51
|
Anticariogenic and antibiofilm of purified bacteriocin of Lactobacillus curvatus and immunomodulatory effect of L. curvatus in streptococcal bacteremia. ACTA ACUST UNITED AC 2019. [DOI: 10.1097/mrm.0000000000000150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
52
|
Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018; 9:522-554. [PMID: 28362216 PMCID: PMC5955472 DOI: 10.1080/21505594.2017.1313372] [Citation(s) in RCA: 824] [Impact Index Per Article: 117.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Biofilm refers to the complex, sessile communities of microbes found either attached to a surface or buried firmly in an extracellular matrix as aggregates. The biofilm matrix surrounding bacteria makes them tolerant to harsh conditions and resistant to antibacterial treatments. Moreover, the biofilms are responsible for causing a broad range of chronic diseases and due to the emergence of antibiotic resistance in bacteria it has really become difficult to treat them with efficacy. Furthermore, the antibiotics available till date are ineffective for treating these biofilm related infections due to their higher values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), which may result in in-vivo toxicity. Hence, it is critically important to design or screen anti-biofilm molecules that can effectively minimize and eradicate biofilm related infections. In the present article, we have highlighted the mechanism of biofilm formation with reference to different models and various methods used for biofilm detection. A major focus has been put on various anti-biofilm molecules discovered or tested till date which may include herbal active compounds, chelating agents, peptide antibiotics, lantibiotics and synthetic chemical compounds along with their structures, mechanism of action and their respective MICs, MBCs, minimum biofilm inhibitory concentrations (MBICs) as well as the half maximal inhibitory concentration (IC50) values available in the literature so far. Different mode of action of anti biofilm molecules addressed here are inhibition via interference in the quorum sensing pathways, adhesion mechanism, disruption of extracellular DNA, protein, lipopolysaccharides, exopolysaccharides and secondary messengers involved in various signaling pathways. From this study, we conclude that the molecules considered here might be used to treat biofilm-associated infections after significant structural modifications, thereby investigating its effective delivery in the host. It should also be ensured that minimum effective concentration of these molecules must be capable of eradicating biofilm infections with maximum potency without posing any adverse side effects on the host.
Collapse
Affiliation(s)
- Ranita Roy
- a Department of Biochemistry , Central University of Rajasthan , Ajmer , India
| | - Monalisa Tiwari
- a Department of Biochemistry , Central University of Rajasthan , Ajmer , India
| | - Gianfranco Donelli
- b Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia , Rome , Italy
| | - Vishvanath Tiwari
- a Department of Biochemistry , Central University of Rajasthan , Ajmer , India
| |
Collapse
|
53
|
Zheng Y, He L, Asiamah TK, Otto M. Colonization of medical devices by staphylococci. Environ Microbiol 2018; 20:3141-3153. [PMID: 29633455 DOI: 10.1111/1462-2920.14129] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/16/2018] [Accepted: 04/03/2018] [Indexed: 12/19/2022]
Abstract
The use of medical devices in modern medicine is constantly increasing. Despite the multiple precautionary strategies that are being employed in hospitals, which include increased hygiene and sterilization measures, bacterial infections on these devices still happen frequently. Staphylococci are among the major causes of medical device infection. This is mostly due to the strong capacity of those bacteria to form device-associated biofilms, which provide resistance to chemical and physical treatments as well as attacks by the host's immune system. Biofilm development is a multistep process with specific factors participating in each step. It is tightly regulated to provide a balance between biofilm expansion and detachment. Detachment from a biofilm on a medical device can lead to severe systemic infection, such as bacteremia and sepsis. While our understanding of staphylococcal biofilm formation has increased significantly and staphylococcal biofilm formation on medical devices is among the best understood biofilm-associated infections, the extensive effort put in preclinical studies with the goal to find novel therapies against staphylococcal device-associated infections has not yet resulted in efficient, applicable therapeutic options for that difficult-to-treat type of disease.
Collapse
Affiliation(s)
- Yue Zheng
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, MD, USA
| | - Lei He
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, MD, USA
| | - Titus K Asiamah
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, MD, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
54
|
Abstract
The molecular and clinical factors associated with biofilm-forming methicillin-resistant Staphylococcus aureus (MRSA) are incompletely understood. Biofilm production for 182 MRSA isolates obtained from clinical culture sites (2004 to 2013) was quantified. Microbiological toxins, pigmentation, and genotypes were evaluated, and patient demographics were collected. Logistic regression was used to quantify the effect of strong biofilm production (versus weak biofilm production) on clinical outcomes and independent predictors of a strong biofilm. Of the isolates evaluated, 25.8% (47/182) produced strong biofilms and 40.7% (74/182) produced weak biofilms. Strong biofilm-producing isolates were more likely to be from multilocus sequence typing (MLST) clonal complex 8 (CC8) (34.0% versus 14.9%; P = 0.01) but less likely to be from MLST CC5 (48.9% versus 73.0%; P = 0.007). Predictors for strong biofilms were spa type t008 (adjusted odds ratio [aOR], 4.54; 95% confidence interval [CI], 1.21 to 17.1) and receipt of chemotherapy or immunosuppressants in the previous 90 days (aOR, 33.6; 95% CI, 1.68 to 673). Conversely, patients with high serum creatinine concentrations (aOR, 0.33; 95% CI, 0.15 to 0.72) or who previously received vancomycin (aOR, 0.03; 95% CI, 0.002 to 0.39) were less likely to harbor strong biofilm-producing MRSA. Beta-toxin-producing isolates (aOR, 0.31; 95% CI, 0.11 to 0.89) and isolates with spa type t895 (aOR, 0.02 95% CI, <0.001 to 0.47) were less likely to produce strong biofilms. Patient outcomes also varied between the two groups. Specifically, patients with strong biofilm-forming MRSA were significantly more likely to be readmitted within 90 days (aOR, 5.43; 95% CI, 1.69 to 17.4) but tended to have decreased 90-day mortality (aOR, 0.36; 95% CI, 0.12 to 1.06). Patients that harbored t008 and received immunosuppressants were more likely to have strong biofilm-producing MRSA isolates. Clinically, patients with strong biofilm-forming MRSA were less likely to die at 90 days but five times more likely to be readmitted.
Collapse
|
55
|
Wermser C, Lopez D. Identification of Staphylococcus aureus genes involved in the formation of structured macrocolonies. MICROBIOLOGY-SGM 2018; 164:801-815. [PMID: 29638209 DOI: 10.1099/mic.0.000660] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human pathogen Staphylococcus aureus causes difficult-to-eradicate biofilm-associated infections that generally become chronic. Understanding the genetic regulation of biofilm formation in S. aureus is central to a precise definition of the conditions and genes involved in development of chronic biofilm-associated infections. Biofilm-related genes have been detected by comparing mutants using the classical submerged biofilm formation assay, in which cells adhere to the bottom of a well containing culture medium. We recently developed an alternative biofilm formation model for S. aureus, based on macrocolony formation on agar plates, comparable to an assay used to study biofilm formation in a few other bacterial species. As organism features are the result of environmental conditions as well as of genes, we used a genome-wide collection of transposon-mapped mutants in this macrocolony assay to seek S. aureus developmental genes and pathways not identified by the classical biofilm formation assay. We identified routes related to glucose and purine metabolism and clarified their regulatory link to macrocolony formation. Our study demonstrates that formation of microbial communities must be correlated to specific growth conditions, and the role of metabolism must be considered in S. aureus biofilm formation and thus, in the development of chronic infections.
Collapse
Affiliation(s)
- Charlotte Wermser
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany.,Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Daniel Lopez
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany.,Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany.,National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid 28049, Spain
| |
Collapse
|
56
|
Formation of Staphylococcus aureus Biofilm in the Presence of Sublethal Concentrations of Disinfectants Studied via a Transcriptomic Analysis Using Transcriptome Sequencing (RNA-seq). Appl Environ Microbiol 2017; 83:AEM.01643-17. [PMID: 29030437 DOI: 10.1128/aem.01643-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/02/2017] [Indexed: 01/25/2023] Open
Abstract
Staphylococcus aureus is a common biofilm-forming pathogen. Low doses of disinfectants have previously been reported to promote biofilm formation and to increase virulence. The aim of this study was to use transcriptome sequencing (RNA-seq) analysis to investigate global transcriptional changes in S. aureus in response to sublethal concentrations of the commonly used food industry disinfectants ethanol (EtOH) and chloramine T (ChT) and their combination (EtOH_ChT) in order to better understand the effects of these agents on biofilm formation. Treatment with EtOH and EtOH_ChT resulted in more significantly altered expression profiles than treatment with ChT. Our results revealed that EtOH and EtOH_ChT treatments enhanced the expression of genes responsible for regulation of gene expression (sigB), cell surface factors (clfAB), adhesins (sdrDE), and capsular polysaccharides (cap8EFGL), resulting in more intact biofilm. In addition, in this study we were able to identify the pathways involved in the adaptation of S. aureus to the stress of ChT treatment. Further, EtOH suppressed the effect of ChT on gene expression when these agents were used together at sublethal concentrations. These data show that in the presence of sublethal concentrations of tested disinfectants, S. aureus cells trigger protective mechanisms and try to cope with them.IMPORTANCE So far, the effect of disinfectants is not satisfactorily explained. The presented data will allow a better understanding of the mode of disinfectant action with regard to biofilm formation and the ability of bacteria to survive the treatment. Such an understanding could contribute to the effort to eliminate possible sources of bacteria, making disinfectant application as efficient as possible. Biofilm formation plays significant role in the spread and pathogenesis of bacterial species.
Collapse
|
57
|
Rom JS, Atwood DN, Beenken KE, Meeker DG, Loughran AJ, Spencer HJ, Lantz TL, Smeltzer MS. Impact of Staphylococcus aureus regulatory mutations that modulate biofilm formation in the USA300 strain LAC on virulence in a murine bacteremia model. Virulence 2017; 8:1776-1790. [PMID: 28910576 PMCID: PMC5810510 DOI: 10.1080/21505594.2017.1373926] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus causes acute and chronic forms of infection, the latter often associated with formation of a biofilm. It has previously been demonstrated that mutation of atl, codY, rot, sarA, and sigB limits biofilm formation in the USA300 strain LAC while mutation of agr, fur, and mgrA has the opposite effect. Here we used a murine sepsis model to assess the impact of these same loci in acute infection. Mutation of agr, atl, and fur had no impact on virulence, while mutation of mgrA and rot increased virulence. In contrast, mutation of codY, sarA, and sigB significantly attenuated virulence. Mutation of sigB resulted in reduced accumulation of AgrA and SarA, while mutation of sarA resulted in reduced accumulation of AgrA, but this cannot account for the reduced virulence of sarA or sigB mutants because the isogenic agr mutant was not attenuated. Indeed, as assessed by accumulation of alpha toxin and protein A, all of the mutants we examined exhibited unique phenotypes by comparison to an agr mutant and to each other. Attenuation of the sarA, sigB and codY mutants was correlated with increased production of extracellular proteases and global changes in extracellular protein profiles. These results suggest that the inability to repress the production of extracellular proteases plays a key role in attenuating the virulence of S. aureus in acute as well as chronic, biofilm-associated infections, thus opening up the possibility that strategies aimed at the de-repression of protease production could be used to broad therapeutic advantage. They also suggest that the impact of codY, sarA, and sigB on protease production occurs via an agr-independent mechanism.
Collapse
Affiliation(s)
- Joseph S Rom
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Danielle N Atwood
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Karen E Beenken
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Daniel G Meeker
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Allister J Loughran
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Horace J Spencer
- b Department of Biostatistics , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Tamara L Lantz
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Mark S Smeltzer
- a Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , AR , USA.,c Department of Orthopaedic Surgery , University of Arkansas for Medical Sciences , Little Rock , AR , USA.,d Department of Pathology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| |
Collapse
|
58
|
Lyles JT, Kim A, Nelson K, Bullard-Roberts AL, Hajdari A, Mustafa B, Quave CL. The Chemical and Antibacterial Evaluation of St. John's Wort Oil Macerates Used in Kosovar Traditional Medicine. Front Microbiol 2017; 8:1639. [PMID: 28943862 PMCID: PMC5596533 DOI: 10.3389/fmicb.2017.01639] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/14/2017] [Indexed: 11/13/2022] Open
Abstract
Hypericum perforatum L. (Hypericaceae), or St. John's Wort, is a well-known medicinal herb often associated with the treatment of anxiety and depression. Additionally, an oil macerate (Oleum Hyperici) of its flowering aerial parts is widely used in traditional medicine across the Balkans as a topical wound and ulcer salve. Other studies have shown that Oleum Hyperici reduces both wound size and healing time. Of its active constituents, the naphthodianthrone hypericin and phloroglucinol hyperforin are effective antibacterial compounds against various Gram-positive bacteria. However, hyperforin is unstable with light and heat, and thus should not be present in the light-aged oil macerate. Additionally, hypericin can cause phototoxic skin reactions if ingested or absorbed into the skin. Therefore, the established chemistry presents a paradox for this H. perforatum oil macerate: the hyperforin responsible for the antibacterial bioactivity should degrade in the sunlight as the traditional oil is prepared; alternately, if hypericin is present in established bioactive levels, then the oil macerate should cause photosensitivity, yet none is reported. In this research, various extracts of H. perforatum were compared to traditional oil macerates with regards to chemical composition and antibacterial activity (inhibition of growth, biofilm formation, and quorum sensing) vs. several strains of Staphylococcus aureus in order to better understand this traditional medicine. It was found that four Kosovar-crafted oil macerates were effective at inhibiting biofilm formation (MBIC50 active range of 0.004-0.016% v/v), exhibited moderate inhibition of quorum sensing (QSIC50 active range of 0.064-0.512% v/v), and contained detectable amounts of hyperforin, but not hypericin. Overall, levels of hypericin were much higher in the organic extracts, and these also exhibited more potent growth inhibitory activity. In conclusion, these data confirm that oil macerates employed in traditional treatments of skin infection lack the compound credited with phototoxic reactions in H. perforatum use and exhibit anti-biofilm and modest quorum quenching effects, rather than growth inhibitory properties against S. aureus.
Collapse
Affiliation(s)
- James T. Lyles
- Center for the Study of Human Health, Emory UniversityAtlanta, GA, United States
| | - Austin Kim
- Center for the Study of Human Health, Emory UniversityAtlanta, GA, United States
| | - Kate Nelson
- Department of Dermatology, Emory University School of MedicineAtlanta, GA, United States
| | | | - Avni Hajdari
- Department of Biology, University of PristinaPrishtinë, Kosovo
| | - Behxhet Mustafa
- Department of Biology, University of PristinaPrishtinë, Kosovo
| | - Cassandra L. Quave
- Center for the Study of Human Health, Emory UniversityAtlanta, GA, United States
- Department of Dermatology, Emory University School of MedicineAtlanta, GA, United States
- Emory Antibiotic Resistance Center, Emory UniversityAtlanta, GA, United States
| |
Collapse
|
59
|
Abstract
The staphylococci comprise a diverse genus of Gram-positive, nonmotile commensal organisms that inhabit the skin and mucous membranes of humans and other mammals. In general, staphylococci are benign members of the natural flora, but many species have the capacity to be opportunistic pathogens, mainly infecting individuals who have medical device implants or are otherwise immunocompromised. Staphylococcus aureus and Staphylococcus epidermidis are major sources of hospital-acquired infections and are the most common causes of surgical site infections and medical device-associated bloodstream infections. The ability of staphylococci to form biofilms in vivo makes them highly resistant to chemotherapeutics and leads to chronic diseases. These biofilm infections include osteomyelitis, endocarditis, medical device infections, and persistence in the cystic fibrosis lung. Here, we provide a comprehensive analysis of our current understanding of staphylococcal biofilm formation, with an emphasis on adhesins and regulation, while also addressing how staphylococcal biofilms interact with the immune system. On the whole, this review will provide a thorough picture of biofilm formation of the staphylococcus genus and how this mode of growth impacts the host.
Collapse
|
60
|
Genome-wide screen for genes involved in eDNA release during biofilm formation by Staphylococcus aureus. Proc Natl Acad Sci U S A 2017; 114:E5969-E5978. [PMID: 28674000 DOI: 10.1073/pnas.1704544114] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus is a leading cause of both nosocomial and community-acquired infection. Biofilm formation at the site of infection reduces antimicrobial susceptibility and can lead to chronic infection. During biofilm formation, a subset of cells liberate cytoplasmic proteins and DNA, which are repurposed to form the extracellular matrix that binds the remaining cells together in large clusters. Using a strain that forms robust biofilms in vitro during growth under glucose supplementation, we carried out a genome-wide screen for genes involved in the release of extracellular DNA (eDNA). A high-density transposon insertion library was grown under biofilm-inducing conditions, and the relative frequency of insertions was compared between genomic DNA (gDNA) collected from cells in the biofilm and eDNA from the matrix. Transposon insertions into genes encoding functions necessary for eDNA release were identified by reduced representation in the eDNA. On direct testing, mutants of some of these genes exhibited markedly reduced levels of eDNA and a concomitant reduction in cell clustering. Among the genes with robust mutant phenotypes were gdpP, which encodes a phosphodiesterase that degrades the second messenger cyclic-di-AMP, and xdrA, the gene for a transcription factor that, as revealed by RNA-sequencing analysis, influences the expression of multiple genes, including many involved in cell wall homeostasis. Finally, we report that growth in biofilm-inducing medium lowers cyclic-di-AMP levels and does so in a manner that depends on the gdpP phosphodiesterase gene.
Collapse
|
61
|
Woo SG, Lee SM, Lee SY, Lim KH, Ha EJ, Kim SH, Eom YB. The effectiveness of anti-biofilm and anti-virulence properties of dihydrocelastrol and dihydrocelastryl diacetate in fighting against methicillin-resistant Staphylococcus aureus. Arch Microbiol 2017; 199:1151-1163. [DOI: 10.1007/s00203-017-1386-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/06/2017] [Accepted: 05/04/2017] [Indexed: 01/03/2023]
|
62
|
VLP-based vaccine induces immune control of Staphylococcus aureus virulence regulation. Sci Rep 2017; 7:637. [PMID: 28377579 PMCID: PMC5429642 DOI: 10.1038/s41598-017-00753-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/09/2017] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is the leading cause of skin and soft tissue infections (SSTIs) and mounting antibiotic resistance requires innovative treatment strategies. S. aureus uses secreted cyclic autoinducing peptides (AIPs) and the accessory gene regulator (agr) operon to coordinate expression of virulence factors required for invasive infection. Of the four agr alleles (agr types I-IV and corresponding AIPs1-4), agr type I isolates are most frequently associated with invasive infection. Cyclization via a thiolactone bond is essential for AIP function; therefore, recognition of the cyclic form of AIP1 may be necessary for antibody-mediated neutralization. However, the small sizes of AIPs and labile thiolactone bond have hindered vaccine development. To overcome this, we used a virus-like particle (VLP) vaccine platform (PP7) for conformationally-restricted presentation of a modified AIP1 amino acid sequence (AIP1S). Vaccination with PP7-AIP1S elicited AIP1-specific antibodies and limited agr-activation in vivo. Importantly, in a murine SSTI challenge model with a highly virulent agr type I S. aureus isolate, PP7-AIP1S vaccination reduced pathogenesis and increased bacterial clearance compared to controls, demonstrating vaccine efficacy. Given the contribution of MRSA agr type I isolates to human disease, vaccine targeting of AIP1-regulated virulence could have a major clinical impact in the fight against antibiotic resistance.
Collapse
|
63
|
Al-Shabib NA, Husain FM, Ahmad I, Baig MH. Eugenol inhibits quorum sensing and biofilm of toxigenic MRSA strains isolated from food handlers employed in Saudi Arabia. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1281761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Nasser Abdulatif Al-Shabib
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, India
| | | |
Collapse
|
64
|
Singh AK, Prakash P, Achra A, Singh GP, Das A, Singh RK. Standardization and Classification of In vitro Biofilm Formation by Clinical Isolates of Staphylococcus aureus. J Glob Infect Dis 2017; 9:93-101. [PMID: 28878520 PMCID: PMC5572203 DOI: 10.4103/jgid.jgid_91_16] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Staphylococcus aureus is Gram-positive bacterium commonly associated with nosocomial infections. The development of biofilm exhibiting drug resistance especially in foreign body associated infections has enabled the bacterium to draw considerable attention. However, till date, consensus guidelines for in vitro biofilm quantitation and categorization criterion for the bacterial isolates based on biofilm-forming capacity are lacking. Therefore, it was intended to standardize in vitro biofilm formation by clinical isolates of S. aureus and then to classify them on the basis of their biofilm-forming capacity. MATERIALS AND METHODS A study was conducted for biofilm quantitation by tissue culture plate (TCP) assay employing 61 strains of S. aureus isolated from clinical samples during May 2015- December 2015 wherein several factors influencing the biofilm formation were optimized. Therefore, it was intended to propose a biofilm classification criteria based on the standard deviation multiples of the control differentiating them into non, low, medium, and high biofilm formers. RESULTS Brain-heart infusion broth was found to be more effective in biofilm formation compared to trypticase soy broth. Heat fixation was more effective than chemical fixation. Although, individually, glucose, sucrose, and sodium chloride (NaCl) had no significant effect on biofilm formation, a statistically significant increase in absorbance was observed after using the supplement mix consisting of 222.2 mM glucose, 116.9 mM sucrose, and 1000 mM NaCl (P= 0.037). CONCLUSIONS The present study puts forth a standardized in vitro TCP assay for biofilm biomass quantitation and categorization criteria for clinical isolates of S. aureus based on their biofilm-forming capacity. The proposed in vitro technique may be further evaluated for its usefulness in the management of persistent infections caused by the bacterium.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Pradyot Prakash
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Arvind Achra
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Gyan Prakash Singh
- Department of Community Medicine, Division of Biostatistics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Arghya Das
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rakesh Kumar Singh
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
65
|
Doulgeraki AI, Di Ciccio P, Ianieri A, Nychas GJE. Methicillin-resistant food-related Staphylococcus aureus: a review of current knowledge and biofilm formation for future studies and applications. Res Microbiol 2017; 168:1-15. [DOI: 10.1016/j.resmic.2016.08.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 07/18/2016] [Accepted: 08/05/2016] [Indexed: 12/18/2022]
|
66
|
Repurposing the Nonsteroidal Anti-inflammatory Drug Diflunisal as an Osteoprotective, Antivirulence Therapy for Staphylococcus aureus Osteomyelitis. Antimicrob Agents Chemother 2016; 60:5322-30. [PMID: 27324764 DOI: 10.1128/aac.00834-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/16/2016] [Indexed: 02/05/2023] Open
Abstract
Staphylococcus aureus osteomyelitis is a common and debilitating invasive infection of bone. Treatment of osteomyelitis is confounded by widespread antimicrobial resistance and the propensity of bacteria to trigger pathological changes in bone remodeling that limit antimicrobial penetration to the infectious focus. Adjunctive therapies that limit pathogen-induced bone destruction could therefore limit morbidity and enhance traditional antimicrobial therapies. In this study, we evaluate the efficacy of the U.S. Food and Drug Administration-approved, nonsteroidal anti-inflammatory (NSAID) compound diflunisal in limiting S. aureus cytotoxicity toward skeletal cells and in preventing bone destruction during staphylococcal osteomyelitis. Diflunisal is known to inhibit S. aureus virulence factor production by the accessory gene regulator (agr) locus, and we have previously demonstrated that the Agr system plays a substantial role in pathological bone remodeling during staphylococcal osteomyelitis. Consistent with these observations, we find that diflunisal potently inhibits osteoblast cytotoxicity caused by S. aureus secreted toxins independently of effects on bacterial growth. Compared to commonly used NSAIDs, diflunisal is uniquely potent in the inhibition of skeletal cell death in vitro Moreover, local delivery of diflunisal by means of a drug-eluting, bioresorbable foam significantly limits bone destruction during S. aureus osteomyelitis in vivo Collectively, these data demonstrate that diflunisal potently inhibits skeletal cell death and bone destruction associated with S. aureus infection and may therefore be a useful adjunctive therapy for osteomyelitis.
Collapse
|
67
|
Impact of sarA and Phenol-Soluble Modulins on the Pathogenesis of Osteomyelitis in Diverse Clinical Isolates of Staphylococcus aureus. Infect Immun 2016; 84:2586-94. [PMID: 27354444 DOI: 10.1128/iai.00152-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/18/2016] [Indexed: 12/21/2022] Open
Abstract
We used a murine model of acute, posttraumatic osteomyelitis to evaluate the virulence of two divergent Staphylococcus aureus clinical isolates (the USA300 strain LAC and the USA200 strain UAMS-1) and their isogenic sarA mutants. The results confirmed that both strains caused comparable degrees of osteolysis and reactive new bone formation in the acute phase of osteomyelitis. Conditioned medium (CM) from stationary-phase cultures of both strains was cytotoxic to cells of established cell lines (MC3TC-E1 and RAW 264.7 cells), primary murine calvarial osteoblasts, and bone marrow-derived osteoclasts. Both the cytotoxicity of CM and the reactive changes in bone were significantly reduced in the isogenic sarA mutants. These results confirm that sarA is required for the production and/or accumulation of extracellular virulence factors that limit osteoblast and osteoclast viability and that thereby promote bone destruction and reactive bone formation during the acute phase of S. aureus osteomyelitis. Proteomic analysis confirmed the reduced accumulation of multiple extracellular proteins in the LAC and UAMS-1 sarA mutants. Included among these were the alpha class of phenol-soluble modulins (PSMs), which were previously implicated as important determinants of osteoblast cytotoxicity and bone destruction and repair processes in osteomyelitis. Mutation of the corresponding operon reduced the cytotoxicity of CM from both UAMS-1 and LAC cultures for osteoblasts and osteoclasts. It also significantly reduced both reactive bone formation and cortical bone destruction by CM from LAC cultures. However, this was not true for CM from cultures of a UAMS-1 psmα mutant, thereby suggesting the involvement of additional virulence factors in such strains that remain to be identified.
Collapse
|
68
|
Brooks JL, Jefferson KK. Staphylococcal biofilms: quest for the magic bullet. ADVANCES IN APPLIED MICROBIOLOGY 2016; 81:63-87. [PMID: 22958527 DOI: 10.1016/b978-0-12-394382-8.00002-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The biofilm phenotype has been recognized only relatively recently in medical history but it has rapidly become clear that the development of many, if not the majority of bacterial infections depends upon the formation of a biofilm. Medical device-related infections are one of the clearest examples of biofilm-dependent infections. Bacteria proficiently adhere to and establish biofilms on synthetic surfaces, and to date, no material has proven to completely preclude bacterial adherence. Any inserted device can be colonized but intravenous catheters, due to their widespread use, are the most commonly colonized devices. As many as half a million catheter-related infections occur each year in the United States and the staphylococci, in particular, Staphylococcus aureus and Staphylococcus epidermidis, are the leading cause. Biofilms exhibit tolerance to biocides, chemotherapeutic agents, and host-immune defenses and subsequently, biofilm-associated infections are extremely difficult to treat, frequently chronic, and often recurrent, making them a confounding clinical problem. Development of an effective strategy for preventing and/or treating these infections is of paramount importance and consequently, the search for novel approaches to target the biofilm phenotype has exploded in recent years. Because the biofilm phenotype is complex, targets for antibiofilm approaches are numerous and this line of research is significantly expanding our knowledge about the biofilm mode of growth and its role in disease. This review highlights a number of antibiofilm approaches that are currently under investigation as novel interventions for staphylococcal infections.
Collapse
|
69
|
Meeker DG, Jenkins SV, Miller EK, Beenken KE, Loughran AJ, Powless A, Muldoon TJ, Galanzha EI, Zharov VP, Smeltzer MS, Chen J. Synergistic Photothermal and Antibiotic Killing of Biofilm-Associated Staphylococcus aureus Using Targeted Antibiotic-Loaded Gold Nanoconstructs. ACS Infect Dis 2016; 2:241-250. [PMID: 27441208 PMCID: PMC4945994 DOI: 10.1021/acsinfecdis.5b00117] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 12/12/2022]
Abstract
Resistance to conventional antibiotics is a growing public health concern that is quickly outpacing the development of new antibiotics. This has led the Infectious Diseases Society of America (IDSA) to designate Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species as "ESKAPE pathogens" on the basis of the rapidly decreasing availability of useful antibiotics. This emphasizes the urgent need for alternative therapeutic strategies to combat infections caused by these and other bacterial pathogens. In this study, we used Staphylococcus aureus (S. aureus) as a proof-of-principle ESKAPE pathogen to demonstrate that an appropriate antibiotic (daptomycin) can be incorporated into polydopamine-coated gold nanocages (AuNC@PDA) and that daptomycin-loaded AuNC@PDA can be conjugated to antibodies targeting a species-specific surface protein (staphylococcal protein A; Spa) as a means of achieving selective delivery of the nanoconstructs directly to the bacterial cell surface. Targeting specificity was confirmed by demonstrating a lack of binding to mammalian cells, reduced photothermal and antibiotic killing of the Spa-negative species Staphylococcus epidermidis, and reduced killing of S. aureus in the presence of unconjugated anti-Spa antibodies. We demonstrate that laser irradiation at levels within the current safety standard for use in humans can be used to achieve both a lethal photothermal effect and controlled release of the antibiotic, thus resulting in a degree of therapeutic synergy capable of eradicating viable S. aureus cells. The system was validated using planktonic bacterial cultures of both methicillin-sensitive and methicillin-resistant S. aureus strains and subsequently shown to be effective in the context of an established biofilm, thus indicating that this approach could be used to facilitate the effective treatment of intrinsically resistant biofilm infections.
Collapse
Affiliation(s)
- Daniel G. Meeker
- Department
of Microbiology & Immunology, University
of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Samir V. Jenkins
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Emily K. Miller
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Karen E. Beenken
- Department
of Microbiology & Immunology, University
of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Allister J. Loughran
- Department
of Microbiology & Immunology, University
of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Amy Powless
- Department of
Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Timothy J. Muldoon
- Department of
Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Ekaterina I. Galanzha
- Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Vladimir P. Zharov
- Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Mark S. Smeltzer
- Department
of Microbiology & Immunology, University
of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Jingyi Chen
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
70
|
XerC Contributes to Diverse Forms of Staphylococcus aureus Infection via agr-Dependent and agr-Independent Pathways. Infect Immun 2016; 84:1214-1225. [PMID: 26857575 DOI: 10.1128/iai.01462-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/02/2016] [Indexed: 02/06/2023] Open
Abstract
We demonstrate that mutation of xerC, which reportedly encodes a homologue of an Escherichia coli recombinase, limits biofilm formation in the methicillin-resistant Staphylococcus aureus strain LAC and the methicillin-sensitive strain UAMS-1. This was not due to the decreased production of the polysaccharide intracellular adhesin (PIA) in either strain because the amount of PIA was increased in a UAMS-1xerC mutant and undetectable in both LAC and its isogenic xerC mutant. Mutation of xerC also resulted in the increased production of extracellular proteases and nucleases in both LAC and UAMS-1, and limiting the production of either class of enzymes increased biofilm formation in the isogenic xerC mutants. More importantly, the limited capacity to form a biofilm was correlated with increased antibiotic susceptibility in both strains in the context of an established biofilm in vivo. Mutation of xerC also attenuated virulence in a murine bacteremia model, as assessed on the basis of the bacterial loads in internal organs and overall lethality. It also resulted in the decreased accumulation of alpha toxin and the increased accumulation of protein A. These findings suggest that xerC may impact the functional status of agr. This was confirmed by demonstrating the reduced accumulation of RNAIII and AgrA in LAC and UAMS-1xerC mutants. However, this cannot account for the biofilm-deficient phenotype of xerC mutants because mutation of agr did not limit biofilm formation in either strain. These results demonstrate that xerC contributes to biofilm-associated infections and acute bacteremia and that this is likely due to agr-independent and -dependent pathways, respectively.
Collapse
|
71
|
Bhattacharya M, Wozniak DJ, Stoodley P, Hall-Stoodley L. Prevention and treatment of Staphylococcus aureus biofilms. Expert Rev Anti Infect Ther 2015; 13:1499-516. [PMID: 26646248 DOI: 10.1586/14787210.2015.1100533] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
S. aureus colonizes both artificial and tissue surfaces in humans causing chronic persistent infections that are difficult to cure. It is a notorious pathogen due to its antibiotic recalcitrance and phenotypic adaptability, both of which are facilitated by its ability to develop biofilms. S. aureus biofilms challenge conventional anti-infective approaches, most notably antibiotic therapy. Therefore there is an unmet need to develop and include parallel approaches that target S. aureus biofilm infections. This review discusses two broad anti-infective strategies: (1) preventative approaches (anti-biofilm surface coatings, the inclusion of biofilm-specific vaccine antigens); and (2) approaches aimed at eradicating established S. aureus biofilms, particularly those associated with implant infections. Advances in understanding the distinct nature of S. aureus biofilm development and pathogenesis have led to growing optimism in S. aureus biofilm targeted anti-infective strategies. Further research is needed however, to see the successful administration and validation of these approaches to the diverse types of infections caused by S. aureus biofilms from multiple clinical strains.
Collapse
Affiliation(s)
- Mohini Bhattacharya
- a Department of Microbiology , The Ohio State University , Columbus , OH , USA
| | - Daniel J Wozniak
- a Department of Microbiology , The Ohio State University , Columbus , OH , USA.,b Department of Microbial Infection and Immunity , The Ohio State University College of Medicine , Columbus , OH , USA.,c The Center for Microbial Interface Biology, The Ohio State University , Columbus , OH , USA
| | - Paul Stoodley
- b Department of Microbial Infection and Immunity , The Ohio State University College of Medicine , Columbus , OH , USA.,c The Center for Microbial Interface Biology, The Ohio State University , Columbus , OH , USA.,d Department of Orthopedics , The Ohio State University College of Medicine , Columbus , OH , USA.,e Department of Engineering Sciences, National Centre for Advanced Tribology at Southampton (nCATS) , University of Southampton , Southampton , UK
| | - Luanne Hall-Stoodley
- b Department of Microbial Infection and Immunity , The Ohio State University College of Medicine , Columbus , OH , USA.,c The Center for Microbial Interface Biology, The Ohio State University , Columbus , OH , USA
| |
Collapse
|
72
|
Payne DE, Boles BR. Emerging interactions between matrix components during biofilm development. Curr Genet 2015; 62:137-41. [PMID: 26515441 PMCID: PMC4723619 DOI: 10.1007/s00294-015-0527-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 02/06/2023]
Abstract
Bacterial cells are most often found in the form of multicellular aggregates commonly referred to as biofilms. Biofilms offer their member cells several benefits, such as resistance to killing by antimicrobials and predation. During biofilm formation there is a production of extracellular substances that, upon assembly, constitute an extracellular matrix. The ability to generate a matrix encasing the microbial cells is a common feature of biofilms, but there is diversity in matrix composition and in interaction between matrix components. The different components of bacterial biofilm extracellular matrixes, known as matrix interactions, and resulting implications are discussed in this review.
Collapse
Affiliation(s)
- David E Payne
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Blaise R Boles
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
73
|
Titanium-Based Hip Stems with Drug Delivery Functionality through Additive Manufacturing. BIOMED RESEARCH INTERNATIONAL 2015; 2015:134093. [PMID: 26504776 PMCID: PMC4609336 DOI: 10.1155/2015/134093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/14/2015] [Accepted: 08/16/2015] [Indexed: 11/17/2022]
Abstract
Postoperative infections are a major concern in patients that receive implants. These infections generally occur in areas with poor blood flow and pathogens do not always respond to antibiotic treatment. With the latest developments in nanotechnology, the incorporation of antibiotics into prosthetic implants may soon become a standard procedure. The success will, however, depend on the ability to control the release of antibiotics at concentrations high enough to prevent the development of antibiotic-resistant strains. Through additive manufacturing, antibiotics can be incorporated into cementless femoral stems to produce prosthetic devices with antimicrobial properties. With the emerging increase in resistance to antibiotics, the incorporation of antimicrobial compounds other than antibiotics, preferably drugs with a broader spectrum of antimicrobial activity, will have to be explored. This review highlights the microorganisms associated with total hip arthroplasty (THA), discusses the advantages and disadvantages of the latest materials used in hip implants, compares different antimicrobial agents that could be incorporated, and addresses novel ideas for future research.
Collapse
|
74
|
An Electrostatic Net Model for the Role of Extracellular DNA in Biofilm Formation by Staphylococcus aureus. J Bacteriol 2015; 197:3779-87. [PMID: 26416831 DOI: 10.1128/jb.00726-15] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/20/2015] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Staphylococcus aureus is an important human pathogen that can form biofilms on various surfaces. These cell communities are protected from the environment by a self-produced extracellular matrix composed of proteins, DNA, and polysaccharide. The exact compositions and roles of the different components are not fully understood. In this study, we investigated the role of extracellular DNA (eDNA) and its interaction with the recently identified cytoplasmic proteins that have a moonlighting role in the biofilm matrix. These matrix proteins associate with the cell surface upon the drop in pH that naturally occurs during biofilm formation, and we found here that this association is independent of eDNA. Conversely, the association of eDNA with the matrix was dependent on matrix proteins. Both proteinase and DNase treatments severely reduced clumping of resuspended biofilms; highlighting the importance of both proteins and eDNA in connecting cells together. By adding an excess of exogenous DNA to DNase-treated biofilm, clumping was partially restored, confirming the crucial role of eDNA in the interconnection of cells. On the basis of our results, we propose that eDNA acts as an electrostatic net, interconnecting cells surrounded by positively charged matrix proteins at a low pH. IMPORTANCE Extracellular DNA (eDNA) is an important component of the biofilm matrix of diverse bacteria, but its role in biofilm formation is not well understood. Here we report that in Staphylococcus aureus, eDNA associates with cells in a manner that depends on matrix proteins and that eDNA is required to link cells together in the biofilm. These results confirm previous studies that showed that eDNA is an important component of the S. aureus biofilm matrix and also suggest that eDNA acts as an electrostatic net that tethers cells together via the proteinaceous layer of the biofilm matrix.
Collapse
|
75
|
Moche M, Schlüter R, Bernhardt J, Plate K, Riedel K, Hecker M, Becher D. Time-Resolved Analysis of Cytosolic and Surface-Associated Proteins of Staphylococcus aureus HG001 under Planktonic and Biofilm Conditions. J Proteome Res 2015; 14:3804-22. [DOI: 10.1021/acs.jproteome.5b00148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Martin Moche
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Rabea Schlüter
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Jörg Bernhardt
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Kristina Plate
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Katharina Riedel
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Michael Hecker
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| | - Dörte Becher
- Institute for Microbiology, Ernst-Moritz-Arndt-University, Friedrich-Ludwig-Jahn-Straße
15, 17487 Greifswald, Germany
| |
Collapse
|
76
|
Balamurugan P, Hema M, Kaur G, Sridharan V, Prabu PC, Sumana MN, Princy SA. Development of a biofilm inhibitor molecule against multidrug resistant Staphylococcus aureus associated with gestational urinary tract infections. Front Microbiol 2015; 6:832. [PMID: 26322037 PMCID: PMC4531255 DOI: 10.3389/fmicb.2015.00832] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/28/2015] [Indexed: 11/13/2022] Open
Abstract
Urinary Tract Infection (UTI) is a globally widespread human infection caused by an infestation of uropathogens. Eventhough, Escherichia coli is often quoted as being the chief among them, Staphylococcus aureus involvement in UTI especially in gestational UTI is often understated. Staphylococcal accessory regulator A (SarA) is a quorum regulator of S. aureus that controls the expression of various virulence and biofilm phenotypes. Since SarA had been a focussed target for antibiofilm agent development, the study aims to develop a potential drug molecule targeting the SarA of S. aureus to combat biofilm associated infections in which it is involved. In our previous studies, we have reported the antibiofilm activity of SarA based biofilm inhibitor, (SarABI) with a 50% minimum biofilm inhibitory concentration (MBIC50) value of 200 μg/mL against S. aureus associated with vascular graft infections and also the antibiofilm activity of the root ethanolic extracts of Melia dubia against uropathogenic E. coli. In the present study, in silico design of a hybrid molecule composed of a molecule screened from M. dubia root ethanolic extracts and a modified SarA based inhibitor (SarABI(M)) was undertaken. SarABI(M) is a modified form of SarABI where the fluorine groups are absent in SarABI(M). Chemical synthesis of the hybrid molecule, 4-(Benzylamino)cyclohexyl 2-hydroxycinnamate (henceforth referred to as UTI Quorum-Quencher, UTI(QQ)) was then performed, followed by in vitro and in vivo validation. The MBIC50 and MBIC90 of UTI(QQ) were found to be 15 and 65 μg/mL, respectively. Confocal laser scanning microscopy (CLSM) images witnessed biofilm reduction and bacterial killing in either UTI(QQ) or in combined use of antibiotic gentamicin and UTI (QQ) . Similar results were observed with in vivo studies of experimental UTI in rat model. So, we propose that the drug UTI(QQ) would be a promising candidate when used alone or, in combination with an antibiotic for staphylococcal associated UTI.
Collapse
Affiliation(s)
- P. Balamurugan
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - M. Hema
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - Gurmeet Kaur
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - V. Sridharan
- Department of Chemistry, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| | - P. C. Prabu
- Central Animal Facility, SASTRA UniversityThanjavur, India
| | - M. N. Sumana
- Department of Microbiology, JSS Medical College and JSS UniversityMysore, India
| | - S. Adline Princy
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| |
Collapse
|
77
|
Arya R, Ravikumar R, Santhosh RS, Princy SA. SarA based novel therapeutic candidate against Staphylococcus aureus associated with vascular graft infections. Front Microbiol 2015; 6:416. [PMID: 26074884 PMCID: PMC4447123 DOI: 10.3389/fmicb.2015.00416] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/20/2015] [Indexed: 12/03/2022] Open
Abstract
Staphylococcus aureus is a common pathogen seen in prosthetic vascular graft, leading to high morbidity and mortality. The virulence genes for severity of infections are under the control of global regulators. Staphylococcal accessory regulator A (SarA) a known master controller of biofilm formation is an attractive target for the drug development. A structure based screening of lead compounds was employed for the identification of novel small molecule inhibitors targeted to interact to the DNA binding domain of the transcriptional activator, SarA and hinder its response over the control of genes that up-regulate the phenotype, biofilm. The top-hit SarA selective inhibitor, 4-[(2,4-diflurobenzyl)amino] cyclohexanol (SarABI) was further validated in-vitro for its efficacy. The SarABI was found to have MBIC50value of 200 μg/ml and also down-regulated the expression of the RNA effector, (RNAIII), Hemolysin (hld), and fibronectin-binding protein (fnbA). The anti-adherence property of SarABI on S. aureus invasion to the host epithelial cell lines (Hep-2) was examined where no significant attachment of S. aureus was observed. The SarABI inhibits the colonization of MDR S. aureus in animal model experiment significantly cohere to the molecular docking studies and in vitro experiments. So, we propose that the SarABI could be a novel substitute to overcome a higher degree of MDR S. aureus colonization on vascular graft.
Collapse
Affiliation(s)
- Rekha Arya
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA University Thanjavur, India
| | - R Ravikumar
- Department of Chemistry, SASTRA University Thanjavur, India
| | - R S Santhosh
- Genetic Engineering Laboratory, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA University Thanjavur, India
| | - S Adline Princy
- Quorum Sensing Laboratory, Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA University Thanjavur, India
| |
Collapse
|
78
|
SaeRS-dependent inhibition of biofilm formation in Staphylococcus aureus Newman. PLoS One 2015; 10:e0123027. [PMID: 25853849 PMCID: PMC4390220 DOI: 10.1371/journal.pone.0123027] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/16/2015] [Indexed: 01/03/2023] Open
Abstract
The SaeRS two-component regulatory system of Staphylococcus aureus is known to affect the expression of many genes. The SaeS protein is the histidine kinase responsible for phosphorylation of the response regulator SaeR. In S. aureus Newman, the sae system is constitutively expressed due to a point mutation in saeS, relative to other S. aureus strains, which results in substitution of proline for leucine at amino acid 18. Strain Newman is unable to form a robust biofilm and we report here that the biofilm-deficient phenotype is due to the saeSP allele. Replacement of the Newman saeSP with saeSL, or deletion of saeRS, resulted in a biofilm-proficient phenotype. Newman culture supernatants were observed to inhibit biofilm formation by other S. aureus strains, but did not affect biofilm formation by S. epidermidis. Culture supernatants of Newman saeSL or Newman ΔsaeRS had no significant effect on biofilm formation. The inhibitory factor was inactivated by incubation with proteinase K, but survived heating, indicating that the inhibitory protein is heat-stable. The inhibitory protein was found to affect the attachment step in biofilm formation, but had no effect on preformed biofilms. Replacement of saeSL with saeSP in the biofilm-proficient S. aureus USA300 FPR3757 resulted in the loss of biofilm formation. Culture supernatants of USA300 FPR3757 saeSP, did not inhibit biofilm formation by other staphylococci, suggesting that the inhibitory factor is produced but not secreted in the mutant strain. A number of biochemical methods were utilized to isolate the inhibitory protein. Although a number of candidate proteins were identified, none were found to be the actual inhibitor. In an effort to reduce the number of potential inhibitory genes, RNA-Seq analyses were done with wild-type strain Newman and the saeSL and ΔsaeRS mutants. RNA-Seq results indicated that sae regulates many genes that may affect biofilm formation by Newman.
Collapse
|
79
|
Atwood DN, Loughran AJ, Courtney AP, Anthony AC, Meeker DG, Spencer HJ, Gupta RK, Lee CY, Beenken KE, Smeltzer MS. Comparative impact of diverse regulatory loci on Staphylococcus aureus biofilm formation. Microbiologyopen 2015; 4:436-51. [PMID: 25810138 PMCID: PMC4475386 DOI: 10.1002/mbo3.250] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/06/2015] [Indexed: 01/01/2023] Open
Abstract
The relative impact of 23 mutations on biofilm formation was evaluated in the USA300, methicillin-resistant strain LAC. Mutation of sarA, atl, codY, rsbU, and sigB limited biofilm formation in comparison to the parent strain, but the limitation imposed by mutation of sarA was greater than that imposed by mutation of any of these other genes. The reduced biofilm formation of all mutants other than the atl mutant was correlated with increased levels of extracellular proteases. Mutation of fur- and mgrA-enhanced biofilm formation but in LAC had no impact on protease activity, nuclease activity, or accumulation of the polysaccharide intercellular adhesin (PIA). The increased capacity of these mutants to form a biofilm was reversed by mutation of sarA, and this was correlated with increased protease production. Mutation of sarA, mgrA, and sigB had the same phenotypic effect in the methicillin-sensitive strain UAMS-1, but mutation of codY increased rather than decreased biofilm formation. As with the UAMS-1 mgrA mutant, this was correlated with increased production of PIA. Examination of four additional clinical isolates suggests that the differential impact of codY on biofilm formation may be a conserved characteristic of methicillin-resistant versus methicillin-sensitive strains.
Collapse
Affiliation(s)
- Danielle N Atwood
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Allister J Loughran
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ashleah P Courtney
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Allison C Anthony
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Daniel G Meeker
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Horace J Spencer
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ravi Kr Gupta
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Chia Y Lee
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Karen E Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mark S Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
80
|
Mootz JM, Benson MA, Heim CE, Crosby HA, Kavanaugh JS, Dunman PM, Kielian T, Torres VJ, Horswill AR. Rot is a key regulator of Staphylococcus aureus biofilm formation. Mol Microbiol 2015; 96:388-404. [PMID: 25612137 DOI: 10.1111/mmi.12943] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2015] [Indexed: 01/28/2023]
Abstract
Staphylococcus aureus is a significant cause of chronic biofilm infections on medical implants. We investigated the biofilm regulatory cascade and discovered that the repressor of toxins (Rot) is part of this pathway. A USA300 community-associated methicillin-resistant S. aureus strain deficient in Rot was unable to form a biofilm using multiple different assays, and we found rot mutants in other strain lineages were also biofilm deficient. By performing a global analysis of transcripts and protein production controlled by Rot, we observed that all the secreted protease genes were up-regulated in a rot mutant, and we hypothesized that this regulation could be responsible for the biofilm phenotype. To investigate this question, we determined that Rot bound to the protease promoters, and we observed that activity levels of these enzymes, in particular the cysteine proteases, were increased in a rot mutant. By inactivating these proteases, biofilm capacity was restored to the mutant, demonstrating they are responsible for the biofilm negative phenotype. Finally, we tested the rot mutant in a mouse catheter model of biofilm infection and observed a significant reduction in biofilm burden. Thus S. aureus uses the transcription factor Rot to repress secreted protease levels in order to build a biofilm.
Collapse
Affiliation(s)
- Joe M Mootz
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Sahukhal GS, Batte JL, Elasri MO. msaABCR operon positively regulates biofilm development by repressing proteases and autolysis in Staphylococcus aureus. FEMS Microbiol Lett 2015; 362:fnv006. [PMID: 25724778 DOI: 10.1093/femsle/fnv006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus aureus is an important human pathogen that causes nosocomial and community-acquired infections. One of the most important aspects of staphylococcal infections is biofilm development within the host, which renders the bacterium resistant to the host's immune response and antimicrobial agents. Biofilm development is very complex and involves several regulators that ensure cell survival on surfaces within the extracellular polymeric matrix. Previously, we identified the msaABCR operon as an additional positive regulator of biofilm formation. In this study, we define the regulatory pathway by which msaABCR controls biofilm formation. We demonstrate that the msaABCR operon is a negative regulator of proteases. The control of protease production mediates the processing of the major autolysin, Atl, and thus regulates the rate of autolysis. In the absence of the msaABCR operon, Atl is processed by proteases at a high rate, leading to increased cell death and a defect in biofilm maturation. We conclude that the msaABCR operon plays a key role in maintaining the balance between autolysis and growth within the staphylococcal biofilm.
Collapse
Affiliation(s)
- Gyan S Sahukhal
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406-0001, USA
| | - Justin L Batte
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406-0001, USA
| | - Mohamed O Elasri
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406-0001, USA
| |
Collapse
|
82
|
Xiong MH, Bao Y, Yang XZ, Zhu YH, Wang J. Delivery of antibiotics with polymeric particles. Adv Drug Deliv Rev 2014; 78:63-76. [PMID: 24548540 DOI: 10.1016/j.addr.2014.02.002] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 01/29/2014] [Accepted: 02/07/2014] [Indexed: 12/29/2022]
Abstract
Despite the wide use of antibiotics, bacterial infection is still one of the leading causes of hospitalization and mortality. The clinical failure of antibiotic therapy is linked with low bioavailability, poor penetration to bacterial infection sites, and the side effects of antibiotics, as well as the antibiotic resistance properties of bacteria. Antibiotics encapsulated in nanoparticles or microparticles made up of a biodegradable polymer have shown great potential in replacing the administration of antibiotics in their "free" form. Polymeric particles provide protection to antibiotics against environmental deactivation and alter antibiotic pharmacokinetics and biodistribution. Polymeric particles can overcome tissue and cellular barriers and deliver antibiotics into very dense tissues and inaccessible target cells. Polymeric particles can be modified to target or respond to particular tissues, cells, and even bacteria, and thereby facilitate the selective concentration or release of the antibiotic at infection sites, respectively. Thus, the delivery of antibiotics with polymeric particles augments the level of the bioactive drug at the site of infection while reducing the dosage and the dosing frequency. The end results are improved therapeutic effects as well as decreased "pill burden" and drug side effects in patients. The main objective of this review is to analyze recent advances and current perspectives in the use of polymeric antibiotic delivery systems in the treatment of bacterial infection.
Collapse
Affiliation(s)
- Meng-Hua Xiong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yan Bao
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xian-Zhu Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yan-Hua Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jun Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China; High Magnetic Field Laboratory of CAS, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
83
|
Loughran AJ, Atwood DN, Anthony AC, Harik NS, Spencer HJ, Beenken KE, Smeltzer MS. Impact of individual extracellular proteases on Staphylococcus aureus biofilm formation in diverse clinical isolates and their isogenic sarA mutants. Microbiologyopen 2014; 3:897-909. [PMID: 25257373 PMCID: PMC4263513 DOI: 10.1002/mbo3.214] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/07/2014] [Accepted: 08/15/2014] [Indexed: 01/01/2023] Open
Abstract
We demonstrate that the purified Staphylococcus aureus extracellular proteases aureolysin, ScpA, SspA, and SspB limit biofilm formation, with aureolysin having the greatest impact. Using protease-deficient derivatives of LAC, we confirmed that this is due to the individual proteases themselves. Purified aureolysin, and to a lesser extent ScpA and SspB, also promoted dispersal of an established biofilm. Mutation of the genes encoding these proteases also only partially restored biofilm formation in an FPR3757 sarA mutant and had little impact on restoring virulence in a murine bacteremia model. In contrast, eliminating the production of all of these proteases fully restored both biofilm formation and virulence in a sarA mutant generated in the closely related USA300 strain LAC. These results confirm an important role for multiple extracellular proteases in S. aureus pathogenesis and the importance of sarA in repressing their production. Moreover, purified aureolysin limited biofilm formation in 14 of 15 methicillin-resistant isolates and 11 of 15 methicillin-susceptible isolates, while dispersin B had little impact in UAMS-1, LAC, or 29 of 30 contemporary isolates of S. aureus. This suggests that the role of sarA and its impact on protease production is important in diverse strains of S. aureus irrespective of their methicillin resistance status.
Collapse
Affiliation(s)
- Allister J Loughran
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | | | | | | | | | | |
Collapse
|
84
|
Lee K, Lee JH, Kim SI, Cho MH, Lee J. Anti-biofilm, anti-hemolysis, and anti-virulence activities of black pepper, cananga, myrrh oils, and nerolidol against Staphylococcus aureus. Appl Microbiol Biotechnol 2014; 98:9447-57. [PMID: 25027570 DOI: 10.1007/s00253-014-5903-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 01/30/2023]
Abstract
The long-term usage of antibiotics has resulted in the evolution of multidrug-resistant bacteria. Unlike antibiotics, anti-virulence approaches target bacterial virulence without affecting cell viability, which may be less prone to develop drug resistance. Staphylococcus aureus is a major human pathogen that produces diverse virulence factors, such as α-toxin, which is hemolytic. Also, biofilm formation of S. aureus is one of the mechanisms of its drug resistance. In this study, anti-biofilm screening of 83 essential oils showed that black pepper, cananga, and myrrh oils and their common constituent cis-nerolidol at 0.01 % markedly inhibited S. aureus biofilm formation. Furthermore, the three essential oils and cis-nerolidol at below 0.005 % almost abolished the hemolytic activity of S. aureus. Transcriptional analyses showed that black pepper oil down-regulated the expressions of the α-toxin gene (hla), the nuclease genes, and the regulatory genes. In addition, black pepper, cananga, and myrrh oils and cis-nerolidol attenuated S. aureus virulence in the nematode Caenorhabditis elegans. This study is one of the most extensive on anti-virulence screening using diverse essential oils and provides comprehensive data on the subject. This finding implies other beneficial effects of essential oils and suggests that black pepper, cananga, and myrrh oils have potential use as anti-virulence strategies against persistent S. aureus infections.
Collapse
Affiliation(s)
- Kayeon Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | | | | | | | | |
Collapse
|
85
|
Post V, Wahl P, Uçkay I, Ochsner P, Zimmerli W, Corvec S, Loiez C, Richards RG, Moriarty TF. Phenotypic and genotypic characterisation of Staphylococcus aureus causing musculoskeletal infections. Int J Med Microbiol 2014; 304:565-76. [DOI: 10.1016/j.ijmm.2014.03.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/10/2014] [Accepted: 03/24/2014] [Indexed: 01/09/2023] Open
|
86
|
Beenken KE, Mrak LN, Zielinska AK, Atwood DN, Loughran AJ, Griffin LM, Matthews KA, Anthony AM, Spencer HJ, Skinner RA, Post GR, Lee CY, Smeltzer MS. Impact of the functional status of saeRS on in vivo phenotypes of Staphylococcus aureus sarA mutants. Mol Microbiol 2014; 92:1299-312. [PMID: 24779437 DOI: 10.1111/mmi.12629] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2014] [Indexed: 12/24/2022]
Abstract
We investigated the in vivo relevance of the impact of sarA and saeRS on protease production using derivatives of the USA300 strain LAC. The results confirmed that mutation of saeRS or sarA reduces virulence in a bacteremia model to a comparable degree. However, while eliminating protease production restored virulence in the sarA mutant, it had little impact in the saeRS mutant. Additionally, constitutive activation of saeRS (saeRS(C)) enhanced the virulence of LAC and largely restored virulence in the isogenic sarA mutant. Based on these results, together with our analysis of the representative virulence factors alpha toxin, protein A (Spa), and extracellular nucleases, we propose a model in which the attenuation of saeRS mutants is defined primarily by decreased production of such factors, while constitutive activation of saeRS increases virulence, and reverses the attenuation of sarA mutants, because it results in both increased production and decreased protease-mediated degradation of these same factors. This regulatory balance was also apparent in a murine model of catheter-associated infection, with the results suggesting that the impact of saeRS on nuclease production plays an important role during the early stages of these infections that is partially offset by increased protease production in sarA mutants.
Collapse
Affiliation(s)
- Karen E Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Kiedrowski MR, Crosby HA, Hernandez FJ, Malone CL, McNamara JO, Horswill AR. Staphylococcus aureus Nuc2 is a functional, surface-attached extracellular nuclease. PLoS One 2014; 9:e95574. [PMID: 24752186 PMCID: PMC3994088 DOI: 10.1371/journal.pone.0095574] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 03/28/2014] [Indexed: 12/30/2022] Open
Abstract
Staphylococcus aureus is a prominent bacterial pathogen that causes a diverse range of acute and chronic infections. Recently, it has been demonstrated that the secreted nuclease (Nuc) enzyme is a virulence factor in multiple models of infection, and in vivo expression of nuc has facilitated the development of an infection imaging approach based on Nuc-activatable probes. Interestingly, S. aureus strains encode a second nuclease (Nuc2) that has received limited attention. With the growing interest in bacterial nucleases, we sought to characterize Nuc2 in more detail through localization, expression, and biochemical studies. Fluorescence microscopy and alkaline phosphatase localization approaches using Nuc2-GFP and Nuc2-PhoA fusions, respectively, demonstrated that Nuc2 is membrane bound with the C-terminus facing the extracellular environment, indicating it is a signal-anchored Type II membrane protein. Nuc2 enzyme activity was detectable on the S. aureus cell surface using a fluorescence resonance energy transfer (FRET) assay, and in time courses, both nuc2 transcription and enzyme activity peaked in early logarithmic growth and declined in stationary phase. Using a mouse model of S. aureus pyomyositis, Nuc2 activity was detected with activatable probes in vivo in nuc mutant strains, demonstrating that Nuc2 is produced during infections. To assess Nuc2 biochemical properties, the protein was purified and found to cleave both single- and double-stranded DNA, and it exhibited thermostability and calcium dependence, paralleling the properties of Nuc. Purified Nuc2 prevented biofilm formation in vitro and modestly decreased biomass in dispersal experiments. Altogether, our findings confirm that S. aureus encodes a second, surface-attached and functional DNase that is expressed during infections and displays similar biochemical properties to the secreted Nuc enzyme.
Collapse
Affiliation(s)
- Megan R. Kiedrowski
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Heidi A. Crosby
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Frank J. Hernandez
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Cheryl L. Malone
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - James O. McNamara
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Alexander R. Horswill
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
88
|
Cervera C, Castañeda X, de la Maria CG, del Rio A, Moreno A, Soy D, Pericas JM, Falces C, Armero Y, Almela M, Ninot S, Pare JC, Mestres CA, Gatell JM, Marco F, Miro JM. Effect of vancomycin minimal inhibitory concentration on the outcome of methicillin-susceptible Staphylococcus aureus endocarditis. Clin Infect Dis 2014; 58:1668-75. [PMID: 24647021 DOI: 10.1093/cid/ciu183] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Staphylococcus aureus endocarditis has a high mortality rate. Vancomycin minimum inhibitory concentration (MIC) has been shown to affect the outcome of methicillin-resistant S. aureus bacteremia, and recent data point to a similar effect on methicillin-susceptible S. aureus bacteremia. We aimed to evaluate the effect of vancomycin MIC on left-sided S. aureus infective endocarditis (IE) treated with cloxacillin. METHODS We analyzed a prospectively collected cohort of patients with IE in a single tertiary-care hospital. Vancomycin, daptomycin, and cloxacillin MIC was determined by E-test. S. aureus strains were categorized as low vancomycin MIC (<1.5 µg/mL) and high vancomycin MIC (≥1.5 µg/mL). The primary endpoint was in-hospital mortality. RESULTS We analyzed 93 patients with left-sided IE treated with cloxacillin, of whom 53 (57%) had a vancomycin MIC < 1.5 µg/mL and 40 (43%) a vancomycin MIC ≥ 1.5 µg/mL. In-hospital mortality was 30% (n = 16/53) in patients with a low vancomycin MIC and 53% (n = 21/40) in those with a high vancomycin MIC (P = .03). No correlation was found between oxacillin MIC and vancomycin or daptomycin MIC. Logistic regression analysis showed that higher vancomycin MIC increased in-hospital mortality 3-fold (odds ratio, 3.1; 95% confidence interval, 1.2-8.2) after adjustment for age, year of diagnosis, septic complications, and nonseptic complicated endocarditis. CONCLUSIONS Our results indicate that vancomycin MIC could be used to identify a subgroup of patients with methicillin-susceptible S. aureus IE at risk of higher mortality. The worse outcome of staphylococcal infections with a higher vancomycin MIC cannot be explained solely by suboptimal pharmacokinetics of antibiotics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Salvador Ninot
- Department of Cardiovascular Surgery, Hospital Clinic - IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | - Carlos A Mestres
- Department of Cardiovascular Surgery, Hospital Clinic - IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
89
|
Noninvasive imaging of Staphylococcus aureus infections with a nuclease-activated probe. Nat Med 2014; 20:301-6. [PMID: 24487433 PMCID: PMC3949172 DOI: 10.1038/nm.3460] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/26/2013] [Indexed: 12/21/2022]
Abstract
Technologies that enable the rapid detection and localization of bacterial infections in living animals could address an unmet need for infectious disease diagnostics. We describe a molecular imaging approach for the specific, non-invasive detection of S. aureus based on the activity of its secreted nuclease, micrococcal nuclease (MN). Several short, synthetic oligonucleotides, rendered resistant to mammalian serum nucleases by various chemical modifications, flanked with a fluorophore and quencher, were activated upon degradation by recombinant MN and in S. aureus culture supernatants. A probe consisting of a pair of deoxythymidines flanked by several 2′-O-methyl-modified nucleotides was activated in culture supernatants of S. aureus but not in culture supernatants of several other pathogenic bacteria. Systemic administration of this probe to mice bearing bioluminescent S. aureus muscle infections resulted in probe activation at the infection sites in an MN-dependent manner. This novel bacterial imaging approach has potential clinical applicability for S. aureus and several other medically significant pathogens.
Collapse
|
90
|
Abdelhady W, Bayer AS, Seidl K, Moormeier DE, Bayles KW, Cheung A, Yeaman MR, Xiong YQ. Impact of vancomycin on sarA-mediated biofilm formation: role in persistent endovascular infections due to methicillin-resistant Staphylococcus aureus. J Infect Dis 2014; 209:1231-40. [PMID: 24403556 DOI: 10.1093/infdis/jiu007] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Staphylococcus aureus is the most common cause of endovascular infections. The staphylococcal accessory regulator A locus (sarA) is a major virulence determinant that may potentially impact methicillin-resistant S. aureus (MRSA) persistence in such infections via its influence on biofilm formation. METHODS Two healthcare-associated MRSA isolates from patients with persistent bacteremia and 2 prototypical community-acquired MRSA strains, as well as their respective isogenic sarA mutants, were studied for in vitro biofilm formation, fibronectin-binding capacity, autolysis, and protease and nuclease activities. These assays were done in the presence or absence of sub-minimum inhibitory concentrations (MICs) of vancomycin. In addition, these strain pairs were compared for intrinsic virulence and responses to vancomycin therapy in experimental infective endocarditis, a prototypical biofilm model. RESULTS All sarA mutants displayed significantly reduced biofilm formation and binding to fibronectin but increased protease production in vitro, compared with their respective parental strains. Interestingly, exposure to sub-MICs of vancomycin significantly promoted biofilm formation and fibronectin-binding in parental strains but not in sarA mutants. In addition, all sarA mutants became exquisitely susceptible to vancomycin therapy, compared with their respective parental strains, in the infective endocarditis model. CONCLUSIONS These observations suggest that sarA activation is important in persistent MRSA endovascular infection, potentially in the setting of biofilm formation.
Collapse
Affiliation(s)
- Wessam Abdelhady
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Cassat JE, Hammer ND, Campbell JP, Benson MA, Perrien DS, Mrak LN, Smeltzer MS, Torres VJ, Skaar EP. A secreted bacterial protease tailors the Staphylococcus aureus virulence repertoire to modulate bone remodeling during osteomyelitis. Cell Host Microbe 2013; 13:759-72. [PMID: 23768499 DOI: 10.1016/j.chom.2013.05.003] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/21/2013] [Accepted: 04/30/2013] [Indexed: 11/29/2022]
Abstract
Osteomyelitis is a common manifestation of invasive Staphylococcus aureus infection. Pathogen-induced bone destruction limits antimicrobial penetration to the infectious focus and compromises treatment of osteomyelitis. To investigate mechanisms of S. aureus-induced bone destruction, we developed a murine model of osteomyelitis. Microcomputed tomography of infected femurs revealed that S. aureus triggers profound alterations in bone turnover. The bacterial regulatory locus sae was found to be critical for osteomyelitis pathogenesis, as Sae-regulated factors promote pathologic bone remodeling and intraosseous bacterial survival. Exoproteome analyses revealed the Sae-regulated protease aureolysin as a major determinant of the S. aureus secretome and identified the phenol-soluble modulins as aureolysin-degraded, osteolytic peptides that trigger osteoblast cell death and bone destruction. These studies establish a murine model for pathogen-induced bone remodeling, define Sae as critical for osteomyelitis pathogenesis, and identify protease-dependent exoproteome remodeling as a major determinant of the staphylococcal virulence repertoire.
Collapse
Affiliation(s)
- James E Cassat
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Walker JN, Crosby HA, Spaulding AR, Salgado-Pabón W, Malone CL, Rosenthal CB, Schlievert PM, Boyd JM, Horswill AR. The Staphylococcus aureus ArlRS two-component system is a novel regulator of agglutination and pathogenesis. PLoS Pathog 2013; 9:e1003819. [PMID: 24367264 PMCID: PMC3868527 DOI: 10.1371/journal.ppat.1003819] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 10/21/2013] [Indexed: 01/31/2023] Open
Abstract
Staphylococcus aureus is a prominent bacterial pathogen that is known to agglutinate in the presence of human plasma to form stable clumps. There is increasing evidence that agglutination aids S. aureus pathogenesis, but the mechanisms of this process remain to be fully elucidated. To better define this process, we developed both tube based and flow cytometry methods to monitor clumping in the presence of extracellular matrix proteins. We discovered that the ArlRS two-component system regulates the agglutination mechanism during exposure to human plasma or fibrinogen. Using divergent S. aureus strains, we demonstrated that arlRS mutants are unable to agglutinate, and this phenotype can be complemented. We found that the ebh gene, encoding the Giant Staphylococcal Surface Protein (GSSP), was up-regulated in an arlRS mutant. By introducing an ebh complete deletion into an arlRS mutant, agglutination was restored. To assess whether GSSP is the primary effector, a constitutive promoter was inserted upstream of the ebh gene on the chromosome in a wildtype strain, which prevented clump formation and demonstrated that GSSP has a negative impact on the agglutination mechanism. Due to the parallels of agglutination with infective endocarditis development, we assessed the phenotype of an arlRS mutant in a rabbit combined model of sepsis and endocarditis. In this model the arlRS mutant displayed a large defect in vegetation formation and pathogenesis, and this phenotype was partially restored by removing GSSP. Altogether, we have discovered that the ArlRS system controls a novel mechanism through which S. aureus regulates agglutination and pathogenesis. Staphylococcus aureus is a bacterial pathogen that is responsible for causing significant disease in humans. The development of antibiotic resistant strains has made these infections more difficult to treat, and an improved understanding of how this pathogen causes infections will facilitate the development of new tools for treatment. It has long been recognized that S. aureus can bind human matrix proteins to form stable clumps in a process called agglutination, but the importance of agglutination during infection is only just becoming understood. In this work, we developed several techniques to investigate the S. aureus agglutination mechanism. We discovered that the ArlRS two-component regulatory system controls agglutination by regulating the expression of the ebh gene, which encodes the Giant Staphylococcal Surface Protein (GSSP). When ArlRS is non-functional, S. aureus agglutination is prevented through the action of GSSP. These phenotypes were confirmed in a rabbit model of sepsis and infective endocarditis, demonstrating that ArlRS is an important regulator of virulence. Taken together, the identification of ArlRS as a regulator of S. aureus agglutination and pathogenesis may lead to innovative directions for therapeutic development.
Collapse
Affiliation(s)
- Jennifer N Walker
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Heidi A Crosby
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Adam R Spaulding
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Wilmara Salgado-Pabón
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Cheryl L Malone
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Carolyn B Rosenthal
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Patrick M Schlievert
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Alexander R Horswill
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
93
|
Arya R, Princy SA. An insight into pleiotropic regulators Agr and Sar: molecular probes paving the new way for antivirulent therapy. Future Microbiol 2013; 8:1339-53. [DOI: 10.2217/fmb.13.92] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus aureus pathogenesis is an intricate process involving a diverse array of extracellular proteins, biofilm and cell wall components that are coordinately expressed in different stages of infection. The expression of two divergent loci, agr and sar, is increasingly recognized as a key regulator of virulence in S. aureus, and there is mounting evidence for the role of these loci in staphylococcal infections. The functional agr regulon is critical for the production of virulence factors, including α, β and δ hemolysins. The sar locus encodes SarA protein, which regulates the expression of cell wall-associated and certain extracellular proteins in agr-dependent and agr-independent pathways. Multidrug-resistant S. aureus is a leading cause of morbidity and mortality in the world and its management, especially in community-acquired methicillin-resistant S. aureus infections, has evolved comparatively little. In particular, no novel targets have been incorporated into its treatment to date. Hence, these loci appear to be the most significant and are currently at the attention of intense investigation regarding their therapeutic prospects.
Collapse
Affiliation(s)
- Rekha Arya
- Quorum Sensing Laboratory, SASTRA‘s Hub for Research & Innovation (SHRI), School of Chemical & Biotechnology, SASTRA University, Tirumalaisamudrum 613401, Thanjavur, Tamil Nadu, India
| | - S Adline Princy
- Quorum Sensing Laboratory, SASTRA‘s Hub for Research & Innovation (SHRI), School of Chemical & Biotechnology, SASTRA University, Tirumalaisamudrum 613401, Thanjavur, Tamil Nadu, India
| |
Collapse
|
94
|
Laverty G, Gorman SP, Gilmore BF. Biomolecular mechanisms of staphylococcal biofilm formation. Future Microbiol 2013; 8:509-24. [PMID: 23534362 DOI: 10.2217/fmb.13.7] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The multitude of biomolecular and regulatory factors involved in staphylococcal adhesion and biofilm formation owe much to their ability to colonize surfaces, allowing the biofilm form to become the preferential bacterial phenotype. Judging by total number, biomass and variety of environments colonized, bacteria can be categorized as the most successful lifeform on earth. This is due to the ability of bacteria and other microorganisms to respond phenotypically via biomolecular processes to the stresses of their surrounding environment. This review focuses on the specific pathways involved in the adhesion of the Gram-positive bacteria Staphylococcus epidermidis and Staphylococcus aureus with reference to the role of specific cell surface adhesins, the ica operon, accumulation-associated proteins and quorum-sensing systems and their significance in medical device-related infection.
Collapse
Affiliation(s)
- Garry Laverty
- Queen's University Belfast, School of Biological Sciences, Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | | | | |
Collapse
|
95
|
Nicholson TL, Shore SM, Smith TC, Frana TS. Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) isolates of swine origin form robust biofilms. PLoS One 2013; 8:e73376. [PMID: 23951352 PMCID: PMC3739819 DOI: 10.1371/journal.pone.0073376] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 07/22/2013] [Indexed: 01/11/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) colonization of livestock animals is common and prevalence rates for pigs have been reported to be as high as 49%. Mechanisms contributing to the persistent carriage and high prevalence rates of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) strains in swine herds and production facilities have not been investigated. One explanation for the high prevalence of MRSA in swine herds is the ability of these organisms to exist as biofilms. In this report, the ability of swine LA-MRSA strains, including ST398, ST9, and ST5, to form biofilms was quantified and compared to several swine and human isolates. The contribution of known biofilm matrix components, polysaccharides, proteins and extracellular DNA (eDNA), was tested in all strains as well. All MRSA swine isolates formed robust biofilms similar to human clinical isolates. The addition of Dispersin B had no inhibitory effect on swine MRSA isolates when added at the initiation of biofilm growth or after pre-established mature biofilms formed. In contrast, the addition of proteinase K inhibited biofilm formation in all strains when added at the initiation of biofilm growth and was able to disperse pre-established mature biofilms. Of the LA-MRSA strains tested, we found ST398 strains to be the most sensitive to both inhibition of biofilm formation and dispersal of pre-formed biofilms by DNaseI. Collectively, these findings provide a critical first step in designing strategies to control or eliminate MRSA in swine herds.
Collapse
Affiliation(s)
- Tracy L Nicholson
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA.
| | | | | | | |
Collapse
|
96
|
Abstract
Staphylococcus aureus is a known cause of chronic biofilm infections that can reside on medical implants or host tissue. Recent studies have demonstrated an important role for proteinaceous material in the biofilm structure. The S. aureus genome encodes many secreted proteases, and there is growing evidence that these enzymes have self-cleavage properties that alter biofilm integrity. However, the specific contribution of each protease and mechanism of biofilm modulation is not clear. To address this issue, we utilized a sigma factor B (ΔsigB) mutant where protease activity results in a biofilm-negative phenotype, thereby creating a condition where the protease(s) responsible for the phenotype could be identified. Using a plasma-coated microtiter assay, biofilm formation was restored to the ΔsigB mutant through the addition of the cysteine protease inhibitor E-64 or by using Staphostatin inhibitors that specifically target the extracellular cysteine proteases SspB and ScpA (called Staphopains). Through construction of gene deletion mutants, we determined that an sspB scpA double mutant restored ΔsigB biofilm formation, and this recovery could be replicated in plasma-coated flow cell biofilms. Staphopain levels were also found to be decreased under biofilm-forming conditions, possibly allowing biofilm establishment. The treatment of S. aureus biofilms with purified SspB or ScpA enzyme inhibited their formation, and ScpA was also able to disperse an established biofilm. The antibiofilm properties of ScpA were conserved across S. aureus strain lineages. These findings suggest an underappreciated role of the SspB and ScpA cysteine proteases in modulating S. aureus biofilm architecture.
Collapse
|
97
|
Impact of agr dysfunction on virulence profiles and infections associated with a novel methicillin-resistant Staphylococcus aureus (MRSA) variant of the lineage ST1-SCCmec IV. BMC Microbiol 2013; 13:93. [PMID: 23622558 PMCID: PMC3652751 DOI: 10.1186/1471-2180-13-93] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 04/22/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A novel variant of the ST1-SCCmecIV methicillin-resistant Staphylococcus aureus (MRSA) lineage, mostly associated with nosocomial bloodstream infections (BSI), has emerged in Rio de Janeiro. Bacterial biofilm has been considered a major virulence factor in central venous catheter-associated BSI. The mechanisms involved in biofilm formation/accumulation are multifactorial and complex. Studies have suggested that biofilm production was affected in vitro and vivo for agr-null mutants of S. aureus. RESULTS The impact of naturally occurring inhibition of agr signaling on virulence profiles and infections associated with the ST1 variant was investigated. agr dysfunction was detected in a significant percentage (13%) of the isolates with concomitant increase in biofilm accumulation in vitro and in vivo, and enhanced ability to adhere to and invade airway cells. The biofilm formed by these ST1 isolates was ica-independent and proteinaceous in nature. In fact, the improved colonization properties were paralleled by an increased expression of the biofilm-associated genes fnbA, spa and sasG. The transcription of sarA, a positive regulator of agr, was two-times reduced for the agr-dysfunctional MRSA. Remarkably, the agr inhibition was genetically stable. Indeed, agr-dysfunctional isolates succeed to colonize and cause both acute and chronic infections in hospitalized patients, and also to effectively accumulate biofilm in a mouse subcutaneous catheter implant model. CONCLUSION The ability of agr-dysfunctional isolates to cause infections in humans and to form biofilm in the animal model suggests that therapeutic approaches based on agr-inactivation strategies are unlikely to be effective in controlling human-device infections caused by ST1 isolates. The increased biofilm accumulation associated with the acquisition of multiple antimicrobial resistant traits might have influenced (at least in part) the expansion of this USA400 related clone in our hospitals.
Collapse
|
98
|
Gray B, Hall P, Gresham H. Targeting agr- and agr-Like quorum sensing systems for development of common therapeutics to treat multiple gram-positive bacterial infections. SENSORS 2013; 13:5130-66. [PMID: 23598501 PMCID: PMC3673130 DOI: 10.3390/s130405130] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/06/2013] [Accepted: 04/12/2013] [Indexed: 12/13/2022]
Abstract
Invasive infection by the Gram-positive pathogen Staphylococcus aureus is controlled by a four gene operon, agr that encodes a quorum sensing system for the regulation of virulence. While agr has been well studied in S. aureus, the contribution of agr homologues and analogues in other Gram-positive pathogens is just beginning to be understood. Intriguingly, other significant human pathogens, including Clostridium perfringens, Listeria monocytogenes, and Enterococcus faecalis contain agr or analogues linked to virulence. Moreover, other significant human Gram-positive pathogens use peptide based quorum sensing systems to establish or maintain infection. The potential for commonality in aspects of these signaling systems across different species raises the prospect of identifying therapeutics that could target multiple pathogens. Here, we review the status of research into these agr homologues, analogues, and other peptide based quorum sensing systems in Gram-positive pathogens as well as the potential for identifying common pathways and signaling mechanisms for therapeutic discovery.
Collapse
Affiliation(s)
- Brian Gray
- Department of Pharmaceutical Sciences, College of Pharmacy/MRF 208, MSC09 5360, University of New Mexico, Albuquerque, NM 87131-0001, USA; E-Mail:
- Research Service, New Mexico Veterans Affairs Medical Center, Albuquerque, NM 87108, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-505-265-1711 (ext. 2841)
| | - Pamela Hall
- Department of Pharmaceutical Sciences, College of Pharmacy/MRF 208, MSC09 5360, University of New Mexico, Albuquerque, NM 87131-0001, USA; E-Mail:
- Research Service, New Mexico Veterans Affairs Medical Center, Albuquerque, NM 87108, USA
| | - Hattie Gresham
- Research Service, New Mexico Veterans Affairs Medical Center, Albuquerque, NM 87108, USA
- Department of Internal Medicine, Division of Infectious Diseases, University of New Mexico, Albuquerque, NM 87131, USA; E-Mail:
| |
Collapse
|
99
|
Methylthioadenosine/S-adenosylhomocysteine nucleosidase (Pfs) of Staphylococcus aureus is essential for the virulence independent of LuxS/AI-2 system. Int J Med Microbiol 2013; 303:190-200. [PMID: 23611628 DOI: 10.1016/j.ijmm.2013.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/22/2013] [Accepted: 03/24/2013] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus aureus is a major cause of infectious morbidity and mortality in both community and hospital settings. The bacterium continues to cause diverse invasive, life-threatening infections, such as pneumonia, endocarditis, and septicemia. Methylthioadenosine/S-adenosylhomocysteine nucleosidase (Pfs) is predicted to be an important enzyme involved in methylation reactions, polyamine synthesis, vitamin synthesis, and quorum sensing pathways. For the first time, we demonstrate that Pfs is essential for the virulence of S. aureus. The pfs mutant strain, as compared to the isogenic wild type, displayed a decreased production of extracellular proteases, which was correlated with a dramatic decrease in the expression of the sspABC operon and a moderate decrease of aur expression. The mouse model of sepsis and subcutaneous abscesses indicated that the pfs mutant strain displayed highly impaired virulence compared to the isogenic wild type. The decreased virulence of the pfs mutant strain is in correspondence with its decreased proliferation in vivo, indicated with a real-time analysis in the transparent system of zebrafish embryos. These phenotypes of the pfs mutant strain are LuxS/AI-2 independent despite the essential role pfs plays in AI-2 production. Our data suggest that Pfs is a potential novel target for anti-infection therapy.
Collapse
|
100
|
Activation of sarX by Rbf is required for biofilm formation and icaADBC expression in Staphylococcus aureus. J Bacteriol 2013; 195:1515-24. [PMID: 23354746 DOI: 10.1128/jb.00012-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major constituent of many Staphylococcus aureus biofilms is a polysaccharide known as the polysaccharide intercellular adhesin, or poly N-acetylglucosamine (PIA/PNAG). PIA/PNAG is synthesized by the 4 gene products of the icaADBC operon, which is negatively regulated by the divergently transcribed icaR gene. We previously reported the identification of a gene, rbf, involved in the positive transcriptional regulation of icaADBC transcription by repressing icaR in S. aureus strain 8325-4. However, we were unable to show binding of Rbf to DNA upstream of icaR or icaA, suggesting that Rbf may control expression of an unknown factor(s) that, in turn, regulates ica expression. Here we report that the unknown factor is SarX protein. Results from epistasis assays and genetic complementation analyses suggest that Rbf upregulates SarX, which then downregulates IcaR, thereby activating icaADBC. Electrophoretic mobility shift assays revealed that SarX protein bound to a sequence upstream of icaR within the icaA coding region. Cross-linking and immunoprecipitation experiments further suggested that Rbf binds to the sarX promoter in S. aureus. These results demonstrate that Rbf and SarX represent a regulatory cascade that promotes PIA-dependent biofilm formation in S. aureus.
Collapse
|