51
|
Draft Genome Sequences of Six Pseudoalteromonas Strains, P1-7a, P1-9, P1-13-1a, P1-16-1b, P1-25, and P1-26, Which Induce Larval Settlement and Metamorphosis in Hydractinia echinata. GENOME ANNOUNCEMENTS 2015; 3:3/6/e01477-15. [PMID: 26679587 PMCID: PMC4683232 DOI: 10.1128/genomea.01477-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To gain a broader understanding of the importance of a surface-associated lifestyle and morphogenic capability, we have assembled and annotated the genome sequences of Pseudoalteromonas strains P1-7a, P1-9, P1-13-1a, P1-16-1b, P1-25, and P1-26, isolated from Hydractinia echinata. These genomes will allow detailed studies on bacterial factors mediating interkingdom communication.
Collapse
|
52
|
Genome Sequences of Three Pseudoalteromonas Strains (P1-8, P1-11, and P1-30), Isolated from the Marine Hydroid Hydractinia echinata. GENOME ANNOUNCEMENTS 2015; 3:3/6/e01380-15. [PMID: 26659670 PMCID: PMC4675935 DOI: 10.1128/genomea.01380-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The genomes of three Pseudoalteromonas strains (P1-8, P1-11, and P1-30) were sequenced and assembled. These genomes will inform future study of the genes responsible for the production of biologically active compounds responsible for these strains’ antimicrobial, biofouling, and algicidal activities.
Collapse
|
53
|
Wang DB, Li Y, Sun MQ, Huang JP, Shao HB, Xin QL, Wang M. Complete Genome of a Novel Pseudoalteromonas Phage PHq0. Curr Microbiol 2015; 72:81-7. [DOI: 10.1007/s00284-015-0919-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/23/2015] [Indexed: 01/01/2023]
|
54
|
Characterization and Genome Sequencing of a Novel Bacteriophage PH101 Infecting Pseudoalteromonas marina BH101 from the Yellow Sea of China. Curr Microbiol 2015; 71:594-600. [DOI: 10.1007/s00284-015-0896-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
|
55
|
Zeng Z, Guo XP, Li B, Wang P, Cai X, Tian X, Zhang S, Yang JL, Wang X. Characterization of self-generated variants in Pseudoalteromonas lipolytica biofilm with increased antifouling activities. Appl Microbiol Biotechnol 2015; 99:10127-39. [PMID: 26264135 PMCID: PMC4643108 DOI: 10.1007/s00253-015-6865-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/08/2015] [Accepted: 07/20/2015] [Indexed: 02/04/2023]
Abstract
Pseudoalteromonas is widespread in various marine environments, and most strains can affect invertebrate larval settlement and metamorphosis by forming biofilms. However, the impact and the molecular basis of population diversification occurring in Pseudoalteromonas biofilms are poorly understood. Here, we show that morphological diversification is prevalent in Pseudoalteromonas species during biofilm formation. Two types of genetic variants, wrinkled (frequency of 12 ± 5 %) and translucent (frequency of 5 ± 3 %), were found in Pseudoalteromonas lipolytica biofilms. The inducing activities of biofilms formed by the two variants on larval settlement and metamorphosis of the mussel Mytilus coruscus were significantly decreased, suggesting strong antifouling activities. Using whole-genome re-sequencing combined with genetic manipulation, two genes were identified to be responsible for the morphology alternations. A nonsense mutation in AT00_08765 led to a wrinkled morphology due to the overproduction of cellulose, whereas a point mutation in AT00_17125 led to a translucent morphology via a reduction in capsular polysaccharide production. Taken together, the results suggest that the microbial behavior on larval settlement and metamorphosis in marine environment could be affected by the self-generated variants generated during the formation of marine biofilms, thereby rendering potential application in biocontrol of marine biofouling.
Collapse
Affiliation(s)
- Zhenshun Zeng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Baiyuan Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
| | - Xingsheng Cai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
| | - Xinpeng Tian
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
| | - Si Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
| | | | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China.
| |
Collapse
|
56
|
Choudhury JD, Pramanik A, Webster NS, Llewellyn LE, Gachhui R, Mukherjee J. The Pathogen of the Great Barrier Reef Sponge Rhopaloeides odorabile Is a New Strain of Pseudoalteromonas agarivorans Containing Abundant and Diverse Virulence-Related Genes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:463-78. [PMID: 25837832 DOI: 10.1007/s10126-015-9627-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/11/2015] [Indexed: 05/20/2023]
Abstract
Sponge diseases have increased dramatically, yet the causative agents of disease outbreaks have eluded identification. We undertook a polyphasic taxonomic analysis of the only confirmed sponge pathogen and identified it as a novel strain of Pseudoalteromonas agarivorans. 16S ribosomal RNA (rRNA) and gyraseB (gyrB) gene sequences along with phenotypic characteristics demonstrated that strain NW4327 was most closely related to P. agarivorans. DNA-DNA hybridization and in silico genome comparisons established NW4327 as a novel strain of P. agarivorans. Genes associated with type IV pili, mannose-sensitive hemagglutinin pili, and curli formation were identified in NW4327. One gene cluster encoding ATP-binding cassette (ABC) transporter, HlyD and TolC, and two clusters related to the general secretion pathway indicated the presence of type I secretion system (T1SS) and type II secretion system (T2SS), respectively. A contiguous gene cluster of at least 19 genes related to type VI secretion system (T6SS) which included all 13 core genes was found. The absence of T1SS and T6SS in nonpathogenic P. agarivorans S816 established NW4327 as the virulent strain. Serine proteases and metalloproteases of the classes S8, S9, M4, M6, M48, and U32 were identified in NW4327, many of which can degrade collagen. Collagenase activity in NW4327 and its absence in the nonpathogenic P. agarivorans KMM 255(T) reinforced the invasiveness of NW4327. This is the first report unambiguously identifying a sponge pathogen and providing the first insights into the virulence genes present in any pathogenic Pseudoalteromonas genome. The investigation supports a theoretical study predicting high abundance of terrestrial virulence gene homologues in marine bacteria.
Collapse
Affiliation(s)
- Jayanta D Choudhury
- School of Environmental Studies, Jadavpur University, Kolkata, 700 032, India
| | | | | | | | | | | |
Collapse
|
57
|
Fontanez KM, Eppley JM, Samo TJ, Karl DM, DeLong EF. Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre. Front Microbiol 2015; 6:469. [PMID: 26042105 PMCID: PMC4436931 DOI: 10.3389/fmicb.2015.00469] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/29/2015] [Indexed: 01/20/2023] Open
Abstract
Sinking particles mediate the transport of carbon and energy to the deep-sea, yet the specific microbes associated with sedimenting particles in the ocean's interior remain largely uncharacterized. In this study, we used particle interceptor traps (PITs) to assess the nature of particle-associated microbial communities collected at a variety of depths in the North Pacific Subtropical Gyre. Comparative metagenomics was used to assess differences in microbial taxa and functional gene repertoires in PITs containing a preservative (poisoned traps) compared to preservative-free traps where growth was allowed to continue in situ (live traps). Live trap microbial communities shared taxonomic and functional similarities with bacteria previously reported to be enriched in dissolved organic matter (DOM) microcosms (e.g., Alteromonas and Methylophaga), in addition to other particle and eukaryote-associated bacteria (e.g., Flavobacteriales and Pseudoalteromonas). Poisoned trap microbial assemblages were enriched in Vibrio and Campylobacterales likely associated with eukaryotic surfaces and intestinal tracts as symbionts, pathogens, or saprophytes. The functional gene content of microbial assemblages in poisoned traps included a variety of genes involved in virulence, anaerobic metabolism, attachment to chitinaceaous surfaces, and chitin degradation. The presence of chitinaceaous surfaces was also accompanied by the co-existence of bacteria which encoded the capacity to attach to, transport and metabolize chitin and its derivatives. Distinctly different microbial assemblages predominated in live traps, which were largely represented by copiotrophs and eukaryote-associated bacterial communities. Predominant sediment trap-assocaited eukaryotic phyla included Dinoflagellata, Metazoa (mostly copepods), Protalveolata, Retaria, and Stramenopiles. These data indicate the central role of eukaryotic taxa in structuring sinking particle microbial assemblages, as well as the rapid responses of indigenous microbial species in the degradation of marine particulate organic matter (POM) in situ in the ocean's interior.
Collapse
Affiliation(s)
- Kristina M Fontanez
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology Cambridge, MA, USA
| | - John M Eppley
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology Cambridge, MA, USA ; Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii Honolulu, HI, USA ; Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii Honolulu, HI, USA
| | - Ty J Samo
- Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii Honolulu, HI, USA ; Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii Honolulu, HI, USA ; Lawrence Livermore National Laboratory, Nuclear and Chemical Sciences Division Livermore, CA, USA
| | - David M Karl
- Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii Honolulu, HI, USA ; Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii Honolulu, HI, USA
| | - Edward F DeLong
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology Cambridge, MA, USA ; Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii Honolulu, HI, USA ; Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii Honolulu, HI, USA
| |
Collapse
|
58
|
Graça AP, Viana F, Bondoso J, Correia MI, Gomes L, Humanes M, Reis A, Xavier JR, Gaspar H, Lage OM. The antimicrobial activity of heterotrophic bacteria isolated from the marine sponge Erylus deficiens (Astrophorida, Geodiidae). Front Microbiol 2015; 6:389. [PMID: 25999928 PMCID: PMC4423441 DOI: 10.3389/fmicb.2015.00389] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/15/2015] [Indexed: 11/22/2022] Open
Abstract
Interest in the study of marine sponges and their associated microbiome has increased both for ecological reasons and for their great biotechnological potential. In this work, heterotrophic bacteria associated with three specimens of the marine sponge Erylus deficiens, were isolated in pure culture, phylogenetically identified and screened for antimicrobial activity. The isolation of bacteria after an enrichment treatment in heterotrophic medium revealed diversity in bacterial composition with only Pseudoalteromonas being shared by two specimens. Of the 83 selected isolates, 58% belong to Proteobacteria, 23% to Actinobacteria and 19% to Firmicutes. Diffusion agar assays for bioactivity screening against four bacterial strains and one yeast, revealed that a high number of the isolated bacteria (68.7%) were active, particularly against Candida albicans and Vibrio anguillarum. Pseudoalteromonas, Microbacterium, and Proteus were the most bioactive genera. After this preliminary screening, the bioactive strains were further evaluated in liquid assays against C. albicans, Bacillus subtilis and Escherichia coli. Filtered culture medium and acetone extracts from three and 5 days-old cultures were assayed. High antifungal activity against C. albicans in both aqueous and acetone extracts as well as absence of activity against B. subtilis were confirmed. Higher levels of activity were obtained with the aqueous extracts when compared to the acetone extracts and differences were also observed between the 3 and 5 day-old extracts. Furthermore, a low number of active strains was observed against E. coli. Potential presence of type-I polyketide synthases (PKS-I) and non-ribosomal peptide synthetases (NRPSs) genes were detected in 17 and 30 isolates, respectively. The high levels of bioactivity and the likely presence of associated genes suggest that Erylus deficiens bacteria are potential sources of novel marine bioactive compounds.
Collapse
Affiliation(s)
- Ana Patrícia Graça
- Department of Biology, Faculty of Sciences, University of Porto Porto, Portugal ; Centre of Marine and Environmental Research (CIIMAR) Porto, Portugal
| | - Flávia Viana
- Department of Biology, Faculty of Sciences, University of Porto Porto, Portugal ; Centro de Química e Bioquímica e Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa Lisboa, Portugal
| | - Joana Bondoso
- Department of Biology, Faculty of Sciences, University of Porto Porto, Portugal ; Centre of Marine and Environmental Research (CIIMAR) Porto, Portugal
| | - Maria Inês Correia
- Department of Biology, Faculty of Sciences, University of Porto Porto, Portugal
| | - Luis Gomes
- Department of Biology, Faculty of Sciences, University of Porto Porto, Portugal
| | - Madalena Humanes
- Centro de Química e Bioquímica e Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa Lisboa, Portugal
| | - Alberto Reis
- Bioenergy Unit, National Laboratory for Energy and Geology I.P. Lisboa, Portugal
| | - Joana R Xavier
- Department of Biology and Centre for Geobiology, University of Bergen Bergen, Norway
| | - Helena Gaspar
- Centro de Química e Bioquímica e Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa Lisboa, Portugal
| | - Olga M Lage
- Department of Biology, Faculty of Sciences, University of Porto Porto, Portugal ; Centre of Marine and Environmental Research (CIIMAR) Porto, Portugal
| |
Collapse
|
59
|
Lara E, Holmfeldt K, Solonenko N, Sà EL, Ignacio-Espinoza JC, Cornejo-Castillo FM, Verberkmoes NC, Vaqué D, Sullivan MB, Acinas SG. Life-style and genome structure of marine Pseudoalteromonas siphovirus B8b isolated from the northwestern Mediterranean Sea. PLoS One 2015; 10:e0114829. [PMID: 25587991 PMCID: PMC4294664 DOI: 10.1371/journal.pone.0114829] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/14/2014] [Indexed: 11/18/2022] Open
Abstract
Marine viruses (phages) alter bacterial diversity and evolution with impacts on marine biogeochemical cycles, and yet few well-developed model systems limit opportunities for hypothesis testing. Here we isolate phage B8b from the Mediterranean Sea using Pseudoalteromonas sp. QC-44 as a host and characterize it using myriad techniques. Morphologically, phage B8b was classified as a member of the Siphoviridae family. One-step growth analyses showed that this siphovirus had a latent period of 70 min and released 172 new viral particles per cell. Host range analysis against 89 bacterial host strains revealed that phage B8b infected 3 Pseudoalteromonas strains (52 tested, >99.9% 16S rRNA gene nucleotide identity) and 1 non-Pseudoaltermonas strain belonging to Alteromonas sp. (37 strains from 6 genera tested), which helps bound the phylogenetic distance possible in a phage-mediated horizontal gene transfer event. The Pseudoalteromonas phage B8b genome size was 42.7 kb, with clear structural and replication modules where the former were delineated leveraging identification of 16 structural genes by virion structural proteomics, only 4 of which had any similarity to known structural proteins. In nature, this phage was common in coastal marine environments in both photic and aphotic layers (found in 26.5% of available viral metagenomes), but not abundant in any sample (average per sample abundance was 0.65% of the reads). Together these data improve our understanding of siphoviruses in nature, and provide foundational information for a new ‘rare virosphere’ phage–host model system.
Collapse
Affiliation(s)
- Elena Lara
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37–49, 08003 Barcelona, Spain
| | - Karin Holmfeldt
- University of Arizona, Department of Ecology and Evolutionary Biology, 1007 E. Lowell St., Tucson, AZ, United States of America
| | - Natalie Solonenko
- University of Arizona, Department of Ecology and Evolutionary Biology, 1007 E. Lowell St., Tucson, AZ, United States of America
| | - Elisabet Laia Sà
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37–49, 08003 Barcelona, Spain
| | - J. Cesar Ignacio-Espinoza
- University of Arizona, Department of Molecular and Cellular Biology, 1007 E. Lowell St., Tucson, AZ, United States of America
| | - Francisco M. Cornejo-Castillo
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37–49, 08003 Barcelona, Spain
| | - Nathan C. Verberkmoes
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - Dolors Vaqué
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37–49, 08003 Barcelona, Spain
| | - Matthew B. Sullivan
- University of Arizona, Department of Ecology and Evolutionary Biology, 1007 E. Lowell St., Tucson, AZ, United States of America
- University of Arizona, Department of Molecular and Cellular Biology, 1007 E. Lowell St., Tucson, AZ, United States of America
| | - Silvia G. Acinas
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37–49, 08003 Barcelona, Spain
- * E-mail:
| |
Collapse
|
60
|
Draft Genome Sequence of Violacein-Producing Marine Bacterium Pseudoalteromonas sp. 520P1. GENOME ANNOUNCEMENTS 2014; 2:2/6/e01346-14. [PMID: 25540353 PMCID: PMC4276831 DOI: 10.1128/genomea.01346-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Here, we report a draft 5.25-Mb genome sequence of Pseudoalteromonas sp. 520P1, a marine violacein-producing bacterium isolated from the Pacific coast of Japan. Genome annotation by BLAST searches revealed the presence of one acylhomoserine lactone (AHL) synthase (luxI) and five AHL receptor protein (luxR) gene homologs.
Collapse
|
61
|
Gardiner M, Hoke DE, Egan S. An ortholog of the Leptospira interrogans lipoprotein LipL32 aids in the colonization of Pseudoalteromonas tunicata to host surfaces. Front Microbiol 2014; 5:323. [PMID: 25071736 PMCID: PMC4080168 DOI: 10.3389/fmicb.2014.00323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/12/2014] [Indexed: 11/25/2022] Open
Abstract
The bacterium Pseudoalteromonas tunicata is a common surface colonizer of marine eukaryotes, including the macroalga Ulva australis.Genomic analysis of P. tunicata identified genes potentially involved in surface colonization, including genes with homology to bacterial virulence factors that mediate attachment. Of particular interest is the presence of a gene, designated ptlL32, encoding an ortholog to the Leptospira lipoprotein LipL32, which has been shown to facilitate the interaction of Leptospira sp. with host extracellular matrix (ECM) structures and is thought to be an important virulence trait for pathogenic Leptospira. To investigate the role of PtlL32 in the colonization by P. tunicata we constructed and characterized a ΔptlL32 mutant strain. Whilst P. tunicata ΔptlL32 bound to an abiotic surface with the same capacity as the wild type strain, it had a marked effect on the ability of P. tunicata to bind to ECM, suggesting a specific role in attachment to biological surfaces. Loss of PtlL32 also significantly reduced the capacity for P. tunciata to colonize the host algal surface demonstrating a clear role for this protein as a host-colonization factor. PtlL32 appears to have a patchy distribution across specific groups of environmental bacteria and phylogenetic analysis of PtlL32 orthologous proteins from non-Leptospira species suggests it may have been acquired via horizontal gene transfer between distantly related lineages. This study provides the first evidence for an attachment function for a LipL32-like protein outside the Leptospira and thereby contributes to the understanding of host colonization in ecologically distinct bacterial species.
Collapse
Affiliation(s)
- Melissa Gardiner
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, The University of New South Wales Sydney, NSW, Australia
| | - David E Hoke
- Department of Biochemistry and Molecular Biology, Monash University Clayton, VIC, Australia
| | - Suhelen Egan
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, The University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
62
|
Jan C, Petersen JM, Werner J, Teeling H, Huang S, Glöckner FO, Golyshina OV, Dubilier N, Golyshin PN, Jebbar M, Cambon-Bonavita MA. The gill chamber epibiosis of deep-sea shrimp Rimicaris exoculata: an in-depth metagenomic investigation and discovery of Zetaproteobacteria. Environ Microbiol 2014; 16:2723-38. [PMID: 24447589 DOI: 10.1111/1462-2920.12406] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 01/14/2014] [Indexed: 11/29/2022]
Abstract
The gill chamber of deep-sea hydrothermal vent shrimp Rimicaris exoculata hosts a dense community of epibiotic bacteria dominated by filamentous Epsilonproteobacteria and Gammaproteobacteria. Using metagenomics on shrimp from the Rainbow hydrothermal vent field, we showed that both epibiont groups have the potential to grow autotrophically and oxidize reduced sulfur compounds or hydrogen with oxygen or nitrate. For carbon fixation, the Epsilonproteobacteria use the reductive tricarboxylic acid cycle, whereas the Gammaproteobacteria use the Calvin-Benson-Bassham cycle. Only the epsilonproteobacterial epibionts had the genes necessary for producing ammonium. This ability likely minimizes direct competition between epibionts and also broadens the spectrum of environmental conditions that the shrimp may successfully inhabit. We identified genes likely to be involved in shrimp-epibiont interactions, as well as genes for nutritional and detoxification processes that might benefit the host. Shrimp epibionts at Rainbow are often coated with iron oxyhydroxides, whose origin is intensely debated. We identified 16S rRNA sequences and functional genes affiliated with iron-oxidizing Zetaproteobacteria, which indicates that biological iron oxidation might play a role in forming these deposits. Fluorescence in situ hybridizations confirmed the presence of active Zetaproteobacteria in the R. exoculata gill chamber, thus providing the first evidence for a Zetaproteobacteria-invertebrate association.
Collapse
Affiliation(s)
- Cyrielle Jan
- UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Institut Universitaire Européen de la Mer (IUEM), Université de Bretagne Occidentale, Plouzané, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Van Mooy BAS, Hmelo LR, Fredricks HF, Ossolinski JE, Pedler BE, Bogorff DJ, Smith PJS. Quantitative exploration of the contribution of settlement, growth, dispersal and grazing to the accumulation of natural marine biofilms on antifouling and fouling-release coatings. BIOFOULING 2014; 30:223-36. [PMID: 24417212 PMCID: PMC3935016 DOI: 10.1080/08927014.2013.861422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The accumulation of microbial biofilms on ships' hulls negatively affects ship performance and efficiency while also playing a role in the establishment of even more detrimental hard-fouling communities. However, there is little quantitative information on how the accumulation rate of microbial biofilms is impacted by the balance of the rates of cell settlement, in situ production (ie growth), dispersal to surrounding waters and mortality induced by grazers. These rates were quantified on test panels coated with copper-based antifouling (AF) or polymer-based fouling-release (FR) coatings by using phospholipids as molecular proxies for microbial biomass. The results confirmed the accepted modes of efficacy of these two types of coatings. In a more extensive set of experiments with only the FR coatings, it was found that seasonally averaged cellular production rates were 1.5 ± 0.5 times greater than settlement and the dispersal rates were 2.7 ± 0.8 greater than grazing. The results of this study quantitatively describe the dynamic balance of processes leading to the accumulation of microbial biofilm on coatings designed for ships' hulls.
Collapse
Affiliation(s)
- Benjamin A S Van Mooy
- a Department of Marine Chemistry and Geochemistry , Woods Hole Oceanographic Institution , Woods Hole , MA , USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Egan S, Fernandes ND, Kumar V, Gardiner M, Thomas T. Bacterial pathogens, virulence mechanism and host defence in marine macroalgae. Environ Microbiol 2013; 16:925-38. [PMID: 24112830 DOI: 10.1111/1462-2920.12288] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/13/2013] [Indexed: 12/26/2022]
Abstract
Macroalgae are important ecosystem engineers in temperate marine waters. The function of macroalgae is intimately linked to the composition and structure of their epibiotic bacterial, communities, and evidence has emerged that bacteria can also have a negative impact on their host by causing disease. A few examples exist where bacteria have been unambiguously linked to macroalgal disease, however in many cases, pathogenicity has not been clearly separated from saprophytic behaviour or secondary colonization after disease initiation. Nevertheless, pathogenic pressure by bacteria might be substantial, as macroalgae have evolved a range of innate and induced defence mechanism that have the potential to control bacterial attacks. The presence and abundance of virulence factors in marine bacteria, which have not previously been recognized as pathogens, also represents an underappreciated, opportunistic potential for disease. Given that virulence expression in opportunistic pathogens is often dependent on environmental conditions, we predict that current and future anthropogenic changes in the marine environment will lead to an increase in the occurrence of macroalgal disease. This review highlights important areas of research that require future attention to understand the link between environmental change, opportunistic pathogens and macroalgal health in the world's oceans.
Collapse
Affiliation(s)
- Suhelen Egan
- Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | | | | | | | | |
Collapse
|
65
|
Yu M, Tang K, Liu J, Shi X, Gulder TAM, Zhang XH. Genome analysis of Pseudoalteromonas flavipulchra JG1 reveals various survival advantages in marine environment. BMC Genomics 2013; 14:707. [PMID: 24131871 PMCID: PMC3853003 DOI: 10.1186/1471-2164-14-707] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/14/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Competition between bacteria for habitat and resources is very common in the natural environment and is considered to be a selective force for survival. Many strains of the genus Pseudoalteromonas were confirmed to produce bioactive compounds that provide those advantages over their competitors. In our previous study, P. flavipulchra JG1 was found to synthesize a Pseudoalteromonas flavipulchra antibacterial Protein (PfaP) with L-amino acid oxidase activity and five small chemical compounds, which were the main competitive agents of the strain. In addition, the genome of this bacterium has been previously sequenced as Whole Genome Shotgun project (PMID: 22740664). In this study, more extensive genomic analysis was performed to identify specific genes or gene clusters which related to its competitive feature, and further experiments were carried out to confirm the physiological roles of these genes when competing with other microorganisms in marine environment. RESULTS The antibacterial protein PfaP may also participate in the biosynthesis of 6-bromoindolyl-3-acetic acid, indicating a synergistic effect between the antibacterial macromolecule and small molecules. Chitinases and quorum quenching enzymes present in P. flavipulchra, which coincide with great chitinase and acyl homoserine lactones degrading activities of strain JG1, suggest other potential mechanisms contribute to antibacterial/antifungal activities. Moreover, movability and rapid response mechanisms to phosphorus starvation and other stresses, such as antibiotic, oxidative and heavy metal stress, enable JG1 to adapt to deleterious, fluctuating and oligotrophic marine environments. CONCLUSIONS The genome of P. flavipulchra JG1 exhibits significant genetic advantages against other microorganisms, encoding antimicrobial agents as well as abilities to adapt to various adverse environments. Genes involved in synthesis of various antimicrobial substances enriches the antagonistic mechanisms of P. flavipulchra JG1 and affords several admissible biocontrol procedures in aquaculture. Furthermore, JG1 also evolves a range of mechanisms adapting the adverse marine environment or multidrug rearing conditions. The analysis of the genome of P. flavipulchra JG1 provides a better understanding of its competitive properties and also an extensive application prospect.
Collapse
Affiliation(s)
- Min Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Kaihao Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiwen Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaochong Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Tobias AM Gulder
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, Bonn 53121, Germany
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Mailing address: College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
66
|
Gittens JE, Smith TJ, Suleiman R, Akid R. Current and emerging environmentally-friendly systems for fouling control in the marine environment. Biotechnol Adv 2013; 31:1738-53. [PMID: 24051087 DOI: 10.1016/j.biotechadv.2013.09.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 09/05/2013] [Accepted: 09/10/2013] [Indexed: 01/25/2023]
Abstract
Following the ban in 2003 on the use of tributyl-tin compounds in antifouling coatings, the search for an environmentally-friendly alternative has accelerated. Biocidal TBT alternatives, such as diuron and Irgarol 1051®, have proved to be environmentally damaging to marine organisms. The issue regarding the use of biocides is that concerning the half-life of the compounds which allow a perpetuation of the toxic effects into the marine food chain, and initiate changes in the early stages of the organisms' life-cycle. In addition, the break-down of biocides can result in metabolites with greater toxicity and longevity than the parent compound. Functionalized coatings have been designed to repel the settlement and permanent attachment of fouling organisms via modification of either or both surface topography and surface chemistry, or by interfering with the natural mechanisms via which fouling organisms settle upon and adhere to surfaces. A large number of technologies are being developed towards producing new coatings that will be able to resist biofouling over a period of years and thus truly replace biocides as antifouling systems. In addition urgent research is directed towards the exploitation of mechanisms used by living organisms designed to repel the settlement of fouling organisms. These biomimetic strategies include the production of antifouling enzymes and novel surface topography that are incompatible with permanent attachment, for example, by mimicking the microstructure of shark skin. Other research seeks to exploit chemical signals and antimicrobial agents produced by diverse living organisms in the environment to prevent settlement and growth of fouling organisms on vulnerable surfaces. Novel polymer-based technologies may prevent fouling by means of unfavourable surface chemical and physical properties or by concentrating antifouling compounds around surfaces.
Collapse
Affiliation(s)
- Jeanette E Gittens
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK
| | | | | | | |
Collapse
|
67
|
Weiss M, Kesberg AI, Labutti KM, Pitluck S, Bruce D, Hauser L, Copeland A, Woyke T, Lowry S, Lucas S, Land M, Goodwin L, Kjelleberg S, Cook AM, Buhmann M, Thomas T, Schleheck D. Permanent draft genome sequence of Comamonas testosteroni KF-1. Stand Genomic Sci 2013; 8:239-54. [PMID: 23991256 PMCID: PMC3746432 DOI: 10.4056/sigs.3847890] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comamonas testosteroni KF-1 is a model organism for the elucidation of the novel biochemical degradation pathways for xenobiotic 4-sulfophenylcarboxylates (SPC) formed during biodegradation of synthetic 4-sulfophenylalkane surfactants (linear alkylbenzenesulfonates, LAS) by bacterial communities. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 6,026,527 bp long chromosome (one sequencing gap) exhibits an average G+C content of 61.79% and is predicted to encode 5,492 protein-coding genes and 114 RNA genes.
Collapse
Affiliation(s)
- Michael Weiss
- Department of Biological Sciences, University of Konstanz, Germany ; Konstanz Research School Chemical Biology, University of Konstanz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Goulden EF, Hall MR, Pereg LL, Baillie BK, Høj L. Probiont niche specialization contributes to additive protection against Vibrio owensii in spiny lobster larvae. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:39-48. [PMID: 23757129 DOI: 10.1111/1758-2229.12007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 06/02/2023]
Abstract
The development of efficient probiotic application protocols for use in marine larviculture relies on comprehensive understanding of pathogen-probiont-host interactions. The probiont combination of Pseudoalteromonas sp. PP107 and Vibrio sp. PP05 provides additive protection against vectored Vibrio owensii DY05 infection in larvae (phyllosomas) of ornate spiny lobster, Panulirus ornatus. Here, fluorescently tagged strains were used to demonstrate niche specialization of these probionts in both the live feed vector organism Artemia and in phyllosomas. The pathogen was vulnerable to direct interaction with PP05 in the bacterioplankton as well as in the Artemia gut and the phyllosoma foregut and midgut gland. In contrast, PP107 was localized on external surfaces of Artemia and phyllosomas, and direct interaction with the pathogen was limited to the bacterioplankton. While PP107 was the overall dominant ectobiont on the phyllosoma cephalothorax and inner leg segments, PP05 was the primary colonizer of outer leg segments, nutrient-rich locales that may promote ingestion during feeding. This study shows that niche specialization can contribute to the additive probiotic effect of a probiotic mixture and highlights that probiotic enrichment of Artemia cultures can intercept the infection cycle of V. owensii DY05 in early-stage P. ornatus phyllosomas.
Collapse
Affiliation(s)
- Evan F Goulden
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | | | | | | | | |
Collapse
|
69
|
Penesyan A, Ballestriero F, Daim M, Kjelleberg S, Thomas T, Egan S. Assessing the effectiveness of functional genetic screens for the identification of bioactive metabolites. Mar Drugs 2012; 11:40-9. [PMID: 23271424 PMCID: PMC3564156 DOI: 10.3390/md11010040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/13/2012] [Accepted: 12/12/2012] [Indexed: 12/30/2022] Open
Abstract
A common limitation for the identification of novel activities from functional (meta) genomic screens is the low number of active clones detected relative to the number of clones screened. Here we demonstrate that constructing libraries with strains known to produce bioactives can greatly enhance the screening efficiency, by increasing the “hit-rate” and unmasking multiple activities from the same bacterial source.
Collapse
Affiliation(s)
- Anahit Penesyan
- School of Biotechnology and Biomolecular Sciences and Centre for Marine Bio-Innovation, University of New South Wales, Sydney 2052, New South Wales, Australia; E-Mails: (A.P.); (F.B.); (M.D.); (S.K.); (T.T.)
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia
| | - Francesco Ballestriero
- School of Biotechnology and Biomolecular Sciences and Centre for Marine Bio-Innovation, University of New South Wales, Sydney 2052, New South Wales, Australia; E-Mails: (A.P.); (F.B.); (M.D.); (S.K.); (T.T.)
| | - Malak Daim
- School of Biotechnology and Biomolecular Sciences and Centre for Marine Bio-Innovation, University of New South Wales, Sydney 2052, New South Wales, Australia; E-Mails: (A.P.); (F.B.); (M.D.); (S.K.); (T.T.)
| | - Staffan Kjelleberg
- School of Biotechnology and Biomolecular Sciences and Centre for Marine Bio-Innovation, University of New South Wales, Sydney 2052, New South Wales, Australia; E-Mails: (A.P.); (F.B.); (M.D.); (S.K.); (T.T.)
- The Singapore Center on Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Torsten Thomas
- School of Biotechnology and Biomolecular Sciences and Centre for Marine Bio-Innovation, University of New South Wales, Sydney 2052, New South Wales, Australia; E-Mails: (A.P.); (F.B.); (M.D.); (S.K.); (T.T.)
| | - Suhelen Egan
- School of Biotechnology and Biomolecular Sciences and Centre for Marine Bio-Innovation, University of New South Wales, Sydney 2052, New South Wales, Australia; E-Mails: (A.P.); (F.B.); (M.D.); (S.K.); (T.T.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-2-9385-8569; Fax: +61-2-9385-1779
| |
Collapse
|
70
|
Egan S, Harder T, Burke C, Steinberg P, Kjelleberg S, Thomas T. The seaweed holobiont: understanding seaweed-bacteria interactions. FEMS Microbiol Rev 2012; 37:462-76. [PMID: 23157386 DOI: 10.1111/1574-6976.12011] [Citation(s) in RCA: 342] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/29/2012] [Accepted: 11/07/2012] [Indexed: 11/28/2022] Open
Abstract
Seaweeds (macroalgae) form a diverse and ubiquitous group of photosynthetic organisms that play an essential role in aquatic ecosystems. These ecosystem engineers contribute significantly to global primary production and are the major habitat formers on rocky shores in temperate waters, providing food and shelter for aquatic life. Like other eukaryotic organisms, macroalgae harbor a rich diversity of associated microorganisms with functions related to host health and defense. In particular, epiphytic bacterial communities have been reported as essential for normal morphological development of the algal host, and bacteria with antifouling properties are thought to protect chemically undefended macroalgae from detrimental, secondary colonization by other microscopic and macroscopic epibiota. This tight relationship suggests that macroalgae and epiphytic bacteria interact as a unified functional entity or holobiont, analogous to the previously suggested relationship in corals. Moreover, given that the impact of diseases in marine ecosystems is apparently increasing, understanding the role of bacteria as saprophytes and pathogens in seaweed communities may have important implications for marine management strategies. This review reports on the recent advances in the understanding of macroalgal-bacterial interactions with reference to the diversity and functional role of epiphytic bacteria in maintaining algal health, highlighting the holobiont concept.
Collapse
Affiliation(s)
- Suhelen Egan
- School of Biotechnology and Biomolecular Sciences, Centre for Marine Bio-Innovation, The University of New South Wales, Sydney, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
71
|
Ritter A, Com E, Bazire A, Goncalves MDS, Delage L, Pennec GL, Pineau C, Dreanno C, Compère C, Dufour A. Proteomic studies highlight outer-membrane proteins related to biofilm development in the marine bacterium Pseudoalteromonas sp. D41. Proteomics 2012; 12:3180-92. [DOI: 10.1002/pmic.201100644] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 07/27/2012] [Accepted: 08/04/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Andrés Ritter
- Laboratoire de Biotechnologie et Chimie Marines; Université de Bretagne-Sud (UEB), IUEM; Lorient France
- IFREMER; Service Interfaces et Capteurs; Plouzané France
| | - Emmanuelle Com
- Proteomics Core Facility BIOGENOUEST; IRSET - Inserm U1085; Campus de Beaulieu; Rennes France
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines; Université de Bretagne-Sud (UEB), IUEM; Lorient France
| | | | - Ludovic Delage
- CNRS, UPMC; UMR 7139 Végétaux Marins et Biomolécules; Station Biologique; Roscoff France
| | - Gaël Le Pennec
- Laboratoire de Biotechnologie et Chimie Marines; Université de Bretagne-Sud (UEB), IUEM; Lorient France
| | - Charles Pineau
- Proteomics Core Facility BIOGENOUEST; IRSET - Inserm U1085; Campus de Beaulieu; Rennes France
| | | | | | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines; Université de Bretagne-Sud (UEB), IUEM; Lorient France
| |
Collapse
|
72
|
Genome sequence of Pseudoalteromonas flavipulchra JG1, a marine antagonistic bacterium with abundant antimicrobial metabolites. J Bacteriol 2012; 194:3735. [PMID: 22740664 DOI: 10.1128/jb.00598-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The marine bacterium Pseudoalteromonas flavipulchra JG1 can synthesize various antibacterial metabolites, including protein and small molecules. The draft genome of JG1 is about 5.36 Mb and harbors approximate 4,913 genes, which will provide further insight into the synthesis of antimicrobial agents and antagonistic mechanisms of P. flavipulchra against pathogens.
Collapse
|
73
|
Genome sequences of type strains of seven species of the marine bacterium Pseudoalteromonas. J Bacteriol 2012; 194:2746-7. [PMID: 22535931 DOI: 10.1128/jb.00265-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
There are over 30 species in the marine bacterial genus Pseudoalteromonas. However, our knowledge about this genus is still limited. We sequenced the genomes of type strains of seven species in the genus, facilitating the study of the physiology, adaptation, and evolution of this genus.
Collapse
|
74
|
Thole S, Kalhoefer D, Voget S, Berger M, Engelhardt T, Liesegang H, Wollherr A, Kjelleberg S, Daniel R, Simon M, Thomas T, Brinkhoff T. Phaeobacter gallaeciensis genomes from globally opposite locations reveal high similarity of adaptation to surface life. ISME JOURNAL 2012; 6:2229-44. [PMID: 22717884 DOI: 10.1038/ismej.2012.62] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Phaeobacter gallaeciensis, a member of the abundant marine Roseobacter clade, is known to be an effective colonizer of biotic and abiotic marine surfaces. Production of the antibiotic tropodithietic acid (TDA) makes P. gallaeciensis a strong antagonist of many bacteria, including fish and mollusc pathogens. In addition to TDA, several other secondary metabolites are produced, allowing the mutualistic bacterium to also act as an opportunistic pathogen. Here we provide the manually annotated genome sequences of the P. gallaeciensis strains DSM 17395 and 2.10, isolated at the Atlantic coast of north western Spain and near Sydney, Australia, respectively. Despite their isolation sites from the two different hemispheres, the genome comparison demonstrated a surprisingly high level of synteny (only 3% nucleotide dissimilarity and 88% and 93% shared genes). Minor differences in the genomes result from horizontal gene transfer and phage infection. Comparison of the P. gallaeciensis genomes with those of other roseobacters revealed unique genomic traits, including the production of iron-scavenging siderophores. Experiments supported the predicted capacity of both strains to grow on various algal osmolytes. Transposon mutagenesis was used to expand the current knowledge on the TDA biosynthesis pathway in strain DSM 17395. This first comparative genomic analysis of finished genomes of two closely related strains belonging to one species of the Roseobacter clade revealed features that provide competitive advantages and facilitate surface attachment and interaction with eukaryotic hosts.
Collapse
Affiliation(s)
- Sebastian Thole
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Sarmento H, Gasol JM. Use of phytoplankton-derived dissolved organic carbon by different types of bacterioplankton. Environ Microbiol 2012; 14:2348-60. [PMID: 22639946 DOI: 10.1111/j.1462-2920.2012.02787.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phytoplankton and heterotrophic prokaryotes are major components of the microbial food web and interact continuously: heterotrophic prokaryotes utilize the dissolved organic carbon derived from phytoplankton exudation or cell lysis (DOCp), and mineralization by heterotrophic prokaryotes provides inorganic nutrients for phytoplankton. For this reason, these communities are expected to be closely linked, although the study of the interactions between them is still a major challenge. Recent studies have presented interactions between phytoplankton and heterotrophic prokaryotes based on coexistence or covariation throughout a time-series. However, a real quantification of the carbon flow within these networks (defined as the interaction strength, IS) has not been achieved yet. This is critical to understand the selectivity degree of bacteria responding to specific algal DOCp. Here we used microautoradiography to quantify the preferences of the major heterotrophic prokaryote phylogenetic groups on DOC derived from several representative phytoplankton species, and expressed these preferences as an IS value. The distribution of the ISs was not random but rather skewed towards weak interactions, in a similar way as the distributions described for stable complex non-microbial ecosystems, indicating that there are some cases of high specificity on the use of specific algal DOCp by some bacterial groups, but weak interactions are more common and may be relevant as well. The variety of IS patterns observed supports the view that the vast range of different resources (different types of organic molecules) available in the sea selects and maintains the high levels of diversity described for marine bacterioplankton.
Collapse
Affiliation(s)
- Hugo Sarmento
- Institut de Ciències del Mar, CSIC. Pg. Marítim de la Barceloneta, 08003 Barcelona, Catalunya, Spain.
| | | |
Collapse
|
76
|
Genome sequences of six Pseudoalteromonas strains isolated from Arctic sea ice. J Bacteriol 2012; 194:908-9. [PMID: 22275105 DOI: 10.1128/jb.06427-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Yu et al. (Polar Biol. 32:1539-1547, 2009) isolated 199 Pseudoalteromonas strains from Arctic sea ice. We sequenced the genomes of six of these strains, which are affiliated to different Pseudoalteromonas species based on 16S rRNA gene sequences, facilitating the study of physiology and adaptation of Arctic sea ice Pseudoalteromonas strains.
Collapse
|
77
|
Abstract
Over the past two decades, marine virology has progressed from a curiosity to an intensely studied topic of critical importance to oceanography. At concentrations of approximately 10 million viruses per milliliter of surface seawater, viruses are the most abundant biological entities in the oceans. The majority of these viruses are phages (viruses that infect bacteria). Through lysing their bacterial hosts, marine phages control bacterial abundance, affect community composition, and impact global biogeochemical cycles. In addition, phages influence their hosts through selection for resistance, horizontal gene transfer, and manipulation of bacterial metabolism. Recent work has also demonstrated that marine phages are extremely diverse and can carry a variety of auxiliary metabolic genes encoding critical ecological functions. This review is structured as a scientific "truth or dare," revealing several well-established "truths" about marine viruses and presenting a few "dares" for the research community to undertake in future studies.
Collapse
Affiliation(s)
- Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, Florida 33701, USA.
| |
Collapse
|
78
|
Dupont CL, Rusch DB, Yooseph S, Lombardo MJ, Richter RA, Valas R, Novotny M, Yee-Greenbaum J, Selengut JD, Haft DH, Halpern AL, Lasken RS, Nealson K, Friedman R, Venter JC. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME JOURNAL 2011; 6:1186-99. [PMID: 22170421 PMCID: PMC3358033 DOI: 10.1038/ismej.2011.189] [Citation(s) in RCA: 370] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bacteria in the 16S rRNA clade SAR86 are among the most abundant uncultivated constituents of microbial assemblages in the surface ocean for which little genomic information is currently available. Bioinformatic techniques were used to assemble two nearly complete genomes from marine metagenomes and single-cell sequencing provided two more partial genomes. Recruitment of metagenomic data shows that these SAR86 genomes substantially increase our knowledge of non-photosynthetic bacteria in the surface ocean. Phylogenomic analyses establish SAR86 as a basal and divergent lineage of γ-proteobacteria, and the individual genomes display a temperature-dependent distribution. Modestly sized at 1.25-1.7 Mbp, the SAR86 genomes lack several pathways for amino-acid and vitamin synthesis as well as sulfate reduction, trends commonly observed in other abundant marine microbes. SAR86 appears to be an aerobic chemoheterotroph with the potential for proteorhodopsin-based ATP generation, though the apparent lack of a retinal biosynthesis pathway may require it to scavenge exogenously-derived pigments to utilize proteorhodopsin. The genomes contain an expanded capacity for the degradation of lipids and carbohydrates acquired using a wealth of tonB-dependent outer membrane receptors. Like the abundant planktonic marine bacterial clade SAR11, SAR86 exhibits metabolic streamlining, but also a distinct carbon compound specialization, possibly avoiding competition.
Collapse
Affiliation(s)
- Chris L Dupont
- Microbial and Environmental Genomics, J Craig Venter Institute, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Marine bacteria from Danish coastal waters show antifouling activity against the marine fouling bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis independent of bacteriocidal activity. Appl Environ Microbiol 2011; 77:8557-67. [PMID: 22003011 DOI: 10.1128/aem.06038-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aims of this study were to determine if marine bacteria from Danish coastal waters produce antifouling compounds and if antifouling bacteria could be ascribed to specific niches or seasons. We further assess if antibacterial effect is a good proxy for antifouling activity. We isolated 110 bacteria with anti-Vibrio activity from different sample types and locations during a 1-year sampling from Danish coastal waters. The strains were identified as Pseudoalteromonas, Phaeobacter, and Vibrionaceae based on phenotypic tests and partial 16S rRNA gene sequence similarity. The numbers of bioactive bacteria were significantly higher in warmer than in colder months. While some species were isolated at all sampling locations, others were niche specific. We repeatedly isolated Phaeobacter gallaeciensis at surfaces from one site and Pseudoalteromonas tunicata at two others. Twenty-two strains, representing the major taxonomic groups, different seasons, and isolation strategies, were tested for antiadhesive effect against the marine biofilm-forming bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis. The antiadhesive effects were assessed by quantifying the number of strain S91 or Ulva spores attaching to a preformed biofilm of each of the 22 strains. The strongest antifouling activity was found in Pseudoalteromonas strains. Biofilms of Pseudoalteromonas piscicida, Pseudoalteromonas tunicata, and Pseudoalteromonas ulvae prevented Pseudoalteromonas S91 from attaching to steel surfaces. P. piscicida killed S91 bacteria in the suspension cultures, whereas P. tunicata and P. ulvae did not; however, they did prevent adhesion by nonbactericidal mechanism(s). Seven Pseudoalteromonas species, including P. piscicida and P. tunicata, reduced the number of settling Ulva zoospores to less than 10% of the number settling on control surfaces. The antifouling alpP gene was detected only in P. tunicata strains (with purple and yellow pigmentation), so other compounds/mechanisms must be present in the other Pseudoalteromonas strains with antifouling activity.
Collapse
|
80
|
Hoke DE, Zhang K, Egan S, Hatfaludi T, Buckle AM, Adler B. Membrane proteins of Pseudoalteromonas tunicata during the transition from planktonic to extracellular matrix-adherent state. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:405-413. [PMID: 23761287 DOI: 10.1111/j.1758-2229.2011.00246.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pseudoalteromonas tunicata is a marine bacterium that was originally isolated from the surface of the tunicate Ciona intestinalis. Since C. intestinalis expresses extracellular matrix (ECM) and P. tunicata has a gene encoding a functional ECM-binding protein, we hypothesized that P. tunicata could adhere to this host via protein-ECM interactions and as a result change its membrane proteome. An in vitro adhesion assay was developed to show that P. tunicata adheres strongly to ECM. To further study the adhesion biology of P. tunicata, two-dimensional (2D) electrophoresis was used to explore the membrane-associated sub-proteome of P. tunicata during planktonic, adherent and non-adherent states. More than 30 proteins were resolved using blue native (BN)/SDS 2D PAGE, many of which were identified by mass spectrometry. BN/SDS PAGE also allowed the identification of several novel protein complexes, which indicate structural and functional relationships for these proteins and related proteins in several other organisms. A proteomic change associated with adhesion was identified by comparison of 2D gels from the three model states. Collectively, these studies explore the membrane proteome of P. tunicata during the transition from planktonic to ECM-adherent states.
Collapse
Affiliation(s)
- David E Hoke
- Departments of Biochemistry and Molecular Biology Microbiology, Monash University, Clayton, Vic. 3800, Australia Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Vic. 3800, Australia Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | |
Collapse
|
81
|
Yung PY, Kjelleberg S, Thomas T. A polyphasic approach to the exploration of collagenolytic activity in the bacterial community associated with the marine sponge Cymbastela concentrica. FEMS Microbiol Lett 2011; 321:24-9. [PMID: 21569081 DOI: 10.1111/j.1574-6968.2011.02306.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Collagen is an important, extracellular structural protein for metazoans and provides a rich nutrient source for bacteria that possess collagen-degrading enzymes. In a symbiotic host system, collagen degradation could benefit the bacteria, but would be harmful for the eukaryotic host. Using a polyphasic approach, we investigated the presence of collagenolytic activity in the bacterial community hosted by the marine sponge Cymbastela concentrica. Functional screening for collagenase activity using metagenomic library clones (227 Mbp) and cultured isolates of sponge's bacterial community, as well as bioinformatic analysis of metagenomic shotgun-sequencing data (106,679 predicted genes) were used. The results show that the abundant members of the bacterial community contain very few genes encoding for collagenolytic enzymes, while some low-abundance sponge isolates possess collagenolytic activities. These findings indicate that collagen is not a preferred nutrient source for the majority of the members of the bacterial community associated with healthy C. concentrica, and that some low-abundance bacteria have collagenase activities that have the potential to harm the sponge through tissue degradation.
Collapse
Affiliation(s)
- Pui Yi Yung
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | | |
Collapse
|
82
|
Characterization of a gene cluster and its putative promoter region for violacein biosynthesis in Pseudoalteromonas sp. 520P1. Appl Microbiol Biotechnol 2011; 90:1963-71. [PMID: 21472536 DOI: 10.1007/s00253-011-3203-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
Abstract
Violacein, a purple pigment produced by some Gram-negative bacteria, has various physiological properties, such as antitrypanosomal and antitumoral activities. A gene cluster that encodes five enzymes, VioA-VioE, is responsible for synthesizing violacein. The expression of these enzymes is known to be regulated by a quorum sensing mechanism in Chromobacterium violaceum and Pseudoalteromonas sp. 520P1. To clarify the molecular mechanism of regulation of violacein synthesis, we cloned and characterized the gene cluster from Pseudoalteromonas sp. 520P1. A fosmid library of strain 520P1 was constructed and clones containing the gene cluster were isolated. The gene cluster was 7383 bp in length and encoded five enzyme genes, vioA-vioE. A putative promoter sequence was predicted in the upstream region of the cluster. In the promoter region, two contiguous palindromic sequences, a possible quorum sensing regulatory site, were found. However, the isolated Escherichia coli clones harboring the gene cluster and its upstream region were unable to produce violacein probably due to the lack of quorum sensing machinery for expression. To further examine the ability of vioA-vioE genes to synthesize violacein in vivo, the upstream promoter region was removed from the cluster and heterologous expression of the treated cluster was performed in E. coli using a recombinant pET vector with T7 promoter. Purple pigment was expressed, and the pigment was identified to be violacein using ultraviolet and visible light and HPLC analysis. These results will contribute to further studies regarding violacein biosynthesis and its mass production.
Collapse
|
83
|
Qin QL, Li Y, Zhang YJ, Zhou ZM, Zhang WX, Chen XL, Zhang XY, Zhou BC, Wang L, Zhang YZ. Comparative genomics reveals a deep-sea sediment-adapted life style of Pseudoalteromonas sp. SM9913. THE ISME JOURNAL 2011; 5:274-84. [PMID: 20703316 PMCID: PMC3105692 DOI: 10.1038/ismej.2010.103] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 05/21/2010] [Accepted: 06/13/2010] [Indexed: 11/09/2022]
Abstract
Deep-sea sediment is one of the most important microbial-driven ecosystems, yet it is not well characterized. Genome sequence analyses of deep-sea sedimentary bacteria would shed light on the understanding of this ecosystem. In this study, the complete genome of deep-sea sedimentary bacterium Pseudoalteromonas sp. SM9913 (SM9913) is described and compared with that of the closely related Antarctic surface sea-water ecotype Pseudoalteromonas haloplanktis TAC125 (TAC125). SM9913 has fewer dioxygenase genes than TAC125, indicating a possible sensitivity to reactive oxygen species. Accordingly, experimental results showed that SM9913 was less tolerant of H(2)O(2) than TAC125. SM9913 has gene clusters related to both polar and lateral flagella biosynthesis. Lateral flagella, which are usually present in deep-sea bacteria and absent in the related surface bacteria, are important for the survival of SM9913 in deep-sea environments. With these two flagellar systems, SM9913 can swim in sea water and swarm on the sediment particle surface, favoring the acquisition of nutrients from particulate organic matter and reflecting the particle-associated alternative lifestyle of SM9913 in the deep sea. A total of 12 genomic islands were identified in the genome of SM9913 that may confer specific features unique to SM9913 and absent from TAC125, such as drug and heavy metal resistance. Many signal transduction genes and a glycogen production operon were also present in the SM9913 genome, which may help SM9913 respond to food pulses and store carbon and energy in a deep-sea environment.
Collapse
Affiliation(s)
- Qi-Long Qin
- State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, People's Republic of China
| | - Yang Li
- State Key Lab of Microbial Technology, TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Yan-Jiao Zhang
- State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, People's Republic of China
| | - Zhe-Min Zhou
- State Key Lab of Microbial Technology, TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Wei-Xin Zhang
- State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, People's Republic of China
| | - Xiu-Lan Chen
- State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, People's Republic of China
| | - Xi-Ying Zhang
- State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, People's Republic of China
| | - Bai-Cheng Zhou
- State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, People's Republic of China
| | - Lei Wang
- State Key Lab of Microbial Technology, TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, People's Republic of China
| | - Yu-Zhong Zhang
- State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
84
|
Hadfield MG. Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites. ANNUAL REVIEW OF MARINE SCIENCE 2011; 3:453-70. [PMID: 21329213 DOI: 10.1146/annurev-marine-120709-142753] [Citation(s) in RCA: 266] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Communities of microorganisms form thin coats across solid surfaces in the sea. Larvae of many marine invertebrates use biofilm components as cues to appropriate settlement sites. Research on the tube-dwelling polychaete worm Hydroides elegans, a globally common member of biofouling communities, is described to exemplify approaches to understanding biofilm bacteria as a source of settlement cues and larvae as bearers of receptors for bacterial cues. The association of species of the bacterial genus Pseudoalteromonas with larval settlement in many phyla is described, and the question of whether cues are soluble or surface-bound is reviewed, concluding that most evidence points to surface-bound cues. Seemingly contradictory data for stimulation of barnacle settlement are discussed; possibly both explanations are true. Paleontological evidence reveals a relationship between metazoans and biofilms very early in metazoan evolution, and thus the receptors for bacterial cues of invertebrate larvae are very old and possibly unique. Finally, despite more than 60 years of intense investigation, we still know very little about either the bacterial ligands that stimulate larval settlement or the cellular basis of their detection by larvae.
Collapse
Affiliation(s)
- Michael G Hadfield
- Kewalo Marine Laboratory and Department of Zoology, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA.
| |
Collapse
|
85
|
Ecogenomics and genome landscapes of marine Pseudoalteromonas phage H105/1. ISME JOURNAL 2010; 5:107-21. [PMID: 20613791 DOI: 10.1038/ismej.2010.94] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Marine phages have an astounding global abundance and ecological impact. However, little knowledge is derived from phage genomes, as most of the open reading frames in their small genomes are unknown, novel proteins. To infer potential functional and ecological relevance of sequenced marine Pseudoalteromonas phage H105/1, two strategies were used. First, similarity searches were extended to include six viral and bacterial metagenomes paired with their respective environmental contextual data. This approach revealed 'ecogenomic' patterns of Pseudoalteromonas phage H105/1, such as its estuarine origin. Second, intrinsic genome signatures (phylogenetic, codon adaptation and tetranucleotide (tetra) frequencies) were evaluated on a resolved intra-genomic level to shed light on the evolution of phage functional modules. On the basis of differential codon adaptation of Phage H105/1 proteins to the sequenced Pseudoalteromonas spp., regions of the phage genome with the most 'host'-adapted proteins also have the strongest bacterial tetra signature, whereas the least 'host'-adapted proteins have the strongest phage tetra signature. Such a pattern may reflect the evolutionary history of the respective phage proteins and functional modules. Finally, analysis of the structural proteome identified seven proteins that make up the mature virion, four of which were previously unknown. This integrated approach combines both novel and classical strategies and serves as a model to elucidate ecological inferences and evolutionary relationships from phage genomes that typically abound with unknown gene content.
Collapse
|
86
|
Identification of compounds with bioactivity against the nematode Caenorhabditis elegans by a screen based on the functional genomics of the marine bacterium Pseudoalteromonas tunicata D2. Appl Environ Microbiol 2010; 76:5710-7. [PMID: 20601498 DOI: 10.1128/aem.00695-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Marine bacteria are a rich, yet underexplored, resource of compounds with inhibitory bioactivity against a range of eukaryotic target organisms. Identification of those inhibitors, however, requires a culturable or genetically tractable producer strain, a prerequisite that is not often fulfilled. This study describes a novel functional genomic screen that is based on expression of inhibitors in a heterogeneous recombinant host (i.e., Escherichia coli). Functional libraries were screened by selective grazing by the nematode Caenorhabditis elegans, in a simple, rapid, high-throughput manner. We applied our approach to discover inhibitors of C. elegans produced by the marine bacterium Pseudoalteromonas tunicata D2, a model organism for exploring a range of antagonistic activities between bacteria and eukaryotes and a known producer of several toxic compounds. Expression of P. tunicata DNA in E. coli and grazing selection by the nematode Caenorhabditis elegans identified two clones, with slow- and fast-killing modes of action. Genomic analysis of the slow-killing clone revealed that the activity was due to a small molecule, tambjamine, while the fast-killing activity involved a gene encoding for a novel protein. Microscopic analysis showed substantial colonization of the intestinal lumen, or rapid death of the nematode without colonization, for the two activities, respectively. The novel functional genomic screen presented here therefore detects new eukaryotic inhibitors with different chemical structures, kinetics, and predicted modes of actions.
Collapse
|
87
|
Blasiak LC, Clardy J. Discovery of 3-formyl-tyrosine metabolites from Pseudoalteromonas tunicata through heterologous expression. J Am Chem Soc 2010; 132:926-7. [PMID: 20041686 PMCID: PMC2808729 DOI: 10.1021/ja9097862] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Genome mining and identification of natural product gene clusters typically relies on the presence of canonical nonribosomal polypeptide synthetase (NRPS) or polyketide synthase (PKS) domains. Recently, other condensation enzymes, such as the ATP-grasp ligases, have been recognized as important players in natural product biosynthesis. In this study, sequence based searching for homologues of DdaF, the ATP-grasp amide ligase from dapdiamide biosynthesis, led to the identification of a previously unannotated biosynthetic gene cluster in Pseudoalteromonas tunicata. Heterologous expression of the cluster in Escherichia coli allowed for the production and structure determination of two new 3-formyl tyrosine metabolites.
Collapse
Affiliation(s)
- Leah C Blasiak
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
88
|
Oh YS, Park AR, Lee JK, Lim CS, Yoo JS, Roh DH. Pseudoalteromonas donghaensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2010; 61:351-355. [PMID: 20228210 DOI: 10.1099/ijs.0.022541-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, rod-shaped, motile and aerobic bacterium, designated strain HJ51(T), was isolated from a seawater sample from the East Sea, near South Korea. The isolate grew slowly at 4 °C, was able to grow at 40 °C, required NaCl and grew optimally at pH 6.5-7.0. The G+C content of the genomic DNA was 41.8 mol%. The major fatty acids were summed feature 4 (C(16 : 1)ω7c and/or iso-C(15 : 0) 2-OH), C(16 : 0) and summed feature 7 (C(18 : 1)ω7c, C(18 : 1)ω9t and/or C(18 : 1)ω12t). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain HJ51(T) belonged to the genus Pseudoalteromonas and had 91.7-98.9 % 16S rRNA gene sequence similarity with type strains of species of the genus Pseudoalteromonas. Strain HJ51(T) had 7.2 % DNA-DNA relatedness with Pseudoalteromonas mariniglutinosa DSM 15203(T) and 12.9 % with Pseudoalteromonas prydzensis DSM 14232(T). On the basis of the phenotypic, phylogenetic and genomic data, strain HJ51(T) represents a novel species of the genus Pseudoalteromonas, for which the name Pseudoalteromonas donghaensis sp. nov. is proposed. The type strain is HJ51(T) (=KCTC 22219(T)=LMG 24469(T)).
Collapse
Affiliation(s)
- Yong-Sik Oh
- Department of Microbiology and Biotechnology Research Institute, Chungbuk National University, Cheongju 361-763, Chungbuk, Republic of Korea
| | - A-Rum Park
- Department of Microbiology and Biotechnology Research Institute, Chungbuk National University, Cheongju 361-763, Chungbuk, Republic of Korea
| | - Je-Kwan Lee
- Department of Microbiology and Biotechnology Research Institute, Chungbuk National University, Cheongju 361-763, Chungbuk, Republic of Korea
| | - Chae-Sung Lim
- Department of Microbiology and Biotechnology Research Institute, Chungbuk National University, Cheongju 361-763, Chungbuk, Republic of Korea
| | - Jae-Soo Yoo
- School of Electrical and Computer Engineering, Chungbuk National University, Cheongju 361-763, Chungbuk, Republic of Korea
| | - Dong-Hyun Roh
- Department of Microbiology and Biotechnology Research Institute, Chungbuk National University, Cheongju 361-763, Chungbuk, Republic of Korea
| |
Collapse
|
89
|
Penesyan A, Kjelleberg S, Egan S. Development of novel drugs from marine surface associated microorganisms. Mar Drugs 2010; 8:438-59. [PMID: 20411108 PMCID: PMC2857370 DOI: 10.3390/md8030438] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 02/03/2010] [Accepted: 02/22/2010] [Indexed: 11/16/2022] Open
Abstract
While the oceans cover more than 70% of the Earth's surface, marine derived microbial natural products have been largely unexplored. The marine environment is a habitat for many unique microorganisms, which produce biologically active compounds ("bioactives") to adapt to particular environmental conditions. For example, marine surface associated microorganisms have proven to be a rich source for novel bioactives because of the necessity to evolve allelochemicals capable of protecting the producer from the fierce competition that exists between microorganisms on the surfaces of marine eukaryotes. Chemically driven interactions are also important for the establishment of cross-relationships between microbes and their eukaryotic hosts, in which organisms producing antimicrobial compounds ("antimicrobials"), may protect the host surface against over colonisation in return for a nutrient rich environment. As is the case for bioactive discovery in general, progress in the detection and characterization of marine microbial bioactives has been limited by a number of obstacles, such as unsuitable culture conditions, laborious purification processes, and a lack of de-replication. However many of these limitations are now being overcome due to improved microbial cultivation techniques, microbial (meta-) genomic analysis and novel sensitive analytical tools for structural elucidation. Here we discuss how these technical advances, together with a better understanding of microbial and chemical ecology, will inevitably translate into an increase in the discovery and development of novel drugs from marine microbial sources in the future.
Collapse
Affiliation(s)
- Anahit Penesyan
- School of Biotechnology and Biomolecular Sciences and Centre for Marine Bio-Innovation, University of New South Wales, Sydney 2052, Australia; E-Mails:
(A.P.);
(S.K.)
| | - Staffan Kjelleberg
- School of Biotechnology and Biomolecular Sciences and Centre for Marine Bio-Innovation, University of New South Wales, Sydney 2052, Australia; E-Mails:
(A.P.);
(S.K.)
| | - Suhelen Egan
- School of Biotechnology and Biomolecular Sciences and Centre for Marine Bio-Innovation, University of New South Wales, Sydney 2052, Australia; E-Mails:
(A.P.);
(S.K.)
| |
Collapse
|
90
|
Abstract
Reversible insertion of IS492 at a site within epsG on the Pseudoalteromonas atlantica chromosome controls peripheral extracellular polysaccharide production and biofilm formation by P. atlantica. High-frequency precise excision of IS492 from epsG requires 5 and 7 bp of flanking DNA, suggesting that IS492 transposition involves a site-specific recombination mechanism. The site specificity of IS492 insertion was examined in P. atlantica and shown to be specific for a 7-bp target, 5'-CTTGTTA-3'. Characterization of numerous insertion events at the target site in epsG indicated that insertion is also orientation specific. The frequency of IS492 insertion at the epsG target site (2.7 x 10(-7)/cell/generation), determined by quantitative PCR, is 4 to 5 orders of magnitude lower than the frequency of IS492 precise excision from the same site. Comparison of insertion sites for IS492 and the highly related ISPtu2 from Pseudoalteromonas tunicata suggests DNA sequence and/or structural features that may contribute to site recognition and recombination by the transposase of IS492.
Collapse
|
91
|
Matz C. Biochemische Interaktionen in Marinen Biofilmen. Kampf, Kommunikation, Kooperation. CHEM UNSERER ZEIT 2009. [DOI: 10.1002/ciuz.200900489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|