51
|
Govindaraju VK, Bodas M, Vij N. Cigarette smoke induced autophagy-impairment regulates AMD pathogenesis mechanisms in ARPE-19 cells. PLoS One 2017; 12:e0182420. [PMID: 28767736 PMCID: PMC5540403 DOI: 10.1371/journal.pone.0182420] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/18/2017] [Indexed: 12/01/2022] Open
Abstract
Age related macular degeneration (AMD) is one of the leading causes of blindness. Genetics, environmental insult, and age-related factors all play a key role in altering proteostasis, the homeostatic process regulating protein synthesis, degradation and processing. These factors also play a role in the pathogenesis of AMD and it has been well established that cigarette smoking (CS) initiates AMD pathogenic mechanisms. The primary goal of this study is to elucidate whether CS can induce proteostasis/autophagy-impairment in retinal pigment epithelial (RPE) cells. In our preliminary analysis, it was found that cigarette smoke extract (CSE) induces accumulation of ubiquitinated proteins in the insoluble protein fraction (p < 0.01), which was subsequently mitigated through cysteamine (p < 0.01) or fisetin (p < 0.05) treatment. Further, it was verified that these CSE induced ubiquitinated proteins accumulated in the peri-nuclear spaces (p<0.05) that were cleared- off with cysteamine (p < 0.05) or fisetin (p < 0.05). Moreover, CSE-induced aggresome-formation (LC3B-GFP and Ub-RFP co-localization) and autophagy-flux impairment was significantly (p<0.01) mitigated by cysteamine (p<0.05) or fisetin (p<0.05) treatment, indicating the restoration of CSE-mediated autophagy-impairment. CSE treatment was also found to induce intracellular reactive oxygen species (ROS, p < 0.001) while impacting cell viability (p < 0.001), which was quantified using CMH2DCFDA-dye (ROS) and MTS (proliferation) or propodium iodide staining (cell viability) assays, respectively. Moreover, cysteamine and fisetin treatment ameliorated CS-mediated ROS production (p < 0.05) and diminished cell viability (p < 0.05). Lastly, CSE was found to induce cellular senescence (p < 0.001), which was significantly ameliorated by cysteamine (p < 0.001) or fisetin (p < 0.001). In conclusion, our study indicates that CS induced proteostasis/autophagy-impairment regulates mechanisms associated with AMD pathogenesis. Moreover, autophagy-inducing drugs such as cysteamine or fisetin can ameliorate AMD pathogenesis mechanisms that warrant further investigation in pre-clinical murine models.
Collapse
Affiliation(s)
- Viren Kumar Govindaraju
- College of Medicine, Central Michigan University, Mt Pleasant, Michigan, United States of America
| | - Manish Bodas
- College of Medicine, Central Michigan University, Mt Pleasant, Michigan, United States of America
| | - Neeraj Vij
- College of Medicine, Central Michigan University, Mt Pleasant, Michigan, United States of America
- Department of Pediatrics and Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
52
|
Jones MK, Lu B, Girman S, Wang S. Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases. Prog Retin Eye Res 2017; 58:1-27. [PMID: 28111323 PMCID: PMC5441967 DOI: 10.1016/j.preteyeres.2017.01.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/08/2017] [Accepted: 01/17/2017] [Indexed: 12/13/2022]
Abstract
Cell-based therapeutics offer diverse options for treating retinal degenerative diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP). AMD is characterized by both genetic and environmental risks factors, whereas RP is mainly a monogenic disorder. Though treatments exist for some patients with neovascular AMD, a majority of retinal degenerative patients have no effective therapeutics, thus indicating a need for universal therapies to target diverse patient populations. Two main cell-based mechanistic approaches are being tested in clinical trials. Replacement therapies utilize cell-derived retinal pigment epithelial (RPE) cells to supplant lost or defective host RPE cells. These cells are similar in morphology and function to native RPE cells and can potentially supplant the responsibilities of RPE in vivo. Preservation therapies utilize supportive cells to aid in visual function and photoreceptor preservation partially by neurotrophic mechanisms. The goal of preservation strategies is to halt or slow the progression of disease and maintain remaining visual function. A number of clinical trials are testing the safety of replacement and preservation cell therapies in patients; however, measures of efficacy will need to be further evaluated. In addition, a number of prevailing concerns with regards to the immune-related response, longevity, and functionality of the grafted cells will need to be addressed in future trials. This review will summarize the current status of cell-based preclinical and clinical studies with a focus on replacement and preservation strategies and the obstacles that remain regarding these types of treatments.
Collapse
Affiliation(s)
- Melissa K Jones
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Bin Lu
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Sergey Girman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Shaomei Wang
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave., Los Angeles, CA 90095, USA.
| |
Collapse
|
53
|
ANTERIOR CHAMBER FLARE DURING BEVACIZUMAB TREATMENT IN EYES WITH EXUDATIVE AGE-RELATED MACULAR DEGENERATION. Retina 2017; 36:2183-2190. [PMID: 27135211 DOI: 10.1097/iae.0000000000001061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE To study the anterior chamber flare during bevacizumab treatment of exudative age-related macular degeneration. METHODS During a 2-year prospective follow-up, 50 patients recently diagnosed with exudative age-related macular degeneration were treated at once-a-month visits if subretinal or intraretinal fluid or a new hemorrhage was present in the lesion area. Flare was measured weekly during the first month and then monthly in both eyes. RESULTS Higher flare was associated with older age (P = 0.007, Linear Mixed Model), higher number of smoking pack-years (P = 0.019), macular cysts (P = 0.041), and pseudophakia (P = 0.003). The levels gradually increased during the follow-up (P < 0.0001) but less in the eyes with classic CNV (P = 0.011). Flare decreased during treatment-free periods lasting for at least two consecutive visits (P = 0.005). A peak in flare was observed 1 week after the first injection (P = 0.034, Wilcoxon signed rank test). In the fellow eyes, higher flare values in the beginning of the follow-up were associated with later conversion into exudative age-related macular degeneration (P = 0.015, Mann-Whitney U test). CONCLUSION Anterior chamber flare correlated poorly with the CNV activity. Higher levels may, however, precede or exist early in the process that leads to the development of exudative age-related macular degeneration.
Collapse
|
54
|
The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog Retin Eye Res 2017; 60:201-218. [PMID: 28336424 DOI: 10.1016/j.preteyeres.2017.03.002] [Citation(s) in RCA: 551] [Impact Index Per Article: 68.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023]
Abstract
The retinal pigment epithelium (RPE) is a highly specialized, unique epithelial cell that interacts with photoreceptors on its apical side and with Bruch's membrane and the choriocapillaris on its basal side. Due to vital functions that keep photoreceptors healthy, the RPE is essential for maintaining vision. With aging and the accumulated effects of environmental stresses, the RPE can become dysfunctional and die. This degeneration plays a central role in age-related macular degeneration (AMD) pathobiology, the leading cause of blindness among the elderly in western societies. Oxidative stress and inflammation have both physiological and potentially pathological roles in RPE degeneration. Given the central role of the RPE, this review will focus on the impact of oxidative stress and inflammation on the RPE with AMD pathobiology. Physiological sources of oxidative stress as well as unique sources from photo-oxidative stress, the phagocytosis of photoreceptor outer segments, and modifiable factors such as cigarette smoking and high fat diet ingestion that can convert oxidative stress into a pathological role, and the negative impact of impairing the cytoprotective roles of mitochondrial dynamics and the Nrf2 signaling system on RPE health in AMD will be discussed. Likewise, the response by the innate immune system to an inciting trigger, and the potential role of local RPE production of inflammation, as well as a potential role for damage by inflammation with chronicity if the inciting trigger is not neutralized, will be debated.
Collapse
|
55
|
Carver KA, Lin CM, Bowes Rickman C, Yang D. Lack of the P2X 7 receptor protects against AMD-like defects and microparticle accumulation in a chronic oxidative stress-induced mouse model of AMD. Biochem Biophys Res Commun 2016; 482:81-86. [PMID: 27810364 DOI: 10.1016/j.bbrc.2016.10.140] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/29/2016] [Indexed: 12/17/2022]
Abstract
The P2X7 receptor (P2X7R) is an ATP-gated ion channel that is a key player in oxidative stress under pathological conditions. The P2X7R is expressed in the retinal pigmented epithelium (RPE) and neural retina. Chronic oxidative stress contributes to the pathogenesis of age-related macular degeneration (AMD). Mice lacking Cu, Zn superoxide dismutase (Sod1) developed chronic oxidative stress as well as AMD-like features, but whether the P2X7R plays a causative role in oxidative stress-induced AMD is unknown. Thus, the main purpose of this study was to test if concurrent knockout (KO) of P2X7R could block AMD-like defects seen in Sod1 KO mice. Using multiple approaches, we demonstrate that Sod1 KO causes AMD-like defects, including positive staining for oxidative stress markers, 3-nitrotyrosine and carboxymethyl lysine, thinning of the RPE and retina, thickening of Bruch's membrane, presence of basal laminar and linear deposits, RPE barrier disruption and accumulation of microglia/macrophages. Moreover, we find that Sod1 KO mice accumulate more microparticles (MPs) within RPE/choroid tissues. Concurrent KO of the P2X7R protects against AMD-like defects and MP accumulation in Sod1 KO mice. Together, we show for the first time, that deficiency of P2X7R prevents in vivo oxidative stress-induced accumulation of MPs and AMD-like defects. This work could potentially lead to novel therapies for AMD and other oxidative stress-driven diseases.
Collapse
Affiliation(s)
- Kyle A Carver
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - C M Lin
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27710, USA; Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Dongli Yang
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA.
| |
Collapse
|
56
|
Woodell A, Jones BW, Williamson T, Schnabolk G, Tomlinson S, Atkinson C, Rohrer B. A Targeted Inhibitor of the Alternative Complement Pathway Accelerates Recovery From Smoke-Induced Ocular Injury. Invest Ophthalmol Vis Sci 2016; 57:1728-37. [PMID: 27064393 PMCID: PMC4829088 DOI: 10.1167/iovs.15-18471] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose Morphologic and genetic evidence exists that an overactive complement system driven by the complement alternative pathway (AP) is involved in pathogenesis of age-related macular degeneration (AMD). Smoking is the only modifiable risk factor for AMD. As we have shown that smoke-related ocular pathology can be prevented in mice that lack an essential activator of AP, we ask here whether this pathology can be reversed by increasing inhibition in AP. Methods Mice were exposed to either cigarette smoke (CS) or filtered air (6 hours/day, 5 days/week, 6 months). Smoke-exposed animals were then treated with the AP inhibitor (CR2-fH) or vehicle control (PBS) for the following 3 months. Spatial frequency and contrast sensitivity were assessed by optokinetic response paradigms at 6 and 9 months; additional readouts included assessment of retinal morphology by electron microscopy (EM) and gene expression analysis by quantitative RT-PCR. Results The CS mice treated with CR2-fH showed significant improvement in contrast threshold compared to PBS-treated mice, whereas spatial frequency was unaffected by CS or pharmacologic intervention. Treatment with CR2-fH in CS animals reversed thinning of the retina observed in PBS-treated mice as analyzed by spectral-domain optical coherence tomography, and reversed most morphologic changes in RPE and Bruch's membrane seen in CS animals by EM. Conclusions Taken together, these findings suggest that AP inhibitors not only prevent, but have the potential to accelerate the clearance of complement-mediated ocular injury. Improving our understanding of the regulation of the AP is paramount to developing novel treatment approaches for AMD.
Collapse
Affiliation(s)
- Alex Woodell
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Bryan W Jones
- Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - Tucker Williamson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Gloriane Schnabolk
- Research Service, Ralph H. Johnson VA Medical Center, Charleston, South Carolina, United States
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States 4Research Service, Ralph H. Johnson VA Medical Center, Charleston, South Carolina, United States
| | - Carl Atkinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States 5Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Bärbel Rohrer
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, United States 4Research Service, Ralph H. Johnson VA Medical Center, Charleston, South Carolina, United States 6Department of Ophthalmology, Medical University o
| |
Collapse
|
57
|
Lyzogubov VV, Bora PS, Wu X, Horn LE, de Roque R, Rudolf XV, Atkinson JP, Bora NS. The Complement Regulatory Protein CD46 Deficient Mouse Spontaneously Develops Dry-Type Age-Related Macular Degeneration-Like Phenotype. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2088-2104. [PMID: 27295359 PMCID: PMC4973660 DOI: 10.1016/j.ajpath.2016.03.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 11/20/2022]
Abstract
In the mouse, membrane cofactor protein (CD46), a key regulator of the alternative pathway of the complement system, is only expressed in the eye and on the inner acrosomal membrane of spermatozoa. We noted that although Cd46(-/-) mice have normal systemic alternative pathway activating ability, lack of CD46 leads to dysregulated complement activation in the eye, as evidenced by increased deposition of C5b-9 in the retinal pigment epithelium (RPE) and choroid. A knockout of CD46 induced the following cardinal features of human dry age-related macular degeneration (AMD) in 12-month-old male and female mice: accumulation of autofluorescent material in and hypertrophy of the RPE, dense deposits in and thickening of Bruch's membrane, loss of photoreceptors, cells in subretinal space, and a reduction of choroidal vessels. Collectively, our results demonstrate spontaneous age-related degenerative changes in the retina, RPE, and choroid of Cd46(-/-) mice that are consistent with human dry AMD. These findings provide the exciting possibility of using Cd46(-/-) mice as a convenient and reliable animal model for dry AMD. Having such a relatively straight-forward model for dry AMD should provide valuable insights into pathogenesis and a test model system for novel drug targets. More important, tissue-specific expression of CD46 gives the Cd46(-/-) mouse model of dry AMD a unique advantage over other mouse models using knockout strains.
Collapse
Affiliation(s)
- Valeriy V Lyzogubov
- Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Puran S Bora
- Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Xiaobo Wu
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Leah E Horn
- Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas; Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ryan de Roque
- Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas; University of Arkansas for Medical Sciences, College of Medicine, Little Rock, Arkansas
| | - Xeniya V Rudolf
- Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Nalini S Bora
- Department of Ophthalmology, Jones Eye Institute, Pat and Willard Walker Eye Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas; Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| |
Collapse
|
58
|
Yu SS, Tang X, Ho YS, Chang RCC, Chiu K. Links between the Brain and Retina: The Effects of Cigarette Smoking-Induced Age-Related Changes in Alzheimer's Disease and Macular Degeneration. Front Neurol 2016; 7:119. [PMID: 27512384 PMCID: PMC4961692 DOI: 10.3389/fneur.2016.00119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 07/08/2016] [Indexed: 12/30/2022] Open
Affiliation(s)
- Sha Sha Yu
- Laboratory of Retina Brain Research, Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Tianjin Medical University, Tianjin, China; Tianjin Eye Hospital, Tianjin, China
| | - Xin Tang
- Tianjin Eye Hospital , Tianjin , China
| | - Yuen-Shan Ho
- Faculty of Health and Social Sciences, School of Nursing, The Hong Kong Polytechnic University , Hong Kong , China
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, LKS Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China; Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Kin Chiu
- Laboratory of Retina Brain Research, Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
59
|
Carver KA, Yang D. N-Acetylcysteine Amide Protects Against Oxidative Stress-Induced Microparticle Release From Human Retinal Pigment Epithelial Cells. Invest Ophthalmol Vis Sci 2016; 57:360-71. [PMID: 26842754 PMCID: PMC4736743 DOI: 10.1167/iovs.15-17117] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose Oxidative stress is a major factor involved in retinal pigment epithelium (RPE) apoptosis that underlies AMD. Drusen, extracellular lipid- and protein-containing deposits, are strongly associated with the development of AMD. Cell-derived microparticles (MPs) are small membrane-bound vesicles shed from cells. The purpose of this study was to determine if oxidative stress drives MP release from RPE cells, to assess whether these MPs carry membrane complement regulatory proteins (mCRPs: CD46, CD55, and CD59), and to evaluate the effects of a thiol antioxidant on oxidative stress–induced MP release. Methods Retinal pigment epithelium cells isolated from human donor eyes were cultured and treated with hydrogen peroxide (H2O2) to induce oxidative stress. Isolated MPs were fixed for transmission electron microscopy or processed for component analysis by flow cytometry, Western blot analysis, and confocal microscopy. Results Transmission electron microscopy showed that MPs ranged in diameter from 100 to 1000 nm. H2O2 treatment led to time- and dose-dependent elevations in MPs with externalized phosphatidylserine and phosphatidylethanolamine, known markers of MPs. These increases were strongly correlated to RPE apoptosis. Oxidative stress significantly increased the release of mCRP-positive MPs, which were prevented by a thiol antioxidant, N-acetylcysteine amide (NACA). Conclusions This is the first evidence that oxidative stress induces cultured human RPE cells to release MPs that carry mCRPs on their surface. The levels of released MPs are strongly correlated with RPE apoptosis. N-acetylcysteine amide prevents oxidative stress–induced effects. Our findings indicate that oxidative stress reduces mCRPs on the RPE surface through releasing MPs.
Collapse
|
60
|
Bricker-Anthony C, Hines-Beard J, Rex TS. Eye-Directed Overpressure Airwave-Induced Trauma Causes Lasting Damage to the Anterior and Posterior Globe: A Model for Testing Cell-Based Therapies. J Ocul Pharmacol Ther 2016; 32:286-95. [PMID: 26982447 PMCID: PMC4904234 DOI: 10.1089/jop.2015.0104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 02/17/2016] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Characterization of the response of the Balb/c mouse to an eye-directed overpressure airwave, with the hypothesis that this mouse strain and model is useful for testing potential therapeutics for the treatment of traumatic eye injury. METHODS The left eyes of adult Balb/c mice were exposed to an eye-directed overpressure airwave. Intraocular pressure (IOP) was measured and eyes were inspected for gross pathology changes. Optical coherence tomography and histology were used to examine the structural integrity of the retina and optic nerve. Immunohistochemistry, in vivo molecular fluorophores, and a multiplex enzyme-linked immunosorbent assay were utilized to identify changes in cell death, neuroinflammation, and oxidative stress. RESULTS This model induced a transient increase in IOP, corneal injuries, infrequent large retinal detachments, retinal pigment epithelium (RPE) vacuolization, glial reactivity, and retinal cell death. Both the corneal damage and RPE vacuolization persisted with time. Optic nerve degeneration occurred as early as 7 days postinjury and persisted out to 60 days. Retinal cell death, increased levels of reactive oxygen species, and neuroinflammation were detected at 7 days postinjury. CONCLUSIONS The injury profile of the Balb/c mouse is consistent with commonly observed pathologies in blast-exposed patients. The damage is throughout the eye and persistent, making this mouse model useful for testing cell-based therapies.
Collapse
Affiliation(s)
- Courtney Bricker-Anthony
- Vanderbilt Eye Institute Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jessica Hines-Beard
- Vanderbilt Eye Institute Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Tonia S. Rex
- Vanderbilt Eye Institute Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
61
|
Ahmed CM, Biswal MR, Li H, Han P, Ildefonso CJ, Lewin AS. Repurposing an orally available drug for the treatment of geographic atrophy. Mol Vis 2016; 22:294-310. [PMID: 27110092 PMCID: PMC4818958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/31/2016] [Indexed: 11/04/2022] Open
Abstract
PURPOSE Chronic oxidative stress and subacute inflammation have been implicated as causes of age-related macular degeneration (AMD). In this study, we tested whether an orally available 5-OH-tryptamine (5HT) 1a receptor agonist, xaliproden, could protect against retinal pigment epithelium (RPE) cell damage in culture and in a mouse model of geographic atrophy. METHODS Paraquat was used to create mitochondrial oxidative stress in ARPE-19 cells, and tumor necrosis factor-α (TNF-α) was used to stimulate the production of inflammatory cytokines in these cells. The production of antioxidant proteins, metallothionein, and inflammatory cytokines was assayed with quantitative real-time PCR. Cell survival was analyzed with microscopy and a cell titer assay. Integrity of the RPE monolayer was determined by measuring the transepithelial electrical resistance (TEER) and with immunocytochemistry with zona occludens protein 1 (ZO-1) antibody. RPE atrophy was studied in mice deleted for Sod2 (the gene for mitochondrial superoxide dismutase) specifically in the RPE. The mice were treated orally with daily doses of xaliproden at 0.5 and 3 mg/kg for 4 months. The retinal structure was analyzed with spectral domain optical coherence tomography (SD-OCT) and with light and electron microscopy. Retinal function was assessed with full-field electroretinography (ERG) and with optokinetic measurements. RESULTS Xaliproden led to a dose-dependent increase in cell survival following treatment with paraquat. Synthesis of the antioxidant response genes NqO1, GSTM1, CAT, HO-1, and Nrf2 was increased in response to the drug, as was the zinc chaperone metallothionein. Treatment of cells with TNF-α led to increased production of IL-1β, IL-6, chemokine (C-C motif) ligand 20 (CCL20), and vascular endothelial growth factor (VEGF) by ARPE-19 cells, and this response was attenuated by treatment with xaliproden. TNF-α also led to a decrease in the TEER that was prevented by treatment with the 5HT1a agonist. Daily gavage with xaliproden at either dose induced the production of protective enzymes in the mouse retina, and treatment of the Sod2-deleted mice with the drug showed improved thickness of the outer nuclear layer and improved visual acuity relative to the control-treated mice. There was no significant difference in full-field scotopic ERG among the treatment groups, however. Vacuolization of the RPE and disorganization of the photoreceptor outer segments were reduced at both dose levels of xaliproden. CONCLUSIONS Xaliproden protected RPE cells from oxidative and inflammatory insults and protected the mouse RPE and retina from RPE atrophy in the face of excess mitochondrial oxidative stress. These results suggest that this drug, which had a reasonable safety profile in clinical trials, may be used to prevent the progression of geographic atrophy in humans.
Collapse
|
62
|
Wang H, Hartnett ME. Regulation of signaling events involved in the pathophysiology of neovascular AMD. Mol Vis 2016; 22:189-202. [PMID: 27013848 PMCID: PMC4789180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/25/2016] [Indexed: 11/04/2022] Open
Abstract
Neovascular age-related macular degeneration (AMD) is a complex disease in which an individual's genetic predisposition is affected by aging and environmental stresses, which trigger signaling pathways involving inflammation, oxidation, and/or angiogenesis in the RPE cells and choroidal endothelial cells (CECs), to lead to vision loss from choroidal neovascularization. Antiangiogenic therapies have greatly improved clinical outcomes in the last decade; however, vision improves in less than half of patients treated for neovascular AMD, and treatments remain inadequate for atrophic AMD. Many studies focus on genetic predisposition or the association of outcomes in trials of human neovascular AMD but are unable to evaluate the effects between different cell types involved in AMD and the signaling events that take place to cause pathologic biologic events. This manuscript complements other reviews in that it describes what is known generally in human AMD studies and clinical trials testing methods to inhibit vascular endothelial growth factor (VEGF inhibitors) and presents pathologic signaling events that develop in two important cell types, the RPE cells and the CECs, when stimulated by stresses or placed into conditions similar to what is currently understood to occur in neovascular AMD. This manuscript complements other reviews by discussing signaling events that are activated by cell-cell or cell-matrix interactions. These considerations are particularly important when considering growth factors, such as VEGF, which are important in physiologic and pathologic processes, or GTPases that are present but active only if GTP bound. In either case, it is essential to understand the role of signaling activation to distinguish what is pathologic from what is physiologic. Particularly important is the essential role of activated Rac1 in CEC transmigration of the RPE monolayer, an important step in blindness associated with neovascular AMD. Other concepts discussed include the importance of feed-forward loops that overwhelm mechanisms that seek to restore homeostasis in cells and the importance of regulating, instead of abolishing, signaling events in a chronic, complex disease, such as neovascular AMD. These concepts are important as we move to the next stages in developing treatments for neovascular AMD. A novel therapeutic strategy that will be discussed is activating an isoform of the GTPase, Rap1, which can regulate downstream signaling and a pathologic feed-forward loop leading to Rac1 activation and migration of CECs.
Collapse
|
63
|
Wang Y, Hanus JW, Abu-Asab MS, Shen D, Ogilvy A, Ou J, Chu XK, Shi G, Li W, Wang S, Chan CC. NLRP3 Upregulation in Retinal Pigment Epithelium in Age-Related Macular Degeneration. Int J Mol Sci 2016; 17:E73. [PMID: 26760997 PMCID: PMC4730317 DOI: 10.3390/ijms17010073] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 01/03/2023] Open
Abstract
Inflammation and oxidative stress are involved in age-related macular degeneration (AMD) and possibly associated with an activation of neuronal apoptosis inhibitor protein/class II transcription activator of the Major Histocompatibility Complex (MHC)/heterokaryon incompatibility/telomerase-associated protein 1, leucine-rich repeat or nucleotide-binding domain, leucine-rich repeat-containing family, and pyrin domain-containing 3 (NLRP3) inflammasome. In the present study, we used a translational approach to address this hypothesis. In patients with AMD, we observed increased mRNA levels of NLRP3, pro-interleukin-1 beta (IL-1β) and pro-IL-18 in AMD lesions of the retinal pigment epithelium (RPE) and photoreceptor. In vitro, a similar increase was evoked by oxidative stress or lipopolysaccharide (LPS) stimulation in the adult retinal pigment epithelium (ARPE-19) cell line, and the increase was reduced in siRNA transfected cells to knockdown NLRP3. Ultrastructural studies of ARPE-19 cells showed a swelling of the cytoplasm, mitochondrial damage, and occurrence of autophagosome-like structures. NLRP3 positive dots were detected within autophagosome-like structures or in the extracellular space. Next, we used a mouse model of AMD, Ccl2/Cx3cr1 double knockout on rd8 background (DKO rd8) to ascertain the in vivo relevance. Ultrastructural studies of the RPE of these mice showed damaged mitochondria, autophagosome-like structures, and cytoplasmic vacuoles, which are reminiscent of the pathology seen in stressed ARPE-19 cells. The data suggest that the NLRP3 inflammasome may contribute in AMD pathogenesis.
Collapse
Affiliation(s)
- Yujuan Wang
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Jakub W Hanus
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA.
| | - Mones S Abu-Asab
- Histopathology Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Defen Shen
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Alexander Ogilvy
- Histopathology Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jingxing Ou
- Unit on Retinal Neurophysiology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Xi K Chu
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Guangpu Shi
- Experimental Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Wei Li
- Unit on Retinal Neurophysiology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Shusheng Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA.
| | - Chi-Chao Chan
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
- Histopathology Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
64
|
Huang C, Wang JJ, Jing G, Li J, Jin C, Yu Q, Falkowski MW, Zhang SX. Erp29 Attenuates Cigarette Smoke Extract-Induced Endoplasmic Reticulum Stress and Mitigates Tight Junction Damage in Retinal Pigment Epithelial Cells. Invest Ophthalmol Vis Sci 2016; 56:6196-207. [PMID: 26431474 DOI: 10.1167/iovs.15-16795] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PURPOSE Endoplasmic reticulum protein 29 (ERp29) is a novel chaperone that was recently found decreased in human retinas with AMD. Herein, we examined the effect of ERp29 on cigarette smoke-induced RPE apoptosis and tight junction disruption. METHODS Cultured human RPE (HRPE) cells (ARPE-19) or mouse RPE eyecup explants were exposed to cigarette smoke extract (CSE) for short (up to 24 hours) or long (up to 3 weeks) periods. Expression of ERp29 was up- and downregulated by adenovirus and siRNA, respectively. Endoplasmic reticulum stress markers, apoptosis, and cell death, the expression and distribution of tight junction protein ZO-1, transepithelial electrical resistance (TEER), and F-actin expression were examined. RESULTS Endoplasmic reticulum protein 29 was significantly increased by short-term exposure to CSE in ARPE-19 cells or eyecup explants but was reduced after 3-week exposure. Overexpression of ERp29 increased the levels of GRP78, p58(IPK), and Nrf-2, while reducing p-eIF2α and C/EBP homologous protein (CHOP), and protected RPE cells from CSE-induced apoptosis. In contrast, knockdown of ERp29 decreased the levels of p58(IPK) and Nrf2, but increased p-eIF2α and CHOP and exacerbated CSE-triggered cell death. In addition, overexpression of ERp29 attenuated CSE-induced reduction in ZO-1 and enhanced the RPE barrier function, as measured by TEER. Knockdown of ERp29 decreased the level of ZO-1 protein. These effects were associated with changes in the expression of cytoskeleton F-actin. CONCLUSIONS Endoplasmic reticulum protein 29 attenuates CSE-induced ER stress and enhances cell viability and barrier integrity of RPE cells, and therefore may act as a protective mechanism for RPE survival and activity.
Collapse
Affiliation(s)
- Chuangxin Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China 2Departments of Ophthalmology and Biochemistry, Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, New York, United
| | - Joshua J Wang
- Departments of Ophthalmology and Biochemistry, Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, New York, United States 3SUNY Eye Institute, State University of New York, Buffalo, New York, United States 4Department of Med
| | - Guangjun Jing
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Junhua Li
- Departments of Ophthalmology and Biochemistry, Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, New York, United States 3SUNY Eye Institute, State University of New York, Buffalo, New York, United States
| | - Chenjin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qiang Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Marek W Falkowski
- Departments of Ophthalmology and Biochemistry, Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, New York, United States
| | - Sarah X Zhang
- Departments of Ophthalmology and Biochemistry, Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, New York, United States 3SUNY Eye Institute, State University of New York, Buffalo, New York, United States
| |
Collapse
|
65
|
Alivand MR, Sabouni F, Soheili ZS. Probable Chemical Hypoxia Effects on Progress of CNV Through Induction of Promoter CpG Demethylation and Overexpression of IL17RC in Human RPE Cells. Curr Eye Res 2016; 41:1245-54. [DOI: 10.3109/02713683.2015.1095933] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mohammad Reza Alivand
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Medical Genetic, Medical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Sabouni
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zahra-Soheila Soheili
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
66
|
Abstract
Age-related macular degeneration (AMD), the most common form of irreversible blindness in the industrially developed world, can present years before a patient begins to lose vision. For most of these patients, AMD never progresses past its early stages to the advanced forms that are principally responsible for the vast majority of vision loss. Advanced AMD can manifest as either an advanced avascular form known as geographic atrophy (GA) marked by regional retinal pigment epithelium (RPE) cell death or as an advanced form known as neovascular AMD marked by the intrusion of fragile new blood vessels into the normally avascular retina. Physicians have several therapeutic interventions available to combat neovascular AMD, but GA has no approved effective therapies as of yet. In this chapter, we will discuss the current strategies for limiting dry AMD in patients. We will also discuss previous attempts at pharmacological intervention that were tested in a clinical setting and consider reasons why these putative therapeutics did not perform successfully in large-scale trials. Despite the number of unsuccessful past trials, new pharmacological interventions may succeed. These future therapies may aid millions of AMD patients worldwide.
Collapse
Affiliation(s)
- Charles B Wright
- Physiology and Ophthalmology and Visual Sciences, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Jayakrishna Ambati
- Physiology and Ophthalmology and Visual Sciences, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.
| |
Collapse
|
67
|
Aredo B, Li T, Chen X, Zhang K, Wang CXZ, Gou D, Zhao B, He Y, Ufret-Vincenty RL. A chimeric Cfh transgene leads to increased retinal oxidative stress, inflammation, and accumulation of activated subretinal microglia in mice. Invest Ophthalmol Vis Sci 2015; 56:3427-40. [PMID: 26030099 DOI: 10.1167/iovs.14-16089] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Variants of complement factor H (Cfh) affecting short consensus repeats (SCRs) 6 to 8 increase the risk of age-related macular degeneration. Our aim was to explore the effect of expressing a Cfh variant on the in vivo susceptibility of the retina and RPE to oxidative stress and inflammation, using chimeric Cfh transgenic mice (chCfhTg). METHODS The chCfhTg and age-matched C57BL/6J (B6) mice were subjected to oxidative stress by either normal aging, or by exposure to a combination of oral hydroquinone (0.8% HQ) and increased light. Eyes were collected for immunohistochemistry of RPE-choroid flat mounts and of retinal sections, ELISA, electron microscopy, and RPE/microglia gene expression analysis. RESULTS Aging mice to 2 years led to an increased accumulation of basal laminar deposits, subretinal microglia/macrophages (MG/MΦ) staining for CD16 and for malondialdehyde (MDA), and MDA-modified proteins in the retina in chCfhTg compared to B6 mice. The chCfhTg mice maintained on HQ diet and increased light showed greater deposition of basal laminar deposits, more accumulation of fundus spots suggestive of MG/MΦ, and increased deposition of C3d in the sub-RPE space, compared to controls. In addition, chCfhTg mice demonstrated upregulation of NLRP3, IP-10, CD68, and TREM-2 in the RNA isolates from RPE/MG/MΦ. CONCLUSIONS Expression of a Cfh transgene introducing a variant in SCRs 6 to 8 was sufficient to lead to increased retinal/RPE susceptibility to oxidative stress, a proinflammatory MG/MΦ phenotype, and a proinflammatory RPE/MG/MΦ gene expression profile in a transgenic mouse model. Our data suggest that altered interactions of Cfh with MDA-modified proteins may be relevant in explaining the effects of the Cfh variant.
Collapse
Affiliation(s)
- Bogale Aredo
- Department of Ophthalmology UT Southwestern Medical Center, Dallas, Texas, United States
| | - Tao Li
- Department of Ophthalmology UT Southwestern Medical Center, Dallas, Texas, United States 2Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiao Chen
- Department of Ophthalmology UT Southwestern Medical Center, Dallas, Texas, United States
| | - Kaiyan Zhang
- Department of Ophthalmology UT Southwestern Medical Center, Dallas, Texas, United States
| | - Cynthia Xin-Zhao Wang
- Department of Ophthalmology UT Southwestern Medical Center, Dallas, Texas, United States
| | - Darlene Gou
- Department of Ophthalmology UT Southwestern Medical Center, Dallas, Texas, United States
| | - Biren Zhao
- Department of Ophthalmology UT Southwestern Medical Center, Dallas, Texas, United States
| | - Yuguang He
- Department of Ophthalmology UT Southwestern Medical Center, Dallas, Texas, United States
| | | |
Collapse
|
68
|
Kijlstra A, Berendschot TTJM. Age-related macular degeneration: a complementopathy? Ophthalmic Res 2015; 54:64-73. [PMID: 26159686 DOI: 10.1159/000432401] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/16/2015] [Indexed: 11/19/2022]
Abstract
Age-related macular degeneration (AMD) is a progressive eye disease affecting many elderly individuals. It has a multifactorial pathogenesis and is associated with numerous environmental (e.g. smoking, light and nutrition) and genetic risk factors. A breakthrough in the mechanisms causing AMD is emerging; the involvement of the alternative pathway of the complement system appears to play a pivotal role. This has led to the statement that AMD is a disease caused by a hyperactive complement system, allowing the term 'complementopathy' to define it more precisely. Abundant evidence includes: the identification of drusen components as activators of complement, immunohistochemical data showing the presence of many species of the complement system in the retinal pigment epithelium-Bruch's membrane-choroidocapillary region of AMD eyes, a strong association of AMD with certain genetic complement protein variants, raised complement levels in blood from AMD patients and the preliminary successful treatments of geographic atrophy with complement factor D (FD) inhibitors. FD is the rate-limiting enzyme of the alternative complement pathway, and is produced by adipose tissue. Recent findings suggest that nutrition may play a role in controlling the level of FD in the circulation. Addressing modifiable risk factors such as smoking and nutrition may thus offer opportunities for the prevention of AMD.
Collapse
Affiliation(s)
- Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, The Netherlands
| | | |
Collapse
|
69
|
Perez VL, Caspi RR. Immune mechanisms in inflammatory and degenerative eye disease. Trends Immunol 2015; 36:354-63. [PMID: 25981967 DOI: 10.1016/j.it.2015.04.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 12/14/2022]
Abstract
It has recently been recognized that pathology of age-associated degenerative eye diseases such as adult macular degeneration (AMD), glaucoma and diabetic retinopathy, have strong immunological underpinnings. Attempts have been made to extrapolate to age-related degenerative disease insights from inflammatory processes associated with non-infectious uveitis, but these have not yet been sufficiently informative. Here we review recent findings on the immune processes underlying uveitis and those that have been shown to contribute to AMD, discussing in this context parallels and differences between overt inflammation and para-inflammation in the eye. We propose that mechanisms associated with ocular immune privilege, in combination with paucity of age-related antigen(s) within the target tissue, dampen what could otherwise be overt inflammation and result in the para-inflammation that characterizes age-associated neurodegenerative disease.
Collapse
Affiliation(s)
- Victor L Perez
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
70
|
Bhandary YP, Shetty SK, Marudamuthu AS, Midde KK, Ji HL, Shams H, Subramaniam R, Fu J, Idell S, Shetty S. Plasminogen activator inhibitor-1 in cigarette smoke exposure and influenza A virus infection-induced lung injury. PLoS One 2015; 10:e0123187. [PMID: 25932922 PMCID: PMC4416821 DOI: 10.1371/journal.pone.0123187] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 03/01/2015] [Indexed: 12/22/2022] Open
Abstract
Parenchymal lung inflammation and airway and alveolar epithelial cell apoptosis are associated with cigarette smoke exposure (CSE), which contributes to chronic obstructive pulmonary disease (COPD). Epidemiological studies indicate that people exposed to chronic cigarette smoke with or without COPD are more susceptible to influenza A virus (IAV) infection. We found increased p53, PAI-1 and apoptosis in AECs, with accumulation of macrophages and neutrophils in the lungs of patients with COPD. In Wild-type (WT) mice with passive CSE (PCSE), p53 and PAI-1 expression and apoptosis were increased in AECs as was lung inflammation, while those lacking p53 or PAI-1 resisted AEC apoptosis and lung inflammation. Further, inhibition of p53-mediated induction of PAI-1 by treatment of WT mice with caveolin-1 scaffolding domain peptide (CSP) reduced PCSE-induced lung inflammation and reversed PCSE-induced suppression of eosinophil-associated RNase1 (EAR1). Competitive inhibition of the p53-PAI-1 mRNA interaction by expressing p53-binding 3’UTR sequences of PAI-1 mRNA likewise suppressed CS-induced PAI-1 and AEC apoptosis and restored EAR1 expression. Consistent with PCSE-induced lung injury, IAV infection increased p53, PAI-1 and apoptosis in AECs in association with pulmonary inflammation. Lung inflammation induced by PCSE was worsened by subsequent exposure to IAV. Mice lacking PAI-1 that were exposed to IAV showed minimal viral burden based on M2 antigen and hemagglutination analyses, whereas transgenic mice that overexpress PAI-1 without PCSE showed increased M2 antigen and inflammation after IAV infection. These observations indicate that increased PAI-1 expression promotes AEC apoptosis and exacerbates lung inflammation induced by IAV following PCSE.
Collapse
Affiliation(s)
- Yashodhar P. Bhandary
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Shwetha K. Shetty
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Amarnath S. Marudamuthu
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Krishna K. Midde
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Hong-Long Ji
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Homoyoun Shams
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Renuka Subramaniam
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Jian Fu
- Center for Research on Environmental Disease and Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Steven Idell
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Sreerama Shetty
- Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
- * E-mail:
| |
Collapse
|
71
|
Huang C, Wang JJ, Ma JH, Jin C, Yu Q, Zhang SX. Activation of the UPR protects against cigarette smoke-induced RPE apoptosis through up-regulation of Nrf2. J Biol Chem 2015; 290:5367-80. [PMID: 25568320 PMCID: PMC4342454 DOI: 10.1074/jbc.m114.603738] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/22/2014] [Indexed: 11/06/2022] Open
Abstract
Recent studies have revealed a role of endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) in the regulation of RPE cell activity and survival. Herein, we examined the mechanisms by which the UPR modulates apoptotic signaling in human RPE cells challenged with cigarette smoking extract (CSE). Our results show that CSE exposure induced a dose- and time-dependent increase in ER stress markers, enhanced reactive oxygen species (ROS), mitochondrial fragmentation, and apoptosis of RPE cells. These changes were prevented by the anti-oxidant NAC or chemical chaperone TMAO, suggesting a close interaction between oxidative and ER stress in CSE-induced apoptosis. To decipher the role of the UPR, overexpression or down-regulation of XBP1 and CHOP genes was manipulated by adenovirus or siRNA. Overexpressing XBP1 protected against CSE-induced apoptosis by reducing CHOP, p-p38, and caspase-3 activation. In contrast, XBP1 knockdown sensitized the cells to CSE-induced apoptosis, which is likely through a CHOP-independent pathway. Surprisingly, knockdown of CHOP reduced p-eIF2α and Nrf2 resulting in a marked increase in caspase-3 activation and apoptosis. Furthermore, Nrf2 inhibition increased ER stress and exacerbated cell apoptosis, while Nrf2 overexpression reduced CHOP and protected RPE cells. Our data suggest that although CHOP may function as a pro-apoptotic gene during ER stress, it is also required for Nrf2 up-regulation and RPE cell survival. In addition, enhancing Nrf2 and XBP1 activity may help reduce oxidative and ER stress and protect RPE cells from cigarette smoke-induced damage.
Collapse
Affiliation(s)
- Chuangxin Huang
- From the Department of Ophthalmology/Ross Eye Institute, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14215, SUNY Eye Institute, The State University of New York, Buffalo, New York 14215, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China, and
| | - Joshua J Wang
- From the Department of Ophthalmology/Ross Eye Institute, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14215, SUNY Eye Institute, The State University of New York, Buffalo, New York 14215
| | - Jacey H Ma
- From the Department of Ophthalmology/Ross Eye Institute, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14215, SUNY Eye Institute, The State University of New York, Buffalo, New York 14215, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China, and
| | - Chenjin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China, and
| | - Qiang Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China, and
| | - Sarah X Zhang
- From the Department of Ophthalmology/Ross Eye Institute, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14215, SUNY Eye Institute, The State University of New York, Buffalo, New York 14215, Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14215
| |
Collapse
|
72
|
Zhang MQ, Wan Y, Jin Y, Xin JB, Zhang JC, Xiong XZ, Chen L, Chen G. Cigarette smoking promotes inflammation in patients with COPD by affecting the polarization and survival of Th/Tregs through up-regulation of muscarinic receptor 3 and 5 expression. PLoS One 2014; 9:e112350. [PMID: 25375131 PMCID: PMC4223024 DOI: 10.1371/journal.pone.0112350] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/04/2014] [Indexed: 11/29/2022] Open
Abstract
Background CD4+ T cells in the lung are involved in the pathogenesis of chronic obstructive pulmonary disease (COPD), although CD4+ T cell subsets and the direct effect of smoking on these cells, especially the expression of MRs, have not been comprehensively examined. Methods First, circulating CD4+ T cell subsets in healthy nonsmokers, patients with SCOPD and patients with AECOPD were evaluated by flow cytometry. Then, differentiation experiments were carried out using RT-PCR, and Ki-67/Annexin V antibodies were used to measure proliferation and apoptosis. We also explored the impact of CSE on the differentiation and survival of CD4+Th/Tregs and examined the expression of MRs in healthy nonsmokers and patients with SCOPD. Results We found the percentages of circulating Th1 and Th17 cells were increased in patients with AECOPD, while the percentage of Th2 cells was decreased in patients with SCOPD. The percentages of Th10 cells were decreased in both patients with SCOPD and patients with AECOPD, while the percentages of Tregs were increased. In addition, the percentages of CD4+α-7+ T cells were decreased in patients with SCOPD and patients with AECOPD. However, only the decrease observed in patients with AECOPD was significant. In vitro studies also revealed MR expression affected the polarization of T cells, with different CD4+ T cell subtypes acquiring different MR expression profiles. The addition of CSE facilitated CD4+ T cell polarization towards pro-inflammatory subsets (Th1 and Th17) and affected the survival of CD4+ T cells and Treg cells by up-regulating the expression of MR3 and 5, resulting in an imbalance of CD4+ T cell subsets. Conclusions Our findings suggest an imbalance of circulating CD4+ T cell subsets is involved in COPD pathogenesis in smokers. Cigarette smoking may contribute to this imbalance by affecting the polarization and survival of Th/Tregs through the up-regulation of MR3 and MR5.
Collapse
Affiliation(s)
- Ming-Qiang Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Wan
- Department of Respiratory and Critical Care Medicine WUHAN NO. 1 HOSPITAL, Wuhan, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Bao Xin
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Chu Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian-Zhi Xiong
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| | - Long Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
73
|
Chiras D, Kitsos G, Petersen MB, Skalidakis I, Kroupis C. Oxidative stress in dry age-related macular degeneration and exfoliation syndrome. Crit Rev Clin Lab Sci 2014; 52:12-27. [PMID: 25319011 DOI: 10.3109/10408363.2014.968703] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress refers to cellular or molecular damage caused by reactive oxygen species, which especially occurs in age-related conditions as a result of an imbalance between the production of reactive oxygen species and the antioxidant defense response. Dry age-related macular degeneration (AMD) and exfoliation syndrome (XFS) are two common and complex age-related conditions that can cause irreversible vision loss. Two subtypes of AMD, which is the leading cause of blindness in the Western world, exist: the most prevalent dry type and the most severe wet type. Early dry AMD is characterized by formation of drusen, which are sub-retinal deposits, in the macular area and may progress to geographic atrophy with more dramatic manifestation. XFS is a systemic disorder of the extracellular matrix characterized by the accumulation of elastic fibrils that leads, in most cases, to glaucoma development with progressive and irreversible vision loss. Due to the aging population, the prevalence of these already-widespread conditions is increasing and is resulting in significant economic and psychological costs for individuals and for society. The exact composition of the abnormal drusen and XFS material as well as the mechanisms responsible for their production and accumulation still remain elusive, and consequently treatment for both diseases is lacking. However, recent epidemiologic, genetic and molecular studies support a major role for oxidative stress in both dry AMD and XFS development. Understanding the early molecular events in their pathogenesis and the exact role of oxidative stress may provide novel opportunities for therapeutic intervention for the prevention of progression to advanced disease.
Collapse
Affiliation(s)
- Dimitrios Chiras
- Department of Ophthalmology, University Hospital of Ioannina , Ioannina , Greece
| | | | | | | | | |
Collapse
|
74
|
Fujihara M, Cano M, Handa JT. Mice that produce ApoB100 lipoproteins in the RPE do not develop drusen yet are still a valuable experimental system. Invest Ophthalmol Vis Sci 2014; 55:7285-95. [PMID: 25316721 DOI: 10.1167/iovs.14-15195] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Mice typically produce apolipoprotein B (apoB)-48 and not apoB100. Apolipoprotein B100 accumulates in Bruch's membrane prior to basal deposit and drusen formation during the onset of AMD, raising the possibility that they are a trigger for these Bruch's membrane alterations. The purpose herein, was to determine whether mice that predominantly produce apoB100 develop features of AMD. METHODS The eyes of mice that produce apoB100 were examined for apoB100 synthesis, cholesteryl esterase/filipin labeling for cholesteryl esters, and transmission electron microscopy for lipid particles and phenotype. RESULTS Apolipoprotein B100 was abundant in the RPE-choroid of apoB100, but not wild-type mice by Western blot analysis. The apolipoprotein B100,(35)S-radiolabeled and immunoprecipitated from RPE explants, confirmed that apoB100 was synthesized by RPE. Apolipoprotein B100, but not control mice, had cholesteryl esters and lipid particles in Bruch's membrane. Immunoreactivity of ApoB100 was present in the RPE and Bruch's membrane, but not choroidal endothelium of apoB100 mice. Ultrastructural changes were consistent with aging, but not AMD when aged up to 18 months. The induction of advanced glycation end products to alter Bruch's membrane, did not promote basal linear deposit or drusen formation. CONCLUSIONS Mice that produce apoB100 in the RPE and liver secrete lipoproteins into Bruch's membrane, but not to the extent that distinct features of AMD develop, which suggests that either additional lipoprotein accumulation or additional factors are necessary to initiate their formation.
Collapse
Affiliation(s)
- Masashi Fujihara
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Marisol Cano
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
75
|
Wang L, Cano M, Handa JT. p62 provides dual cytoprotection against oxidative stress in the retinal pigment epithelium. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:1248-58. [PMID: 24667411 PMCID: PMC4019388 DOI: 10.1016/j.bbamcr.2014.03.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/11/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023]
Abstract
As a signaling hub, p62/sequestosome plays important roles in cell signaling and degradation of misfolded proteins. p62 has been implicated as an adaptor protein to mediate autophagic clearance of insoluble protein aggregates in age-related diseases, including age-related macular degeneration (AMD), which is characterized by dysfunction of the retinal pigment epithelium (RPE). Our previous studies have shown that cigarette smoke (CS) induces oxidative stress and inhibits the proteasome pathway in cultured human RPE cells, suggesting that p62-mediated autophagy may become the major route to remove impaired proteins under such circumstances. In the present studies, we found that all p62 mRNA variants are abundantly expressed and upregulated by CS induced stress in cultured human RPE cells, yet isoform1 is the major translated form. We also show that p62 silencing exacerbated the CS induced accumulation of damaged proteins, both by suppressing autophagy and by inhibiting the Nrf2 antioxidant response, which in turn, increased protein oxidation. These effects of CS and p62 reduction were further confirmed in mice exposed to CS. We found that over-expression of p62 isoform1, but not its S403A mutant, which lacks affinity for ubiquitinated proteins, reduced misfolded proteins, yet simultaneously promoted an Nrf2-mediated antioxidant response. Thus, p62 provides dual, reciprocal enhancing protection to RPE cells from environmental stress induced protein misfolding and aggregation, by facilitating autophagy and the Nrf2 mediated antioxidant response, which might be a potential therapeutic target against AMD.
Collapse
Affiliation(s)
- Lei Wang
- Wilmer Eye Institute, Johns Hopkins School of Medicine, USA.
| | - Marisol Cano
- Wilmer Eye Institute, Johns Hopkins School of Medicine, USA.
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, USA.
| |
Collapse
|
76
|
Chen C, Cano M, Wang JJ, Li J, Huang C, Yu Q, Herbert TP, Handa JT, Zhang SX. Role of unfolded protein response dysregulation in oxidative injury of retinal pigment epithelial cells. Antioxid Redox Signal 2014; 20:2091-106. [PMID: 24053669 PMCID: PMC3995121 DOI: 10.1089/ars.2013.5240] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
AIMS Age-related macular degeneration (AMD), a major cause of legal blindness in the elderly, is associated with genetic and environmental risk factors, such as cigarette smoking. Recent evidence shows that cigarette smoke (CS) that contains high levels of potent oxidants preferably targets retinal pigment epithelium (RPE) leading to oxidative damage and apoptosis; however, the mechanisms are poorly understood. The present study aimed to investigate the role of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in CS-related RPE apoptosis. RESULTS ER stress and proapoptotic gene C/EBP homologous protein (CHOP) were induced in the RPE/choroid complex from mice exposed to CS for 2 weeks and in human RPE cells treated with hydroquinone, a potent oxidant found at high concentrations in CS. Suppressing ER stress or inhibiting CHOP activation by pharmacological chaperones or genetic approaches attenuated hydroquinone-induced RPE cell apoptosis. In contrast to enhanced CHOP activation, protein level of active X-box binding protein 1 (XBP1), a major regulator of the adaptive UPR, was reduced in hydroquinone-treated cells. Conditional knockout of XBP1 gene in the RPE resulted in caspase-12 activation, increased CHOP expression, and decreased antiapoptotic gene Bcl-2. Furthermore, XBP1-deficient RPE cells are more sensitive to oxidative damage induced by hydroquinone or NaIO3, a CS-unrelated chemical oxidant. Conversely, overexpressing XBP1 protected RPE cells and attenuated oxidative stress-induced RPE apoptosis. INNOVATION AND CONCLUSION These findings provide strong evidence suggesting an important role of ER stress and the UPR in CS-related oxidative injury of RPE cells. Thus, the modulation of the UPR signaling may provide a promising target for the treatment of AMD.
Collapse
Affiliation(s)
- Chen Chen
- 1 Department of Ophthalmology/Ross Eye Institute, University at Buffalo, The State University of New York , Buffalo, New York
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Zhang SX, Sanders E, Fliesler SJ, Wang JJ. Endoplasmic reticulum stress and the unfolded protein responses in retinal degeneration. Exp Eye Res 2014; 125:30-40. [PMID: 24792589 DOI: 10.1016/j.exer.2014.04.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/02/2014] [Accepted: 04/18/2014] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) is the primary intracellular organelle responsible for protein and lipid biosynthesis, protein folding and trafficking, calcium homeostasis, and several other vital processes in cell physiology. Disturbance in ER function results in ER stress and subsequent activation of the unfolded protein response (UPR). The UPR up-regulates ER chaperones, reduces protein translation, and promotes clearance of cytotoxic misfolded proteins to restore ER homeostasis. If this vital process fails, the cell will be signaled to enter apoptosis, resulting in cell death. Sustained ER stress also can trigger an inflammatory response and exacerbate oxidative stress, both of which contribute synergistically to tissue damage. Studies performed over the past decade have implicated ER stress in a broad range of human diseases, including neurodegenerative diseases, cancer, diabetes, and vascular disorders. Several of these diseases also entail retinal dysfunction and degeneration caused by injury to retinal neurons and/or to the blood vessels that supply retinal cells with nutrients, trophic and homeostatic factors, oxygen, and other essential molecules, as well as serving as a conduit for removal of waste products and potentially toxic substances from the retina. Collectively, such injuries represent the leading cause of blindness world-wide in all age groups. Herein, we summarize recent progress on the study of ER stress and UPR signaling in retinal biology and discuss the molecular mechanisms and the potential clinical applications of targeting ER stress as a new therapeutic approach to prevent and treat neuronal degeneration in the retina.
Collapse
Affiliation(s)
- Sarah X Zhang
- Departments of Ophthalmology and Biochemistry, University at Buffalo, The State University of New York, Buffalo, NY, USA; SUNY Eye Institute, Buffalo, NY, USA.
| | - Emily Sanders
- Department of Medicine, Endocrinology and Diabetes, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry, University at Buffalo, The State University of New York, Buffalo, NY, USA; SUNY Eye Institute, Buffalo, NY, USA; Research Service, Veterans Administration Western New York Healthcare System, Buffalo, NY, USA
| | - Joshua J Wang
- Departments of Ophthalmology and Biochemistry, University at Buffalo, The State University of New York, Buffalo, NY, USA; SUNY Eye Institute, Buffalo, NY, USA
| |
Collapse
|
78
|
Wang L, Kondo N, Cano M, Ebrahimi K, Yoshida T, Barnett BP, Biswal S, Handa JT. Nrf2 signaling modulates cigarette smoke-induced complement activation in retinal pigmented epithelial cells. Free Radic Biol Med 2014; 70:155-66. [PMID: 24440594 PMCID: PMC4006310 DOI: 10.1016/j.freeradbiomed.2014.01.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/31/2013] [Accepted: 01/09/2014] [Indexed: 12/21/2022]
Abstract
Whereas cigarette smoking (CS) and dysregulated complement are thought to play central roles in age-related macular degeneration (AMD), their exact roles are unknown. The aim of this study was to determine if CS activates complement and if the antioxidant transcription factor Nrf2 modulates this response. In AMD specimens, Nrf2 immunolabeling was strong in the cytoplasm, with scattered nuclear labeling of macular retinal pigmented epithelial (RPE) cells that appeared normal, but was decreased and without nuclear labeling in dysmorphic cells overlying drusen, a hallmark AMD lesion. Cigarette smoke extract (CSE) induced Nrf2 nuclear translocation in RPE cells with increased antioxidant and complement gene expression. Whereas CFH protein was not altered by CSE, the cell membrane regulator proteins CD46, CD55, and CD59 were decreased, and C3a and C3b, but not iC3b, were increased compared to controls. C5b-9 was increased by CSE, but at sublytic levels, only after addition of normal human serum. Nrf2 knockdown enhanced the increase in C3a and C3b from CSE, but not iC3b, C5a, or C5b-9. CSE also increased IL-1b expression and secretion after C3a generation and was reduced by a C3aR antagonist. In contrast, the Nrf2 activator CDDO-Im restored complement gene expression in RPE cells exposed to CSE. We provide evidence of altered Nrf2 in human AMD and that CSE induces a proinflammatory environment specifically by generating C3a and C3b, and Nrf2 deficiency magnifies this specific complement response.
Collapse
Affiliation(s)
- Lei Wang
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Naoshi Kondo
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Marisol Cano
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Katayoon Ebrahimi
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Takeshi Yoshida
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Bradley P. Barnett
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Shyam Biswal
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - James T. Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
- Corresponding Author: James T. Handa, MD; Smith Building, Room 3015, 400 N. Broadway, Wilmer Eye Institute, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA. Tel: 410 614-421; Fax: 410 614-547;
| |
Collapse
|
79
|
Rowan S, Weikel K, Chang ML, Nagel BA, Thinschmidt JS, Carey A, Grant MB, Fliesler SJ, Smith D, Taylor A. Cfh genotype interacts with dietary glycemic index to modulate age-related macular degeneration-like features in mice. Invest Ophthalmol Vis Sci 2014; 55:492-501. [PMID: 24370827 DOI: 10.1167/iovs.13-12413] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Age-related macular degeneration (AMD) is a leading cause of visual impairment worldwide. Genetics and diet contribute to the relative risk for developing AMD, but their interactions are poorly understood. Genetic variations in Complement Factor H (CFH), and dietary glycemic index (GI) are major risk factors for AMD. We explored the effects of GI on development of early AMD-like features and changes to central nervous system (CNS) inflammation in Cfh-null mice. METHODS Aged 11-week-old wild type (WT) C57Bl/6J or Cfh-null mice were group pair-fed high or low GI diets for 33 weeks. At 10 months of age, mice were evaluated for early AMD-like features in the neural retina and RPE by light and electron microscopy. Brains were analyzed for Iba1 macrophage/microglia immunostaining, an indicator of inflammation. RESULTS The 10-month-old WT mice showed no retinal abnormalities on either diet. The Cfh-null mice, however, showed distinct early AMD-like features in the RPE when fed a low GI diet, including vacuolation, disruption of basal infoldings, and increased basal laminar deposits. The Cfh-null mice also showed thinning of the RPE, hypopigmentation, and increased numbers of Iba1-expressing macrophages in the brain, irrespective of diet. CONCLUSIONS The presence of early AMD-like features by 10 months of age in Cfh-null mice fed a low GI diet is surprising, given the apparent protection from the development of such features in aged WT mice or humans consuming lower GI diets. Our findings highlight the need to consider gene-diet interactions when developing animal models and therapeutic approaches to treat AMD.
Collapse
Affiliation(s)
- Sheldon Rowan
- JM-USDA Human Nutrition Research Center on Aging (HNRCA), Tufts University, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
A mechanistic review of cigarette smoke and age-related macular degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:301-7. [PMID: 24664711 DOI: 10.1007/978-1-4614-3209-8_38] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Age-related macular degeneration (AMD), a complex disease stemming from both genetic abnormalities and environmental insults, is the most common form of visual impairment in elderly individuals of the Western world. Many potential etiologies are linked to AMD, but smoking is the leading environmental insult associated with this maculopathy. Smoke-induced damage is mediated in part through direct oxidation, depletion of antioxidants, complement activation, and vascular transmutations. Clinically, these mechanisms manifest themselves as keystones of atrophic AMD: retinal pigment epithelium degeneration, formation of extracellular deposits such as drusen, and thickening of Bruch's membrane. Furthermore, smoking induces angiogenesis and choroidal neovascularization, advancing the course of the disease to late-stage AMD. Further exploration of the biological processes affected by cigarette smoke exposure will provide greater insight into the pathogenesis of AMD.
Collapse
|
81
|
van Lookeren Campagne M, LeCouter J, Yaspan BL, Ye W. Mechanisms of age-related macular degeneration and therapeutic opportunities. J Pathol 2013; 232:151-64. [DOI: 10.1002/path.4266] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 12/27/2022]
Affiliation(s)
| | - Jennifer LeCouter
- Molecular Biology Department; Genentech; South San Francisco CA 94080 USA
| | - Brian L Yaspan
- ITGR Human Genetics Department; Genentech; South San Francisco CA 94080 USA
| | - Weilan Ye
- Molecular Biology Department; Genentech; South San Francisco CA 94080 USA
| |
Collapse
|
82
|
Smoking and age-related macular degeneration: review and update. J Ophthalmol 2013; 2013:895147. [PMID: 24368940 PMCID: PMC3866712 DOI: 10.1155/2013/895147] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/14/2013] [Accepted: 10/03/2013] [Indexed: 01/31/2023] Open
Abstract
Age-related macular degeneration (AMD) is one of the main socioeconomical health issues worldwide. AMD has a multifactorial etiology with a variety of risk factors. Smoking is the most important modifiable risk factor for AMD development and progression. The present review summarizes the epidemiological studies evaluating the association between smoking and AMD, the mechanisms through which smoking induces damage to the chorioretinal tissues, and the relevance of advising patients to quit smoking for their visual health.
Collapse
|
83
|
Predictors of visual response to intravitreal bevacizumab for treatment of neovascular age-related macular degeneration. J Ophthalmol 2013; 2013:676049. [PMID: 24069533 PMCID: PMC3771417 DOI: 10.1155/2013/676049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/22/2013] [Indexed: 11/18/2022] Open
Abstract
Purpose. To identify the predictors of visual response to the bevacizumab treatment of neovascular age-related macular degeneration (AMD). Design. A cohort study within the Neovascular AMD Treatment Trial Using Bevacizumab (NATTB). Methods. This was a multicenter trial including 144 participants from the NATTB study. Visual outcomes measured by change in visual acuity (VA) score, proportion gaining ≥15 letters, and change in central retinal thickness (CRT) were compared among groups according to the baseline, demographic, and ocular characteristics and genotypes. Results. Mean change in the VA score was 9.2 ± 2.3 SD letters with a total of 46 participants (31.9%) gaining ≥15 letters. Change in median CRT was −81.5 μm. Younger age, lower baseline VA score, shorter duration of neovascular AMD, and TT genotype in rs10490924 were significantly associated with greater VA score improvement (P = 0.028, P < 0.001, P = 0.02, and P = 0.039, resp.). Lower baseline VA score and TT genotype in rs10490924 were significantly associated with a higher likelihood of gaining ≥15 letters (P = 0.028, and P = 0.021, resp.). Conclusions. Baseline VA and genotype of rs10490924 were both important predictors for visual response to bevacizumab at 6 months. This trial is registered with the Registration no. NCT01306591.
Collapse
|
84
|
Woodell A, Coughlin B, Kunchithapautham K, Casey S, Williamson T, Ferrell WD, Atkinson C, Jones BW, Rohrer B. Alternative complement pathway deficiency ameliorates chronic smoke-induced functional and morphological ocular injury. PLoS One 2013; 8:e67894. [PMID: 23825688 PMCID: PMC3692454 DOI: 10.1371/journal.pone.0067894] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/23/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD), a complex disease involving genetic variants and environmental insults, is among the leading causes of blindness in Western populations. Genetic and histologic evidence implicate the complement system in AMD pathogenesis; and smoking is the major environmental risk factor associated with increased disease risk. Although previous studies have demonstrated that cigarette smoke exposure (CE) causes retinal pigment epithelium (RPE) defects in mice, and smoking leads to complement activation in patients, it is unknown whether complement activation is causative in the development of CE pathology; and if so, which complement pathway is required. METHODS Mice were exposed to cigarette smoke or clean, filtered air for 6 months. The effects of CE were analyzed in wildtype (WT) mice or mice without a functional complement alternative pathway (AP; CFB(-/-) ) using molecular, histological, electrophysiological, and behavioral outcomes. RESULTS CE in WT mice exhibited a significant reduction in function of both rods and cones as determined by electroretinography and contrast sensitivity measurements, concomitant with a thinning of the nuclear layers as measured by SD-OCT imaging and histology. Gene expression analyses suggested that alterations in both photoreceptors and RPE/choroid might contribute to the observed loss of function, and visualization of complement C3d deposition implies the RPE/Bruch's membrane (BrM) complex as the target of AP activity. RPE/BrM alterations include an increase in mitochondrial size concomitant with an apical shift in mitochondrial distribution within the RPE and a thickening of BrM. CFB(-/-) mice were protected from developing these CE-mediated alterations. CONCLUSIONS Taken together, these findings provide clear evidence that ocular pathology generated in CE mice is dependent on complement activation and requires the AP. Identifying animal models with RPE/BrM damage and verifying which aspects of pathology are dependent upon complement activation is essential for developing novel complement-based treatment approaches for the treatment of AMD.
Collapse
Affiliation(s)
- Alex Woodell
- Division of Research, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Beth Coughlin
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Kannan Kunchithapautham
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Sarah Casey
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Tucker Williamson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - W. Drew Ferrell
- Moran Eye Center, University of Utah, Salt Lake City, Utah, United States of America
| | - Carl Atkinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Bryan W. Jones
- Moran Eye Center, University of Utah, Salt Lake City, Utah, United States of America
| | - Bärbel Rohrer
- Division of Research, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Research Service, Ralph H. Johnson VA Medical Center, Charleston, South Carolina, United States of America
| |
Collapse
|
85
|
Yuan D, Yuan D, Yuan S, Liu Q. The age-related maculopathy susceptibility 2 polymorphism and polypoidal choroidal vasculopathy in Asian populations: a meta-analysis. Ophthalmology 2013; 120:2051-7. [PMID: 23697955 DOI: 10.1016/j.ophtha.2013.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 03/11/2013] [Accepted: 03/19/2013] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE To assess the role of the age-related maculopathy susceptibility 2 (ARMS2) A69S polymorphism as a risk factor for polypoidal choroidal vasculopathy (PCV) in Asian populations. METHODS We performed a meta-analysis of the association of the A69S variant with PCV in Asian populations using data available from 14 case-control studies involving 6552 subjects. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using fixed- and random-effects models. Sensitivity analysis also was performed. MAIN OUTCOME MEASURES Understanding the relationship between the A69S variant and PCV is essential to provide new insights into pathophysiology and potential targets for intervention of PCV. RESULTS The pooled OR in random-effects models for genotype TG+TT versus wild homozygous genotype GG is 2.39 (95% CI, 1.98-2.89), the OR of heterozygous genotype TG versus GG is 1.66 (95% CI, 1.37-2.00), the OR of homozygous genotype TT versus GG is 4.74 (95% CI, 3.94-5.70), and the OR of allele T versus G is 2.14 (95% CI, 1.79-2.56). A sensitivity analysis indicated the robustness of our findings. CONCLUSIONS Our analysis provides evidence that the A69S variant is associated with an increased risk of PCV in Asian populations. The variant of A69S could be a promising genetic biomarker of PCV. FINANCIAL DISCLOSURE(S) The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Dongqing Yuan
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, P. R. China
| | | | | | | |
Collapse
|
86
|
Smoking and age-related macular degeneration: biochemical mechanisms and patient support. Optom Vis Sci 2013; 89:1662-6. [PMID: 23034338 DOI: 10.1097/opx.0b013e31826c5df2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A small percentage of the population associates smoking with ocular disease. Most optometrists do not stress the importance of smoking cessation to their patients, and the centrality of smoking regarding the risk for ocular disease is not emphasized in optometric education. Age-related macular degeneration has strong epidemiological associations with smoking, and so serves as an appropriate model for the adverse effects of cigarette smoke on the eye. This article aims to provide basic scientific information to optometrists and optometry students so that they can better understand the pathogenesis of age-related macular degeneration and provide education and support to their patients wishing to stop smoking.
Collapse
|
87
|
Li CJ, Liu Y, Chen Y, Yu D, Williams KJ, Liu ML. Novel proteolytic microvesicles released from human macrophages after exposure to tobacco smoke. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1552-62. [PMID: 23499464 DOI: 10.1016/j.ajpath.2013.01.035] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 12/21/2012] [Accepted: 01/18/2013] [Indexed: 12/15/2022]
Abstract
Cigarette smoking damages the extracellular matrix in a variety of locations, leading to atherosclerotic plaque instability and emphysematous lung destruction, but the underlying mechanisms remain poorly understood. Here, we sought to determine whether exposure of human macrophages, a key participant in extracellular matrix damage, to tobacco smoke extract (TSE) induces the release of microvesicles (MVs; or microparticles) with proteolytic activity; the major proteases involved; and the cellular mechanisms that might mediate their generation. We found that MVs released from TSE-exposed macrophages carry substantial gelatinolytic and collagenolytic activities that surprisingly can be predominantly attributed to a single transmembrane protease of the matrix metalloproteinase (MMP) superfamily (namely, MMP14). Flow cytometric counts revealed that exposure of human macrophages to TSE for 20 hours more than quadrupled their production of MMP14-positive MVs (control, 1112 ± 231; TSE-induced, 5823 ± 2192 MMP14-positive MVs/μL of conditioned medium; means ± SEM; n = 6; P < 0.01). Our results indicate that the production of these MVs by human macrophages relies on a series of regulated steps that include activation of two mitogen-activated protein kinases (MAPKs, i.e., the Jun N-terminal kinase and p38 MAPK), and then MAPK-dependent induction and maturation of cellular MMP14, a remarkable accumulation of MMP14 into nascent plasma membrane blebs, and finally caspase- and MAPK-dependent apoptosis and apoptotic microvesicle generation. Proteolytically active MVs induced by tobacco smoke may be novel mediators of clinical important matrix destruction in smokers.
Collapse
Affiliation(s)
- Chun-Jun Li
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
88
|
Barnett BP, Handa JT. Retinal microenvironment imbalance in dry age-related macular degeneration: a mini-review. Gerontology 2013; 59:297-306. [PMID: 23406680 DOI: 10.1159/000346169] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/29/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is the leading cause of blindness in the western world. To prevent what will certainly be a tremendous health and economic burden, effective therapeutics for AMD are urgently needed. To develop these agents in a timely fashion, the molecular pathways that cause disease progression must be elucidated. OBJECTIVE To briefly describe the clinical features of AMD, and review the current understanding of the molecular basis of AMD. METHODS A literature review. RESULTS The discussion will primarily focus on the interplay of oxidative stress and complement dysregulation and the resulting chronic proinflammatory state thought to be central in AMD pathogenesis. CONCLUSIONS Oxidative stress and complement dysregulation play a substantive role in the development of AMD.
Collapse
Affiliation(s)
- Brad P Barnett
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | | |
Collapse
|
89
|
Defective Complement Action and Control Defines Disease Pathology for Retinal and Renal Disorders and Provides a Basis for New Therapeutic Approaches. COMPLEMENT THERAPEUTICS 2013; 735:173-87. [DOI: 10.1007/978-1-4614-4118-2_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
90
|
Biological effects of cigarette smoke in cultured human retinal pigment epithelial cells. PLoS One 2012; 7:e48501. [PMID: 23155386 PMCID: PMC3498276 DOI: 10.1371/journal.pone.0048501] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/26/2012] [Indexed: 12/24/2022] Open
Abstract
The goal of the present study was to determine whether treatment with cigarette smoke extract (CSE) induces cell loss, cellular senescence, and extracellular matrix (ECM) synthesis in primary human retinal pigment epithelial (RPE) cells. Primary cultured human RPE cells were exposed to 2, 4, 8, and 12% of CSE concentration for 24 hours. Cell loss was detected by cell viability assay. Lipid peroxidation was assessed by loss of cis-parinaric acid (PNA) fluorescence. Senescence-associated ß-galactosidase (SA-ß-Gal) activity was detected by histochemical staining. Expression of apolipoprotein J (Apo J), connective tissue growth factor (CTGF), fibronectin, and laminin were examined by real-time PCR, western blot, or ELISA experiments. The results showed that exposure of cells to 12% of CSE concentration induced cell death, while treatment of cells with 2, 4, and 8% CSE increased lipid peroxidation. Exposure to 8% of CSE markedly increased the number of SA-ß-Gal positive cells to up to 82%, and the mRNA expression of Apo J, CTGF, and fibronectin by approximately 3–4 fold. Treatment with 8% of CSE also increased the protein expression of Apo J and CTGF and the secretion of fibronectin and laminin. Thus, treatment with CSE can induce cell loss, senescent changes, and ECM synthesis in primary human RPE cells. It may be speculated that cigarette smoke could be involved in cellular events in RPE cells as seen in age-related macular degeneration.
Collapse
|
91
|
Wang Y, Shen D, Wang VM, Yu CR, Wang RX, Tuo J, Chan CC. Enhanced apoptosis in retinal pigment epithelium under inflammatory stimuli and oxidative stress. Apoptosis 2012; 17:1144-55. [PMID: 22911474 PMCID: PMC3469765 DOI: 10.1007/s10495-012-0750-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Age-related macular degeneration (AMD) is a neurodegenerative disease that causes irreversible central vision loss in the elderly. Retinal pigment epithelium (RPE) has been found to be a key component in AMD pathogenesis. The Ccl2(-/-)/Cx3cr1(-/-) (DKO) mouse on Crb1(rd8) background is created as an AMD model, developing AMD-like retinal lesions. Our study aimed to examine RPE apoptosis in DKO mouse and human ARPE-19 cell line. DKO RPE expressed higher apoptotic proteins when compared with age-matched wild type (WT) RPE in physiological conditions. Apoptosis of primary cultured mouse RPE was evaluated under stimulation with lipopolysaccharide for inflammatory stimulation and 2,3,7,8-tetrachlorodibenzo-p-dioxin or H(2)O(2) for oxidative stress. Compared with WT RPE, DKO RPE was more susceptible to Fas ligand (FasL)-mediated apoptosis under both inflammatory and oxidative stress, with less cell viability and higher expression of apoptotic transcripts and proteins. Decreased cell viability was also observed in ARPE-19 cells under each stimulus. Furthermore, we also investigated the anti-apoptotic effects of decoy receptor 3 (DcR3), a decoy receptor for FasL, on ARPE-19 cells under inflammatory and oxidative stress. DcR3 pre-incubated ARPE-19 cells showed decreased apoptosis, with increased cell viability and decreased expression of apoptotic transcripts and proteins under the stimuli. On the contrary, knockdown of DcR3 in ARPE-19 cells showed totally opposite results. Our study demonstrates that FasL-mediated RPE apoptosis may play a pivotal role in AMD pathogenesis.
Collapse
Affiliation(s)
- Yujuan Wang
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Defen Shen
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vinson M. Wang
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheng-Rong Yu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ren-Xi Wang
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jingsheng Tuo
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chi-Chao Chan
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
92
|
Shetty SK, Bhandary YP, Marudamuthu AS, Abernathy D, Velusamy T, Starcher B, Shetty S. Regulation of airway and alveolar epithelial cell apoptosis by p53-Induced plasminogen activator inhibitor-1 during cigarette smoke exposure injury. Am J Respir Cell Mol Biol 2012; 47:474-83. [PMID: 22592924 PMCID: PMC3488631 DOI: 10.1165/rcmb.2011-0390oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 05/13/2012] [Indexed: 12/12/2022] Open
Abstract
Increased expression of tumor suppressor protein p53 and of plasminogen activator inhibitor (PAI)-1 is associated with cigarette smoke (CS) exposure-induced lung epithelial injury. p53 induces PAI-1 through mRNA stabilization in lung epithelial cells. However, it is unclear how this process affects lung epithelial damage. Here, we show that CS induces p53 and PAI-1 expression and apoptosis in cultured Beas2B and primary alveolar type (AT)II cells. CS exposure augmented binding of p53 protein with PAI-1 mRNA. Inhibition of p53 from binding to PAI-1 mRNA through expression of p53-binding 70 nt PAI-1 mRNA 3'UTR sequences suppressed CS-induced PAI-1 expression. Treatment of Beas2B cells with caveolin-1 scaffolding domain peptide (CSP) suppressed p53 expression and p53-PAI-1 mRNA interaction. These changes were associated with parallel inhibition of CS-induced PAI-1 expression and apoptosis in Beas2B cells. Wild-type mice exposed to passive CS likewise show augmented p53 and PAI-1 with parallel induction of ATII cell apoptosis, whereas mice deficient for p53 or PAI-1 expression resisted apoptosis of ATII cells. CSP suppressed CS-induced ATII cell apoptosis in wild-type mice and abrogated p53-PAI-1 mRNA interaction with parallel inhibition of p53 and PAI-1 expression. The protection against ATII cell apoptosis by CSP involves inhibition of passive CS-induced proapoptotic Bax and Bak expression and restoration of the prosurvival proteins Bcl-X(L). These observations demonstrate that inhibition of p53 binding to PAI-1 mRNA 3'UTR attenuates CS-induced ATII cell apoptosis. This presents a novel link between p53-mediated PAI-1 expression and CS-induced ATII cell apoptosis.
Collapse
Affiliation(s)
- Shwetha K Shetty
- The Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, 11937 US HWY 271, Lab C-6, Tyler, TX, 75708, USA.
| | | | | | | | | | | | | |
Collapse
|
93
|
Paschon V, Higa GSV, Resende RR, Britto LRG, Kihara AH. Blocking of connexin-mediated communication promotes neuroprotection during acute degeneration induced by mechanical trauma. PLoS One 2012; 7:e45449. [PMID: 23029016 PMCID: PMC3447938 DOI: 10.1371/journal.pone.0045449] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 08/22/2012] [Indexed: 01/27/2023] Open
Abstract
Accruing evidence indicates that connexin (Cx) channels in the gap junctions (GJ) are involved in neurodegeneration after injury. However, studies using KO animal models endowed apparently contradictory results in relation to the role of coupling in neuroprotection. We analyzed the role of Cx-mediated communication in a focal lesion induced by mechanical trauma of the retina, a model that allows spatial and temporal definition of the lesion with high reproducibility, permitting visualization of the focus, penumbra and adjacent areas. Cx36 and Cx43 exhibited distinct gene expression and protein levels throughout the neurodegeneration progress. Cx36 was observed close to TUNEL-positive nuclei, revealing the presence of this protein surrounding apoptotic cells. The functional role of cell coupling was assessed employing GJ blockers and openers combined with lactate dehydrogenase (LDH) assay, a direct method for evaluating cell death/viability. Carbenoxolone (CBX), a broad-spectrum GJ blocker, reduced LDH release after 4 hours, whereas quinine, a Cx36-channel specific blocker, decreased LDH release as early as 1 hour after lesion. Furthermore, analysis of dying cell distribution confirmed that the use of GJ blockers reduced apoptosis spread. Accordingly, blockade of GJ communication during neurodegeneration with quinine, but not CBX, caused downregulation of initial and effector caspases. To summarize, we observed specific changes in Cx gene expression and protein distribution during the progress of retinal degeneration, indicating the participation of these elements in acute neurodegeneration processes. More importantly, our results revealed that direct control of GJ channels permeability may take part in reliable neuroprotection strategies aimed to rapid, fast treatment of mechanical trauma in the retina.
Collapse
Affiliation(s)
- Vera Paschon
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo André, São Paulo, Brazil
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Guilherme Shigueto Vilar Higa
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo André, São Paulo, Brazil
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Rodrigo Ribeiro Resende
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luiz Roberto G. Britto
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Alexandre Hiroaki Kihara
- Núcleo de Cognição e Sistemas Complexos, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo André, São Paulo, Brazil
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
94
|
Girmens JF, Sahel JA, Marazova K. Dry age-related macular degeneration: A currently unmet clinical need. Intractable Rare Dis Res 2012; 1:103-14. [PMID: 25343081 PMCID: PMC4204600 DOI: 10.5582/irdr.2012.v1.3.103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 07/25/2012] [Indexed: 01/08/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of severe visual impairment and disability in older people worldwide. Although considerable advances in the management of the neovascular form of AMD have been made in the last decade, no therapy is yet available for the advanced dry form of AMD (geographic atrophy). This review focuses on current trends in the development of new therapies targeting specific pathophysiological pathways of dry AMD. Increased understanding of the complex mechanisms that underlie dry AMD will help to address this largely unmet clinical need.
Collapse
Affiliation(s)
- Jean-François Girmens
- French National Institute of Health and Medical Research, Paris, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France
- Address correspondence to: Dr. Jean-François Girmens, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, 28 rue de Charenton, 75571 Paris Cedex 12, France. E-mail:
| | - José-Alain Sahel
- French National Institute of Health and Medical Research, Paris, France
- French Academy of Sciences, Paris, France
| | - Katia Marazova
- French National Institute of Health and Medical Research, Paris, France
- National Center for Scientific Research, Paris, France
- Dr. Katia Marazova, Institut de la Vision, 17 rue Moreau, 75012 Paris, France. E-mail:
| |
Collapse
|
95
|
Ari S, Nergiz Y, Cingü AK, Atay AE, Sahin A, Cinar Y, Caca I. Effects of hyperbaric oxygen on crystalline lens and retina in nicotine-exposed rats. Cutan Ocul Toxicol 2012; 32:9-12. [PMID: 22667328 DOI: 10.3109/15569527.2012.686078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To determine histopathological changes on crystalline lens and retina of rats after subcutaneous injection of nicotine and to examine the effects of hyperbaric oxygen (HBO) on these changes related to nicotine exposure. METHODS Twenty-eight female Sprague-Dawley rats were enrolled in the study and the rats were divided into four equal sized groups randomly (Group N: the rats exposed only to nicotine, group HB: the rats received only HBO, group N+HB: the rats that underwent to nicotine injection and subsequently received HBO, group C: the control group that neither exposed to nicotine nor received HBO). The rats were sacrificed by decapitation method and all were enucleated immediately after scarification. Tissue samples from crystalline lens, lens capsule, and the retina from the right eyes of the rats were examined by light microscopy. RESULTS While the histological appearances of the retina and the lens was similar in group HB, group N+HB, and the control group; group N showed some pathological changes like decrement in the retinal ganglion cell density, atrophy of the retinal nerve fiber layer, congestion of the vessels in the optic nerve head, thinning of the internal plexiform layer, thinning of the lens capsule, and transformation of the anterior subcapsular epithelium into squamous epithelia. DISCUSSION Subcutaneous injection of nicotine was found to be related with some pathological changes in the retina and lens of the Sprague-Dawley rats. However HBO caused no significant negative effect. Furthermore, the histopathological changes related to nicotine exposure in the lens and retina of the rats recovered by the application of HBO.
Collapse
Affiliation(s)
- Seyhmus Ari
- Department of Ophthalmology, Medicine Faculty, Dicle University, Diyarbakir, Turkey.
| | | | | | | | | | | | | |
Collapse
|
96
|
Handa JT. How does the macula protect itself from oxidative stress? Mol Aspects Med 2012; 33:418-35. [PMID: 22503691 DOI: 10.1016/j.mam.2012.03.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 03/30/2012] [Indexed: 02/07/2023]
Abstract
Oxidative stress has been hypothesized to contribute to the development of age-related macular degeneration (AMD), the most common cause of blindness in the United States. At present, there is no treatment for early disease. Reactive oxygen species (ROS) play a physiological role in the retinal pigment epithelium (RPE), a key cell type in this disease, but with excessive ROS, oxidative damage or excessive innate immune system activation can result. The RPE has developed a robust antioxidant system driven by the transcription factor Nrf2. Impaired Nrf2 signaling can lead to oxidative damage or activate the innate immune response, both of which can lead to RPE apoptosis, a defining change in AMD. Several mouse models simulating environmental stressors or targeting specific antioxidant enzymes such as superoxide dismutase or Nrf2, have simulated some of the features of AMD. While ROS are short-lived, oxidatively damaged molecules termed oxidation specific epitopes (OSEs), can be long-lived and a source of chronic stress that activates the innate immune system through pattern recognition receptors (PRRs). The macula accumulates a number of OSEs including carboxyethylpyrrole, malondialdehyde, 4-hydroxynonenal, and advanced glycation endproducts, as well as their respective neutralizing PRRs. Excessive accumulation of OSEs results in pathologic immune activation. For example, mice immunized with the carboxyethylpyrrole develop cardinal features of AMD. Regulating ROS in the RPE by modulating antioxidant systems or neutralizing OSEs through an appropriate innate immune response are potential modalities to treat or prevent early AMD.
Collapse
Affiliation(s)
- James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
97
|
Weikel KA, Fitzgerald P, Shang F, Caceres MA, Bian Q, Handa JT, Stitt AW, Taylor A. Natural history of age-related retinal lesions that precede AMD in mice fed high or low glycemic index diets. Invest Ophthalmol Vis Sci 2012; 53:622-32. [PMID: 22205601 DOI: 10.1167/iovs.11-8545] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Epidemiologic data indicate that people who consume low glycemic index (GI) diets are at reduced risk for the onset and progression of age-related macular degeneration (AMD). The authors sought corroboration of this observation in an animal model. METHODS Five- and 16-month-old C57BL/6 mice were fed high or low GI diets until they were 17 and 23.5 months of age, respectively. Retinal lesions were evaluated by transmission electron microscopy, and advanced glycation end products (AGEs) were evaluated by immunohistochemistry. RESULTS Retinal lesions including basal laminar deposits, loss of basal infoldings, and vacuoles in the retinal pigment epithelium were more prevalent in the 23.5- than in the 17-month-old mice. Within each age group, consumption of a high GI diet increased the risk for lesions and the risk for photoreceptor abnormalities and accumulation of AGEs. CONCLUSIONS Consuming high GI diets accelerates the appearance of age-related retinal lesions that precede AMD in mice, perhaps by increasing the deposition of toxic AGEs in the retina. The data support the hypothesis that consuming lower GI diets, or simulation of their effects with nutraceuticals or drugs, may protect against AMD. The high GI-fed C57BL/6 mouse is a new model of age-related retinal lesions that precede AMD and mimic the early stages of disease and may be useful for drug discovery.
Collapse
Affiliation(s)
- Karen A Weikel
- Laboratory for Nutrition and Vision Research, JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Verschuere S, Bracke KR, Demoor T, Plantinga M, Verbrugghe P, Ferdinande L, Lambrecht BN, Brusselle GGG, Cuvelier CA. Cigarette smoking alters epithelial apoptosis and immune composition in murine GALT. J Transl Med 2011; 91:1056-67. [PMID: 21537330 DOI: 10.1038/labinvest.2011.74] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Smokers have a twofold increased risk to develop Crohn's disease (CD). However, little is known about the mechanisms through which smoking affects CD pathogenesis. Especially Crohn's ileitis is negatively influenced by smoking. Interestingly, the ileum and, more in particular, the Peyer's patches in the terminal ileum are also the sites where the first CD lesions are found. Several chemokines are implicated in the pathogenesis, among which is the CCL20-CCR6 pathway. Here, we studied the gut-associated lymphoid tissue in C57BL/6 wild-type mice and in CCR6-deficient mice after exposure to air or cigarette smoke for 24 weeks. Apoptotic index of the follicle-associated epithelium overlying the Peyer's patches was evaluated. We found that chronic smoke exposure induced apoptosis in the follicle-associated epithelium. Furthermore, immune cell numbers and differentiation along with chemokine expression were determined in Peyer's patches. Important changes in immune cell composition were observed: total dendritic cells, CD4+ T cells (including regulatory T cells) and CD8+ T cells increased significantly after smoke exposure. The CD11b+ dendritic cell subset almost doubled. Interestingly, these changes were accompanied by an upregulated mRNA expression of the chemokines CCL9 and CCL20. However, no differences in the increase of dendritic cells were observed between wild-type and CCR6-deficient mice. Our results show that cigarette smoke exposure increases apoptosis in the follicle-associated epithelium and is associated with immune cell accumulation in Peyer's patches.
Collapse
|
99
|
Wong WT, Kam W, Cunningham D, Harrington M, Hammel K, Meyerle CB, Cukras C, Chew EY, Sadda SR, Ferris FL. Treatment of geographic atrophy by the topical administration of OT-551: results of a phase II clinical trial. Invest Ophthalmol Vis Sci 2010; 51:6131-9. [PMID: 20574018 PMCID: PMC3055748 DOI: 10.1167/iovs.10-5637] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 06/10/2010] [Accepted: 06/12/2010] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the safety and preliminary efficacy of OT-551, a disubstituted hydroxylamine with antioxidant properties, for the treatment of geographic atrophy (GA), the advanced atrophic form of age-related macular degeneration (AMD). METHODS The study was a single-center, open-label phase II trial, enrolling 10 participants with bilateral GA. Topical 0.45% OT-551 was administered in one randomly assigned eye three times daily for 2 years. Safety measures were assessed by complete ophthalmic examination, fundus photography, and review of symptoms. The primary efficacy outcome measure was the change in best corrected visual acuity at 24 months. Secondary efficacy measures included changes in area of GA, contrast sensitivity, microperimetry measurements, and total drusen area from baseline. RESULTS Study drug was well tolerated and was associated with few adverse events. The mean change in BCVA at 2 years was +0.2 ± 13.3 letters in the study eyes and -11.3 ± 7.6 letters in fellow eyes (P = 0.0259). However, no statistically significant differences were found between the study and fellow eyes for all other secondary outcome measures. CONCLUSIONS OT-551 was well tolerated by study participants and was not associated with any serious adverse effects. Efficacy measurements in this small study indicate a possible effect in maintaining visual acuity. However, the absence of significant effects on other outcomes measures in this study suggests that OT-551, in the current concentration and mode of delivery, may have limited or no benefit as a treatment for GA (ClinicalTrials.gov number, NCT00306488).
Collapse
Affiliation(s)
- Wai T Wong
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Expression and distribution of the class III ubiquitin-conjugating enzymes in the retina. Mol Vis 2010; 16:2425-37. [PMID: 21139979 PMCID: PMC2994761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 11/13/2010] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Mounting evidence implicates chronic oxidative stress as a significant pathogenic factor in the development and progression of retinopathies, including age-related macular degeneration (AMD). The age-dependent toxic accumulation of oxidatively damaged proteins, lipids, and DNA in susceptible cells of the retina arises, at least in part, from a decreased capacity to eliminate these damaged biomolecules. The goal of this study was to determine the expression patterns and function of class III ubiquitin-conjugating enzymes (UbcM3, UBE2E2, and UbcM2) in the retina. These enzymes have been implicated in the ubiquitin-dependent degradation of oxidatively damaged and misfolded proteins. METHODS Complementary western blotting and immunohistochemistry was performed with specific antibodies to determine the retinal cell expression pattern of each enzyme. Additional analyses using antibodies raised against UbcM2 were performed to determine the relative levels of the enzyme in lysates derived from various mouse organs as compared to the retina. An established light-damage model of oxidative stress-induced retinal degeneration was used to determine alterations in the susceptibility of mice harboring a single intact allele of UbcM2. Ubiquitin charging and auto-ubiquitylation assays were done to assess the catalytic state of UbcM2 following photo-oxidative stress. RESULTS Expression of the class III ubiquitin-conjugating enzymes in the retina, from highest to lowest, is UbcM2>UbcM3>UBE2E2. In addition to being the most robustly expressed, UbcM2 is further distinguished by its expression in photoreceptors and retinal pigment epithelial cells. UbcM2 is expressed in most mouse tissues analyzed and is most abundant in the retina. Studies using a bright-light-damage model of acute oxidative stress in mice harboring a single disrupted allele of UbcM2 revealed that a 58% reduction in enzyme levels did not increase the susceptibility of photoreceptors to acute photo-oxidative toxicity. This result may be explained by the observation that UbcM2 retained an intact and functional active site following exposure to acute bright light. CONCLUSIONS The class III ubiquitin-conjugating enzymes, and in particular UbcM2, are expressed in the retina and may function to counter the accumulation of oxidatively damaged and misfolded proteins. A 58% reduction in UbcM2 does not increase the susceptibility of photoreceptors to an acute photo-oxidative stress, suggesting the existence of compensating enzymes and/or that the remaining UbcM2 activity is sufficient to target oxidatively damaged proteins for destruction.
Collapse
|