of individuals were shown to modulate gene expression and activity at enhancer and promoter domains, while genetic mutations were shown to alter sequence availability for methylation and histone binding. Fundamentally, alterations to the nuclear composition of the germline in response to environmental factors, ageing, diet and toxicant exposure have the potential to become hereditably transmitted.
WIDER IMPLICATIONS
The environment influences the health and well-being of progeny by working through the germline to introduce spontaneous genetic mutations as well as a variety of epigenetic changes, including alterations in DNA methylation status and the post-translational modification of histones. In evolutionary terms, these changes create the phenotypic diversity that fuels the fires of natural selection. However, rather than being adaptive, such variation may also generate a plethora of pathological disease states ranging from dominant genetic disorders to neurological conditions, including spontaneous schizophrenia and autism.
Collapse
Affiliation(s)
- Miguel João Xavier
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Shaun D Roman
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Chemical Biology and Clinical Pharmacology, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - R John Aitken
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Brett Nixon
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
98
|
Xia W, Xu J, Yu G, Yao G, Xu K, Ma X, Zhang N, Liu B, Li T, Lin Z, Chen X, Li L, Wang Q, Shi D, Shi S, Zhang Y, Song W, Jin H, Hu L, Bu Z, Wang Y, Na J, Xie W, Sun YP. Resetting histone modifications during human parental-to-zygotic transition. Science 2019; 365:353-360. [PMID: 31273069 DOI: 10.1126/science.aaw5118] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/23/2019] [Accepted: 06/25/2019] [Indexed: 12/11/2022]
Abstract
Histone modifications regulate gene expression and development. To address how they are reprogrammed in human early development, we investigated key histone marks in human oocytes and early embryos. Unlike that in mouse oocytes, the permissive mark trimethylated histone H3 lysine 4 (H3K4me3) largely exhibits canonical patterns at promoters in human oocytes. After fertilization, prezygotic genome activation (pre-ZGA) embryos acquire permissive chromatin and widespread H3K4me3 in CpG-rich regulatory regions. By contrast, the repressive mark H3K27me3 undergoes global depletion. CpG-rich regulatory regions then resolve to either active or repressed states upon ZGA, followed by subsequent restoration of H3K27me3 at developmental genes. Finally, by combining chromatin and transcriptome maps, we revealed transcription circuitry and asymmetric H3K27me3 patterning during early lineage specification. Collectively, our data unveil a priming phase connecting human parental-to-zygotic epigenetic transition.
Collapse
Affiliation(s)
- Weikun Xia
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiawei Xu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Guang Yu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guidong Yao
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Kai Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xueshan Ma
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Nan Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Bofeng Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tong Li
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zili Lin
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xia Chen
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lijia Li
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiujun Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dayuan Shi
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Senlin Shi
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yile Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Wenyan Song
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Haixia Jin
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Linli Hu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhiqin Bu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yang Wang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jie Na
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ying-Pu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|
99
|
Spinelli P, Latchney SE, Reed JM, Fields A, Baier BS, Lu X, McCall MN, Murphy SP, Mak W, Susiarjo M. Identification of the novel Ido1 imprinted locus and its potential epigenetic role in pregnancy loss. Hum Mol Genet 2019; 28:662-674. [PMID: 30403776 DOI: 10.1093/hmg/ddy383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/29/2018] [Indexed: 11/14/2022] Open
Abstract
Previous studies show that aberrant tryptophan catabolism reduces maternal immune tolerance and adversely impacts pregnancy outcomes. Tryptophan depletion in pregnancy is facilitated by increased activity of tryptophan-depleting enzymes [i.e. the indolamine-2,3 dioxygenase (IDO)1 and IDO2) in the placenta. In mice, inhibition of IDO1 activity during pregnancy results in fetal loss; however, despite its important role, regulation of Ido1 gene transcription is unknown. The current study shows that the Ido1 and Ido2 genes are imprinted and maternally expressed in mouse placentas. DNA methylation analysis demonstrates that nine CpG sites at the Ido1 promoter constitute a differentially methylated region that is highly methylated in sperm but unmethylated in oocytes. Bisulfite cloning sequencing analysis shows that the paternal allele is hypermethylated while the maternal allele shows low levels of methylation in E9.5 placenta. Further study in E9.5 placentas from the CBA/J X DBA/2 spontaneous abortion mouse model reveals that aberrant methylation of Ido1 is linked to pregnancy loss. DNA methylation analysis in humans shows that IDO1 is hypermethylated in human sperm but partially methylated in placentas, suggesting similar methylation patterns to mouse. Importantly, analysis in euploid placentas from first trimester pregnancy loss reveals that IDO1 methylation significantly differs between the two placenta cohorts, with most CpG sites showing increased percent of methylation in miscarriage placentas. Our study suggests that DNA methylation is linked to regulation of Ido1/IDO1 expression and altered Ido1/IDO1 DNA methylation can adversely influence pregnancy outcomes.
Collapse
Affiliation(s)
- Philip Spinelli
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Sarah E Latchney
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jasmine M Reed
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ashley Fields
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Brian S Baier
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Xiang Lu
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Matthew N McCall
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Shawn P Murphy
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Winifred Mak
- Department of Obstetric Gynecology, Dell Medical School, University of Texas, Austin, TX, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
100
|
Di Emidio G, D'Aurora M, Placidi M, Franchi S, Rossi G, Stuppia L, Artini PG, Tatone C, Gatta V. Pre-conceptional maternal exposure to cyclophosphamide results in modifications of DNA methylation in F1 and F2 mouse oocytes: evidence for transgenerational effects. Epigenetics 2019; 14:1057-1064. [PMID: 31189412 DOI: 10.1080/15592294.2019.1631111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cyclophosphamide (CPM), an agent widely used in breast cancer therapy, has strong gonadotoxic effects. Female reproductive potential after therapy relies on ovulated oocytes deriving from primordial follicles surviving CPM toxic insult. In this study, we investigated in the mouse model whether pre-conceptional maternal exposure to CPM has epigenetic effects on offspring oocytes and if they are inherited. Adult female mice mated following CPM exposure, generated an offspring (F1) with delayed growth, normal fertility and altered methylation of three imprinted genes (H19, Igf2r and Peg3) in their oocytes. These alterations were present in oocytes generated by F2 mice. Pre-conceptional maternal exposure to fertoprotective agents AS101 and crocetin prior to CPM was not able to fully counteract alterations in offspring oocyte imprinting. For the first time, current study evidences that pre-conceptional CPM maternal exposure can affect the competence of offspring's oocytes and warns on possible long-term effects on the health of next generations.
Collapse
Affiliation(s)
- Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L'Aquila , L'Aquila , Italy.,Infertility Service, San Salvatore Hospital , L'Aquila , Italy
| | - Marco D'Aurora
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G.d'Annunzio" University , Chieti , Italy.,Functional Genetics Unit, Center of Excellence on Aging (Ce.S.I.-MeT) , Chieti , Italy
| | - Martina Placidi
- Department of Life, Health and Environmental Sciences, University of L'Aquila , L'Aquila , Italy
| | - Sara Franchi
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G.d'Annunzio" University , Chieti , Italy.,Functional Genetics Unit, Center of Excellence on Aging (Ce.S.I.-MeT) , Chieti , Italy
| | - Giulia Rossi
- Department of Life, Health and Environmental Sciences, University of L'Aquila , L'Aquila , Italy
| | - Liborio Stuppia
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G.d'Annunzio" University , Chieti , Italy.,Functional Genetics Unit, Center of Excellence on Aging (Ce.S.I.-MeT) , Chieti , Italy
| | - Paolo Giovanni Artini
- Department of Clinical and Experimental Medicine, Division of Obstetrics and Gynecology Oncology, University of Pisa , Pisa , Italy
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L'Aquila , L'Aquila , Italy.,Infertility Service, San Salvatore Hospital , L'Aquila , Italy
| | - Valentina Gatta
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, "G.d'Annunzio" University , Chieti , Italy.,Functional Genetics Unit, Center of Excellence on Aging (Ce.S.I.-MeT) , Chieti , Italy
| |
Collapse
|