51
|
Organogenesis in deep time: A problem in genomics, development, and paleontology. Proc Natl Acad Sci U S A 2015; 112:4871-6. [PMID: 25901307 DOI: 10.1073/pnas.1403665112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The fossil record is a unique repository of information on major morphological transitions. Increasingly, developmental, embryological, and functional genomic approaches have also conspired to reveal evolutionary trajectory of phenotypic shifts. Here, we use the vertebrate appendage to demonstrate how these disciplines can mutually reinforce each other to facilitate the generation and testing of hypotheses of morphological evolution. We discuss classical theories on the origins of paired fins, recent data on regulatory modulations of fish fins and tetrapod limbs, and case studies exploring the mechanisms of digit loss in tetrapods. We envision an era of research in which the deep history of morphological evolution can be revealed by integrating fossils of transitional forms with direct experimentation in the laboratory via genome manipulation, thereby shedding light on the relationship between genes, developmental processes, and the evolving phenotype.
Collapse
|
52
|
Larouche O, Cloutier R, Zelditch ML. Head, Body and Fins: Patterns of Morphological Integration and Modularity in Fishes. Evol Biol 2015. [DOI: 10.1007/s11692-015-9324-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
53
|
O'Shaughnessy KL, Dahn RD, Cohn MJ. Molecular development of chondrichthyan claspers and the evolution of copulatory organs. Nat Commun 2015; 6:6698. [PMID: 25868783 PMCID: PMC4403318 DOI: 10.1038/ncomms7698] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/19/2015] [Indexed: 11/09/2022] Open
Abstract
The earliest known vertebrate copulatory organs are claspers, paired penis-like structures that are associated with evolution of internal fertilization and viviparity in Devonian placoderms. Today, only male chondrichthyans possess claspers, which extend from posterior pelvic fins and function as intromittent organs. Here we report that clasper development from pelvic fins of male skates is controlled by hormonal regulation of the Sonic hedgehog (Shh) pathway. We show that Shh signalling is necessary for male clasper development and is sufficient to induce clasper cartilages in females. Androgen receptor (AR) controls the male-specific pattern of Shh in pelvic fins by regulation of Hand2. We identify an androgen response element (ARE) in the Hand2 locus and present biochemical evidence that AR can directly bind the Hand2 ARE. Together, our results suggest that the genetic circuit for appendage development evolved an androgen regulatory input, which prolonged signalling activity and drove clasper skeletogenesis in male fins. Claspers are copulatory organs found in male cartilaginous fishes. Here, the authors show that androgen receptor signalling maintains the Shh pathway to promote clasper development in male skates and suggest the importance of hormonal regulation in the evolution of male copulatory organs.
Collapse
Affiliation(s)
- Katherine L O'Shaughnessy
- Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, PO Box 103610, Gainesville, Florida 32610, USA
| | | | - Martin J Cohn
- 1] Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, PO Box 103610, Gainesville, Florida 32610, USA [2] Howard Hughes Medical Institute and Department of Biology, University of Florida, PO Box 103610, Gainesville, Florida 32610, USA
| |
Collapse
|
54
|
Archambeault S, Taylor JA, Crow KD. HoxA and HoxD expression in a variety of vertebrate body plan features reveals an ancient origin for the distal Hox program. EvoDevo 2014; 5:44. [PMID: 25908959 PMCID: PMC4407844 DOI: 10.1186/2041-9139-5-44] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/01/2014] [Indexed: 12/02/2022] Open
Abstract
Background Hox genes are master regulatory genes that specify positional identities during axial development in animals. Discoveries regarding their concerted expression patterns have commanded intense interest due to their complex regulation and specification of body plan features in jawed vertebrates. For example, the posterior HoxD genes switch to an inverted collinear expression pattern in the mouse autopod where HoxD13 switches from a more restricted to a less restricted domain relative to its neighboring gene on the cluster. We refer to this program as the ‘distal phase’ (DP) expression pattern because it occurs in distal regions of paired fins and limbs, and is regulated independently by elements in the 5′ region upstream of the HoxD cluster. However, few taxa have been evaluated with respect to this pattern, and most studies have focused on pectoral fin morphogenesis, which occurs relatively early in development. Results Here, we demonstrate for the first time that the DP expression pattern occurs with the posterior HoxA genes, and is therefore not solely associated with the HoxD gene cluster. Further, DP Hox expression is not confined to paired fins and limbs, but occurs in a variety of body plan features, including paddlefish barbels - sensory adornments that develop from the first mandibular arch (the former ‘Hox-free zone), and the vent (a medial structure that is analogous to a urethra). We found DP expression of HoxD13 and HoxD12 in the paddlefish barbel; and we present the first evidence for DP expression of the HoxA genes in the hindgut and vent of three ray-finned fishes. The HoxA DP expression pattern is predicted by the recent finding of a shared 5′ regulatory architecture in both the HoxA and HoxD clusters, but has not been previously observed in any body plan feature. Conclusions The Hox DP expression pattern appears to be an ancient module that has been co-opted in a variety of structures adorning the vertebrate bauplan. This module provides a shared genetic program that implies deep homology of a variety of distally elongated structures that has played a significant role in the evolution of morphological diversity in vertebrates Electronic supplementary material The online version of this article (doi:10.1186/2041-9139-5-44) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sophie Archambeault
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA 94132 USA
| | - Julia Ann Taylor
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA 94132 USA
| | - Karen D Crow
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA 94132 USA
| |
Collapse
|
55
|
Copulation in antiarch placoderms and the origin of gnathostome internal fertilization. Nature 2014; 517:196-9. [DOI: 10.1038/nature13825] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 08/29/2014] [Indexed: 11/08/2022]
|
56
|
Signaling through retinoic acid receptors in cardiac development: Doing the right things at the right times. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:94-111. [PMID: 25134739 DOI: 10.1016/j.bbagrm.2014.08.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/19/2014] [Accepted: 08/04/2014] [Indexed: 11/23/2022]
Abstract
Retinoic acid (RA) is a terpenoid that is synthesized from vitamin A/retinol (ROL) and binds to the nuclear receptors retinoic acid receptor (RAR)/retinoid X receptor (RXR) to control multiple developmental processes in vertebrates. The available clinical and experimental data provide uncontested evidence for the pleiotropic roles of RA signaling in development of multiple embryonic structures and organs such eyes, central nervous system, gonads, lungs and heart. The development of any of these above-mentioned embryonic organ systems can be effectively utilized to showcase the many strategies utilized by RA signaling. However, it is very likely that the strategies employed to transfer RA signals during cardiac development comprise the majority of the relevant and sophisticated ways through which retinoid signals can be conveyed in a complex biological system. Here, we provide the reader with arguments indicating that RA signaling is exquisitely regulated according to specific phases of cardiac development and that RA signaling itself is one of the major regulators of the timing of cardiac morphogenesis and differentiation. We will focus on the role of signaling by RA receptors (RARs) in early phases of heart development. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
|
57
|
Trinajstic K, Boisvert C, Long J, Maksimenko A, Johanson Z. Pelvic and reproductive structures in placoderms (stem gnathostomes). Biol Rev Camb Philos Soc 2014; 90:467-501. [DOI: 10.1111/brv.12118] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 04/08/2014] [Accepted: 04/28/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Kate Trinajstic
- Department of Chemistry; Curtin University; Perth Western Australia 6102 Australia
- Earth and Planetary Sciences; Western Australian Museum; Perth Western Australia 6000 Australia
| | - Catherine Boisvert
- Australian Regenerative Medicine Institute, Monash University; Clayton Victoria 3800 Australia
| | - John Long
- School of Biological Sciences, Flinders University; GOP Box 2100, Adelaide South Australia 5001 Australia
| | - Anton Maksimenko
- Imaging & Medical Therapy, Australian Synchrotron; 800 Blackburn Road Clayton Victoria 3168 Australia
| | - Zerina Johanson
- Department of Earth Sciences; The Natural History Museum; South Kensington London SW7 5BD U.K
| |
Collapse
|
58
|
Heude É, Shaikho S, Ekker M. The dlx5a/dlx6a genes play essential roles in the early development of zebrafish median fin and pectoral structures. PLoS One 2014; 9:e98505. [PMID: 24858471 PMCID: PMC4032342 DOI: 10.1371/journal.pone.0098505] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/02/2014] [Indexed: 11/18/2022] Open
Abstract
The Dlx5 and Dlx6 genes encode homeodomain transcription factors essential for the proper development of limbs in mammalian species. However, the role of their teleost counterparts in fin development has received little attention. Here, we show that dlx5a is an early marker of apical ectodermal cells of the pectoral fin buds and of the median fin fold, but also of cleithrum precursor cells during pectoral girdle development. We propose that early median fin fold establishment results from the medial convergence of dlx5a-expressing cells at the lateral edges of the neural keel. Expression analysis also shows involvement of dlx5a during appendage skeletogenesis. Using morpholino-mediated knock down, we demonstrate that disrupted dlx5a/6a function results in pectoral fin agenesis associated with misexpression of bmp4, fgf8a, and1 and msx genes. In contrast, the median fin fold presents defects in mesenchymal cell migration and actinotrichia formation, whereas the initial specification seems to occur normally. Our results demonstrate that the dlx5a/6a genes are essential for the induction of pectoral fin outgrowth, but are not required during median fin fold specification. The dlx5a/6a knock down also causes a failure of cleithrum formation associated with a drastic loss of runx2b and col10a1 expression. The data indicate distinct requirements for dlx5a/6a during median and pectoral fin development suggesting that initiation of unpaired and paired fin formation are not directed through the same molecular mechanisms. Our results refocus arguments on the mechanistic basis of paired appendage genesis during vertebrate evolution.
Collapse
Affiliation(s)
- Églantine Heude
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sarah Shaikho
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marc Ekker
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
59
|
Freitas R, Gómez-Skarmeta JL, Rodrigues PN. New frontiers in the evolution of fin development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 322:540-52. [DOI: 10.1002/jez.b.22563] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 01/10/2014] [Accepted: 01/19/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Renata Freitas
- IBMC-Instituto de Biologia Celular e Molecular; Porto Portugal
| | | | - Pedro Nuno Rodrigues
- IBMC-Instituto de Biologia Celular e Molecular; Porto Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar; Universidade do Porto; Porto Portugal
| |
Collapse
|
60
|
Conservation and divergence of regulatory strategies at Hox Loci and the origin of tetrapod digits. PLoS Biol 2014; 12:e1001773. [PMID: 24465181 PMCID: PMC3897358 DOI: 10.1371/journal.pbio.1001773] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 12/09/2013] [Indexed: 11/19/2022] Open
Abstract
During development, expression of the Hoxa and Hoxd genes in zebrafish fins and mouse limbs are regulated via a conserved chromatin structure. However, zebrafish lack certain regulatory elements required to produce digits, revealing that radials—the fin's bony elements—are likely not homologous to tetrapod digits. The evolution of tetrapod limbs from fish fins enabled the conquest of land by vertebrates and thus represents a key step in evolution. Despite the use of comparative gene expression analyses, critical aspects of this transformation remain controversial, in particular the origin of digits. Hoxa and Hoxd genes are essential for the specification of the different limb segments and their functional abrogation leads to large truncations of the appendages. Here we show that the selective transcription of mouse Hoxa genes in proximal and distal limbs is related to a bimodal higher order chromatin structure, similar to that reported for Hoxd genes, thus revealing a generic regulatory strategy implemented by both gene clusters during limb development. We found the same bimodal chromatin architecture in fish embryos, indicating that the regulatory mechanism used to pattern tetrapod limbs may predate the divergence between fish and tetrapods. However, when assessed in mice, both fish regulatory landscapes triggered transcription in proximal rather than distal limb territories, supporting an evolutionary scenario whereby digits arose as tetrapod novelties through genetic retrofitting of preexisting regulatory landscapes. We discuss the possibility to consider regulatory circuitries, rather than expression patterns, as essential parameters to define evolutionary synapomorphies. Our upper limbs differ from fish fins, notably by their subdivision into arm and hand regions, which are separated by a complex articulation, the wrist. The development of this anatomy is associated with two distinct waves of expression of the Hoxa and Hoxd genes during development. Would such a shared expression pattern be sufficient to infer homology between fish fins and mouse limbs? We investigated this question here, looking at whether the two phases of Hox gene transcription that are observed during tetrapod limb development also occur during zebrafish fin development. We find the answer is “not quite.” For although the mechanisms that regulate the expression of Hoxa and Hoxd are comparable between zebrafish fins and mouse limbs, when the genomic regions that regulate Hox gene expression in fish fins are introduced into transgenic mice, they trigger Hox gene expression in only the proximal limb segment (the segment nearest the body) and not in the presumptive digits. We conclude that although fish have the Hox regulatory toolkit to produce digits, this potential is not utilized as it is in tetrapods, and as a result we propose that fin radials—the bony elements of fins—are not homologous to tetrapod digits.
Collapse
|
61
|
Davis MC. The Deep Homology of the Autopod: Insights from Hox Gene Regulation. Integr Comp Biol 2013; 53:224-32. [DOI: 10.1093/icb/ict029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
62
|
Compagnucci C, Debiais-Thibaud M, Coolen M, Fish J, Griffin JN, Bertocchini F, Minoux M, Rijli FM, Borday-Birraux V, Casane D, Mazan S, Depew MJ. Pattern and polarity in the development and evolution of the gnathostome jaw: both conservation and heterotopy in the branchial arches of the shark, Scyliorhinus canicula. Dev Biol 2013; 377:428-48. [PMID: 23473983 DOI: 10.1016/j.ydbio.2013.02.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 01/26/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
The acquisition of jaws constitutes a landmark event in vertebrate evolution, one that in large part potentiated their success and diversification. Jaw development and patterning involves an intricate spatiotemporal series of reciprocal inductive and responsive interactions between the cephalic epithelia and the cranial neural crest (CNC) and cephalic mesodermal mesenchyme. The coordinated regulation of these interactions is critical for both the ontogenetic registration of the jaws and the evolutionary elaboration of variable jaw morphologies and designs. Current models of jaw development and evolution have been built on molecular and cellular evidence gathered mostly in amniotes such as mice, chicks and humans, and augmented by a much smaller body of work on the zebrafish. These have been partnered by essential work attempting to understand the origins of jaws that has focused on the jawless lamprey. Chondrichthyans (cartilaginous fish) are the most distant group to amniotes within extant gnathostomes, and comprise the crucial clade uniting amniotes and agnathans; yet despite their critical phylogenetic position, evidence of the molecular and cellular underpinnings of jaw development in chondrichthyans is still lacking. Recent advances in genome and molecular developmental biology of the lesser spotted dogfish shark, Scyliorhinus canicula, make it ideal for the molecular study of chondrichthyan jaw development. Here, following the 'Hinge and Caps' model of jaw development, we have investigated evidence of heterotopic (relative changes in position) and heterochronic (relative changes in timing) shifts in gene expression, relative to amniotes, in the jaw primordia of S. canicula embryos. We demonstrate the presence of clear proximo-distal polarity in gene expression patterns in the shark embryo, thus establishing a baseline molecular baüplan for branchial arch-derived jaw development and further validating the utility of the 'Hinge and Caps' model in comparative studies of jaw development and evolution. Moreover, we correlate gene expression patterns with the absence of a lambdoidal junction (formed where the maxillary first arch meets the frontonasal processes) in chondrichthyans, further highlighting the importance of this region for the development and evolution of jaw structure in advanced gnathostomes.
Collapse
Affiliation(s)
- Claudia Compagnucci
- Department of Craniofacial Development, King's College London, Floor 27, Guy's Hospital, London Bridge, London SE1 9RT, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Schneider I, Shubin NH. The origin of the tetrapod limb: from expeditions to enhancers. Trends Genet 2013; 29:419-26. [PMID: 23434323 DOI: 10.1016/j.tig.2013.01.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/22/2012] [Accepted: 01/28/2013] [Indexed: 12/24/2022]
Abstract
More than three centuries ago natural philosophers, and later anatomists, recognized a fundamental organization to the skeleton of tetrapod limbs. Composed of three segments, stylopod, zeugopod, and autopod, this pattern has served as the basis for a remarkably broad adaptive radiation from wings and flippers to hands and digging organs. A central area of inquiry has been tracing the origins of the elements of this Bauplan in the fins of diverse fish. Can equivalents of the three segments, and the developmental processes that pattern them, be seen in fish fins? In addition, if so, how do these data inform theories of the transformation of fins into limbs? Answers to these questions come from linking discoveries in paleontology with those of developmental biology and genetics. Burgeoning discoveries in the regulatory biology of developmental genes and in the genomics of diverse species offer novel data to investigate these classical questions.
Collapse
Affiliation(s)
- Igor Schneider
- Instituto de Ciencias Biologicas, Universidade Federal do Para, 66075, Belem, Brazil.
| | | |
Collapse
|
64
|
Sheth R, Marcon L, Bastida MF, Junco M, Quintana L, Dahn R, Kmita M, Sharpe J, Ros MA. Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science 2012; 338:1476-80. [PMID: 23239739 DOI: 10.1126/science.1226804] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The formation of repetitive structures (such as stripes) in nature is often consistent with a reaction-diffusion mechanism, or Turing model, of self-organizing systems. We used mouse genetics to analyze how digit patterning (an iterative digit/nondigit pattern) is generated. We showed that the progressive reduction in Hoxa13 and Hoxd11-Hoxd13 genes (hereafter referred to as distal Hox genes) from the Gli3-null background results in progressively more severe polydactyly, displaying thinner and densely packed digits. Combined with computer modeling, our results argue for a Turing-type mechanism underlying digit patterning, in which the dose of distal Hox genes modulates the digit period or wavelength. The phenotypic similarity with fish-fin endoskeleton patterns suggests that the pentadactyl state has been achieved through modification of an ancestral Turing-type mechanism.
Collapse
Affiliation(s)
- Rushikesh Sheth
- Facultad de Medicina, Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas-Sociedad para el Desarrollo Regional de Cantabria-Universidad de Cantabria, 39011 Santander, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Hoxd13 Contribution to the Evolution of Vertebrate Appendages. Dev Cell 2012; 23:1219-29. [DOI: 10.1016/j.devcel.2012.10.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 07/26/2012] [Accepted: 10/16/2012] [Indexed: 01/12/2023]
|
66
|
Yano T, Abe G, Yokoyama H, Kawakami K, Tamura K. Mechanism of pectoral fin outgrowth in zebrafish development. Development 2012; 139:2916-25. [PMID: 22791899 DOI: 10.1242/dev.075572] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fins and limbs, which are considered to be homologous paired vertebrate appendages, have obvious morphological differences that arise during development. One major difference in their development is that the AER (apical ectodermal ridge), which organizes fin/limb development, transitions into a different, elongated organizing structure in the fin bud, the AF (apical fold). Although the role of AER in limb development has been clarified in many studies, little is known about the role of AF in fin development. Here, we investigated AF-driven morphogenesis in the pectoral fin of zebrafish. After the AER-AF transition at ∼36 hours post-fertilization, the AF was identifiable distal to the circumferential blood vessel of the fin bud. Moreover, the AF was divisible into two regions: the proximal AF (pAF) and the distal AF (dAF). Removing the AF caused the AER and a new AF to re-form. Interestingly, repeatedly removing the AF led to excessive elongation of the fin mesenchyme, suggesting that prolonged exposure to AER signals results in elongation of mesenchyme region for endoskeleton. Removal of the dAF affected outgrowth of the pAF region, suggesting that dAF signals act on the pAF. We also found that the elongation of the AF was caused by morphological changes in ectodermal cells. Our results suggest that the timing of the AER-AF transition mediates the differences between fins and limbs, and that the acquisition of a mechanism to maintain the AER was a crucial evolutionary step in the development of tetrapod limbs.
Collapse
Affiliation(s)
- Tohru Yano
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | |
Collapse
|
67
|
Gillis JA, Modrell MS, Baker CVH. A timeline of pharyngeal endoskeletal condensation and differentiation in the shark, Scyliorhinus canicula, and the paddlefish, Polyodon spathula. ZEITSCHRIFT FUR ANGEWANDTE ICHTHYOLOGIE = JOURNAL OF APPLIED ICHTHYOLOGY 2012; 28:341-345. [PMID: 26566297 PMCID: PMC4640176 DOI: 10.1111/j.1439-0426.2012.01976.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The lesser-spotted dogfish (Scyliorhinus canicula) and the North American paddlefish (Polyodon spathula) are two emerging model systems for the study of vertebrate craniofacial development. Notably, both of these taxa have retained plesiomorphic aspects of pharyngeal endoskeletal organization, relative to more commonly used models of vertebrate craniofacial development (e.g. zebrafish, chick and mouse), and are therefore well suited to inform the pharyngeal endoskeletal patterning mechanisms that functioned in the last common ancestor of jawed vertebrates. Here, we present a histological overview of the condensation and chondrogenesis of the most prominent endoskeletal elements of the jaw, hyoid and gill arches - the palatoquadrate/Meckel's cartilage, the hyomandibula/ceratohyal, and the epi-/ceratobranchial cartilages, respectively - in embryonic series of S. canicula and P. spathula. Our observations provide a provisional timeline and anatomical framework for further molecular developmental and functional investigations of pharyngeal endoskeletal differentiation and patterning in these phylogenetically informative taxa.
Collapse
Affiliation(s)
- J A Gillis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - M S Modrell
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - C V H Baker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
68
|
Kuraku S. Hox gene clusters of early vertebrates: do they serve as reliable markers for genome evolution? GENOMICS PROTEOMICS & BIOINFORMATICS 2012; 9:97-103. [PMID: 21802046 PMCID: PMC5054437 DOI: 10.1016/s1672-0229(11)60012-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/21/2011] [Indexed: 10/27/2022]
Abstract
Hox genes, responsible for regional specification along the anteroposterior axis in embryogenesis, are found as clusters in most eumetazoan genomes sequenced to date. Invertebrates possess a single Hox gene cluster with some exceptions of secondary cluster breakages, while osteichthyans (bony vertebrates) have multiple Hox clusters. In tetrapods, four Hox clusters, derived from the so-called two-round whole genome duplications (2R-WGDs), are observed. Overall, the number of Hox gene clusters has been regarded as a reliable marker of ploidy levels in animal genomes. In fact, this scheme also fits the situations in teleost fishes that experienced an additional WGD. In this review, I focus on cyclostomes and cartilaginous fishes as lineages that would fill the gap between invertebrates and osteichthyans. A recent study highlighted a possible loss of the HoxC cluster in the galeomorph shark lineage, while other aspects of cartilaginous fish Hox clusters usually mark their conserved nature. In contrast, existing resources suggest that the cyclostomes exhibit a different mode of Hox cluster organization. For this group of species, whose genomes could have differently responded to the 2R-WGDs from jawed vertebrates, therefore the number of Hox clusters may not serve as a good indicator of their ploidy level.
Collapse
Affiliation(s)
- Shigehiro Kuraku
- Laboratory for Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Germany.
| |
Collapse
|
69
|
Abstract
'Evo-devo', an interdisciplinary field based on developmental biology, includes studies on the evolutionary processes leading to organ morphologies and functions. One fascinating theme in evo-devo is how fish fins evolved into tetrapod limbs. Studies by many scientists, including geneticists, mathematical biologists, and paleontologists, have led to the idea that fins and limbs are homologous organs; now it is the job of developmental biologists to integrate these data into a reliable scenario for the mechanism of fin-to-limb evolution. Here, we describe the fin-to-limb transition based on key recent developmental studies from various research fields that describe mechanisms that may underlie the development of fins, limb-like fins, and limbs.
Collapse
Affiliation(s)
- Tohru Yano
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, Japan.
| | | |
Collapse
|
70
|
Abstract
Full limb regeneration is a property that seems to be restricted to urodele amphibians. Here we found that Polypterus, the most basal living ray-finned fish, regenerates its pectoral lobed fins with a remarkable accuracy. Pectoral Polypterus fins are complex, formed by a well-organized endoskeleton to which the exoskeleton rays are connected. Regeneration initiates with the formation of a blastema similar to that observed in regenerating amphibian limbs. Retinoic acid induces dose-dependent phenotypes ranging from inhibition of regeneration to apparent anterior-posterior duplications. As in all developing tetrapod limbs and regenerating amphibian blastema, Sonic hedgehog is expressed in the posterior mesenchyme during fin regeneration. Hedgehog signaling plays a role in the regeneration and patterning processes: an increase or reduction of fin bony elements results when this signaling is activated or disrupted, respectively. The tail fin also regenerates but, in contrast with pectoral fins, regeneration can resume after release from the arrest caused by hedgehog inhibition. A comparative analysis of fin phenotypes obtained after retinoic acid treatment or altering the hedgehog signaling levels during regeneration allowed us to assign a limb tetrapod equivalent segment to Polypterus fin skeletal structures, thus providing clues to the origin of the autopod. We propose that appendage regeneration was a common property of vertebrates during the fin to limb transition.
Collapse
|
71
|
Takechi M, Takeuchi M, Ota KG, Nishimura O, Mochii M, Itomi K, Adachi N, Takahashi M, Fujimoto S, Tarui H, Okabe M, Aizawa S, Kuratani S. Overview of the transcriptome profiles identified in hagfish, shark, and bichir: current issues arising from some nonmodel vertebrate taxa. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:526-46. [PMID: 21809437 DOI: 10.1002/jez.b.21427] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/28/2011] [Accepted: 06/14/2011] [Indexed: 02/02/2023]
Abstract
Because of their crucial phylogenetic positions, hagfishes, sharks, and bichirs are recognized as key taxa in our understanding of vertebrate evolution. The expression patterns of the regulatory genes involved in developmental patterning have been analyzed in the context of evolutionary developmental studies. However, in a survey of public sequence databases, we found that the large-scale sequence data for these taxa are still limited. To address this deficit, we used conventional Sanger DNA sequencing and a next-generation sequencing technology based on 454 GS FLX sequencing to obtain expressed sequence tags (ESTs) of the Japanese inshore hagfish (Eptatretus burgeri; 161,482 ESTs), cloudy catshark (Scyliorhinus torazame; 165,819 ESTs), and gray bichir (Polypterus senegalus; 34,336 ESTs). We deposited the ESTs in a newly constructed database, designated the "Vertebrate TimeCapsule." The ESTs include sequences from genes that can be effectively used in evolutionary developmental studies; for instance, several encode cartilaginous extracellular matrix proteins, which are central to an understanding of the ways in which evolutionary processes affected the skeletal elements, whereas others encode regulatory genes involved in craniofacial development and early embryogenesis. Here, we discuss how hagfishes, sharks, and bichirs contribute to our understanding of vertebrate evolution, we review the current status of the publicly available sequence data for these three taxa, and we introduce our EST projects and newly developed database.
Collapse
Affiliation(s)
- Masaki Takechi
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Appendage expression driven by the Hoxd Global Control Region is an ancient gnathostome feature. Proc Natl Acad Sci U S A 2011; 108:12782-6. [PMID: 21765002 DOI: 10.1073/pnas.1109993108] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The evolutionary transition of the fins of fish into tetrapod limbs involved genetic changes to developmental systems that resulted in novel skeletal patterns and functions. Approaches to understanding this issue have entailed the search for antecedents of limb structure in fossils, genes, and embryos. Comparative genetic analyses have produced ambiguous results: although studies of posterior Hox genes from homology group 13 (Hoxa-13 and Hoxd-13) reveal similarities in gene expression between the distal segments of fins and limbs, this functional homology has not been supported by genomic comparisons of the activity of their cis-regulatory elements, namely the Hoxd Global Control Region. Here, we show that cis-regulatory elements driving Hoxd gene expression in distal limbs are present in fish. Using an interspecies transgenesis approach, we find functional conservation between gnathostome Hoxd enhancers, demonstrating that orthologous sequences from tetrapods, zebrafish and skate can drive reporter gene expression in mouse limbs and zebrafish fins. Our results support the notion that some of the novelties associated with tetrapod limbs arose by modification of deeply conserved cis- and trans-acting mechanisms of Hox regulation in gnathostomes.
Collapse
|
73
|
Oulion S, Borday-Birraux V, Debiais-Thibaud M, Mazan S, Laurenti P, Casane D. Evolution of repeated structures along the body axis of jawed vertebrates, insights from the Scyliorhinus canicula Hox code. Evol Dev 2011; 13:247-59. [DOI: 10.1111/j.1525-142x.2011.00477.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
74
|
Capellini TD, Zappavigna V, Selleri L. Pbx homeodomain proteins: TALEnted regulators of limb patterning and outgrowth. Dev Dyn 2011; 240:1063-86. [PMID: 21416555 DOI: 10.1002/dvdy.22605] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2011] [Indexed: 12/14/2022] Open
Abstract
Limb development has long provided an excellent model for understanding the genetic principles driving embryogenesis. Studies utilizing chick and mouse have led to new insights into limb patterning and morphogenesis. Recent research has centered on the regulatory networks underlying limb development. Here, we discuss the hierarchical, overlapping, and iterative roles of Pbx family members in appendicular development that have emerged from genetic analyses in the mouse. Pbx genes are essential in determining limb bud positioning, early bud formation, limb axes establishment and coordination, and patterning and morphogenesis of most elements of the limb and girdle. Pbx proteins directly regulate critical effectors of limb and girdle development, including morphogen-encoding genes like Shh in limb posterior mesoderm, and transcription factor-encoding genes like Alx1 in pre-scapular domains. Interestingly, at least in limb buds, Pbx appear to act not only as Hox cofactors, but also in the upstream control of 5' HoxA/D gene expression.
Collapse
Affiliation(s)
- Terence D Capellini
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, USA
| | | | | |
Collapse
|
75
|
Abbasi AA. Evolution of vertebrate appendicular structures: Insight from genetic and palaeontological data. Dev Dyn 2011; 240:1005-16. [PMID: 21337665 DOI: 10.1002/dvdy.22572] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2011] [Indexed: 01/18/2023] Open
Abstract
The new body of evidence from fossils and comparative-developmental analysis of subset of appendicular patterning genes has revealed that limb elements seen in tetrapods are assembled in fish fin over evolutionary time. However, despite of deep homology in basic structure and underlying developmental system, there remains a large morphological gap between distal elements of tetrapod limb and distal fin skeleton of tetrapodomorph fish. Understanding the genetic basis of major transformations in distal-limb morphology is the next challenge for evolutionary developmental biologists. Here by integrating data from fossils, comparative-developmental and genetic studies, models are proposed describing the evolution of cis-regulatory elements as a basis for diversification of appendicular architecture. Instead of emphasizing the subset of developmental genes, for instance Hoxd genes, the focus here is on the significance of elucidating cis-regulatory elements for multiple other key molecular players of limb/fin development and genetic/molecular interactions among them, for a better understanding of the developmental and genetic basis of limb evolution.
Collapse
Affiliation(s)
- Amir Ali Abbasi
- National Center for Bioinformatics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
76
|
Oulion S, Debiais-Thibaud M, d'Aubenton-Carafa Y, Thermes C, Da Silva C, Bernard-Samain S, Gavory F, Wincker P, Mazan S, Casane D. Evolution of Hox gene clusters in gnathostomes: insights from a survey of a shark (Scyliorhinus canicula) transcriptome. Mol Biol Evol 2010; 27:2829-38. [PMID: 20616144 DOI: 10.1093/molbev/msq172] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
It is now well established that there were four Hox gene clusters in the genome of the last common ancestor of extant gnathostomes. To better understand the evolution of the organization and expression of these genomic regions, we have studied the Hox gene clusters of a shark (Scyliorhinus canicula). We sequenced 225,580 expressed sequence tags from several embryonic cDNA libraries. Blast searches identified corresponding transcripts to almost all the HoxA, HoxB, and HoxD cluster genes. No HoxC transcript was identified, suggesting that this cluster is absent or highly degenerate. Using Hox gene sequences as probes, we selected and sequenced seven clones from a bacterial artificial chromosome library covering the complete region of the three gene clusters. Mapping of cDNAs to these genomic sequences showed extensive alternative splicing and untranslated exon sharing between neighboring Hox genes. Homologous noncoding exons could not be identified in transcripts from other species using sequence similarity. However, by comparing conserved noncoding sequences upstream of these exons in different species, we were able to identify homology between some exons. Some alternative splicing variants are probably very ancient and were already coded for by the ancestral Hox gene cluster. We also identified several transcripts that do not code for Hox proteins, are probably not translated, and all but one are in the reverse orientation to the Hox genes. This survey of the transcriptome of the Hox gene clusters of a shark shows that the high complexity observed in mammals is a gnathostome ancestral feature.
Collapse
Affiliation(s)
- Silvan Oulion
- Laboratoire Evolution, Génomes et Spéciation, UPR 9034 Centre National de la Recherche Scientifique and Université Paris Diderot-Paris 7, 91198 Gif sur Yvette, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Zeller R. The temporal dynamics of vertebrate limb development, teratogenesis and evolution. Curr Opin Genet Dev 2010; 20:384-90. [PMID: 20537528 DOI: 10.1016/j.gde.2010.04.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Revised: 04/20/2010] [Accepted: 04/24/2010] [Indexed: 01/15/2023]
Abstract
Recent genetic and functional analysis of vertebrate limb development begins to reveal how the functions of particular genes and regulatory hierarchies can drastically change over time. The temporal and spatial interplay of the two instructive signalling centres are part of a larger signalling system that orchestrates limb bud morphogenesis in a rather self-regulatory manner. It appears that mesenchymal cells are specified early and subsequently, the progenitors for the different skeletal elements are expanded and determined progressively during outgrowth. Mutations and teratogens that disrupt distal progression of limb development most often cause death of the early-specified progenitors rather than altering their fates. The proliferative expansion and distal progression of paired appendage development was one of the main driving forces behind the transition from fin to limb buds during paired appendage evolution. Finally, the adaptive diversification or loss of modern tetrapod limbs in particular phyla or species appear to be a consequence of evolutionary tampering with the regulatory systems that control distal progression of limb development.
Collapse
Affiliation(s)
- Rolf Zeller
- Developmental Genetics, Department of Biomedicine, University of Basel Medical Faculty, Mattenstrasse 28, Basel, Switzerland.
| |
Collapse
|
78
|
|
79
|
Castillo HA, Cravo RM, Azambuja AP, Simões-Costa MS, Sura-Trueba S, Gonzalez J, Slonimsky E, Almeida K, Abreu JG, de Almeida MAA, Sobreira TP, de Oliveira SHP, de Oliveira PSL, Signore IA, Colombo A, Concha ML, Spengler TS, Bronner-Fraser M, Nobrega M, Rosenthal N, Xavier-Neto J. Insights into the organization of dorsal spinal cord pathways from an evolutionarily conserved raldh2 intronic enhancer. Development 2010; 137:507-18. [PMID: 20081195 DOI: 10.1242/dev.043257] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Comparative studies of the tetrapod raldh2 (aldh1a2) gene, which encodes a retinoic acid (RA) synthesis enzyme, have led to the identification of a dorsal spinal cord enhancer. Enhancer activity is directed dorsally to the roof plate and dorsal-most (dI1) interneurons through predicted Tcf- and Cdx-homeodomain binding sites and is repressed ventrally via predicted Tgif homeobox and ventral Lim-homeodomain binding sites. Raldh2 and Math1/Cath1 expression in mouse and chicken highlights a novel, transient, endogenous Raldh2 expression domain in dI1 interneurons, which give rise to ascending circuits and intraspinal commissural interneurons, suggesting roles for RA in the ontogeny of spinocerebellar and intraspinal proprioceptive circuits. Consistent with expression of raldh2 in the dorsal interneurons of tetrapods, we also found that raldh2 is expressed in dorsal interneurons throughout the agnathan spinal cord, suggesting ancestral roles for RA signaling in the ontogenesis of intraspinal proprioception.
Collapse
Affiliation(s)
- Hozana A Castillo
- Laboratorio de Genética e Cardiologia Molecular, InCor-FMUSP, 05403-000, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Spitz F. Control of vertebrate Hox clusters by remote and global cis-acting regulatory sequences. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 689:63-78. [PMID: 20795322 DOI: 10.1007/978-1-4419-6673-5_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite apparently shared structural organisation and functional roles, vertebrate Hox genes are controlled by regulatory mechanisms rather distinct from those of the prototypic Drosophila Antennapedia (ANT-C) and Bithorax (BX-C) Complexes. If individual regulatory modules have been shown to recapitulate specific Hox expression patterns, other experimental studies underscore that vertebrate Hox clusters are controlled in many of their functions in a global manner, through distinct mechanisms. We will discuss the different models that have been proposed to account for these global regulatory modes. In this context, the studies of the regulation of the HoxD complex during limb development highlighted the role of global regulatory elements and the different mechanisms associated to transform a structural organisation into distinct temporal and spatial expression domains. We will further discuss how these mechanisms may have benefited from the structure of the vertebrate homeotic clusters and reciprocally contribute to shape their evolution towards an increased level of organisation and compaction.
Collapse
Affiliation(s)
- François Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
81
|
Lin C, Yin Y, Veith GM, Fisher AV, Long F, Ma L. Temporal and spatial dissection of Shh signaling in genital tubercle development. Development 2009; 136:3959-67. [PMID: 19906863 DOI: 10.1242/dev.039768] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Genital tubercle (GT) initiation and outgrowth involve coordinated morphogenesis of surface ectoderm, cloacal mesoderm and hindgut endoderm. GT development appears to mirror that of the limb. Although Shh is essential for the development of both appendages, its role in GT development is much less clear than in the limb. Here, by removing Shh at different stages during GT development in mice, we demonstrate a continuous requirement for Shh in GT initiation and subsequent androgen-independent GT growth. Moreover, we investigated the Hh responsiveness of different tissue layers by removing or activating its signal transducer Smo with tissue-specific Cre lines, and established GT mesenchyme as the primary target tissue of Shh signaling. Lastly, we showed that Shh is required for the maintenance of the GT signaling center distal urethral epithelium (dUE). By restoring Wnt-Fgf8 signaling in Shh(-/-) cloacal endoderm genetically, we revealed that Shh relays its signal partly through the dUE, but regulates Hoxa13 and Hoxd13 expression independently of dUE signaling. Altogether, we propose that Shh plays a central role in GT development by simultaneously regulating patterning of the cloacal field and supporting an outgrowth signal.
Collapse
Affiliation(s)
- Congxing Lin
- Division of Dermatology, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
82
|
Vertebrate limb bud development: moving towards integrative analysis of organogenesis. Nat Rev Genet 2009; 10:845-58. [PMID: 19920852 DOI: 10.1038/nrg2681] [Citation(s) in RCA: 339] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The limb bud is of paradigmatic value to understanding vertebrate organogenesis. Recent genetic analysis in mice has revealed the existence of a largely self-regulatory limb bud signalling system that involves many of the pathways that are known to regulate morphogenesis. These findings contrast with the prevailing view that the main limb bud axes develop largely independently of one another. In this Review, we discuss models of limb development and attempt to integrate the current knowledge of the signalling interactions that govern limb skeletal development into a systems model. The resulting integrative model provides insights into how the specification and proliferative expansion of the anteroposterior and proximodistal limb bud axes are coordinately controlled in time and space.
Collapse
|
83
|
Fraser GJ, Hulsey CD, Bloomquist RF, Uyesugi K, Manley NR, Streelman JT. An ancient gene network is co-opted for teeth on old and new jaws. PLoS Biol 2009; 7:e31. [PMID: 19215146 PMCID: PMC2637924 DOI: 10.1371/journal.pbio.1000031] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 01/05/2009] [Indexed: 11/18/2022] Open
Abstract
Vertebrate dentitions originated in the posterior pharynx of jawless fishes more than half a billion years ago. As gnathostomes (jawed vertebrates) evolved, teeth developed on oral jaws and helped to establish the dominance of this lineage on land and in the sea. The advent of oral jaws was facilitated, in part, by absence of hox gene expression in the first, most anterior, pharyngeal arch. Much later in evolutionary time, teleost fishes evolved a novel toothed jaw in the pharynx, the location of the first vertebrate teeth. To examine the evolutionary modularity of dentitions, we asked whether oral and pharyngeal teeth develop using common or independent gene regulatory pathways. First, we showed that tooth number is correlated on oral and pharyngeal jaws across species of cichlid fishes from Lake Malawi (East Africa), suggestive of common regulatory mechanisms for tooth initiation. Surprisingly, we found that cichlid pharyngeal dentitions develop in a region of dense hox gene expression. Thus, regulation of tooth number is conserved, despite distinct developmental environments of oral and pharyngeal jaws; pharyngeal jaws occupy hox-positive, endodermal sites, and oral jaws develop in hox-negative regions with ectodermal cell contributions. Next, we studied the expression of a dental gene network for tooth initiation, most genes of which are similarly deployed across the two disparate jaw sites. This collection of genes includes members of the ectodysplasin pathway, eda and edar, expressed identically during the patterning of oral and pharyngeal teeth. Taken together, these data suggest that pharyngeal teeth of jawless vertebrates utilized an ancient gene network before the origin of oral jaws, oral teeth, and ectodermal appendages. The first vertebrate dentition likely appeared in a hox-positive, endodermal environment and expressed a genetic program including ectodysplasin pathway genes. This ancient regulatory circuit was co-opted and modified for teeth in oral jaws of the first jawed vertebrate, and subsequently deployed as jaws enveloped teeth on novel pharyngeal jaws. Our data highlight an amazing modularity of jaws and teeth as they coevolved during the history of vertebrates. We exploit this diversity to infer a core dental gene network, common to the first tooth and all of its descendants.
Collapse
Affiliation(s)
- Gareth J Fraser
- Parker H. Petit Institute for Bioengineering and Biosciences and School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * To whom correspondence should be addressed. E-mail: (GJF); (JTS)
| | - C. Darrin Hulsey
- Parker H. Petit Institute for Bioengineering and Biosciences and School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Ryan F Bloomquist
- Parker H. Petit Institute for Bioengineering and Biosciences and School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Kristine Uyesugi
- Parker H. Petit Institute for Bioengineering and Biosciences and School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Nancy R Manley
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - J. Todd Streelman
- Parker H. Petit Institute for Bioengineering and Biosciences and School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * To whom correspondence should be addressed. E-mail: (GJF); (JTS)
| |
Collapse
|
84
|
Sakamoto K, Onimaru K, Munakata K, Suda N, Tamura M, Ochi H, Tanaka M. Heterochronic shift in Hox-mediated activation of sonic hedgehog leads to morphological changes during fin development. PLoS One 2009; 4:e5121. [PMID: 19365553 PMCID: PMC2664896 DOI: 10.1371/journal.pone.0005121] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 03/12/2009] [Indexed: 11/24/2022] Open
Abstract
We explored the molecular mechanisms of morphological transformations of vertebrate paired fin/limb evolution by comparative gene expression profiling and functional analyses. In this study, we focused on the temporal differences of the onset of Sonic hedgehog (Shh) expression in paired appendages among different vertebrates. In limb buds of chick and mouse, Shh expression is activated as soon as there is a morphological bud, concomitant with Hoxd10 expression. In dogfish (Scyliorhinus canicula), however, we found that Shh was transcribed late in fin development, concomitant with Hoxd13 expression. We utilized zebrafish as a model to determine whether quantitative changes in hox expression alter the timing of shh expression in pectoral fins of zebrafish embryos. We found that the temporal shift of Shh activity altered the size of endoskeletal elements in paired fins of zebrafish and dogfish. Thus, a threshold level of hox expression determines the onset of shh expression, and the subsequent heterochronic shift of Shh activity can affect the size of the fin endoskeleton. This process may have facilitated major morphological changes in paired appendages during vertebrate limb evolution.
Collapse
Affiliation(s)
- Koji Sakamoto
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | - Koh Onimaru
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | - Keijiro Munakata
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | - Natsuno Suda
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | - Mika Tamura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Japan
| | - Haruki Ochi
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Mikiko Tanaka
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Japan
- * E-mail:
| |
Collapse
|
85
|
Shared developmental mechanisms pattern the vertebrate gill arch and paired fin skeletons. Proc Natl Acad Sci U S A 2009; 106:5720-4. [PMID: 19321424 DOI: 10.1073/pnas.0810959106] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here, we describe the molecular patterning of chondrichthyan branchial rays (gill rays) and reveal profound developmental similarities between gill rays and vertebrate appendages. Sonic hedgehog (Shh) and fibroblast growth factor 8 (Fgf8) regulate the outgrowth and patterning of the chondrichthyan gill arch skeleton, in an interdependent manner similar to their roles in gnathostome paired appendages. Additionally, we demonstrate that paired appendages and branchial rays share other conserved developmental features, including Shh-mediated mirror-image duplications of the endoskeleton after exposure to retinoic acid, and Fgf8 expression by a pseudostratified distal epithelial ridge directing endoskeletal outgrowth. These data suggest that the skeletal patterning role of the retinoic acid/Shh/Fgf8 regulatory circuit has a deep evolutionary origin predating vertebrate paired appendages and may have functioned initially in patterning pharyngeal structures in a deuterostome ancestor of vertebrates.
Collapse
|
86
|
Shubin N, Tabin C, Carroll S. Deep homology and the origins of evolutionary novelty. Nature 2009; 457:818-23. [DOI: 10.1038/nature07891] [Citation(s) in RCA: 581] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
87
|
Abstract
Duplications of Hox gene clusters have been suggested as a mechanism whereby new Hox functions can be developed while preserving critical ancestral roles. However, in tetrapods, particularly in mammals, there is great variability in limb structure morphologies that are known to be affected by Hox genes without further Hox cluster duplications. The lack of further duplications suggests that if Hox genes have played a direct role in the morphological elaboration of tetrapod limbs, the changes must have come about from Hox protein sequence changes or from changes regarding the amount, time, and place of Hox gene expression. To investigate whether such changes to Hox genes could play a role in limb elaboration, we examined the HoxD locus in bats, which have both highly elaborated fore- and hindlimbs. We found that while the Chiropteran HoxD13 protein was highly conserved, there was an expansion of HoxD13 expression in the posterior portion of the Chiropteran forelimb and into the leading edge of the wing membrane. We were also able to uncover a number of unique lineage-specific sequence changes to a known HoxD limb enhancer, the Global Control Region (GCR). Further, mouse transgenic assays showed that the Chiropteran GCR has new limb enhancer activity domains beyond that reported for the Human GCR. These results suggest that modulation of Hox gene expression may be a mechanism for effecting morphological change in lineage-specific manner while maintaining ancestral constraints and cluster integrity.
Collapse
Affiliation(s)
- Russell Ray
- Department of Human Genetics, University of Utah, 15 North 2030 East rm. 5440, Salt Lake City, UT 84112-5331, USA
| | | |
Collapse
|
88
|
Wang Z, Yuan L, Rossiter SJ, Zuo X, Ru B, Zhong H, Han N, Jones G, Jepson PD, Zhang S. Adaptive evolution of 5'HoxD genes in the origin and diversification of the cetacean flipper. Mol Biol Evol 2008; 26:613-22. [PMID: 19074008 DOI: 10.1093/molbev/msn282] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The homeobox (Hox) genes Hoxd12 and Hoxd13 control digit patterning and limb formation in tetrapods. Both show strong expression in the limb bud during embryonic development, are highly conserved across vertebrates, and show mutations that are associated with carpal, metacarpal, and phalangeal deformities. The most dramatic evolutionary reorganization of the mammalian limb has occurred in cetaceans (whales, dolphins, and porpoises), in which the hind limbs have been lost and the forelimbs have evolved into paddle-shaped flippers. We reconstructed the phylogeny of digit patterning in mammals and inferred that digit number has changed twice in the evolution of the cetacean forelimb. First, the divergence of the early cetaceans from their even-toed relatives coincided with the reacquisition of the pentadactyl forelimb, whereas the ancestors of tetradactyl baleen whales (Mysticeti) later lost a digit again. To test whether the evolution of the cetacean forelimb is associated with positive selection or relaxation of Hoxd12 and Hoxd13, we sequenced these genes in a wide range of mammals. In Hoxd12, we found evidence of Darwinian selection associated with both episodes of cetacean forelimb reorganization. In Hoxd13, we found a novel expansion of a polyalanine tract in cetaceans compared with other mammals (17/18 residues vs. 14/15 residues, respectively), lengthening of which has previously been shown to be linked to synpolydactyly in humans and mice. Both genes also show much greater sequence variation among cetaceans than across other mammalian lineages. Our results strongly implicate 5'HoxD genes in the modulation of digit number, web forming, and the high morphological diversity of the cetacean manus.
Collapse
Affiliation(s)
- Zhe Wang
- School of Life Science, East China Normal University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Coates MI, Ruta M, Friedman M. Ever Since Owen: Changing Perspectives on the Early Evolution of Tetrapods. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2008. [DOI: 10.1146/annurev.ecolsys.38.091206.095546] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The traditional notion of a gap between fishes and amphibians has been closed by a wealth of fish-like fossil tetrapods, many discovered since the mid 1980s. This review summarizes these discoveries and explores their significance relative to changing ideas about early tetrapod phylogeny, biogeography, and ecology. Research emphasis can now shift to broader-based questions, including the whole of the early tetrapod radiation, from the divergence from other lobed-finned fishes to the origins of modern amphibians and amniotes. The fish-to-tetrapod morphological transition occurred within the Upper Devonian; the divergence of modern tetrapod groups is an Early Carboniferous event. Modern tetrapods emerged in the aftermath of one of the five major extinction episodes in the fossil record, but the earlier Devonian tetrapod radiation is not well understood. Tetrapod limbs, paired fins, and comparative developmental data are reviewed; again, research emphasis needs to change to explore the origins of tetrapod diversity.
Collapse
Affiliation(s)
- Michael I. Coates
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637
- Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois 60637
| | - Marcello Ruta
- Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, United Kingdom
| | - Matt Friedman
- Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
90
|
Coolen M, Menuet A, Chassoux D, Compagnucci C, Henry S, Lévèque L, Da Silva C, Gavory F, Samain S, Wincker P, Thermes C, D'Aubenton-Carafa Y, Rodriguez-Moldes I, Naylor G, Depew M, Sourdaine P, Mazan S. The Dogfish Scyliorhinus canicula: A Reference in Jawed Vertebrates. Cold Spring Harb Protoc 2008; 2008:pdb.emo111. [PMID: 21356737 DOI: 10.1101/pdb.emo111] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
INTRODUCTIONDue to their large size and long generation times, chondrichthyans have been largely ignored by geneticists. However, their key phylogenetic position makes them ideal subjects to study the molecular bases of the important morphological and physiological innovations that characterize jawed vertebrates. Such analyses are crucial to understanding the origin of the complex genetic mechanisms unraveled in osteichthyans. The small spotted dogfish Scyliorhinus canicula, a representative of the largest order of extant sharks, presents a number of advantages in this context. Due to its relatively small size among sharks, its abundance, and easy maintenance, the dogfish has been an important model in comparative anatomy and physiology for more than a century. Recently, revived interest has occurred with the development of large-scale transcriptomic and genomic resources, together with the establishment of facilities allowing massive egg and embryo production. These new tools open the way to molecular analyses of the elaborate physiological and sensory systems used by sharks. They also make it possible to take advantage of unique characteristics of these species, such as organ zonation, in analyses of cell proliferation and differentiation. Finally, they offer important perspectives to evolutionary developmental biology that will provide a better understanding of the origin and diversifications of jawed vertebrates. The dogfish whole-genome sequence, which may shortly become accessible, should establish this species as an essential shark reference, complementary to other chondrichthyan models. These analyses are likely to reveal an organism of an underestimated complexity, far from the primitive prototypical gnathostome anticipated in gradistic views.
Collapse
Affiliation(s)
- Marion Coolen
- CNRS UMR 6218 Immunologie et Embryologie Moléculaires, Université Sciences et Techniques d'Orléans, 45071 Orléans, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Menke DB, Guenther C, Kingsley DM. Dual hindlimb control elements in the Tbx4 gene and region-specific control of bone size in vertebrate limbs. Development 2008; 135:2543-53. [PMID: 18579682 DOI: 10.1242/dev.017384] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2025]
Abstract
The Tbx4 transcription factor is crucial for normal hindlimb and vascular development, yet little is known about how its highly conserved expression patterns are generated. We have used comparative genomics and functional scanning in transgenic mice to identify a dispersed group of enhancers controlling Tbx4 expression in different tissues. Two independent enhancers control hindlimb expression, one located upstream and one downstream of the Tbx4 coding exons. These two enhancers, hindlimb enhancer A and hindlimb enhancer B (HLEA and HLEB), differ in their primary sequence, in their precise patterns of activity within the hindlimb, and in their degree of sequence conservation across animals. HLEB is highly conserved from fish to mammals. Although Tbx4 expression and hindlimb development occur at different axial levels in fish and mammals, HLEB cloned from either fish or mouse is capable of driving expression at the appropriate position of hindlimb development in mouse embryos. HLEA is highly conserved only in mammals. Deletion of HLEA from the endogenous mouse locus reduces expression of Tbx4 in the hindlimb during embryogenesis, bypasses the embryonic lethality of Tbx4-null mutations, and produces viable, fertile mice with characteristic changes in the size of bones in the hindlimb but not the forelimb. We speculate that dual hindlimb enhancers provide a flexible genomic mechanism for altering the strength and location of Tbx4 expression during normal development, making it possible to separately modify the size of forelimb and hindlimb bones during vertebrate evolution.
Collapse
Affiliation(s)
- Douglas B Menke
- Howard Hughes Medical Institute and Department of Developmental Biology, Stanford University, Stanford, CA 94305-5329, USA
| | | | | |
Collapse
|
92
|
Tri-phasic expression of posterior Hox genes during development of pectoral fins in zebrafish: implications for the evolution of vertebrate paired appendages. Dev Biol 2008; 322:220-33. [PMID: 18638469 DOI: 10.1016/j.ydbio.2008.06.032] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 06/16/2008] [Accepted: 06/17/2008] [Indexed: 11/24/2022]
Abstract
During development of the limbs, Hox genes belonging to the paralogous groups 9-13 are expressed in three distinct phases, which play key roles in the segmental patterning of limb skeletons. In teleost fishes, which have a very different organization in their fin skeletons, it is not clear whether a similar patterning mechanism is at work. To determine whether Hox genes are also expressed in several distinct phases during teleost paired fin development, we re-analyzed the expression patterns of hox9-13 genes during development of pectoral fins in zebrafish. We found that, similar to tetrapod Hox genes, expression of hoxa/d genes in zebrafish pectoral fins occurs in three distinct phases, in which the most distal/third phase is correlated with the development of the most distal structure of the fin, the fin blade. Like in tetrapods, hox gene expression in zebrafish pectoral fins during the distal/third phase is dependent upon sonic hedgehog signaling (hoxa and hoxd genes) and the presence of a long-range enhancer (hoxa genes), which indicates that the regulatory mechanisms underlying tri-phasic expression of Hox genes have remained relatively unchanged during evolution. Our results suggest that, although simpler in organization, teleost fins do have a distal structure that might be considered comparable to the autopod region of limbs.
Collapse
|
93
|
Montavon T, Le Garrec JF, Kerszberg M, Duboule D. Modeling Hox gene regulation in digits: reverse collinearity and the molecular origin of thumbness. Genes Dev 2008; 22:346-59. [PMID: 18245448 DOI: 10.1101/gad.1631708] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
During the development of mammalian digits, clustered Hoxd genes are expressed following a collinear regulatory strategy, leading to both the growth of digits and their morphological identities. Because gene dosage is a key parameter in this system, we used a quantitative approach, associated with a collection of mutant stocks, to investigate the nature of the underlying regulatory mechanism(s). In parallel, we elaborated a mathematical model of quantitative collinearity, which was progressively challenged and validated by the experimental approach. This combined effort suggested a two-step mechanism, which involves initially the looping and recognition of the cluster by a complex including two enhancer sequences, followed by a second step of microscanning of genes located nearby. In this scenario, the respective rank of the genes, with respect to the 5' extremity of the cluster, is primordial, as well as different gene-specific affinities. This model accounts for the quantitative variations observed in our many mutant strains, and reveals the molecular constraint leading to thumbness; i.e., why a morphological difference must occur between the most anterior digit and the others. We also show that the same model applies to the collinear regulation of Hox genes during the emergence of external genitalia, though with some differences likely illustrating the distinct functionalities of these structures in adults.
Collapse
Affiliation(s)
- Thomas Montavon
- National Research Centre Frontiers in Genetics, School of Life Sciences, Ecole Polytechnique Fédérale, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
94
|
Affiliation(s)
- Jacqueline Deschamps
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht 3584 CT, The Netherlands.
| |
Collapse
|
95
|
Tamura K, Yonei-Tamura S, Yano T, Yokoyama H, Ide H. The autopod: Its formation during limb development. Dev Growth Differ 2008; 50 Suppl 1:S177-87. [DOI: 10.1111/j.1440-169x.2008.01020.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
96
|
Abstract
Asymmetric regulation of Hox gene expression pre-dates the appearance of tetrapod digits, and was co-opted in the development of 'thumbness'. This asymmetric expression correlates with independent morphological evolutionary variation of digit 1.
Collapse
Affiliation(s)
- Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, Prospect Street, New Haven, CT 06520-8106, USA.
| | | |
Collapse
|
97
|
Recent Papers on Zebrafish and Other Aquarium Fish Models. Zebrafish 2007. [DOI: 10.1089/zeb.2007.9983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|