51
|
Kwenti TE, Kukwah TA, Kwenti TDB, Nyassa BR, Dilonga MH, Enow-Orock G, Tendongfor N, Anong ND, Wanji S, Njunda LA, Nkuo-Akenji T. Comparative analysis of IgG and IgG subclasses against Plasmodium falciparum MSP-1 19 in children from five contrasting bioecological zones of Cameroon. Malar J 2019; 18:16. [PMID: 30670064 PMCID: PMC6341684 DOI: 10.1186/s12936-019-2654-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/16/2019] [Indexed: 12/03/2022] Open
Abstract
Background Studies reporting the natural immune responses against malaria in children from different geographical settings in endemic areas are not readily available. This study was aimed at comparing the immune responses against Plasmodium falciparum MSP-119 antigen in children from five contrasting bioecological zones in Cameroon. Methods In a cross-sectional survey, children between 2 and 15 years, were enrolled from five ecological strata including the south Cameroonian equatorial forest, sudano-sahelian, high inland plateau, high western plateau, and the coastal strata. The children were screened for clinical malaria (defined by malaria parasitaemia ≥ 5000 parasites/µl plus axillary temperature ≥ 37.5 °C). Their antibody responses were measured against P. falciparum MSP-119 antigen using standard ELISA technique. Results In all, 415 children comprising 217 (52.3%) males participated. Total IgG and IgG1–IgG4 titres were observed to increase with age in all the strata except in the sudano-sahelian and high inland plateau strata. Total IgG and IgG1–IgG4 titres were significantly higher in the coastal strata and lowest in the high inland plateau (for IgG1 and IgG2) and sudano-sahelian strata (for IgG3 and IgG4). Titres of the cytophilic antibodies (IgG1 and IgG3) were significantly higher than the non-cytophilic antibodies (IgG2 and IgG4) in all the strata except in the sudano-sahelian and high inland plateau strata. Total IgG and IgG subclass titres were significantly higher in children positive for clinical malaria compared to negative children in all study sites except in the high western plateau and coastal (for IgG1 and IgG3), and the sudano-sahelian strata (for all antibodies). Furthermore, a significant positive correlation was observed between parasite density and IgG2 or IgG4 titres in all study sites except in the south Cameroonian equatorial forest and sudano-sahelian strata. Conclusions This study showed that antibody responses against MSP-119 vary considerably in children from the different bioecological strata in Cameroon and could be linked to the differential exposure to malaria in the different strata. Furthermore, the rate of antibody acquisition was not observed to increase in an age-dependent manner in low transmission settings. Electronic supplementary material The online version of this article (10.1186/s12936-019-2654-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tebit Emmanuel Kwenti
- Department of Medical Laboratory Sciences, Faculty of Health Science, University of Buea, P.O. Box 23, Buea, Southwest Region, Cameroon. .,Regional Hospital of Buea, P.O. Box 32, Buea, Southwest Region, Cameroon. .,Department of Public Health and Hygiene, Faculty of Health Science, University of Buea, P.O. Box 23, Buea, Southwest Region, Cameroon. .,Department of Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Southwest Region, Cameroon.
| | - Tufon Anthony Kukwah
- Regional Hospital of Buea, P.O. Box 32, Buea, Southwest Region, Cameroon.,Department of Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Southwest Region, Cameroon
| | - Tayong Dizzle Bita Kwenti
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Southwest Region, Cameroon
| | - Babila Raymond Nyassa
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Southwest Region, Cameroon
| | - Meriki Henry Dilonga
- Regional Hospital of Buea, P.O. Box 32, Buea, Southwest Region, Cameroon.,Department of Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Southwest Region, Cameroon
| | - George Enow-Orock
- Regional Hospital of Buea, P.O. Box 32, Buea, Southwest Region, Cameroon.,Department of Biomedical Science, Faculty of Health Science, University of Buea, P.O Box 23, Buea, Southwest Region, Cameroon
| | - Nicholas Tendongfor
- Department of Public Health and Hygiene, Faculty of Health Science, University of Buea, P.O. Box 23, Buea, Southwest Region, Cameroon.,Department of Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Southwest Region, Cameroon
| | - Nota Damian Anong
- Department of Biological Science, Faculty of Science, University of Bamenda, Bamenda, North West Region, Cameroon
| | - Samuel Wanji
- Parasites and Vector Biology Research Unit, Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Longdoh Anna Njunda
- Department of Medical Laboratory Sciences, Faculty of Health Science, University of Buea, P.O. Box 23, Buea, Southwest Region, Cameroon
| | - Theresa Nkuo-Akenji
- Department of Biological Science, Faculty of Science, University of Bamenda, Bamenda, North West Region, Cameroon
| |
Collapse
|
52
|
Mbengue B, Fall MM, Varela ML, Loucoubar C, Joos C, Fall B, Niang MS, Niang B, Mbow M, Dieye A, Perraut R. Analysis of antibody responses to selected Plasmodium falciparum merozoite surface antigens in mild and cerebral malaria and associations with clinical outcomes. Clin Exp Immunol 2019; 196:86-96. [PMID: 30580455 DOI: 10.1111/cei.13254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2018] [Indexed: 11/28/2022] Open
Abstract
Merozoite surface proteins (MSPs) are critical for parasite invasion; they represent attractive targets for antibody-based protection against clinical malaria. To identify protection-associated target MSPs, the present study analysed antibody responses to whole merozoite extract (ME) and to defined MSP recombinant antigens in hospitalized patients from a low endemic urban area as a function of disease severity (mild versus cerebral malaria). Sera from 110 patients with confirmed severe cerebral malaria (CM) and 91 patients with mild malaria (MM) were analysed (mean age = 29 years) for total and subclass immunoglobulin (Ig)G to ME and total IgG to MSP1p19, MSP2, MSP3, MSP4 and MSP5 by enzyme-linked immunosorbent assay (ELISA). Functional antibody responses were evaluated using the antibody-dependent respiratory burst (ADRB) assay in a subset of sera. There was a trend towards higher IgG1 and IgG4 levels to ME in CM compared to MM; only ME IgM responses differed significantly between fatal and surviving CM patients. Increased prevalence of IgG to individual MSPs was found in the CM compared to the MM group, including significantly higher levels of IgG to MSP4 and MSP5 in the former. Sera from fatal (24·5%) versus surviving cases showed significantly lower IgG to MSP1p19 and MSP3 (P < 0·05). ADRB assay readouts correlated with high levels of anti-MSP IgG, and trended higher in sera from patients with surviving compared to fatal CM outcome (P = 0·07). These results document strong differential antibody responses to MSP antigens as targets of protective immunity against CM and in particular MSP1p19 and MSP3 as prognostic indicators.
Collapse
Affiliation(s)
- B Mbengue
- Service d'Immunologie FMPO, Université Cheikh Anta Diop de Dakar, Senegal.,Unité d'Immunogénétique, Institut Pasteur de Dakar, IPD, Senegal
| | - M M Fall
- Service de Réanimation, Hôpital Principal de Dakar, HPD, Senegal
| | - M-L Varela
- Unité d'Immunologie, Institut Pasteur de Dakar, IPD, Senegal
| | - C Loucoubar
- Groupe de Biostatistique et Bioinformatique, IPD, Senegal
| | - C Joos
- Unité d'Immunologie, Institut Pasteur de Dakar, IPD, Senegal
| | - B Fall
- Fédération des Laboratoires, Hôpital Principal de Dakar, HPD, Senegal
| | - M S Niang
- Service d'Immunologie FMPO, Université Cheikh Anta Diop de Dakar, Senegal
| | - B Niang
- Service de Réanimation, Hôpital Principal de Dakar, HPD, Senegal
| | - M Mbow
- Service d'Immunologie FMPO, Université Cheikh Anta Diop de Dakar, Senegal
| | - A Dieye
- Service d'Immunologie FMPO, Université Cheikh Anta Diop de Dakar, Senegal.,Unité d'Immunogénétique, Institut Pasteur de Dakar, IPD, Senegal
| | - R Perraut
- Unité d'Immunogénétique, Institut Pasteur de Dakar, IPD, Senegal.,Unité d'Immunologie, Institut Pasteur de Dakar, IPD, Senegal
| |
Collapse
|
53
|
Tohmoto T, Takashima E, Takeo S, Morita M, Nagaoka H, Udomsangpetch R, Sattabongkot J, Ishino T, Torii M, Tsuboi T. Anti-MSP11 IgG inhibits Plasmodium falciparum merozoite invasion into erythrocytes in vitro. Parasitol Int 2018; 69:25-29. [PMID: 30385417 DOI: 10.1016/j.parint.2018.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/18/2018] [Accepted: 10/29/2018] [Indexed: 11/19/2022]
Abstract
Merozoite surface proteins (MSPs) are considered as promising blood-stage malaria vaccine candidates. MSP3 has long been evaluated for its vaccine candidacy, however, the candidacy of other members of MSP3 family is insufficiently characterized. Here, we investigated Plasmodium falciparum MSP11 (PF3D7_1036000), a member of the MSP3 family, for its potential as a blood-stage vaccine candidate. The full-length protein (MSP11-FL) as well as the N-terminal half-MSP11 (MSP11-N), known to be unique among the MSP3 family members, were expressed by wheat germ cell-free system, and used to raise antibodies in rabbit. Immunoblot analysis of schizont lysates probed with anti-MSP11-N antibodies detected double bands at approximately 40 and 60 kDa, consistent with the previous report thus confirming antibodies specificity. However, inconsistent with previously reported merozoite's surface localization, immunofluorescence assay (IFA) revealed that MSP11 likely localizes to rhoptry neck of merozoites in mature schizonts. After invasion, MSP11 localized to parasitophorous vacuole and thereafter in Maurer's clefts in trophozoites. Anti-MSP11-FL antibody levels were significantly higher in asymptomatic than symptomatic P. falciparum cases in malaria low endemic Thailand. This reconfirmed that anti-MSP11 antibodies play an important role in protection against clinical malaria, as previously reported. Furthermore, in vitro growth inhibition assay revealed that anti-MSP11-FL rabbit antibodies biologically function by inhibiting merozoite invasion of erythrocytes. These findings further support the vaccine candidacy of MSP11.
Collapse
Affiliation(s)
- Tatsuhiro Tohmoto
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| | - Satoru Takeo
- Division of Tropical Diseases and Parasitology, Department of Infectious Diseases, Faculty of Medicine, Kyorin University, Mitaka, Tokyo 181-8611, Japan
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Rachanee Udomsangpetch
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakhosn Pathom 73170, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Tomoko Ishino
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Motomi Torii
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
54
|
Behet MC, Kurtovic L, van Gemert GJ, Haukes CM, Siebelink-Stoter R, Graumans W, van de Vegte-Bolmer MG, Scholzen A, Langereis JD, Diavatopoulos DA, Beeson JG, Sauerwein RW. The Complement System Contributes to Functional Antibody-Mediated Responses Induced by Immunization with Plasmodium falciparum Malaria Sporozoites. Infect Immun 2018; 86:e00920-17. [PMID: 29735521 PMCID: PMC6013677 DOI: 10.1128/iai.00920-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/16/2018] [Indexed: 11/20/2022] Open
Abstract
Long-lasting and sterile homologous protection against malaria can be achieved by the exposure of malaria-naive volunteers under chemoprophylaxis to Plasmodium falciparum-infected mosquitoes (chemoprophylaxis and sporozoite [CPS] immunization). While CPS-induced antibodies neutralize sporozoite infectivity in vitro and in vivo, antibody-mediated effector mechanisms are still poorly understood. Here, we investigated whether complement contributes to CPS-induced preerythrocytic immunity. Sera collected before and after CPS immunization in the presence of active or inactive complement were assessed for the recognition of homologous NF54 and heterologous NF135.C10 sporozoites, complement fixation, sporozoite lysis, and possible subsequent effects on in vitro sporozoite infectivity in human hepatocytes. CPS immunization induced sporozoite-specific IgM (P < 0.0001) and IgG (P = 0.001) antibodies with complement-fixing capacities (P < 0.0001). Sporozoite lysis (P = 0.017), traversal (P < 0.0001), and hepatocyte invasion inhibition (P < 0.0001) by CPS-induced antibodies were strongly enhanced in the presence of active complement. Complement-mediated invasion inhibition in the presence of CPS-induced antibodies negatively correlated with cumulative parasitemia during CPS immunizations (P = 0.013). While IgG antibodies similarly recognized homologous and heterologous sporozoites, IgM binding to heterologous sporozoites was reduced (P = 0.023). Although CPS-induced antibodies did not differ in their abilities to fix complement, lyse sporozoites, or inhibit the traversal of homologous and heterologous sporozoites, heterologous sporozoite invasion was more strongly inhibited in the presence of active complement (P = 0.008). These findings demonstrate that CPS-induced antibodies have complement-fixing activity, thereby significantly further enhancing the functional inhibition of homologous and heterologous sporozoite infectivity in vitro The combined data highlight the importance of complement as an additional immune effector mechanism in preerythrocytic immunity after whole-parasite immunization against Plasmodium falciparum malaria.
Collapse
Affiliation(s)
- Marije C Behet
- Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands
| | - Liriye Kurtovic
- Burnet Institute, Melbourne, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Geert-Jan van Gemert
- Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands
| | - Celine M Haukes
- Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands
| | - Rianne Siebelink-Stoter
- Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands
| | - Wouter Graumans
- Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands
| | | | - Anja Scholzen
- Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands
| | - Jeroen D Langereis
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Center and Radboud Center for Infectious Diseases, Nijmegen, The Netherlands
| | - Dimitri A Diavatopoulos
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Center and Radboud Center for Infectious Diseases, Nijmegen, The Netherlands
| | - James G Beeson
- Burnet Institute, Melbourne, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
- Department of Medical Microbiology, Monash University, Clayton, Australia
| | - Robert W Sauerwein
- Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands
| |
Collapse
|
55
|
Ubillos I, Jiménez A, Vidal M, Bowyer PW, Gaur D, Dutta S, Gamain B, Coppel R, Chauhan V, Lanar D, Chitnis C, Angov E, Beeson J, Cavanagh D, Campo JJ, Aguilar R, Dobaño C. Optimization of incubation conditions of Plasmodium falciparum antibody multiplex assays to measure IgG, IgG 1-4, IgM and IgE using standard and customized reference pools for sero-epidemiological and vaccine studies. Malar J 2018; 17:219. [PMID: 29859096 PMCID: PMC5984756 DOI: 10.1186/s12936-018-2369-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Background The quantitative suspension array technology (qSAT) is a useful platform for malaria immune marker discovery. However, a major challenge for large sero-epidemiological and malaria vaccine studies is the comparability across laboratories, which requires the access to standardized control reagents for assay optimization, to monitor performance and improve reproducibility. Here, the Plasmodium falciparum antibody reactivities of the newly available WHO reference reagent for anti-malaria human plasma (10/198) and of additional customized positive controls were examined with seven in-house qSAT multiplex assays measuring IgG, IgG1–4 subclasses, IgM and IgE against a panel of 40 antigens. The different positive controls were tested at different incubation times and temperatures (4 °C overnight, 37 °C 2 h, room temperature 1 h) to select the optimal conditions. Results Overall, the WHO reference reagent had low IgG2, IgG4, IgM and IgE, and also low anti-CSP antibody levels, thus this reagent was enriched with plasmas from RTS,S-vaccinated volunteers to be used as standard for CSP-based vaccine studies. For the IgM assay, another customized plasma pool prepared with samples from malaria primo-infected adults with adequate IgM levels proved to be more adequate as a positive control. The range and magnitude of IgG and IgG1–4 responses were highest when the WHO reference reagent was incubated with antigen-coupled beads at 4 °C overnight. IgG levels measured in the negative control did not vary between incubations at 37 °C 2 h and 4 °C overnight, indicating no difference in unspecific binding. Conclusions With this study, the immunogenicity profile of the WHO reference reagent, including seven immunoglobulin isotypes and subclasses, and more P. falciparum antigens, also those included in the leading RTS,S malaria vaccine, was better characterized. Overall, incubation of samples at 4 °C overnight rendered the best performance for antibody measurements against the antigens tested. Although the WHO reference reagent performed well to measure IgG to the majority of the common P. falciparum blood stage antigens tested, customized pools may need to be used as positive controls depending on the antigens (e.g. pre-erythrocytic proteins of low natural immunogenicity) and isotypes/subclasses (e.g. IgM) under study. Electronic supplementary material The online version of this article (10.1186/s12936-018-2369-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Itziar Ubillos
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain
| | - Paul W Bowyer
- Bacteriology Division, MHRA-NIBSC, South Mimms, Potter Bars, EN6 3QG, UK
| | - Deepak Gaur
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sheetij Dutta
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Benoit Gamain
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge UMR_S1134, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Ross Coppel
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Virander Chauhan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - David Lanar
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Chetan Chitnis
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Evelina Angov
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - James Beeson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Australia
| | - David Cavanagh
- Institute of Immunology & Infection Research and Centre for Immunity, Infection & Evolution, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, King's Buildings, Charlotte Auerbach Rd, Edinburgh, EH9 3FL, UK
| | - Joseph J Campo
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain.
| |
Collapse
|
56
|
Good MF, Miller LH. Interpreting challenge data from early phase malaria blood stage vaccine trials. Expert Rev Vaccines 2018; 17:189-196. [PMID: 29382292 DOI: 10.1080/14760584.2018.1435278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION As the quest for an effective blood stage malaria vaccine continues, there is increasing reliance on the use of controlled human malaria infections (CHMI) in non-endemic settings to test vaccine efficacy at the earliest possible time. This is seen as a way to accelerate vaccine research and quickly eliminate candidates with poor efficacy. Areas covered: The data from these studies need to be carefully examined and interpreted in light of the very different roles that antibody and cellular immunity play in protection and within the context of the distinct clinical sensitivities of volunteers living in malaria-non-endemic countries compared to those living in endemic countries. With current strategies, it is likely that vaccines with protective immunological 'signatures' will be missed and potentially good candidates discarded. Expert commentary: Efficacy data from early phase vaccine trials in non-endemic countries should not be used to decide whether or not to proceed to vaccine trials in endemic countries.
Collapse
Affiliation(s)
- Michael F Good
- a Institute for Glycomics , Griffith University , Queensland , Australia.,b Department of Medical Microbiology and Immunology, University of Alberta , Edmonton , Canada
| | - Louis H Miller
- c Malaria Cell Biology Section, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
57
|
Pinna RA, Dos Santos AC, Perce-da-Silva DS, da Silva LA, da Silva RNR, Alves MR, Santos F, de Oliveira Ferreira J, Lima-Junior JC, Villa-Verde DM, De Luca PM, Carvalho-Pinto CE, Banic DM. Correlation of APRIL with production of inflammatory cytokines during acute malaria in the Brazilian Amazon. IMMUNITY INFLAMMATION AND DISEASE 2018; 6:207-220. [PMID: 29314720 PMCID: PMC5946147 DOI: 10.1002/iid3.208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION A proliferation-inducing ligand (APRIL) and B cell activation factor (BAFF) are known to play a significant role in the pathogenesis of several diseases, including BAFF in malaria. The aim of this study was to investigate whether APRIL and BAFF plasma concentrations could be part of inflammatory responses associated with P. vivax and P. falciparum malaria in patients from the Brazilian Amazon. METHODS Blood samples were obtained from P. vivax and P. falciparum malaria patients (n = 52) resident in Porto Velho before and 15 days after the beginning of treatment and from uninfected individuals (n = 12). We investigated APRIL and BAFF circulating levels and their association with parasitaemia, WBC counts, and cytokine/chemokine plasma levels. The expression levels of transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI) on PBMC from a subset of 5 P. vivax-infected patients were analyzed by flow cytometry. RESULTS APRIL plasma levels were transiently increased during acute P. vivax and P. falciparum infections whereas BAFF levels were only increased during acute P. falciparum malaria. Although P. vivax and P. falciparum malaria patients have similar cytokine profiles during infection, in P. vivax acute phase malaria, APRIL but not BAFF levels correlated positively with IL-1, IL-2, IL-4, IL-6, and IL-13 levels. We did not find any association between P. vivax parasitaemia and APRIL levels, while an inverse correlation was found between P. falciparum parasitaemia and APRIL levels. The percentage of TACI positive CD4+ and CD8+ T cells were increased in the acute phase P. vivax malaria. CONCLUSION These findings suggest that the APRIL and BAFF inductions reflect different host strategies for controlling infection with each malaria species.
Collapse
Affiliation(s)
- Raquel A Pinna
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Adriana C Dos Santos
- Laboratory of Experimental Pathology, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil, 24020-140
| | - Daiana S Perce-da-Silva
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Luciene A da Silva
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Rodrigo N Rodrigues da Silva
- Laboratory of Imunoparasitology Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Marcelo R Alves
- Laboratory of Research in Pharmacogenetics, National Institute of Infectology, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Fátima Santos
- Laboratory of Entomology, LACEN/RO, Rua Anita Garibalde, 4130 - Costa e Silva, Porto Velho, RO, Brazil, 76803-620
| | - Joseli de Oliveira Ferreira
- Laboratory of Imunoparasitology Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Josué C Lima-Junior
- Laboratory of Imunoparasitology Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Déa M Villa-Verde
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Paula M De Luca
- Laboratory of Imunoparasitology Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| | - Carla E Carvalho-Pinto
- Laboratory of Experimental Pathology, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil, 24020-140
| | - Dalma M Banic
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ, Brazil, 21040-360
| |
Collapse
|
58
|
Pegha-Moukandja I, Imboumy-Limoukou RK, Tchitoula-Makaya N, Mouinga-Ondeme AG, Biteghe-Bi-Essone JC, Mba DN, Lekana-Douki JB, Ndouo FST. High Level of Specific Anti- Plasmodium Falciparum Merozoite IgG1 Antibodies in Rural Asymptomatic Individuals of Dienga, South-Eastern Gabon. Eur J Microbiol Immunol (Bp) 2017; 7:247-260. [PMID: 29403652 PMCID: PMC5793693 DOI: 10.1556/1886.2017.00010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/12/2017] [Indexed: 01/01/2023] Open
Abstract
Plasmodium falciparum merozoite antigens (PfMAgs) play an essential role in the development of immunity to malaria. Currently, P. falciparum: protein 113 (Pf 113), apical membrane antigen 1 (AMA1), erythrocyte binding antigens (EBA175), and reticulocyte binding protein homologue 5 (RH5) are among the most PfMAgs studied. A comparative analysis of naturally acquired antibodies against these antigens in children would increase our knowledge about the development of protective immunity. Analysis of antibodies to Pf113, PfAMA1, PfEBA175, and PfRH5 was conducted in rural population during 2013 and 2014. Both prevalence and levels of total IgG anti-PfAMA1 were higher than that of IgG anti-PfEBA175, anti-PfRH5, and anti-Pf113. Seroconversion to PfAMA1 and PfEBA175 occurred moderately in young children and reached to the maximum in adolescent and in adults. High prevalence of IgG anti-Pf113 was observed in young children of 3 to 6 years old in 2013. The four antigens were recognized by IgG 1, 2, 3, and 4 antibodies from a large proportion of the subjects, and all of them induced high levels of specific IgG1 against PfAMA1, PfEBA175, fewer by Pf113 and PfRH5. Many asymptomatic children had specific IgG1 recognizing multiple antigens, and these IgG1 antibodies could be associated with a reduced risk of developing malaria symptoms.
Collapse
Affiliation(s)
- Irène Pegha-Moukandja
- Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville Gabon, Africa.,Département de Parasitologie-Mycologie et Médecine Tropicale, Faculté de Médecine, Université des Sciences de la Santé, BP 4009, Libreville, Gabon, Africa.,Ecole Doctorale Régionale en Infectiologie Tropicale d'Afrique Centrale (ECODRAC), BP 876, Franceville, Gabon, Africa
| | - Roméo-Karl Imboumy-Limoukou
- Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville Gabon, Africa.,Ecole Doctorale Régionale en Infectiologie Tropicale d'Afrique Centrale (ECODRAC), BP 876, Franceville, Gabon, Africa
| | - Nina Tchitoula-Makaya
- Ecole Doctorale Régionale en Infectiologie Tropicale d'Afrique Centrale (ECODRAC), BP 876, Franceville, Gabon, Africa
| | | | - Jean Claude Biteghe-Bi-Essone
- Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville Gabon, Africa.,Ecole Doctorale Régionale en Infectiologie Tropicale d'Afrique Centrale (ECODRAC), BP 876, Franceville, Gabon, Africa
| | - Dieudonne Nkoghe Mba
- Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville Gabon, Africa
| | - Jean-Bernard Lekana-Douki
- Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville Gabon, Africa.,Département de Parasitologie-Mycologie et Médecine Tropicale, Faculté de Médecine, Université des Sciences de la Santé, BP 4009, Libreville, Gabon, Africa.,Ecole Doctorale Régionale en Infectiologie Tropicale d'Afrique Centrale (ECODRAC), BP 876, Franceville, Gabon, Africa
| | - Fousseyni S Toure Ndouo
- Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville Gabon, Africa
| |
Collapse
|
59
|
Sakamoto H, Takeo S, Takashima E, Miura K, Kanoi BN, Kaneko T, Han ET, Tachibana M, Matsuoka K, Sattabongkot J, Udomsangpetch R, Ishino T, Tsuboi T. Identification of target proteins of clinical immunity to Plasmodium falciparum in a region of low malaria transmission. Parasitol Int 2017; 67:203-208. [PMID: 29217416 DOI: 10.1016/j.parint.2017.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 01/03/2023]
Abstract
The target molecules of antibodies against falciparum malaria remain largely unknown. Recently we have identified multiple proteins as targets of immunity against Plasmodium falciparum using African serum samples. To investigate whether potential targets of clinical immunity differ with transmission intensity, we assessed immune responses in residents of low malaria transmission region in Thailand. Malaria asymptomatic volunteers (Asy: n=19) and symptomatic patients (Sym: n=21) were enrolled into the study. Serum immunoreactivity to 186 wheat germ cell-free system (WGCFS)-synthesized recombinant P. falciparum asexual-blood stage proteins were determined by AlphaScreen, and subsequently compared between the study groups. Forty proteins were determined as immunoreactive with antibody responses to 35 proteins being higher in Asy group than in Sym group. Among the 35 proteins, antibodies to MSP3, MSPDBL1, RH2b, and MSP7 were significantly higher in Asy than Sym (unadjusted p<0.005) suggesting these antigens may have a protective role in clinical malaria. MSP3 reactivity remained significantly different between Asy and Sym groups even after multiple comparison adjustments (adjusted p=0.033). Interestingly, while our two preceding studies using African sera were conducted differently (e.g., cross-sectional vs. longitudinal design, observed clinical manifestation vs. functional activity), those studies similarly identified MSP3 and MSPDBL1 as potential targets of protective immunity. This study further provides a strong rationale for the application of WGCFS-based immunoprofiling to malaria vaccine candidate and biomarker discovery even in low or reduced malaria transmission settings.
Collapse
Affiliation(s)
- Hirokazu Sakamoto
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Satoru Takeo
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Bernard N Kanoi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Takamasa Kaneko
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 200-701, Republic of Korea
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan
| | - Kazuhiro Matsuoka
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan
| | - Jetsumon Sattabongkot
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Rachanee Udomsangpetch
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakhosn Pathom 73170, Thailand
| | - Tomoko Ishino
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
60
|
Nilsson Bark SK, Ahmad R, Dantzler K, Lukens AK, De Niz M, Szucs MJ, Jin X, Cotton J, Hoffmann D, Bric-Furlong E, Oomen R, Parrington M, Milner D, Neafsey DE, Carr SA, Wirth DF, Marti M. Quantitative Proteomic Profiling Reveals Novel Plasmodium falciparum Surface Antigens and Possible Vaccine Candidates. Mol Cell Proteomics 2017; 17:43-60. [PMID: 29162636 DOI: 10.1074/mcp.ra117.000076] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/20/2017] [Indexed: 12/30/2022] Open
Abstract
Despite recent efforts toward control and elimination, malaria remains a major public health problem worldwide. Plasmodium falciparum resistance against artemisinin, used in front line combination drugs, is on the rise, and the only approved vaccine shows limited efficacy. Combinations of novel and tailored drug and vaccine interventions are required to maintain the momentum of the current malaria elimination program. Current evidence suggests that strain-transcendent protection against malaria infection can be achieved using whole organism vaccination or with a polyvalent vaccine covering multiple antigens or epitopes. These approaches have been successfully applied to the human-infective sporozoite stage. Both systemic and tissue-specific pathology during infection with the human malaria parasite P. falciparum is caused by asexual blood stages. Tissue tropism and vascular sequestration are the result of specific binding interactions between antigens on the parasite-infected red blood cell (pRBC) surface and endothelial receptors. The major surface antigen and parasite ligand binding to endothelial receptors, PfEMP1 is encoded by about 60 variants per genome and shows high sequence diversity across strains. Apart from PfEMP1 and three additional variant surface antigen families RIFIN, STEVOR, and SURFIN, systematic analysis of the infected red blood cell surface is lacking. Here we present the most comprehensive proteomic investigation of the parasitized red blood cell surface so far. Apart from the known variant surface antigens, we identified a set of putative single copy surface antigens with low sequence diversity, several of which are validated in a series of complementary experiments. Further functional and immunological investigation is underway to test these novel P. falciparum blood stage proteins as possible vaccine candidates.
Collapse
Affiliation(s)
- Sandra K Nilsson Bark
- From the ‡Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Rushdy Ahmad
- §The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Kathleen Dantzler
- From the ‡Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115.,¶Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| | - Amanda K Lukens
- From the ‡Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115.,§The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Mariana De Niz
- ¶Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| | - Matthew J Szucs
- §The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Xiaoying Jin
- ‖Sanofi Biopharmaceutics Development, Framingham, Massachusetts 02142
| | - Joanne Cotton
- ‖Sanofi Biopharmaceutics Development, Framingham, Massachusetts 02142
| | | | | | - Ray Oomen
- **Sanofi Pasteur Biologics, Cambridge, Massachusetts 02139
| | | | - Dan Milner
- From the ‡Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115.,‡‡Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Daniel E Neafsey
- §The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Steven A Carr
- §The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Dyann F Wirth
- From the ‡Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115.,§The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Matthias Marti
- From the ‡Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115; .,¶Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
61
|
Aguilar R, Casabonne D, O’Callaghan-Gordo C, Vidal M, Campo JJ, Mutalima N, Angov E, Dutta S, Gaur D, Chitnis CE, Chauhan V, Michel A, de Sanjosé S, Waterboer T, Kogevinas M, Newton R, Dobaño C. Assessment of the Combined Effect of Epstein-Barr Virus and Plasmodium falciparum Infections on Endemic Burkitt Lymphoma Using a Multiplex Serological Approach. Front Immunol 2017; 8:1284. [PMID: 29123514 PMCID: PMC5662586 DOI: 10.3389/fimmu.2017.01284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/25/2017] [Indexed: 12/30/2022] Open
Abstract
Epstein-Barr virus (EBV) is a necessary cause of endemic Burkitt lymphoma (eBL), while the role of Plasmodium falciparum in eBL remains uncertain. This study aimed to generate new hypotheses on the interplay between both infections in the development of eBL by investigating the IgG and IgM profiles against several EBV and P. falciparum antigens. Serum samples collected in a childhood study in Malawi (2005-2006) from 442 HIV-seronegative children (271 eBL cases and 171 controls) between 1.4 and 15 years old were tested by quantitative suspension array technology against a newly developed multiplex panel combining 4 EBV antigens [Z Epstein-Barr replication activator protein (ZEBRA), early antigen-diffuse component (EA-D), EBV nuclear antigen 1, and viral capsid antigen p18 subunit (VCA-p18)] and 15 P. falciparum antigens selected for their immunogenicity, role in malaria pathogenesis, and presence in different parasite stages. Principal component analyses, multivariate logistic models, and elastic-net regressions were used. As expected, elevated levels of EBV IgG (especially against the lytic antigens ZEBRA, EA-D, and VCA-p18) were strongly associated with eBL [high vs low tertile odds ratio (OR) = 8.67, 95% confidence interval (CI) = 4.81-15.64]. Higher IgG responses to the merozoite surface protein 3 were observed in children with eBL compared with controls (OR = 1.29, 95% CI = 1.02-1.64), showing an additive interaction with EBV IgGs (OR = 10.6, 95% CI = 5.1-22.2, P = 0.05). Using elastic-net regression models, eBL serological profile was further characterized by lower IgM levels against P. falciparum preerythrocytic-stage antigen CelTOS and EBV lytic antigen VCA-p18 compared with controls. In a secondary analysis, abdominal Burkitt lymphoma had lower IgM to EBV and higher IgG to EA-D levels than cases with head involvement. Overall, this exploratory study confirmed the strong role of EBV in eBL and identified differential IgG and IgM patterns to erythrocytic vs preerythrocytic P. falciparum antigens that suggest a more persistent/chronic malaria exposure and a weaker IgM immune response in children with eBL compared with controls. Future studies should continue exploring how the malaria infection status and the immune response to P. falciparum interact with EBV infection in the development of eBL.
Collapse
Affiliation(s)
- Ruth Aguilar
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Delphine Casabonne
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Unit of Infections and Cancer, Cancer Epidemiology Research Programme, IDIBELL, Institut Català d’Oncologia, L’Hospitalet de Llobregat, Spain
| | - Cristina O’Callaghan-Gordo
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marta Vidal
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Joseph J. Campo
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Nora Mutalima
- Department of Orthopaedic Surgery, Monash Health, Melbourne, VIC, Australia
- Department of Surgery, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
| | | | | | - Deepak Gaur
- ICGEB, Delhi, India
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | - Silvia de Sanjosé
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Unit of Infections and Cancer, Cancer Epidemiology Research Programme, IDIBELL, Institut Català d’Oncologia, L’Hospitalet de Llobregat, Spain
| | - Tim Waterboer
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manolis Kogevinas
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Rob Newton
- Epidemiology and Cancer Statistics Group, University of York, York, United Kingdom
- MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Carlota Dobaño
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
62
|
Pratt-Riccio LR, De Souza Perce-Da-Silva D, Da Costa Lima-Junior J, Pratt Riccio EK, Ribeiro-Alves M, Santos F, Arruda M, Camus D, Druilhe P, Oliveira-Ferreira J, Daniel-Ribeiro CT, Banic DM. Synthetic Antigens Derived from Plasmodium falciparum Sporozoite, Liver, and Blood Stages: Naturally Acquired Immune Response and Human Leukocyte Antigen Associations in Individuals Living in a Brazilian Endemic Area. Am J Trop Med Hyg 2017; 97:1581-1592. [PMID: 29016339 DOI: 10.4269/ajtmh.17-0359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Peptide vaccine strategies using Plasmodium-derived antigens have emerged as an attractive approach against malaria. However, relatively few studies have been conducted with malaria-exposed populations from non-African countries. Herein, the seroepidemiological profile against Plasmodium falciparum of naturally exposed individuals from a Brazilian malaria-endemic area against synthetic peptides derived from vaccine candidates circumsporozoite protein (CSP), liver stage antigen-1 (LSA-1), erythrocyte binding antigen-175 (EBA-175), and merozoite surface protein-3 (MSP-3) was investigated. Moreover, human leukocyte antigen (HLA)-DRB1* and HLA-DQB1* were evaluated to characterize genetic modulation of humoral responsiveness to these antigens. The study was performed using blood samples from 187 individuals living in rural malaria-endemic villages situated near Porto Velho, Rondônia State. Specific IgG and IgM antibodies and IgG subclasses were detected by enzyme-linked immunosorbent assay, and HLA-DRB1* and HLA-DQB1* low-resolution typing was performed by PCR-SSP. All four synthetic peptides were broadly recognized by naturally acquired antibodies. Regarding the IgG subclass profile, only CSP induced IgG1 and IgG3 antibodies, which is an important fact given that the acquisition of protective immunity appears to be associated with the cytophilicity of IgG1 and IgG3 antibodies. HLA-DRB1*11 and HLA-DQB1*7 had the lowest odds of responding to EBA-175. Our results showed that CSP, LSA-1, EBA, and MSP-3 are immunogenic in natural conditions of exposure and that anti-EBA antibody responses appear to be modulated by HLA class II antigens.
Collapse
Affiliation(s)
| | | | | | | | - Marcelo Ribeiro-Alves
- Laboratório de Pesquisa Clínica em DST/AIDS, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
| | - Fátima Santos
- Laboratório Central de Saúde Pública (LACEN), Rondônia, Brazil
| | - Mercia Arruda
- Departamento de Imunologia, Centro de Pesquisas Aggeu Magalhães, Fiocruz, Recife, Brazil
| | - Daniel Camus
- Service de Parasitologie-Mycologie, Faculte de Médecine, Lille, France
| | | | | | | | - Dalma Maria Banic
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
63
|
Cherif MK, Ouédraogo O, Sanou GS, Diarra A, Ouédraogo A, Tiono A, Cavanagh DR, Michael T, Konaté AT, Watson NL, Sanza M, Dube TJT, Sirima SB, Nebié I. Antibody responses to P. falciparum blood stage antigens and incidence of clinical malaria in children living in endemic area in Burkina Faso. BMC Res Notes 2017; 10:472. [PMID: 28886727 PMCID: PMC5591548 DOI: 10.1186/s13104-017-2772-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 08/31/2017] [Indexed: 11/10/2022] Open
Abstract
Background High parasite-specific antibody levels are generally associated with low susceptibility to Plasmodium falciparum malaria. This has been supported by several studies in which clinical malaria cases of P. falciparum malaria were reported to be associated with low antibody avidities. This study was conducted to evaluate the role of age, malaria transmission intensity and incidence of clinical malaria in the induction of protective humoral immune response against P. falciparum malaria in children living in Burkina Faso. Methods We combined levels of IgG and IgG subclasses responses to P. falciparum antigens: Merozoite Surface Protein 3 (MSP3), Merozoite Surface Protein 2a (MSP2a), Merozoite Surface Protein 2b (MSP2b), Glutamate Rich Protein R0 (GLURP R0) and Glutamate Rich Protein R2 (GLURP R2) in plasma samples from 325 children under five (05) years with age, malaria transmission season and malaria incidence. Results We notice higher prevalence of P. falciparum infection in low transmission season compared to high malaria transmission season. While, parasite density was lower in low transmission than high transmission season. IgG against all antigens investigated increased with age. High levels of IgG and IgG subclasses to all tested antigens except for GLURP R2 were associated with the intensity of malaria transmission. IgG to MSP3, MSP2b, GLURP R2 and GLURP R0 were associated with low incidence of malaria. All IgG subclasses were associated with low incidence of P. falciparum malaria, but these associations were stronger for cytophilic IgGs. Conclusions On the basis of the data presented in this study, we conclude that the induction of humoral immune response to tested malaria antigens is related to age, transmission season level and incidence of clinical malaria.
Collapse
Affiliation(s)
- Mariama K Cherif
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso.,Université Polytechnique de Bobo-Dioulasso, Bobo-Dioulasso, Burkina Faso
| | - Oumarou Ouédraogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso.,Université de Ouagadougou, Ouagadougou, Burkina Faso
| | - Guillaume S Sanou
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Amidou Diarra
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Alphonse Ouédraogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Alfred Tiono
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - David R Cavanagh
- Institute of Immunology and Infection Research, University of Edinburgh, Scotland, UK
| | - Theisen Michael
- Department of Clinical Biochemistry Statens Serum, Copenhagen, Denmark
| | - Amadou T Konaté
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | | | | | | | - Sodiomon B Sirima
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Issa Nebié
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso.
| |
Collapse
|
64
|
Abstract
PURPOSE OF REVIEW Only four HIV-1 vaccine concepts have been tested in six efficacy trials with no product licensed to date. Several scientific and programmatic lessons can be learned from these studies generating new hypotheses and guiding future steps. RECENT FINDINGS RV144 [ALVAC-HIV (canarypox vector) and AIDSVAX B/E (bivalent gp120 HIV-1 subtype B and CRF01_AE)] remains the only efficacy trial that demonstrated a modest vaccine efficacy, which led to the identification of immune correlates of risk. Progress on subtype-specific, ALVAC (canarypox vector) and gp120 vaccine prime-boost approaches has been slow, but we are finally close to the launch of an efficacy study in Africa in 2016. The quest of a globally effective HIV-1 vaccine has led to the development of new approaches. Efficacy studies of combinations of Adenovirus type 26 (Ad26)/Modified Vaccinia Ankara (MVA)/gp140 vaccines with mosaic designs will enter efficacy studies mid-2017 and cytomegalovirus (CMV)-vectored vaccines begin Phase I studies at the same time. Future HIV-1 vaccine efficacy trials face practical challenges as effective nonvaccine prevention programs are projected to decrease HIV-1 incidence. SUMMARY An HIV-1 vaccine is urgently needed. Increased industry involvement, mobilization of resources, expansion of a robust pipeline of new concepts, and robust preclinical challenge studies will be essential to accelerate efficacy testing of next generation HIV-1 vaccine candidates.
Collapse
|
65
|
Tomaras GD, Plotkin SA. Complex immune correlates of protection in HIV-1 vaccine efficacy trials. Immunol Rev 2017; 275:245-261. [PMID: 28133811 DOI: 10.1111/imr.12514] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Development of an efficacious HIV-1 vaccine is a major priority for improving human health worldwide. Vaccine-mediated protection against human pathogens can be achieved through elicitation of protective innate, humoral, and cellular responses. Identification of specific immune responses responsible for pathogen protection enables vaccine development and provides insights into host defenses against pathogens and the immunological mechanisms that most effectively fight infection. Defining immunological correlates of transmission risk in preclinical and clinical HIV-1 vaccine trials has moved the HIV-1 vaccine development field forward and directed new candidate vaccine development. Immune correlate studies are providing novel hypotheses about immunological mechanisms that may be responsible for preventing HIV-1 acquisition. Recent results from HIV-1 immune correlates work has demonstrated that there are multiple types of immune responses that together, comprise an immune correlate-thus implicating polyfunctional immune control of HIV-1 transmission. An in depth understanding of these complex immunological mechanisms of protection against HIV-1 will accelerate the development of an efficacious HIV-1 vaccine.
Collapse
Affiliation(s)
- Georgia D Tomaras
- Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Duke Human Vaccine Institute, Durham, NC, USA
| | - Stanley A Plotkin
- Vaxconsult, Doylestown, PA, USA.,University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
66
|
Theisen M, Adu B, Mordmüller B, Singh S. The GMZ2 malaria vaccine: from concept to efficacy in humans. Expert Rev Vaccines 2017; 16:907-917. [PMID: 28699823 DOI: 10.1080/14760584.2017.1355246] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION GMZ2 is a recombinant protein consisting of conserved domains of GLURP and MSP3, two asexual blood-stage antigens of Plasmodium falciparum, and is designed with the aim of mimicking naturally acquired anti-malarial immunity. The rationale for combining these two antigens is based on a series of immune epidemiological studies from geographically diverse malaria endemic regions; functional in vitro studies; and pre-clinical studies in rodents and New World monkeys. GMZ2 adjuvanted with alhydrogel® (alum) was well tolerated and immunogenic in three phase 1 studies. The recently concluded phase 2 trial of GMZ2/alum, involving 1849 participants 12 to 60 month of age in four countries in West, Central and Eastern Africa, showed that GMZ2 is well tolerated and has some, albeit modest, efficacy in the target population. Areas covered: PubMed ( www.ncbi.nlm.nih.gov/pubmed ) was searched to review the progress and future prospects for clinical development of GMZ2 sub-unit vaccine. We will focus on discovery, naturally acquired immunity, functional activity of specific antibodies, sequence diversity, production, pre-clinical and clinical studies. Expert commentary: GMZ2 is well tolerated and has some, albeit modest, efficacy in the target population. More immunogenic formulations should be developed.
Collapse
Affiliation(s)
- Michael Theisen
- a Department for Congenital Disorders , Statens Serum Institut , Copenhagen , Denmark.,b Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology , University of Copenhagen , Copenhagen , Denmark.,c Department of Infectious Diseases , Copenhagen University Hospital , Rigshospitalet , Denmark
| | - Bright Adu
- d Noguchi Memorial Institute for Medical Research , University of Ghana , Legon , Ghana
| | - Benjamin Mordmüller
- e Institute of Tropical Medicine and Center for Infection Research, partner site Tübingen , University of Tübingen , Tübingen , Germany
| | - Subhash Singh
- f Indian Institute of Integrative Medicine , Jammu , India
| |
Collapse
|
67
|
Kana IH, Adu B, Tiendrebeogo RW, Singh SK, Dodoo D, Theisen M. Naturally Acquired Antibodies Target the Glutamate-Rich Protein on Intact Merozoites and Predict Protection Against Febrile Malaria. J Infect Dis 2017; 215:623-630. [PMID: 28329101 DOI: 10.1093/infdis/jiw617] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/05/2017] [Indexed: 11/14/2022] Open
Abstract
Background Plasmodium species antigens accessible at the time of merozoite release are likely targets of biologically functional antibodies. Methods Immunoglobulin G (IgG) antibodies against intact merozoites were quantified in the plasma of Ghanaian children from a longitudinal cohort using a novel flow cytometry-based immunofluorescence assay. Functionality of these antibodies, as well as glutamate-rich protein (GLURP)-specific affinity-purified IgG from malaria hyperimmune Liberian adults, was assessed by the opsonic phagocytosis (OP) assay. Results Opsonic phagocytosis activity was strongly associated (hazard ratio [HR] = 0.46; 95% confidence interval [CI] = .30-.73; P = .0008) with protection against febrile malaria. Of the antimerozoite-specific antibodies, only IgG3 was significantly associated with both OP and protection (HR = 0.53; 95% CI = .34-.84; Pcorrected = .03) against febrile malaria. Similarly, GLURP-specific antibodies previously shown to be protective against febrile malaria in this same cohort were significantly associated with OP activity in this study. GLURP-specific antibodies recognized merozoites and also mediated OP activity. Conclusions These findings support previous studies that found OP of merozoites to be associated with protection against malaria and further shows IgG3 and GLURP antibodies are key in the OP mechanism, thus giving further impetus for the development of malaria vaccines targeting GLURP.
Collapse
Affiliation(s)
- Ikhlaq Hussain Kana
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Bright Adu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon
| | - Régis Wendpayangde Tiendrebeogo
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Susheel Kumar Singh
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Daniel Dodoo
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
68
|
Karnasuta C, Akapirat S, Madnote S, Savadsuk H, Puangkaew J, Rittiroongrad S, Rerks-Ngarm S, Nitayaphan S, Pitisuttithum P, Kaewkungwal J, Tartaglia J, Sinangil F, Francis DP, Robb ML, de Souza MS, Michael NL, Excler JL, Kim JH, O'Connell RJ, Karasavvas N. Comparison of Antibody Responses Induced by RV144, VAX003, and VAX004 Vaccination Regimens. AIDS Res Hum Retroviruses 2017; 33:410-423. [PMID: 28006952 PMCID: PMC5439458 DOI: 10.1089/aid.2016.0204] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The RV144 prime-boost regimen demonstrated efficacy against HIV acquisition while VAX003 and VAX004 did not. Although these trials differed by risk groups, immunization regimens, and immunogens, antibody responses may have contributed to the differences observed in vaccine efficacy. We assessed HIV-specific IgG, both total and subclass, and IgA binding to HIV envelope (Env): gp120 proteins and Cyclic V2 (CycV2) and CycV3 peptides and gp70 V1 V2 scaffolds in these 3 HIV vaccine trials. After two protein immunizations, IgG responses to 92TH023 gp120 (contained in ALVAC-HIV vaccine) were significantly higher in RV144 but responses to other Env were higher in the VAX trials lacking ALVAC-HIV. IgG responses declined significantly between vaccinations. All trials induced antibodies to gp70 V1 V2 but VAX004 responses to 92TH023 gp70 V1 V2 were weak. All CycV2 responses were undetectable in VAX004 while 92TH023 gp70 V1 V2 was detected in both RV144 and VAX003 but MN CycV2 was detected only in VAX003. Multiple protein vaccinations in VAX trials did not improve magnitude or durability of V1 V2 and CycV2 antibodies. Herpes simplex virus glycoprotein D (gD) peptide at the N terminus of AIDSVAX® B/E and B/B gp120 proteins induced antibodies in all trials, although significantly higher in VAX trials. gD peptide induced IgA, IgG1, IgG2, and IgG3 but not IgG4. Multiple protein vaccinations decreased IgG3 and increased IgG4 changing subclass contribution to total IgG. Although confounded by different modes of HIV transmission, higher Env-specific IgA and IgG4 binding antibodies induced in the VAX trials compared to RV144 raises the hypothesis that these differences may have contributed to different vaccine efficacy results.
Collapse
Affiliation(s)
- Chitraporn Karnasuta
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Siriwat Akapirat
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Sirinan Madnote
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Hathairat Savadsuk
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Jiraporn Puangkaew
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Surawach Rittiroongrad
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | | | | | - Punnee Pitisuttithum
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jaranit Kaewkungwal
- Center of Excellence for Biomedical and Public Health Informatics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Faruk Sinangil
- Global Solutions for Infectious Diseases (GSID), South San Francisco, California
| | - Donald P. Francis
- Global Solutions for Infectious Diseases (GSID), South San Francisco, California
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | | | - Nelson L. Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | - Jerome H. Kim
- International Vaccine Institute, Seoul, Republic of Korea
| | - Robert J. O'Connell
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Nicos Karasavvas
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| |
Collapse
|
69
|
Rodrigues-da-Silva RN, Soares IF, Lopez-Camacho C, Martins da Silva JH, Perce-da-Silva DDS, Têva A, Ramos Franco AM, Pinheiro FG, Chaves LB, Pratt-Riccio LR, Reyes-Sandoval A, Banic DM, Lima-Junior JDC. Plasmodium vivax Cell-Traversal Protein for Ookinetes and Sporozoites: Naturally Acquired Humoral Immune Response and B-Cell Epitope Mapping in Brazilian Amazon Inhabitants. Front Immunol 2017; 8:77. [PMID: 28223984 PMCID: PMC5293784 DOI: 10.3389/fimmu.2017.00077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/17/2017] [Indexed: 11/15/2022] Open
Abstract
The cell-traversal protein for ookinetes and sporozoites (CelTOS), a highly conserved antigen involved in sporozoite motility, plays an important role in the traversal of host cells during the preerythrocytic stage of Plasmodium species. Recently, it has been considered an alternative target when designing novel antimalarial vaccines against Plasmodium falciparum. However, the potential of Plasmodium vivax CelTOS as a vaccine target is yet to be explored. This study evaluated the naturally acquired immune response against a recombinant P. vivax CelTOS (PvCelTOS) (IgG and IgG subclass) in 528 individuals from Brazilian Amazon, as well as the screening of B-cell epitopes in silico and peptide assays to associate the breadth of antibody responses of those individuals with exposition and/or protection correlates. We show that PvCelTOS is naturally immunogenic in Amazon inhabitants with 94 individuals (17.8%) showing specific IgG antibodies against the recombinant protein. Among responders, the IgG reactivity indexes (RIs) presented a direct correlation with the number of previous malaria episodes (p = 0.003; r = 0.315) and inverse correlation with the time elapsed from the last malaria episode (p = 0.031; r = −0.258). Interestingly, high responders to PvCelTOS (RI > 2) presented higher number of previous malaria episodes, frequency of recent malaria episodes, and ratio of cytophilic/non-cytophilic antibodies than low responders (RI < 2) and non-responders (RI < 1). Moreover, a high prevalence of the cytophilic antibody IgG1 over all other IgG subclasses (p < 0.0001) was observed. B-cell epitope mapping revealed five immunogenic regions in PvCelTOS, but no associations between the specific IgG response to peptides and exposure/protection parameters were found. However, the epitope (PvCelTOSI136-E143) was validated as a main linear B-cell epitope, as 92% of IgG responders to PvCelTOS were also responders to this peptide sequence. This study describes for the first time the natural immunogenicity of PvCelTOS in Amazon individuals and identifies immunogenic regions in a full-length protein. The IgG magnitude was mainly composed of cytophilic antibodies (IgG1) and associated with recent malaria episodes. The data presented in this paper add further evidence to consider PvCelTOS as a vaccine candidate.
Collapse
Affiliation(s)
| | | | - Cesar Lopez-Camacho
- Nuffield Department of Medicine, The Jenner Institute, The Henry Wellcome Building for Molecular Physiology, University of Oxford , Oxford , UK
| | | | | | - Antônio Têva
- Laboratory of Immunodiagnostics, Department of Biological Sciences, National School of Public Health, Fiocruz , Rio de Janeiro , Brazil
| | - Antônia Maria Ramos Franco
- Laboratory of Leishmaniasis and Chagas Disease, National Institute of Amazonian Research , Manaus , Brazil
| | - Francimeire Gomes Pinheiro
- Laboratory of Leishmaniasis and Chagas Disease, National Institute of Amazonian Research , Manaus , Brazil
| | - Lana Bitencourt Chaves
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Fiocruz , Rio de Janeiro , Brazil
| | | | - Arturo Reyes-Sandoval
- Nuffield Department of Medicine, The Jenner Institute, The Henry Wellcome Building for Molecular Physiology, University of Oxford , Oxford , UK
| | - Dalma Maria Banic
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, Fiocruz , Rio de Janeiro , Brazil
| | | |
Collapse
|
70
|
Kassegne K, Abe EM, Chen JH, Zhou XN. Immunomic approaches for antigen discovery of human parasites. Expert Rev Proteomics 2016; 13:1091-1101. [DOI: 10.1080/14789450.2016.1252675] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Kokouvi Kassegne
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, People’s Republic of China
| | - Eniola Michael Abe
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, People’s Republic of China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, People’s Republic of China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, People’s Republic of China
| |
Collapse
|
71
|
Pattaradilokrat S, Sawaswong V, Simpalipan P, Kaewthamasorn M, Siripoon N, Harnyuttanakorn P. Genetic diversity of the merozoite surface protein-3 gene in Plasmodium falciparum populations in Thailand. Malar J 2016; 15:517. [PMID: 27769257 PMCID: PMC5073822 DOI: 10.1186/s12936-016-1566-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/07/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND An effective malaria vaccine is an urgently needed tool to fight against human malaria, the most deadly parasitic disease of humans. One promising candidate is the merozoite surface protein-3 (MSP-3) of Plasmodium falciparum. This antigenic protein, encoded by the merozoite surface protein (msp-3) gene, is polymorphic and classified according to size into the two allelic types of K1 and 3D7. A recent study revealed that both the K1 and 3D7 alleles co-circulated within P. falciparum populations in Thailand, but the extent of the sequence diversity and variation within each allelic type remains largely unknown. METHODS The msp-3 gene was sequenced from 59 P. falciparum samples collected from five endemic areas (Mae Hong Son, Kanchanaburi, Ranong, Trat and Ubon Ratchathani) in Thailand and analysed for nucleotide sequence diversity, haplotype diversity and deduced amino acid sequence diversity. The gene was also subject to population genetic analysis (F st ) and neutrality tests (Tajima's D, Fu and Li D* and Fu and Li' F* tests) to determine any signature of selection. RESULTS The sequence analyses revealed eight unique DNA haplotypes and seven amino acid sequence variants, with a haplotype and nucleotide diversity of 0.828 and 0.049, respectively. Neutrality tests indicated that the polymorphism detected in the alanine heptad repeat region of MSP-3 was maintained by positive diversifying selection, suggesting its role as a potential target of protective immune responses and supporting its role as a vaccine candidate. Comparison of MSP-3 variants among parasite populations in Thailand, India and Nigeria also inferred a close genetic relationship between P. falciparum populations in Asia. CONCLUSION This study revealed the extent of the msp-3 gene diversity in P. falciparum in Thailand, providing the fundamental basis for the better design of future blood stage malaria vaccines against P. falciparum.
Collapse
Affiliation(s)
| | - Vorthon Sawaswong
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Phumin Simpalipan
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Morakot Kaewthamasorn
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Napaporn Siripoon
- College of Public Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | | |
Collapse
|
72
|
Drew DR, Wilson DW, Elliott SR, Cross N, Terheggen U, Hodder AN, Siba PM, Chelimo K, Dent AE, Kazura JW, Mueller I, Beeson JG. A novel approach to identifying patterns of human invasion-inhibitory antibodies guides the design of malaria vaccines incorporating polymorphic antigens. BMC Med 2016; 14:144. [PMID: 27658419 PMCID: PMC5034621 DOI: 10.1186/s12916-016-0691-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The polymorphic nature of many malaria vaccine candidates presents major challenges to achieving highly efficacious vaccines. Presently, there is very little knowledge on the prevalence and patterns of functional immune responses to polymorphic vaccine candidates in populations to guide vaccine design. A leading polymorphic vaccine candidate against blood-stage Plasmodium falciparum is apical membrane antigen 1 (AMA1), which is essential for erythrocyte invasion. The importance of AMA1 as a target of acquired human inhibitory antibodies, their allele specificity and prevalence in populations is unknown, but crucial for vaccine design. METHODS P. falciparum lines expressing different AMA1 alleles were genetically engineered and used to quantify functional antibodies from two malaria-exposed populations of adults and children. The acquisition of AMA1 antibodies was also detected using enzyme-linked immunosorbent assay (ELISA) and competition ELISA (using different AMA1 alleles) from the same populations. RESULTS We found that AMA1 was a major target of naturally acquired invasion-inhibitory antibodies that were highly prevalent in malaria-endemic populations and showed a high degree of allele specificity. Significantly, the prevalence of inhibitory antibodies to different alleles varied substantially within populations and between geographic locations. Inhibitory antibodies to three specific alleles were highly prevalent (FVO and W2mef in Papua New Guinea; FVO and XIE in Kenya), identifying them for potential vaccine inclusion. Measurement of antibodies by standard or competition ELISA was not strongly predictive of allele-specific inhibitory antibodies. The patterns of allele-specific functional antibody responses detected with our novel assays may indicate that acquired immunity is elicited towards serotypes that are prevalent in each geographic location. CONCLUSIONS These findings provide new insights into the nature and acquisition of functional immunity to a polymorphic vaccine candidate and strategies to quantify functional immunity in populations to guide rational vaccine design.
Collapse
Affiliation(s)
- Damien R Drew
- The Burnet Institute of Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, 3004, Australia
| | - Danny W Wilson
- The Burnet Institute of Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, 3004, Australia.,Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Salenna R Elliott
- The Burnet Institute of Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, 3004, Australia
| | - Nadia Cross
- The Burnet Institute of Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, 3004, Australia
| | - Ulrich Terheggen
- The Burnet Institute of Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, 3004, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony N Hodder
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | | | - Arlene E Dent
- Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - James G Beeson
- The Burnet Institute of Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, 3004, Australia. .,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia. .,Department of Microbiology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
73
|
Teo A, Feng G, Brown GV, Beeson JG, Rogerson SJ. Functional Antibodies and Protection against Blood-stage Malaria. Trends Parasitol 2016; 32:887-898. [PMID: 27546781 DOI: 10.1016/j.pt.2016.07.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/09/2016] [Accepted: 07/14/2016] [Indexed: 01/06/2023]
Abstract
Numerous efforts to understand the functional roles of antibodies demonstrated that they can protect against malaria. However, it is unclear which antibody responses are the best correlates of immunity, and which antibody functions are most important in protection from disease. Understanding the role of antibodies in protection against malaria is crucial for antimalarial vaccine design. In this review, the specific functional properties of naturally acquired and vaccine-induced antibodies that correlate to protection from the blood stages of Plasmodium falciparum malaria are re-examined and the gaps in knowledge related to antibody function in malarial immunity are highlighted.
Collapse
Affiliation(s)
- Andrew Teo
- Department of Medicine, University of Melbourne (Royal Melbourne Hospital), Parkville, Australia; Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Gaoqian Feng
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Australia
| | - Graham V Brown
- Department of Medicine, University of Melbourne (Royal Melbourne Hospital), Parkville, Australia; Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia; Victorian Infectious Diseases Service, Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - James G Beeson
- Department of Medicine, University of Melbourne (Royal Melbourne Hospital), Parkville, Australia; Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Australia; Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Stephen J Rogerson
- Department of Medicine, University of Melbourne (Royal Melbourne Hospital), Parkville, Australia; Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia; Victorian Infectious Diseases Service, Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
74
|
A phase 2b randomized, controlled trial of the efficacy of the GMZ2 malaria vaccine in African children. Vaccine 2016; 34:4536-4542. [PMID: 27477844 DOI: 10.1016/j.vaccine.2016.07.041] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/07/2016] [Accepted: 07/20/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND GMZ2 is a recombinant protein malaria vaccine, comprising two blood-stage antigens of Plasmodium falciparum, glutamate-rich protein and merozoite surface protein 3. We assessed efficacy of GMZ2 in children in Burkina Faso, Gabon, Ghana and Uganda. METHODS Children 12-60months old were randomized to receive three injections of either 100μg GMZ2 adjuvanted with aluminum hydroxide or a control vaccine (rabies) four weeks apart and were followed up for six months to measure the incidence of malaria defined as fever or history of fever and a parasite density ⩾5000/μL. RESULTS A cohort of 1849 children were randomized, 1735 received three doses of vaccine (868 GMZ2, 867 control-vaccine). There were 641 malaria episodes in the GMZ2/Alum group and 720 in the control group. In the ATP analysis, vaccine efficacy (VE), adjusted for age and site was 14% (95% confidence interval [CI]: 3.6%, 23%, p-value=0.009). In the ITT analysis, age-adjusted VE was 11.3% (95% CI 2.5%, 19%, p-value=0.013). VE was higher in older children. In GMZ2-vaccinated children, the incidence of malaria decreased with increasing vaccine-induced anti-GMZ2 IgG concentration. There were 32 cases of severe malaria (18 in the rabies vaccine group and 14 in the GMZ2 group), VE 27% (95% CI -44%, 63%). CONCLUSIONS GMZ2 is the first blood-stage malaria vaccine to be evaluated in a large multicenter trial. GMZ2 was well tolerated and immunogenic, and reduced the incidence of malaria, but efficacy would need to be substantially improved, using a more immunogenic formulation, for the vaccine to have a public health role.
Collapse
|
75
|
Boyle MJ, Reiling L, Osier FH, Fowkes FJI. Recent insights into humoral immunity targeting Plasmodium falciparum and Plasmodium vivax malaria. Int J Parasitol 2016; 47:99-104. [PMID: 27451359 DOI: 10.1016/j.ijpara.2016.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 01/02/2023]
Abstract
Recent efforts in malaria control have led to marked reductions in malaria incidence. However, new strategies are needed to sustain malaria elimination and eradication and achieve the World Health Organization goal of a malaria-free world. The development of highly effective vaccines would contribute to this goal and would be facilitated by a comprehensive understanding of humoral immune responses targeting Plasmodium falciparum and Plasmodium vivax malaria. New tools are required to facilitate the identification of vaccine candidates and the development of vaccines that induce functional and protective immunity. Here we discuss recent published findings, and unpublished work presented at the 2016 Molecular Approaches to Malaria conference, that highlight advancements in understanding humoral immune responses in the context of vaccine development. Highlights include the increased application of 'omics' and 'Big data' platforms to identify vaccine candidates, and the identification of novel functions of antibody responses that mediate protection. The application of these strategies and a global approach will increase the likelihood of rapid development of highly efficacious vaccines.
Collapse
Affiliation(s)
- Michelle J Boyle
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia; Menzies School of Medical Research, Darwin, Northern Territory 0810, Australia.
| | - Linda Reiling
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia
| | - Faith H Osier
- KEMRI Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia; Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia; Department of Infectious Diseases, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
76
|
Bouharoun-Tayoun H, Druilhe P. Antibody-Dependent Cell-Mediated Inhibition (ADCI) of Plasmodium falciparum: One- and Two-Step ADCI Assays. Methods Mol Biol 2016; 1325:131-44. [PMID: 26450385 DOI: 10.1007/978-1-4939-2815-6_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The ADCI assay aims to measure the ability of parasite-specific antibodies, which by triggering blood monocytes, control P. falciparum parasite density. The assay relies on three easily accessible components: blood monocytes, immunoglobulins, and P. falciparum in vitro culture. Yet the reliability of results depends on the quality of the three above components, and therefore great care must be taken with each of them. We describe here different protocols for successfully carrying out the ADCI assay with emphasis on procedures and validation criteria necessary to ensure meaningful results.
Collapse
|
77
|
Wang Q, Zhao Z, Zhang X, Li X, Zhu M, Li P, Yang Z, Wang Y, Yan G, Shang H, Cao Y, Fan Q, Cui L. Naturally Acquired Antibody Responses to Plasmodium vivax and Plasmodium falciparum Merozoite Surface Protein 1 (MSP1) C-Terminal 19 kDa Domains in an Area of Unstable Malaria Transmission in Southeast Asia. PLoS One 2016; 11:e0151900. [PMID: 26999435 PMCID: PMC4801383 DOI: 10.1371/journal.pone.0151900] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/29/2016] [Indexed: 12/24/2022] Open
Abstract
Understanding naturally acquired immunity to infections caused by Plasmodia in different malaria endemicity settings is needed for better vaccine designs and for exploring antibody responses as a proxy marker of malaria transmission intensity. This study investigated the sero-epidemiology of malaria along the international border between China and Myanmar, where malaria elimination action plans are in place. This study recruited 233 P. vivax and 156 P. falciparum infected subjects with acute malaria at the malaria clinics and hospitals. In addition, 93 and 67 healthy individuals from the same endemic region or from non-endemic region, respectively, were used as controls. Acute malaria infections were identified by microscopy. Anti-recombinant PfMSP119 and PvMSP119 antibody levels were measured by ELISA. Antibody responses to respective MSP119 were detected in 50.9% and 78.2% patients with acute P. vivax and P. falciparum infections, respectively. There were cross-reacting antibodies in Plasmodium patients against these two recombinant proteins, though we could not exclude the possibility of submicroscopic mixed-species infections. IgG1, IgG3 and IgG4 were the major subclasses. Interestingly, 43.2% of the healthy endemic population also had antibodies against PfMSP119, whereas only 3.9% of this population had antibodies against PvMSP119. Higher antibody levels were correlated with age and parasite density, but not with season, gender or malaria history. Both total IgG and individual IgG subclasses underwent substantial declines during the convalescent period in three months. This study demonstrated that individuals in a hypoendemic area with coexistence of P. vivax and P. falciparum can mount rapid antibody responses against both PfMSP119 and PvMSP119. The significantly higher proportion of responders to PfMSP119 in the healthy endemic population indicates higher prevalence of P. falciparum in the recent past. Specific antibodies against PvMSP119 could serve as a marker of recent exposure to P. vivax in epidemiological studies.
Collapse
MESH Headings
- Acute Disease
- Adolescent
- Amino Acid Sequence
- Antibodies, Protozoan/immunology
- Antibody Formation/immunology
- Asia, Southeastern/epidemiology
- Child
- Child, Preschool
- Demography
- Follow-Up Studies
- Humans
- Immunoglobulin G/immunology
- Infant
- Logistic Models
- Malaria, Falciparum/blood
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/transmission
- Malaria, Vivax/blood
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Malaria, Vivax/transmission
- Merozoite Surface Protein 1/chemistry
- Merozoite Surface Protein 1/immunology
- Molecular Weight
- Plasmodium falciparum/immunology
- Plasmodium vivax/immunology
- Protein Structure, Tertiary
- Recombinant Proteins/immunology
Collapse
Affiliation(s)
- Qinghui Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Zhenjun Zhao
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Xuexing Zhang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Min Zhu
- School of Humanities and Social Science, China Medical University, Shenyang, Liaoning, China
| | - Peipei Li
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Ying Wang
- Institute of Tropical Medicine, Third Military Medical University, Chongqing, China
| | - Guiyun Yan
- Program in Public Health, University of California Irvine, Irvine, CA, United States of America
| | - Hong Shang
- Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
- * E-mail: (YC); (QF); (LC)
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
- * E-mail: (YC); (QF); (LC)
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA, 16802, United States of America
- * E-mail: (YC); (QF); (LC)
| |
Collapse
|
78
|
Baldwin SL, Roeffen W, Singh SK, Tiendrebeogo RW, Christiansen M, Beebe E, Carter D, Fox CB, Howard RF, Reed SG, Sauerwein R, Theisen M. Synthetic TLR4 agonists enhance functional antibodies and CD4+ T-cell responses against the Plasmodium falciparum GMZ2.6C multi-stage vaccine antigen. Vaccine 2016; 34:2207-15. [PMID: 26994314 DOI: 10.1016/j.vaccine.2016.03.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/25/2016] [Accepted: 03/09/2016] [Indexed: 11/17/2022]
Abstract
A subunit vaccine targeting both transmission and pathogenic asexual blood stages of Plasmodium falciparum, i.e., a multi-stage vaccine, could be a powerful tool to combat malaria. Here, we report production and characterization of the recombinant protein GMZ2.6C, which contains a fragment of the sexual-stage protein Pfs48/45-6C genetically fused to GMZ2, an asexual vaccine antigen in advanced clinical development. To select the most suitable vaccine formulation for downstream clinical studies, GMZ2.6C was tested with various immune modulators in different adjuvant formulations (stable emulsions, liposomes, and alum) in C57BL/6 mice. Some, but not all, formulations containing either the synthetic TLR4 agonist GLA or SLA elicited the highest parasite-specific antibody titers, the greatest IFN-γ responses in CD4+ TH1 cells, and the highest percentage of multifunctional CD4+ T cells expressing IFN-γ and TNF in response to GMZ2.6C. Both of these agonists have good safety records in humans.
Collapse
Affiliation(s)
- Susan L Baldwin
- Infectious Disease Research Institute, 1616 Eastlake Ave. E., Suite 400, Seattle, WA 98102, USA
| | - Will Roeffen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Susheel K Singh
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark; Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
| | - Regis W Tiendrebeogo
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark; Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark
| | - Michael Christiansen
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark
| | - Elyse Beebe
- Infectious Disease Research Institute, 1616 Eastlake Ave. E., Suite 400, Seattle, WA 98102, USA
| | - Darrick Carter
- Infectious Disease Research Institute, 1616 Eastlake Ave. E., Suite 400, Seattle, WA 98102, USA
| | - Christopher B Fox
- Infectious Disease Research Institute, 1616 Eastlake Ave. E., Suite 400, Seattle, WA 98102, USA
| | - Randall F Howard
- Infectious Disease Research Institute, 1616 Eastlake Ave. E., Suite 400, Seattle, WA 98102, USA
| | - Steven G Reed
- Infectious Disease Research Institute, 1616 Eastlake Ave. E., Suite 400, Seattle, WA 98102, USA
| | - Robert Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark; Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Denmark.
| |
Collapse
|
79
|
Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev 2016; 40:343-72. [PMID: 26833236 PMCID: PMC4852283 DOI: 10.1093/femsre/fuw001] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2016] [Indexed: 01/11/2023] Open
Abstract
Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities. The authors summarize current knowledge of merozoite surface proteins of malaria parasites; their function in invasion, processing of surface proteins before, during and after invasion, their importance as targets of immunity, and the current status of malaria vaccines that target merozoite surface proteins.
Collapse
Affiliation(s)
- James G Beeson
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Damien R Drew
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Michelle J Boyle
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Gaoqian Feng
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Epidemiology and Preventive Medicine, Monash University, Clayton, Victoria, Australia School of Population Health, University of Melbourne, Parkville, Victoria, Australia
| | - Jack S Richards
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
80
|
Abstract
Malaria is one of the most serious infectious diseases with most of the severe disease
caused by Plasmodium falciparum (Pf). Naturally acquired immunity
develops over time after repeated infections and the development of antimalarial
antibodies is thought to play a crucial role. Neonates and young infants are relatively
protected from symptomatic malaria through mechanisms that are poorly understood. The
prevailing paradigm is that maternal antimalarial antibodies transferred to the fetus in
the last trimester of pregnancy protect the infant from early infections. These
antimalarial antibodies wane by approximately 6 months of age leaving the infant
vulnerable to malaria, however direct evidence supporting this epidemiologically based
paradigm is lacking. As infants are the target population for future malaria vaccines,
understanding how they begin to develop immunity to malaria and the gaps in their
responses is key. This review summarizes the antimalarial antibody responses detected in
infants and how they change over time. We focus primarily on Pf antibody responses and
will briefly mention Plasmodium vivax responses in infants.
Collapse
|
81
|
Contrasting Patterns of Serologic and Functional Antibody Dynamics to Plasmodium falciparum Antigens in a Kenyan Birth Cohort. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 23:104-16. [PMID: 26656119 PMCID: PMC4744923 DOI: 10.1128/cvi.00452-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/20/2015] [Indexed: 11/20/2022]
Abstract
IgG antibodies to Plasmodium falciparum are transferred from the maternal to fetal circulation during pregnancy, wane after birth, and are subsequently acquired in response to natural infection. We examined the dynamics of malaria antibody responses of 84 Kenyan infants from birth to 36 months of age by (i) serology, (ii) variant surface antigen (VSA) assay, (iii) growth inhibitory activity (GIA), and (iv) invasion inhibition assays (IIA) specific for merozoite surface protein 1 (MSP1) and sialic acid-dependent invasion pathway. Maternal antibodies in each of these four categories were detected in cord blood and decreased to their lowest level by approximately 6 months of age. Serologic antibodies to 3 preerythrocytic and 10 blood-stage antigens subsequently increased, reaching peak prevalence by 36 months. In contrast, antibodies measured by VSA, GIA, and IIA remained low even up to 36 months. Infants sensitized to P. falciparum in utero, defined by cord blood lymphocyte recall responses to malaria antigens, acquired antimalarial antibodies at the same rate as those who were not sensitized in utero, indicating that fetal exposure to malaria antigens did not affect subsequent infant antimalarial responses. Infants with detectable serologic antibodies at 12 months of age had an increased risk of P. falciparum infection during the subsequent 24 months. We conclude that serologic measures of antimalarial antibodies in children 36 months of age or younger represent biomarkers of malaria exposure rather than protection and that functional antibodies develop after 36 months of age in this population.
Collapse
|
82
|
Joos C, Varela ML, Mbengue B, Mansourou A, Marrama L, Sokhna C, Tall A, Trape JF, Touré A, Mercereau-Puijalon O, Perraut R. Antibodies to Plasmodium falciparum merozoite surface protein-1p19 malaria vaccine candidate induce antibody-dependent respiratory burst in human neutrophils. Malar J 2015; 14:409. [PMID: 26471813 PMCID: PMC4608189 DOI: 10.1186/s12936-015-0935-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/27/2015] [Indexed: 11/29/2022] Open
Abstract
Background Identification of plasmodial antigens targeted by protective immune mechanisms is important for malaria vaccine development. Among functional assays, the neutrophil antibody-dependent respiratory burst (ADRB) induced by opsonized Plasmodium falciparum merozoites has been correlated with acquired immunity to clinical malaria in endemic areas, but the target merozoite antigens are unknown. Here, the contribution of antibodies to the conserved C-terminal domain of the P. falciparum merozoite surface protein-1 (PfMSP1p19) in mediating ADRB was investigated in sera from individuals living in two Senegalese villages with differing malaria endemicity. Methods Anti-PfMSP1p19 antibody levels in sera from 233 villagers were investigated and the involvement of anti-PfMSP1p19 antibodies in ADRB was explored in a subset of samples using (1) isogenic P. falciparum parasite clones expressing P. falciparum or Plasmodium chabaudi MSP1p19; (2) PfMSP1p19-coated plaque ADRB; and, (3) ADRB triggering using sera depleted from PfMSP1p19 antibodies by absorption onto the baculovirus recombinant antigen. Results ADRB activity correlated with anti-PfMSP1p19 IgG levels (P < 10−3). A substantial contribution of PfMSP1p19 antibody responses to ADRB was confirmed (P < 10−4) in an age-adjusted linear regression model. PfMSP1p19 antibodies accounted for 33.1 % (range 7–54 %) and 33.2 % (range 0–70 %) of ADRB activity evaluated using isogenic merozoites (P < 10−3) and depleted sera (P = 0.0017), respectively. Coating of PfMSP1p19 on plates induced strong ADRB in anti-PfMSP1p19-positive sera. Conclusion These data show that naturally acquired P. falciparum MSP1p19 antibodies are potent inducers of neutrophil ADRB and support the development of PfMSP1p19-based malaria vaccine using ADRB assay as a functional surrogate for protection. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0935-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charlotte Joos
- Unité d'Immunologie, Institut Pasteur de Dakar, Dakar, Senegal. .,Unité d'Immunologie Moléculaire des Parasites, Institut Pasteur, Paris, France.
| | | | - Babacar Mbengue
- Unité d'Immunogénétique/UCAD, Institut Pasteur de Dakar, Dakar, Senegal.
| | | | - Laurence Marrama
- Unité d'Epidémiologie, Institut Pasteur de Dakar, Dakar, Senegal.
| | - Cheikh Sokhna
- Institut de Recherche pour le Développement (IRD), URMITE, Dakar, Senegal.
| | - Adama Tall
- Unité d'Epidémiologie, Institut Pasteur de Dakar, Dakar, Senegal.
| | | | - Aissatou Touré
- Unité d'Immunologie, Institut Pasteur de Dakar, Dakar, Senegal.
| | | | - Ronald Perraut
- Unité d'Immunologie, Institut Pasteur de Dakar, Dakar, Senegal.
| |
Collapse
|
83
|
Draper SJ, Angov E, Horii T, Miller LH, Srinivasan P, Theisen M, Biswas S. Recent advances in recombinant protein-based malaria vaccines. Vaccine 2015; 33:7433-43. [PMID: 26458807 PMCID: PMC4687528 DOI: 10.1016/j.vaccine.2015.09.093] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 09/05/2015] [Accepted: 09/28/2015] [Indexed: 01/03/2023]
Abstract
Protein-based vaccines remain the cornerstone approach for B cell and antibody induction against leading target malaria antigens. Advances in antigen selection, immunogen design and epitope-focusing are advancing the field. New heterologous expression platforms are enabling cGMP production of next-generation protein vaccines. Next-generation antigens, protein-based immunogens and virus-like particle (VLP) delivery platforms are in clinical development. Protein-based vaccines will form part of a highly effective multi-component/multi-stage/multi-antigen subunit formulation against malaria.
Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard to target antigen discovery, protein expression platforms, adjuvant testing, and development of soluble and virus-like particle (VLP) delivery platforms. The breadth of approaches to protein-based vaccines is continuing to expand as innovative new concepts in next-generation subunit design are explored, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite-, merozoite- and sexual-stages of the parasite's lifecycle–including PfCelTOS, PfMSP1, PfAMA1, PfRH5, PfSERA5, PfGLURP, PfMSP3, Pfs48/45 and Pfs25. Future prospects and challenges for the development, production, human delivery and assessment of protein-based malaria vaccines are discussed.
Collapse
Affiliation(s)
- Simon J Draper
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK.
| | - Evelina Angov
- Walter Reed Army Institute of Research, U. S. Military Malaria Research Program, Malaria Vaccine Branch, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Toshihiro Horii
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 561-873, Japan
| | - Louis H Miller
- Malaria Cell Biology Section, Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Prakash Srinivasan
- Malaria Cell Biology Section, Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark; Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology and Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sumi Biswas
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| |
Collapse
|
84
|
Fotoran WL, Santangelo RM, Medeiros MM, Colhone M, Ciancaglini P, Barboza R, Marinho CRF, Stábeli RG, Wunderlich G. Liposomes loaded with P. falciparum merozoite-derived proteins are highly immunogenic and produce invasion-inhibiting and anti-toxin antibodies. J Control Release 2015; 217:121-7. [PMID: 26334481 DOI: 10.1016/j.jconrel.2015.08.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/24/2015] [Indexed: 12/29/2022]
Abstract
The formulation of an effective vaccine against malaria is still a significant challenge and the induction of high anti-parasite antibody titers plus a sustained T cell response is mandatory for the success of such a vaccine. We have developed a nanoliposome-based structure which contains plasma membrane-associated proteins (PfMNP) of Plasmodium falciparum merozoites on its surface. Incorporation of parasite-derived proteins led to a significant increase in the size and dispersity of particles. Immunization of particles in BalbC and C57BL/6 mice led to high anti-MSP119 IgG titers (10(4)) after the first dose and reached a plateau (>10(6)) after the third dose. While very high titers were observed against the C-terminal domain of the vaccine candidate MSP1, only modest titers (≤10(3)) were detected against MSP2. The induced antibodies showed also a strong growth-inhibiting effect in reinvasion assays. In addition, PfMNP immunization generated antibodies which partially blocked the inflammatory response, probably by blocking TLR-induced activation of macrophages by malarial toxins such as GPI anchors. The results underline the potential of nanoliposome-based formulations as anti-malarial vaccines.
Collapse
|
85
|
Boyle MJ, Reiling L, Feng G, Langer C, Osier FH, Aspeling-Jones H, Cheng YS, Stubbs J, Tetteh KKA, Conway DJ, McCarthy JS, Muller I, Marsh K, Anders RF, Beeson JG. Human antibodies fix complement to inhibit Plasmodium falciparum invasion of erythrocytes and are associated with protection against malaria. Immunity 2015; 42:580-90. [PMID: 25786180 PMCID: PMC4372259 DOI: 10.1016/j.immuni.2015.02.012] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 12/01/2014] [Accepted: 02/23/2015] [Indexed: 11/26/2022]
Abstract
Antibodies play major roles in immunity to malaria; however, a limited understanding of mechanisms mediating protection is a major barrier to vaccine development. We have demonstrated that acquired human anti-malarial antibodies promote complement deposition on the merozoite to mediate inhibition of erythrocyte invasion through C1q fixation and activation of the classical complement pathway. Antibody-mediated complement-dependent (Ab-C′) inhibition was the predominant invasion-inhibitory activity of human antibodies; most antibodies were non-inhibitory without complement. Inhibitory activity was mediated predominately via C1q fixation, and merozoite surface proteins 1 and 2 were identified as major targets. Complement fixation by antibodies was very strongly associated with protection from both clinical malaria and high-density parasitemia in a prospective longitudinal study of children. Ab-C′ inhibitory activity could be induced by human immunization with a candidate merozoite surface-protein vaccine. Our findings demonstrate that human anti-malarial antibodies have evolved to function by fixing complement for potent invasion-inhibitory activity and protective immunity. Antibodies function with complement to inhibit P. falciparum replication Antibodies fix C1q to block invasion and lyse merozoites Complement-fixing antibodies are strongly associated with immunity in children Antibody-complement inhibition can be induced by human vaccination
Collapse
Affiliation(s)
- Michelle J Boyle
- The Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC 3004, Australia; Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC 3010, Australia
| | - Linda Reiling
- The Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC 3004, Australia
| | - Gaoqian Feng
- The Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC 3004, Australia
| | - Christine Langer
- The Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC 3004, Australia
| | - Faith H Osier
- Centre for Geographic Medicine Research, Kenya Medical Research Institute, Coast, PO Box 230, 80108 Kilifi, Kenya
| | | | - Yik Sheng Cheng
- The Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC 3004, Australia; Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC 3010, Australia
| | - Janine Stubbs
- The Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC 3004, Australia
| | - Kevin K A Tetteh
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E7HT, UK
| | - David J Conway
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E7HT, UK
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, University of Queensland, 300 Herston Road, Herston, QLD 4006, Australia
| | - Ivo Muller
- Walter and Eliza Hall Institute, Royal Parade, Melbourne, VIC 3050, Australia
| | - Kevin Marsh
- Centre for Geographic Medicine Research, Kenya Medical Research Institute, Coast, PO Box 230, 80108 Kilifi, Kenya
| | - Robin F Anders
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - James G Beeson
- The Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC 3004, Australia; Department of Microbiology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
86
|
Kaddumukasa M, Lwanira C, Lugaajju A, Katabira E, Persson KEM, Wahlgren M, Kironde F. Parasite Specific Antibody Increase Induced by an Episode of Acute P. falciparum Uncomplicated Malaria. PLoS One 2015; 10:e0124297. [PMID: 25906165 PMCID: PMC4408068 DOI: 10.1371/journal.pone.0124297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/11/2015] [Indexed: 11/30/2022] Open
Abstract
Introduction There is no approved vaccine for malaria, and precisely how human antibody responses to malaria parasite components and potential vaccine molecules are developed and maintained remains poorly defined. In this study, antibody anamnestic or memory response elicited by a single episode of P. falciparum infection was investigated. Methods This study involved 362 malaria patients aged between 6 months to 60 years, of whom 19% were early-diagnosed people living with HIV/AIDS (PLWHA). On the day malaria was diagnosed and 42 days later, blood specimens were collected. Parasite density, CD4+ cells, and antibodies specific to synthetic peptides representing antigenic regions of the P. falciparum proteins GLURP, MSP3 and HRPII were measured. Results On the day of malaria diagnosis, Immunoglobulin (IgG) antibodies against GLURP, MSP3 and HRP II peptides were present in the blood of 75%, 41% and 60% of patients, respectively. 42 days later, the majority of patients had boosted their serum IgG antibody more than 1.2 fold. The increase in level of IgG antibody against the peptides was not affected by parasite density at diagnosis. The median CD4+ cell counts of PLWHAs and HIV negative individuals were not statistically different, and median post-infection increases in anti-peptide IgG were similar in both groups of patients. Conclusion In the majority (70%) of individuals, an infection of P. falciparum elicits at least 20% increase in level of anti-parasite IgG. This boost in anti-P. falciparum IgG is not affected by parasite density on the day of malaria diagnosis, or by HIV status.
Collapse
Affiliation(s)
- Mark Kaddumukasa
- Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Allan Lugaajju
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Elly Katabira
- Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Kristina E M Persson
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Laboratory Medicine, Lund University, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fred Kironde
- College of Health Sciences, Makerere University, Kampala, Uganda; Habib Medical School, IUIU, Kampala, Uganda
| |
Collapse
|
87
|
Legorreta-Herrera M, Mosqueda-Romo NA, Nava-Castro KE, Morales-Rodríguez AL, Buendía-González FO, Morales-Montor J. Sex hormones modulate the immune response to Plasmodium berghei ANKA in CBA/Ca mice. Parasitol Res 2015; 114:2659-69. [DOI: 10.1007/s00436-015-4471-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 04/05/2015] [Indexed: 10/23/2022]
|
88
|
Brown J, Excler JL, Kim JH. New prospects for a preventive HIV-1 vaccine. J Virus Erad 2015; 1:78-88. [PMID: 26523292 PMCID: PMC4625840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The immune correlates of risk analysis and recent non-human primate (NHP) challenge studies have generated hypotheses that suggest HIV-1 envelope may be essential and, perhaps, sufficient to induce protective antibody responses against HIV-1 acquisition at the mucosal entry. New prime-boost mosaic and conserved-sequence, together with replicating vector immunisation strategies aiming at inducing immune responses or greater breadth, as well as the development of immunogens inducing broadly neutralising antibodies and mucosal responses, should be actively pursued and tested in humans. Whether the immune correlates of risk identified in RV144 can be extended to other vaccines, other populations, or different modes and intensity of transmission, and against increasing HIV-1 genetic diversity, remains to be demonstrated. Although NHP challenge studies may guide vaccine development, human efficacy trials remain key for answering the critical questions leading to the development of a global HIV-1 vaccine for licensure.
Collapse
Affiliation(s)
| | - Jean-Louis Excler
- US Military HIV Research Program,
Bethesda,
MD,
USA,The Henry M Jackson Foundation for the Advancement of Military Medicine,
Bethesda,
MD,
USA,Corresponding author: Jean-Louis Excler,
US Military HIV Research Program,
6720-A Rockledge Drive, Suite 400Bethesda,
MD20817,
USA
| | - Jerome H Kim
- US Military HIV Research Program,
Walter Reed Army Institute of Research,
Silver Spring,
MD,
USA
| |
Collapse
|
89
|
Wangala B, Vovor A, Gantin RG, Agbeko YF, Lechner CJ, Huang X, Soboslay PT, Köhler C. Chemokine levels and parasite- and allergen-specific antibody responses in children and adults with severe or uncomplicated Plasmodium falciparum malaria. Eur J Microbiol Immunol (Bp) 2015; 5:131-41. [PMID: 25883801 DOI: 10.1556/eujmi-d-14-00041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/11/2015] [Indexed: 12/23/2022] Open
Abstract
Chemokine and antibody response profiles were investigated in children and adults with severe or uncomplicated Plasmodium falciparum malaria; the aim was to reveal which profiles are associated with severe disease, as often seen in nonimmune children, or with mild and uncomplicated disease, as seen in semi-immune adults. Blood samples were obtained from children under 5 years of age as well as adults with falciparum malaria. Classification of malaria was performed according to parasite densities and hemoglobin concentrations. Plasma levels of chemokines (IL-8, IP-10, MCP-4, TARC, PARC, MIP-1δ, eotaxins) were quantified, and antibody responses (IgE, IgG1, and IgG4) to P. falciparum, Entamoeba histolytica-specific antigen, and mite allergen extracts were determined. In children with severe malaria proinflammatory, IL-8, IP10, MIP-1δ, and LARC were at highly elevated levels, suggesting an association with severe disease. In contrast, the Th2-type chemokines TARC, PARC, and eotaxin-2 attained in children the same levels as in adults suggesting the evolution of immune regulatory components. In children with severe malaria, an elevated IgG1 and IgE reactivity to mite allergens and intestinal protozoan parasites was observed. In conclusion, exacerbated proinflammatory chemokines together with IgE responses to mite allergens or E. histolytica-specific antigen extract were observed in children with severe falciparum malaria.
Collapse
|
90
|
Mbengue B, Sylla Niang M, Ndiaye Diallo R, Diop G, Thiam A, Ka O, Touré A, Tall A, Perraut R, Dièye A. [IgG responses to candidate malaria vaccine antigens in the urban area of Dakar (Senegal): evolution according to age and parasitemia in patients with mild symptoms]. ACTA ACUST UNITED AC 2015; 108:94-101. [PMID: 25925805 DOI: 10.1007/s13149-015-0419-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 11/25/2014] [Indexed: 12/22/2022]
Abstract
Malaria remains a major problem in African countries despite substantial decreases in morbidity and mortality due to sustained control programs. Studies for the evaluation of qualitative or quantitative Ab responses to key targets of anti-plasmodium immunity were mostly done in rural endemic setting compared to urban area. In a cohort of 200 patients with mild malaria and living in Dakar, we analyze total and subclasses IgG responses to a panel of P. falciparum blood stage antigens: MSP1p19, MSP3, EB200, GST-5 and R23. A mean age of 15 yrs (4 to 56 yrs) and parasitemia between 0.1 to 17% were found. Levels of IgG anti-MSP3 were higher in patients with low parasitemia (≤1%) and appear negatively correlated to parasite densities (Rho =. 0.54; p= 0.021). This correlation is more significant in children (≤ 15 yrs). In addition, an increase of IgG responses against MSP1p19 is highly observed in adults having a parasitemia less than 1%. In those patients, we find that IgG1 subclasses were predominant (p <0.01). Our study shows an association between Ab responses and parasitemia. This association is dependant to IgG anti-MSP3 in children and IgG anti-MSP1p19 in adults living in urban area.
Collapse
Affiliation(s)
- B Mbengue
- Service d'immunologie UCAD FMPO, Dakar, Sénégal,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Chiu CYH, Hodder AN, Lin CS, Hill DL, Li Wai Suen CSN, Schofield L, Siba PM, Mueller I, Cowman AF, Hansen DS. Antibodies to the Plasmodium falciparum Proteins MSPDBL1 and MSPDBL2 Opsonize Merozoites, Inhibit Parasite Growth, and Predict Protection From Clinical Malaria. J Infect Dis 2015; 212:406-15. [PMID: 25646353 DOI: 10.1093/infdis/jiv057] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/15/2015] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence suggests that antibodies against merozoite surface proteins (MSPs) play an important role in clinical immunity to malaria. Two unusual members of the MSP-3 family, merozoite surface protein duffy binding-like (MSPDBL)1 and MSPDBL2, have been shown to be extrinsically associated to MSP-1 on the parasite surface. In addition to a secreted polymorphic antigen associated with merozoite (SPAM) domain characteristic of MSP-3 family members, they also contain Duffy binding-like (DBL) domain and were found to bind to erythrocytes, suggesting that they play a role in parasite invasion. Antibody responses to these proteins were investigated in a treatment-reinfection study conducted in an endemic area of Papua New Guinea to determine their contribution to naturally acquired immunity. Antibodies to the SPAM domains of MSPDBL1 and MSPDBL2 as well as the DBL domain of MSPDBL1 were found to be associated with protection from Plasmodium falciparum clinical episodes. Moreover, affinity-purified anti-MSPDBL1 and MSPDBL2 were found to inhibit in vitro parasite growth and had strong merozoite opsonizing capacity, suggesting that protection targeting these antigens results from ≥2 distinct effector mechanisms. Together these results indicate that MSPDBL1 and MSPDBL2 are important targets of naturally acquired immunity and might constitute potential vaccine candidates.
Collapse
Affiliation(s)
- Chris Y H Chiu
- The Walter and Eliza Hall Institute of Medical Research Department of Medical Biology, University of Melbourne, Parkville, Victoria
| | - Anthony N Hodder
- The Walter and Eliza Hall Institute of Medical Research Department of Medical Biology, University of Melbourne, Parkville, Victoria
| | - Clara S Lin
- The Walter and Eliza Hall Institute of Medical Research Department of Medical Biology, University of Melbourne, Parkville, Victoria
| | - Danika L Hill
- The Walter and Eliza Hall Institute of Medical Research Department of Medical Biology, University of Melbourne, Parkville, Victoria
| | | | - Louis Schofield
- The Walter and Eliza Hall Institute of Medical Research Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, Queensland, Australia
| | - Peter M Siba
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Eastern Highlands Province, Goroka
| | - Ivo Mueller
- The Walter and Eliza Hall Institute of Medical Research Barcelona Center for International Health, University of Barcelona, Spain
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research Department of Medical Biology, University of Melbourne, Parkville, Victoria
| | - Diana S Hansen
- The Walter and Eliza Hall Institute of Medical Research Department of Medical Biology, University of Melbourne, Parkville, Victoria
| |
Collapse
|
92
|
Noland GS, Jansen P, Vulule JM, Park GS, Ondigo BN, Kazura JW, Moormann AM, John CC. Effect of transmission intensity and age on subclass antibody responses to Plasmodium falciparum pre-erythrocytic and blood-stage antigens. Acta Trop 2015; 142:47-56. [PMID: 25446174 DOI: 10.1016/j.actatropica.2014.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/27/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
Abstract
Cytophilic immunoglobulin (IgG) subclass responses (IgG1 and IgG3) to Plasmodium falciparum antigens have been associated with protection from malaria, yet the relative importance of transmission intensity and age in generation of subclass responses to pre-erythrocytic and blood-stage antigens have not been clearly defined. We analyzed IgG subclass responses to the pre-erythrocytic antigens CSP, LSA-1, and TRAP and the blood-stage antigens AMA-1, EBA-175, and MSP-1 in asymptomatic residents age 2 years or older in stable (n=116) and unstable (n=96) transmission areas in Western Kenya. In the area of stable malaria transmission, a high prevalence of cytophilic (IgG1 and IgG3) antibodies to each antigen was seen in all age groups. Prevalence and levels of cytophilic antibodies to pre-erythrocytic and blood-stage P. falciparum antigens increased with age in the unstable transmission area, yet IgG1 and IgG3 responses to most antigens for all ages in the unstable transmission area were less prevalent and lower in magnitude than even the youngest age group from the stable transmission area. The dominance of cytophilic responses over non-cytophilic (IgG2 and IgG4) was more pronounced in the stable transmission area, and the ratio of IgG3 over IgG1 generally increased with age. In the unstable transmission area, the ratio of cytophilic to non-cytophilic antibodies did not increase with age, and tended to be IgG3-biased for pre-erythrocytic antigens yet IgG1-biased for blood-stage antigens. The differences between areas could not be attributed to active parasitemia status, as there were minimal differences in antibody responses between those positive and negative for Plasmodium infection by microscopy in the stable transmission area. Individuals in areas of unstable transmission have low cytophilic to non-cytophilic IgG subclass ratios and low IgG3:IgG1 ratios to P. falciparum antigens. These imbalances could contribute to the persistent risk of clinical malaria in these areas and serve as population-level, age-specific biomarkers of transmission.
Collapse
|
93
|
Yates NL, Liao HX, Fong Y, deCamp A, Vandergrift NA, Williams WT, Alam SM, Ferrari G, Yang ZY, Seaton KE, Berman PW, Alpert MD, Evans DT, O'Connell RJ, Francis D, Sinangil F, Lee C, Nitayaphan S, Rerks-Ngarm S, Kaewkungwal J, Pitisuttithum P, Tartaglia J, Pinter A, Zolla-Pazner S, Gilbert PB, Nabel GJ, Michael NL, Kim JH, Montefiori DC, Haynes BF, Tomaras GD. Vaccine-induced Env V1-V2 IgG3 correlates with lower HIV-1 infection risk and declines soon after vaccination. Sci Transl Med 2014; 6:228ra39. [PMID: 24648342 DOI: 10.1126/scitranslmed.3007730] [Citation(s) in RCA: 391] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HIV-1-specific immunoglobulin G (IgG) subclass antibodies bind to distinct cellular Fc receptors. Antibodies of the same epitope specificity but of a different subclass therefore can have different antibody effector functions. The study of IgG subclass profiles between different vaccine regimens used in clinical trials with divergent efficacy outcomes can provide information on the quality of the vaccine-induced B cell response. We show that HIV-1-specific IgG3 distinguished two HIV-1 vaccine efficacy studies (RV144 and VAX003 clinical trials) and correlated with decreased risk of HIV-1 infection in a blinded follow-up case-control study with the RV144 vaccine. HIV-1-specific IgG3 responses were not long-lived, which was consistent with the waning efficacy of the RV144 vaccine. These data suggest that specific vaccine-induced HIV-1 IgG3 should be tested in future studies of immune correlates in HIV-1 vaccine efficacy trials.
Collapse
|
94
|
Ahmed Ismail H, Tijani MK, Langer C, Reiling L, White MT, Beeson JG, Wahlgren M, Nwuba R, Persson KEM. Subclass responses and their half-lives for antibodies against EBA175 and PfRh2 in naturally acquired immunity against Plasmodium falciparum malaria. Malar J 2014; 13:425. [PMID: 25373511 PMCID: PMC4232678 DOI: 10.1186/1475-2875-13-425] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/25/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Plasmodium falciparum EBA175 and PfRh2 belong to two main families involved in parasite invasion, and both are potential vaccine candidates. Current knowledge is limited regarding which target antigens and subclasses of antibodies are actually important for protection, and how naturally acquired immunity is achieved. METHODS Repeated blood samples were collected from individuals in Nigeria over a period of almost one year. ELISA was used to analyse subclasses of IgG responses. RESULTS For both EBA175 (region III-V) and (a fragment of) PfRh2, the dominant antibody responses consisted of IgG1 and IgG3 followed by IgG2, while for PfRh2 there was also a relatively prominent response for IgG4. High levels of IgG1, IgG2 and IgG3 for EBA175 and total IgG for PfRh2 correlated significantly with a lower parasitaemia during the study period. Children with HbAS had higher levels of some subclasses compared to children with HbAA, while in adults the pattern was the opposite. The half-lives of IgG2 and IgG4 against EBA175 were clearly shorter than those for IgG1 and IgG3. CONCLUSION EBA175 and PfRh2 are potential targets for protective antibodies since both correlated with lower parasitaemia. The shorter half-lives for IgG2 and IgG4 might explain why these subclasses are often considered less important in protection against malaria. Triggering the right subclass responses could be of critical importance in a successful vaccine. Further studies are needed to evaluate the role of haemoglobin polymorphisms and their malaria protective effects in this process.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kristina E M Persson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Nobels väg 16, 17177 Stockholm, Sweden.
| |
Collapse
|
95
|
High-throughput sequencing of human immunoglobulin variable regions with subtype identification. PLoS One 2014; 9:e111726. [PMID: 25364977 PMCID: PMC4218849 DOI: 10.1371/journal.pone.0111726] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/06/2014] [Indexed: 12/16/2022] Open
Abstract
The humoral immune response plays a critical role in controlling infection, and the rapid adaptation to a broad range of pathogens depends on a highly diverse antibody repertoire. The advent of high-throughput sequencing technologies in the past decade has enabled insights into this immense diversity. However, not only the variable, but also the constant region of antibodies determines their in vivo activity. Antibody isotypes differ in effector functions and are thought to play a defining role in elicitation of immune responses, both in natural infection and in vaccination. We have developed an Illumina MiSeq high-throughput sequencing protocol that allows determination of the human IgG subtype alongside sequencing full-length antibody variable heavy chain regions. We thereby took advantage of the Illumina procedure containing two additional short reads as identifiers. By performing paired-end sequencing of the variable regions and customizing one of the identifier sequences to distinguish IgG subtypes, IgG transcripts with linked information of variable regions and IgG subtype can be retrieved. We applied our new method to the analysis of the IgG variable region repertoire from PBMC of an HIV-1 infected individual confirmed to have serum antibody reactivity to the Membrane Proximal External Region (MPER) of gp41. We found that IgG3 subtype frequencies in the memory B cell compartment increased after halted treatment and coincided with increased plasma antibody reactivity against the MPER domain. The sequencing strategy we developed is not restricted to analysis of IgG. It can be adopted for any Ig subtyping and beyond that for any research question where phasing of distant regions on the same amplicon is needed.
Collapse
|
96
|
Perraut R, Richard V, Varela ML, Trape JF, Guillotte M, Tall A, Toure A, Sokhna C, Vigan-Womas I, Mercereau-Puijalon O. Comparative analysis of IgG responses to Plasmodium falciparum MSP1p19 and PF13-DBL1α1 using ELISA and a magnetic bead-based duplex assay (MAGPIX®-Luminex) in a Senegalese meso-endemic community. Malar J 2014; 13:410. [PMID: 25326042 PMCID: PMC4221706 DOI: 10.1186/1475-2875-13-410] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/09/2014] [Indexed: 01/16/2023] Open
Abstract
Background Numerous Plasmodium falciparum antigens elicit humoral responses in humans living in endemic areas. Use of multiplex assays is a convenient approach to monitor the antibody response against multiple antigens, but to integrate multiplex assay-derived data with datasets, generated previously using ELISA, comparative studies are needed. This work compares antibody responses to two P. falciparum antigens monitored using both technologies. Methods The IgG response against the merozoite surface protein-1 PfMSP1p19 and the PF13-DBL1α1 domain of the P. falciparum Erythrocyte Membrane Protein1, expressed by the rosette-forming parasite 3D7/PF13 (PF13), was investigated using ELISA and a MAGPIX®-Luminex duplex assay. Archived plasma samples collected before the rainy season from 217 villagers living in Ndiop, a Senegalese meso-endemic setting, were studied. ROC analysis was used to define the optimal antibody measure readout. Association of antibody levels with protection against clinical malaria was analysed using Poisson regression in a retrospective study from active case detection records performed during the 5.5-month transmission season that followed blood sampling. Results There was a strong positive correlation (P <10-3) between ELISA and MAGPIX®-Luminex-MFI (median fluorescence intensity) values for antibody to PfMSP1p19 (rho = 0.78) and PF13-DBL1α1 (rho = 0.89), with a similar degree of concordance in all age groups. Antibody levels to both antigens were high but displayed a different age-associated pattern. Independent age-adjusted Poisson regression analysis showed a significant association with protection only for IgG responses to MSP1p19 (P <0.01 RR = 0.71 [0.53-0.93]) measured by ELISA. Conclusion The individual ELISA and duplex-MAGPIX assays provide a concordant evaluation of age-associated antibody responses to MSP1p19 and PF13-DBL1α1, irrespective of the formulation of antibody levels (values, ratios or ROC-adjusted figures) but do diverge with regard to the association of antibody levels with clinical protection in age-adjusted models. This may reflect incomplete overlap of the epitopes presented in the two formats. Further development for multiplex assessment of antibody responses to a larger panel of antigens with the robust and cost effective MAGPIX®-Luminex technology is warranted. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-410) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ronald Perraut
- Institut Pasteur de Dakar, Unité d'Immunologie, Dakar, Sénégal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Kim JH, Excler JL, Michael NL. Lessons from the RV144 Thai phase III HIV-1 vaccine trial and the search for correlates of protection. Annu Rev Med 2014; 66:423-37. [PMID: 25341006 DOI: 10.1146/annurev-med-052912-123749] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RV144 remains the only HIV-1 vaccine trial to demonstrate efficacy against HIV-1 acquisition. The prespecified analysis of immune correlates of risk showed that antibodies directed against the V1V2 region of gp120, in particular the IgG1 and IgG3 subclass mediating antibody-dependent cell-mediated cytotoxicity, seem to play a predominant role in protection against HIV-1 acquisition and that plasma envelope (Env)-specific IgA antibodies were directly correlated with risk. RV144 and recent nonhuman primate challenge studies suggest that Env is essential, and perhaps sufficient, to induce protective antibody responses against mucosal HIV-1 acquisition. Follow-up clinical trials are ongoing to further dissect the immune responses elicited by the RV144 ALVAC-HIV and AIDSVAX® B/E regimen. The study of gp120 Env immunogens and immune correlates of risk has resulted in the development of improved antigens. Whether the RV144 immune correlates of risk will generalize to other populations vaccinated with similar immunogens with different modes and intensity of transmission remains to be demonstrated. Efficacy trials are now planned in heterosexual populations in southern Africa and men who have sex with men in Thailand.
Collapse
Affiliation(s)
- Jerome H Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910; ,
| | | | | |
Collapse
|
98
|
Geographically weighted regression of land cover determinants of Plasmodium falciparum transmission in the Ashanti Region of Ghana. Int J Health Geogr 2014; 13:35. [PMID: 25270342 PMCID: PMC4192530 DOI: 10.1186/1476-072x-13-35] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/03/2014] [Indexed: 11/10/2022] Open
Abstract
Background Malaria is a mosquito-borne parasitic disease that causes severe mortality and morbidity, particularly in Sub-Saharan Africa. As the vectors predominantly bite between dusk and dawn, risk of infection is determined by the abundance of P. falciparum infected mosquitoes in the surroundings of the households. Remote sensing is commonly employed to detect associations between land use/land cover (LULC) and mosquito-borne diseases. Due to challenges in LULC identification and the fact that LULC merely functions as a proxy for mosquito abundance, assuming spatially homogenous relationships may lead to overgeneralized conclusions. Methods Data on incidence of P. falciparum parasitaemia were recorded by active and passive follow-up over two years. Nine LULC types were identified through remote sensing and ground-truthing. Spatial associations of LULC and P. falciparum parasitaemia rate were described in a semi-parametric geographically weighted Poisson regression model. Results Complete data were available for 878 individuals, with an annual P. falciparum rate of 3.2 infections per person-year at risk. The influences of built-up areas (median incidence rate ratio (IRR): 0.94, IQR: 0.46), forest (median IRR: 0.9, IQR: 0.51), swampy areas (median IRR: 1.15, IQR: 0.88), as well as banana (median IRR: 1.02, IQR: 0.25), cacao (median IRR: 1.33, IQR: 0.97) and orange plantations (median IRR: 1.11, IQR: 0.68) on P. falciparum rate show strong spatial variations within the study area. Incorporating spatial variability of LULC variables increased model performance compared to the spatially homogenous model. Conclusions The observed spatial variability of LULC influence in parasitaemia would have been masked by traditional Poisson regression analysis assuming a spatially constant influence of all variables. We conclude that the spatially varying effects of LULC on P. falciparum parasitaemia may in fact be associated with co-factors not captured by remote sensing, and suggest that future studies assess small-scale spatial variation of vegetation to circumvent generalised assumptions on ecological associations that may in fact be artificial. Electronic supplementary material The online version of this article (doi:10.1186/1476-072X-13-35) contains supplementary material, which is available to authorized users.
Collapse
|
99
|
Plasmodium falciparum malaria in children aged 0-2 years: the role of foetal haemoglobin and maternal antibodies to two asexual malaria vaccine candidates (MSP3 and GLURP). PLoS One 2014; 9:e107965. [PMID: 25238160 PMCID: PMC4169582 DOI: 10.1371/journal.pone.0107965] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/07/2014] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Children below six months are reported to be less susceptible to clinical malaria. Maternally derived antibodies and foetal haemoglobin are important putative protective factors. We examined antibodies to Plasmodium falciparum merozoite surface protein 3 (MSP3) and glutamate-rich protein (GLURP), in children in their first two years of life in Burkina Faso and their risk of malaria. METHODS A cohort of 140 infants aged between four and six weeks was recruited in a stable transmission area of south-western Burkina Faso and monitored for 24 months by active and passive surveillance. Malaria infections were detected by examining blood smears using light microscopy. Enzyme-linked immunosorbent assay was used to quantify total Immunoglobulin G to Plasmodium falciparum antigens MSP3 and two regions of GLURP (R0 and R2) on blood samples collected at baseline, three, six, nine, 12, 18 and 24 months. Foetal haemoglobin and variant haemoglobin fractions were measured at the baseline visit using high pressure liquid chromatography. RESULTS A total of 79.6% of children experienced one or more episodes of febrile malaria during monitoring. Antibody titres to MSP3 were prospectively associated with an increased risk of malaria while antibody responses to GLURP (R0 and R2) did not alter the risk. Antibody titres to MSP3 were higher among children in areas of high malaria risk. Foetal haemoglobin was associated with delayed first episode of febrile malaria and haemoglobin CC type was associated with reduced incidence of febrile malaria. CONCLUSIONS We did not find any evidence of association between titres of antibodies to MSP3, GLURP-R0 or GLURP-R2 as measured by enzyme-linked immunosorbent assay and early protection against malaria, although anti-MSP3 antibody titres may reflect increased exposure to malaria and therefore greater risk. Foetal haemoglobin was associated with protection against febrile malaria despite the study limitations and its role is therefore worthy further investigation.
Collapse
|
100
|
O'Connell RJ, Kim JH, Excler JL. The HIV-1 gp120 V1V2 loop: structure, function and importance for vaccine development. Expert Rev Vaccines 2014; 13:1489-500. [PMID: 25163695 DOI: 10.1586/14760584.2014.951335] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although the second variable loop (V2) of the HIV-1 gp120 envelope glycoprotein shows substantial sequence diversity between strains, its functional importance imposes critical conservation of structure, and within particular microdomains, of sequence. V2 influences HIV-1 viral entry by contributing to trimer stabilization and co-receptor binding. It is one of 4 key domains targeted by the broadly neutralizing antibodies that arise during HIV-1 infection. HIV-1 uses V1V2 sequence variation and glycosylation to escape neutralizing antibody. In the Thai Phase III HIV-1 vaccine trial, RV144, vaccine-induced IgG against V1V2 inversely correlated with the risk of HIV-1 acquisition, and HIV-1 strains infecting RV144 vaccine recipients differed from those infecting placebo recipients in the V2 domain. Similarly, non-human primate challenge studies demonstrated an inverse correlation between vaccine-induced anti-V2 responses and simian immunodeficiency virus acquisition. We hypothesize that increased magnitude, frequency and duration of vaccine-induced anti-V2 antibody responses should improve efficacy afforded by pox-protein prime-boost HIV vaccine strategies.
Collapse
Affiliation(s)
- Robert J O'Connell
- Armed Forces Research Institute of Medical Sciences (AFRIMS), 315/6 Rajvithi Road, Bangkok 10400, Thailand
| | | | | |
Collapse
|