51
|
Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering. Sci Rep 2016; 6:30130. [PMID: 27444945 PMCID: PMC4957104 DOI: 10.1038/srep30130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022] Open
Abstract
Precise genome engineering is instrumental for biomedical research and holds great promise for future therapeutic applications. Site-specific recombinases (SSRs) are valuable tools for genome engineering due to their exceptional ability to mediate precise excision, integration and inversion of genomic DNA in living systems. The ever-increasing complexity of genome manipulations and the desire to understand the DNA-binding specificity of these enzymes are driving efforts to identify novel SSR systems with unique properties. Here, we describe two novel tyrosine site-specific recombination systems designated Nigri/nox and Panto/pox. Nigri originates from Vibrio nigripulchritudo (plasmid VIBNI_pA) and recombines its target site nox with high efficiency and high target-site selectivity, without recombining target sites of the well established SSRs Cre, Dre, Vika and VCre. Panto, derived from Pantoea sp. aB, is less specific and in addition to its native target site, pox also recombines the target site for Dre recombinase, called rox. This relaxed specificity allowed the identification of residues that are involved in target site selectivity, thereby advancing our understanding of how SSRs recognize their respective DNA targets.
Collapse
|
52
|
Metagenomic Analysis of the Indian Ocean Picocyanobacterial Community: Structure, Potential Function and Evolution. PLoS One 2016; 11:e0155757. [PMID: 27196065 PMCID: PMC4890579 DOI: 10.1371/journal.pone.0155757] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 05/04/2016] [Indexed: 11/19/2022] Open
Abstract
Unicellular cyanobacteria are ubiquitous photoautotrophic microbes that contribute substantially to global primary production. Picocyanobacteria such as Synechococcus and Prochlorococcus depend on chlorophyll a-binding protein complexes to capture light energy. In addition, Synechococcus has accessory pigments organized into phycobilisomes, and Prochlorococcus contains chlorophyll b. Across a surface water transect spanning the sparsely studied tropical Indian Ocean, we examined Synechococcus and Prochlorococcus occurrence, taxonomy and habitat preference in an evolutionary context. Shotgun sequencing of size fractionated microbial communities from 0.1 μm to 20 μm and subsequent phylogenetic analysis indicated that cyanobacteria account for up to 15% of annotated reads, with the genera Prochlorococcus and Synechococcus comprising 90% of the cyanobacterial reads, even in the largest size fraction (3.0–20 mm). Phylogenetic analyses of cyanobacterial light-harvesting genes (chl-binding pcb/isiA, allophycocyanin (apcAB), phycocyanin (cpcAB) and phycoerythin (cpeAB)) mostly identified picocyanobacteria clades comprised of overlapping sequences obtained from Indian Ocean, Atlantic and/or Pacific Oceans samples. Habitat reconstructions coupled with phylogenetic analysis of the Indian Ocean samples suggested that large Synechococcus-like ancestors in coastal waters expanded their ecological niche towards open oligotrophic waters in the Indian Ocean through lineage diversification and associated streamlining of genomes (e.g. loss of phycobilisomes and acquisition of Chl b); resulting in contemporary small celled Prochlorococcus. Comparative metagenomic analysis with picocyanobacteria populations in other oceans suggests that this evolutionary scenario may be globally important.
Collapse
|
53
|
Abrahão JS, Oliveira GP, Ferreira da Silva LC, Dos Santos Silva LK, Kroon EG, La Scola B. Mimiviruses: Replication, Purification, and Quantification. ACTA ACUST UNITED AC 2016; 41:14G.1.1-14G.1.13. [PMID: 27153385 DOI: 10.1002/cpmc.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this protocol is to describe the replication, purification, and titration of mimiviruses. These viruses belong to the Mimiviridae family, the first member of which was isolated in 1992 from a cooling tower water sample collected during an outbreak of pneumonia in a hospital in Bradford, England. In recent years, several new mimiviruses have been isolated from different environmental conditions. These giant viruses are easily replicated in amoeba of the Acanthamoeba genus, its natural host. Mimiviruses present peculiar features that make them unique viruses, such as the particle and genome size and the genome's complexity. The discovery of these viruses rekindled discussions about their origin and evolution, and the genetic and structural complexity opened up a new field of study. Here, we describe some methods utilized for mimiviruses replication, purification, and titration. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Jônatas Santos Abrahão
- Instituto de Ciências Biológicas, Departamento de Microbiologia, Laboratório de Vírus, Universidade Federal de Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
- These authors contributed equally to this work
| | - Graziele Pereira Oliveira
- Instituto de Ciências Biológicas, Departamento de Microbiologia, Laboratório de Vírus, Universidade Federal de Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
- These authors contributed equally to this work
| | - Lorena Christine Ferreira da Silva
- Instituto de Ciências Biológicas, Departamento de Microbiologia, Laboratório de Vírus, Universidade Federal de Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| | - Ludmila Karen Dos Santos Silva
- Instituto de Ciências Biológicas, Departamento de Microbiologia, Laboratório de Vírus, Universidade Federal de Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| | - Erna Geessien Kroon
- Instituto de Ciências Biológicas, Departamento de Microbiologia, Laboratório de Vírus, Universidade Federal de Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| | - Bernard La Scola
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Aix-Marseille Université, Marseille, France
| |
Collapse
|
54
|
Villarroel J, Kleinheinz KA, Jurtz VI, Zschach H, Lund O, Nielsen M, Larsen MV. HostPhinder: A Phage Host Prediction Tool. Viruses 2016; 8:E116. [PMID: 27153081 PMCID: PMC4885074 DOI: 10.3390/v8050116] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/14/2016] [Accepted: 04/19/2016] [Indexed: 01/11/2023] Open
Abstract
The current dramatic increase of antibiotic resistant bacteria has revitalised the interest in bacteriophages as alternative antibacterial treatment. Meanwhile, the development of bioinformatics methods for analysing genomic data places high-throughput approaches for phage characterization within reach. Here, we present HostPhinder, a tool aimed at predicting the bacterial host of phages by examining the phage genome sequence. Using a reference database of 2196 phages with known hosts, HostPhinder predicts the host species of a query phage as the host of the most genomically similar reference phages. As a measure of genomic similarity the number of co-occurring k-mers (DNA sequences of length k) is used. Using an independent evaluation set, HostPhinder was able to correctly predict host genus and species for 81% and 74% of the phages respectively, giving predictions for more phages than BLAST and significantly outperforming BLAST on phages for which both had predictions. HostPhinder predictions on phage draft genomes from the INTESTI phage cocktail corresponded well with the advertised targets of the cocktail. Our study indicates that for most phages genomic similarity correlates well with related bacterial hosts. HostPhinder is available as an interactive web service [1] and as a stand alone download from the Docker registry [2].
Collapse
Affiliation(s)
- Julia Villarroel
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Kortine Annina Kleinheinz
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Vanessa Isabell Jurtz
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Henrike Zschach
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Ole Lund
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Morten Nielsen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
- Instituto de Investigaciones Biotecnológicas, Universidad de San Martín, CP(1650) San Martín, Prov. de Buenos Aires, Argentina.
| | - Mette Voldby Larsen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
55
|
Kim Y, Aw TG, Rose JB. Transporting Ocean Viromes: Invasion of the Aquatic Biosphere. PLoS One 2016; 11:e0152671. [PMID: 27055282 PMCID: PMC4824483 DOI: 10.1371/journal.pone.0152671] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/17/2016] [Indexed: 11/18/2022] Open
Abstract
Studies of marine viromes (viral metagenomes) have revealed that DNA viruses are highly diverse and exhibit biogeographic patterns. However, little is known about the diversity of RNA viruses, which are mostly composed of eukaryotic viruses, and their biogeographic patterns in the oceans. A growth in global commerce and maritime traffic may accelerate spread of diverse and non-cosmopolitan DNA viruses and potentially RNA viruses from one part of the world to another. Here, we demonstrated through metagenomic analyses that failure to comply with mid-ocean ballast water exchange regulation could result in movement of viromes including both DNA viruses and RNA viruses (including potential viral pathogens) unique to geographic and environmental niches. Furthermore, our results showed that virus richness (known and unknown viruses) in ballast water is associated with distance between ballast water exchange location and its nearest shoreline as well as length of water storage time in ballast tanks (voyage duration). However, richness of only known viruses is governed by local environmental conditions and different viral groups have different responses to environmental variation. Overall, these results identified ballast water as a factor contributing to ocean virome transport and potentially increased exposure of the aquatic bioshpere to viral invasion.
Collapse
Affiliation(s)
- Yiseul Kim
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| | - Tiong Gim Aw
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
| | - Joan B. Rose
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
56
|
Giant viruses at the core of microscopic wars with global impacts. Curr Opin Virol 2016; 17:130-137. [DOI: 10.1016/j.coviro.2016.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/21/2022]
|
57
|
Verneau J, Levasseur A, Raoult D, La Scola B, Colson P. MG-Digger: An Automated Pipeline to Search for Giant Virus-Related Sequences in Metagenomes. Front Microbiol 2016; 7:428. [PMID: 27065984 PMCID: PMC4814491 DOI: 10.3389/fmicb.2016.00428] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 03/17/2016] [Indexed: 01/27/2023] Open
Abstract
The number of metagenomic studies conducted each year is growing dramatically. Storage and analysis of such big data is difficult and time-consuming. Interestingly, analysis shows that environmental and human metagenomes include a significant amount of non-annotated sequences, representing a 'dark matter.' We established a bioinformatics pipeline that automatically detects metagenome reads matching query sequences from a given set and applied this tool to the detection of sequences matching large and giant DNA viral members of the proposed order Megavirales or virophages. A total of 1,045 environmental and human metagenomes (≈ 1 Terabase) were collected, processed, and stored on our bioinformatics server. In addition, nucleotide and protein sequences from 93 Megavirales representatives, including 19 giant viruses of amoeba, and 5 virophages, were collected. The pipeline was generated by scripts written in Python language and entitled MG-Digger. Metagenomes previously found to contain megavirus-like sequences were tested as controls. MG-Digger was able to annotate 100s of metagenome sequences as best matching those of giant viruses. These sequences were most often found to be similar to phycodnavirus or mimivirus sequences, but included reads related to recently available pandoraviruses, Pithovirus sibericum, and faustoviruses. Compared to other tools, MG-Digger combined stand-alone use on Linux or Windows operating systems through a user-friendly interface, implementation of ready-to-use customized metagenome databases and query sequence databases, adjustable parameters for BLAST searches, and creation of output files containing selected reads with best match identification. Compared to Metavir 2, a reference tool in viral metagenome analysis, MG-Digger detected 8% more true positive Megavirales-related reads in a control metagenome. The present work shows that massive, automated and recurrent analyses of metagenomes are effective in improving knowledge about the presence and prevalence of giant viruses in the environment and the human body.
Collapse
Affiliation(s)
- Jonathan Verneau
- Aix-Marseille University, URMITE UM 63 CNRS 7278 IRD 198 INSERM U1095 Marseille, France
| | - Anthony Levasseur
- Aix-Marseille University, URMITE UM 63 CNRS 7278 IRD 198 INSERM U1095 Marseille, France
| | - Didier Raoult
- Aix-Marseille University, URMITE UM 63 CNRS 7278 IRD 198 INSERM U1095Marseille, France; IHU Méditerranée Infection, Assistance Publique - Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-VirologieMarseille, France
| | - Bernard La Scola
- Aix-Marseille University, URMITE UM 63 CNRS 7278 IRD 198 INSERM U1095Marseille, France; IHU Méditerranée Infection, Assistance Publique - Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-VirologieMarseille, France
| | - Philippe Colson
- Aix-Marseille University, URMITE UM 63 CNRS 7278 IRD 198 INSERM U1095Marseille, France; IHU Méditerranée Infection, Assistance Publique - Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-VirologieMarseille, France
| |
Collapse
|
58
|
Halary S, Temmam S, Raoult D, Desnues C. Viral metagenomics: are we missing the giants? Curr Opin Microbiol 2016; 31:34-43. [PMID: 26851442 DOI: 10.1016/j.mib.2016.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 11/26/2022]
Abstract
Amoeba-infecting giant viruses are recently discovered viruses that have been isolated from diverse environments all around the world. In parallel to isolation efforts, metagenomics confirmed their worldwide distribution from a broad range of environmental and host-associated samples, including humans, depicting them as a major component of eukaryotic viruses in nature and a possible resident of the human/animal virome whose role is still unclear. Nevertheless, metagenomics data about amoeba-infecting giant viruses still remain scarce, mainly because of methodological limitations. Efforts should be pursued both at the metagenomic sample preparation level and on in silico analyses to better understand their roles in the environment and in human/animal health and disease.
Collapse
Affiliation(s)
- S Halary
- Unité de Recherche sur les Maladies Infectieuses Tropicales Emergentes (URMITE) UM63, CNRS 7278, IRD 198, INSERM 1095, Aix-Marseille Université, Marseille, France
| | - S Temmam
- Unité de Recherche sur les Maladies Infectieuses Tropicales Emergentes (URMITE) UM63, CNRS 7278, IRD 198, INSERM 1095, Aix-Marseille Université, Marseille, France
| | - D Raoult
- Unité de Recherche sur les Maladies Infectieuses Tropicales Emergentes (URMITE) UM63, CNRS 7278, IRD 198, INSERM 1095, Aix-Marseille Université, Marseille, France
| | - C Desnues
- Unité de Recherche sur les Maladies Infectieuses Tropicales Emergentes (URMITE) UM63, CNRS 7278, IRD 198, INSERM 1095, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
59
|
Cai L, Zhang R, He Y, Feng X, Jiao N. Metagenomic Analysis of Virioplankton of the Subtropical Jiulong River Estuary, China. Viruses 2016; 8:v8020035. [PMID: 26848678 PMCID: PMC4776190 DOI: 10.3390/v8020035] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 11/24/2022] Open
Abstract
Viruses are the most abundant biological entities in the oceans, and encompass a significant reservoir of genetic diversity. However, little is known about their biodiversity in estuary environments, which represent a highly dynamic and potentially more diverse habitat. Here, we report a metagenomic analysis of the dsDNA viral community from the Jiulong River Estuary (JRE), China, and provide a comparative analysis with other closely related environments. The results showed that the majority of JRE virome did not show any significant similarity to the database. For the major viral group (Caudovirales) detected in the sample, Podoviridae (44.88%) were the most abundant family, followed by Siphoviridae (32.98%) and Myoviridae (17.32%). The two most abundant viruses identified in the virome were phages HTVC010P and HMO-2011, which infect bacteria belonging to marine SAR11 and SAR116 clades, respectively. Two contigs larger than 20 kb, which show similar overall genome architectures to Celeribacter phage P12053L and Thalosomonas phage BA3, respectively, were generated during assembly. Comparative analysis showed that the JRE virome was more similar to marine viromes than to freshwater viromes, and shared a relative coarse-grain genetic overlap (averaging 14.14% ± 1.68%) with other coastal viromes. Our study indicated that the diversity and community structure of the virioplankton found in JRE were mainly affected by marine waters, with less influence from freshwater discharge.
Collapse
Affiliation(s)
- Lanlan Cai
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361005, China.
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361005, China.
| | - Ying He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaoyuan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361005, China.
| |
Collapse
|
60
|
Adriaenssens EM, van Zyl LJ, Cowan DA, Trindade MI. Metaviromics of Namib Desert Salt Pans: A Novel Lineage of Haloarchaeal Salterproviruses and a Rich Source of ssDNA Viruses. Viruses 2016; 8:v8010014. [PMID: 26761024 PMCID: PMC4728574 DOI: 10.3390/v8010014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/26/2015] [Accepted: 12/14/2015] [Indexed: 11/26/2022] Open
Abstract
Viral communities of two different salt pans located in the Namib Desert, Hosabes and Eisfeld, were investigated using a combination of multiple displacement amplification of metaviromic DNA and deep sequencing, and provided comprehensive sequence data on both ssDNA and dsDNA viral community structures. Read and contig annotations through online pipelines showed that the salt pans harbored largely unknown viral communities. Through network analysis, we were able to assign a large portion of the unknown reads to a diverse group of ssDNA viruses. Contigs belonging to the subfamily Gokushovirinae were common in both environmental datasets. Analysis of haloarchaeal virus contigs revealed the presence of three contigs distantly related with His1, indicating a possible new lineage of salterproviruses in the Hosabes playa. Based on viral richness and read mapping analyses, the salt pan metaviromes were novel and most closely related to each other while showing a low degree of overlap with other environmental viromes.
Collapse
Affiliation(s)
- Evelien M Adriaenssens
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, University of Pretoria, Natural Sciences II, Lynnwood Road, 0002 Pretoria, South Africa.
| | - Leonardo Joaquim van Zyl
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, 7535 Bellville, Cape Town, South Africa.
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, University of Pretoria, Natural Sciences II, Lynnwood Road, 0002 Pretoria, South Africa.
| | - Marla I Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, 7535 Bellville, Cape Town, South Africa.
| |
Collapse
|
61
|
Orsini M, Cuccuru G, Uva P, Fotia G. Bacterial Genomic Data Analysis in the Next-Generation Sequencing Era. Methods Mol Biol 2016; 1415:407-422. [PMID: 27115645 DOI: 10.1007/978-1-4939-3572-7_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bacterial genome sequencing is now an affordable choice for many laboratories for applications in research, diagnostic, and clinical microbiology. Nowadays, an overabundance of tools is available for genomic data analysis. However, tools differ for algorithms, languages, hardware requirements, and user interface, and combining them as it is necessary for sequence data interpretation often requires (bio)informatics skills which can be difficult to find in many laboratories. In addition, multiple data sources, as well as exceedingly large dataset sizes, and increasingly computational complexity further challenge the accessibility, reproducibility, and transparency of the entire process. In this chapter we will cover the main bioinformatics steps required for a complete bacterial genome analysis using next-generation sequencing data, from the raw sequence data to assembled and annotated genomes. All the tools described are available in the Orione framework ( http://orione.crs4.it ), which uniquely combines in a transparent way the most used open source bioinformatics tools for microbiology, allowing microbiologist without any specific hardware or informatics skill to conduct data-intensive computational analyses from quality control to microbial gene annotation.
Collapse
Affiliation(s)
- Massimiliano Orsini
- CRS4, Science and Technology Park Polaris, Piscina Manna, 09010, Pula, CA, Italy
| | - Gianmauro Cuccuru
- CRS4, Science and Technology Park Polaris, Piscina Manna, 09010, Pula, CA, Italy
| | - Paolo Uva
- CRS4, Science and Technology Park Polaris, Piscina Manna, 09010, Pula, CA, Italy
| | - Giorgio Fotia
- CRS4, Science and Technology Park Polaris, Piscina Manna, 09010, Pula, CA, Italy.
| |
Collapse
|
62
|
Mikheenko A, Saveliev V, Gurevich A. MetaQUAST: evaluation of metagenome assemblies. Bioinformatics 2015; 32:1088-90. [PMID: 26614127 DOI: 10.1093/bioinformatics/btv697] [Citation(s) in RCA: 349] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/23/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED During the past years we have witnessed the rapid development of new metagenome assembly methods. Although there are many benchmark utilities designed for single-genome assemblies, there is no well-recognized evaluation and comparison tool for metagenomic-specific analogues. In this article, we present MetaQUAST, a modification of QUAST, the state-of-the-art tool for genome assembly evaluation based on alignment of contigs to a reference. MetaQUAST addresses such metagenome datasets features as (i) unknown species content by detecting and downloading reference sequences, (ii) huge diversity by giving comprehensive reports for multiple genomes and (iii) presence of highly relative species by detecting chimeric contigs. We demonstrate MetaQUAST performance by comparing several leading assemblers on one simulated and two real datasets. AVAILABILITY AND IMPLEMENTATION http://bioinf.spbau.ru/metaquast CONTACT aleksey.gurevich@spbu.ru SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alla Mikheenko
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Vladislav Saveliev
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Alexey Gurevich
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
63
|
Choi A, Kang I, Yang SJ, Cho JC. Complete genome sequence of bacteriophage P8625, the first lytic phage that infects Verrucomicrobia. Stand Genomic Sci 2015; 10:96. [PMID: 26566421 PMCID: PMC4642752 DOI: 10.1186/s40793-015-0091-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 10/29/2015] [Indexed: 11/10/2022] Open
Abstract
Bacteriophage P8625 is a lytic bacteriophage that infects the verrucomicrobial strain IMCC8625, a marine bacterium affiliated with Verrucomicrobia subdivision 4. Both the bacteriophage and the host bacterial strain were isolated from surface seawater samples collected off the east coast of Korea. The phage particle has an icosahedral capsid with a diameter of ~47 nm and a long tail of ~75 nm in length, showing the distinctive morphology of the Siphoviridae family. The complete genome sequence of phage P8625 is 32,894 bp long with 51.0 % G + C content. This is the first report of the complete genome sequence of a lytic phage that infects the Verrucomicrobia, for which the name "verrucophage" is proposed.
Collapse
Affiliation(s)
- Ahyoung Choi
- Department of Biological Sciences, Inha University, Incheon, 402-751 Republic of Korea
| | - Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon, 402-751 Republic of Korea
| | - Seung-Jo Yang
- Department of Biological Sciences, Inha University, Incheon, 402-751 Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon, 402-751 Republic of Korea
| |
Collapse
|
64
|
Abstract
Viral ecology is a rapidly progressing area of research, as molecular methods have improved significantly for targeted research on specific populations and whole communities. To interpret and synthesize global viral diversity and distribution, it is feasible to assess whether macroecology concepts can apply to marine viruses. We review how viral and host life history and physical properties can influence viral distribution in light of biogeography and metacommunity ecology paradigms. We highlight analytical approaches that can be applied to emerging global data sets and meta-analyses to identify individual taxa with global influence and drivers of emergent properties that influence microbial community structure by drawing on examples across the spectrum of viral taxa, from RNA to ssDNA and dsDNA viruses.
Collapse
Affiliation(s)
| | - Curtis A Suttle
- Department of Earth, Ocean, and Atmospheric Sciences.,Department of Botany, and.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; .,Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| |
Collapse
|
65
|
Kim Y, Aw TG, Teal TK, Rose JB. Metagenomic Investigation of Viral Communities in Ballast Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8396-407. [PMID: 26107908 DOI: 10.1021/acs.est.5b01633] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ballast water is one of the most important vectors for the transport of non-native species to new aquatic environments. Due to the development of new ballast water quality standards for viruses, this study aimed to determine the taxonomic diversity and composition of viral communities (viromes) in ballast and harbor waters using metagenomics approaches. Ballast waters from different sources within the North America Great Lakes and paired harbor waters were collected around the Port of Duluth-Superior. Bioinformatics analysis of over 550 million sequences showed that a majority of the viral sequences could not be assigned to any taxa associated with reference sequences, indicating the lack of knowledge on viruses in ballast and harbor waters. However, the assigned viruses were dominated by double-stranded DNA phages, and sequences associated with potentially emerging viral pathogens of fish and shrimp were detected with low amino acid similarity in both ballast and harbor waters. Annotation-independent comparisons showed that viromes were distinct among the Great Lakes, and the Great Lakes viromes were closely related to viromes of other cold natural freshwater systems but distant from viromes of marine and human designed/managed freshwater systems. These results represent the most detailed characterization to date of viruses in ballast water, demonstrating their diversity and the potential significance of the ship-mediated spread of viruses.
Collapse
Affiliation(s)
- Yiseul Kim
- †Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tiong Gim Aw
- ‡Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tracy K Teal
- †Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Joan B Rose
- †Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
- ‡Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
66
|
Tsv-N1: A Novel DNA Algal Virus that Infects Tetraselmis striata. Viruses 2015; 7:3937-53. [PMID: 26193304 PMCID: PMC4517135 DOI: 10.3390/v7072806] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 11/16/2022] Open
Abstract
Numbering in excess of 10 million per milliliter of water, it is now undisputed that aquatic viruses are one of the major factors shaping the ecology and evolution of Earth’s microbial world. Nonetheless, environmental viral diversity and roles remain poorly understood. Here we report the first thorough characterization of a virus (designated TsV) that infects the coastal marine microalga Tetraselmis striata. Unlike previously known microalgae-infecting viruses, TsV is a small (60 nm) DNA virus, with a 31 kb genome. From a range of eight different strains belonging to the Chlamydomonadaceae family, TsV was only able to infect T. striata. Gene expression dynamics revealed an up-regulation of viral transcripts already 1 h post-infection (p.i.). First clear signs of infection were observed 24 h p.i., with the appearance of viral factories inside the nucleus. TsV assembly was exclusively nuclear. TsV-N1 genome revealed very different from previously known algae viruses (Phycodnaviridae). Putative function and/or homology could be resolved for only 9 of the 33 ORFs encoded. Among those was a surprising DNA polymerase type Delta (only found in Eukaryotes), and two genes with closest homology to genes from human parasites of the urogenital tract. These results support the idea that the diversity of microalgae viruses goes far beyond the Phycodnaviridae family and leave the door open for future studies on implications of microalgae viruses for human health.
Collapse
|
67
|
Using signature genes as tools to assess environmental viral ecology and diversity. Appl Environ Microbiol 2015; 80:4470-80. [PMID: 24837394 DOI: 10.1128/aem.00878-14] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses (including bacteriophages) are the most abundant biological entities on the planet. As such, they are thought to have a major impact on all aspects of microbial community structure and function. Despite this critical role in ecosystem processes, the study of virus/phage diversity has lagged far behind parallel studies of the bacterial and eukaryotic kingdoms, largely due to the absence of any universal phylogenetic marker. Here we review the development and use of signature genes to investigate viral diversity, as a viable strategy for data sets of specific virus groups. Genes that have been used include those encoding structural proteins, such as portal protein, major capsid protein, and tail sheath protein, auxiliary metabolism genes, such as psbA, psbB,and phoH, and several polymerase genes. These marker genes have been used in combination with PCR-based fingerprinting and/or sequencing strategies to investigate spatial, temporal, and seasonal variations and diversity in a wide range of habitats.
Collapse
|
68
|
Assis FL, Bajrai L, Abrahao JS, Kroon EG, Dornas FP, Andrade KR, Boratto PVM, Pilotto MR, Robert C, Benamar S, Scola BL, Colson P. Pan-Genome Analysis of Brazilian Lineage A Amoebal Mimiviruses. Viruses 2015; 7:3483-99. [PMID: 26131958 PMCID: PMC4517111 DOI: 10.3390/v7072782] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 12/03/2022] Open
Abstract
Since the recent discovery of Samba virus, the first representative of the family Mimiviridae from Brazil, prospecting for mimiviruses has been conducted in different environmental conditions in Brazil. Recently, we isolated using Acanthamoeba sp. three new mimiviruses, all of lineage A of amoebal mimiviruses: Kroon virus from urban lake water; Amazonia virus from the Brazilian Amazon river; and Oyster virus from farmed oysters. The aims of this work were to sequence and analyze the genome of these new Brazilian mimiviruses (mimi-BR) and update the analysis of the Samba virus genome. The genomes of Samba virus, Amazonia virus and Oyster virus were 97%–99% similar, whereas Kroon virus had a low similarity (90%–91%) with other mimi-BR. A total of 3877 proteins encoded by mimi-BR were grouped into 974 orthologous clusters. In addition, we identified three new ORFans in the Kroon virus genome. Additional work is needed to expand our knowledge of the diversity of mimiviruses from Brazil, including if and why among amoebal mimiviruses those of lineage A predominate in the Brazilian environment.
Collapse
Affiliation(s)
- Felipe L Assis
- Instituto de Ciências Biológicas, Departamento de Microbiologia, Laboratório de Vírus, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil.
| | - Leena Bajrai
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Univ., 13385 Marseille, France.
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia.
| | - Jonatas S Abrahao
- Instituto de Ciências Biológicas, Departamento de Microbiologia, Laboratório de Vírus, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil.
| | - Erna G Kroon
- Instituto de Ciências Biológicas, Departamento de Microbiologia, Laboratório de Vírus, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil.
| | - Fabio P Dornas
- Instituto de Ciências Biológicas, Departamento de Microbiologia, Laboratório de Vírus, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil.
| | - Kétyllen R Andrade
- Instituto de Ciências Biológicas, Departamento de Microbiologia, Laboratório de Vírus, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil.
| | - Paulo V M Boratto
- Instituto de Ciências Biológicas, Departamento de Microbiologia, Laboratório de Vírus, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil.
| | - Mariana R Pilotto
- Centro de Ciências Biológicas, Departamento de Microbiologia e Parasitologia, Laboratório de Virologia Aplicada, Universidade Federal de Santa Catarina, Florianópolis, 88040-900 Santa Catarina, Brazil.
| | - Catherine Robert
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Univ., 13385 Marseille, France.
| | - Samia Benamar
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Univ., 13385 Marseille, France.
| | - Bernard La Scola
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Univ., 13385 Marseille, France.
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, 13385 Marseille, France.
| | - Philippe Colson
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM63 CNRS 7278 IRD 198 INSERM U1095, Aix-Marseille Univ., 13385 Marseille, France.
- Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalo-Universitaire Timone, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, 13385 Marseille, France.
| |
Collapse
|
69
|
Bikel S, Valdez-Lara A, Cornejo-Granados F, Rico K, Canizales-Quinteros S, Soberón X, Del Pozo-Yauner L, Ochoa-Leyva A. Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome. Comput Struct Biotechnol J 2015; 13:390-401. [PMID: 26137199 PMCID: PMC4484546 DOI: 10.1016/j.csbj.2015.06.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 02/07/2023] Open
Abstract
The advances in experimental methods and the development of high performance bioinformatic tools have substantially improved our understanding of microbial communities associated with human niches. Many studies have documented that changes in microbial abundance and composition of the human microbiome is associated with human health and diseased state. The majority of research on human microbiome is typically focused in the analysis of one level of biological information, i.e., metagenomics or metatranscriptomics. In this review, we describe some of the different experimental and bioinformatic strategies applied to analyze the 16S rRNA gene profiling and shotgun sequencing data of the human microbiome. We also discuss how some of the recent insights in the combination of metagenomics, metatranscriptomics and viromics can provide more detailed description on the interactions between microorganisms and viruses in oral and gut microbiomes. Recent studies on viromics have begun to gain importance due to the potential involvement of viruses in microbial dysbiosis. In addition, metatranscriptomic combined with metagenomic analysis have shown that a substantial fraction of microbial transcripts can be differentially regulated relative to their microbial genomic abundances. Thus, understanding the molecular interactions in the microbiome using the combination of metagenomics, metatranscriptomics and viromics is one of the main challenges towards a system level understanding of human microbiome.
Collapse
Affiliation(s)
- Shirley Bikel
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico ; Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Avenida Universidad 2001, Cuernavaca C.P. 62210, Mexico
| | - Alejandra Valdez-Lara
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico ; Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Avenida Universidad 2001, Cuernavaca C.P. 62210, Mexico
| | - Fernanda Cornejo-Granados
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico ; Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Avenida Universidad 2001, Cuernavaca C.P. 62210, Mexico
| | - Karina Rico
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico
| | - Xavier Soberón
- Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F., Mexico
| | | | - Adrián Ochoa-Leyva
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico ; Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Avenida Universidad 2001, Cuernavaca C.P. 62210, Mexico
| |
Collapse
|
70
|
Sharma V, Colson P, Chabrol O, Scheid P, Pontarotti P, Raoult D. Welcome to pandoraviruses at the 'Fourth TRUC' club. Front Microbiol 2015; 6:423. [PMID: 26042093 PMCID: PMC4435241 DOI: 10.3389/fmicb.2015.00423] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/21/2015] [Indexed: 01/21/2023] Open
Abstract
Nucleocytoplasmic large DNA viruses, or representatives of the proposed order Megavirales, belong to families of giant viruses that infect a broad range of eukaryotic hosts. Megaviruses have been previously described to comprise a fourth monophylogenetic TRUC (things resisting uncompleted classification) together with cellular domains in the universal tree of life. Recently described pandoraviruses have large (1.9–2.5 MB) and highly divergent genomes. In the present study, we updated the classification of pandoraviruses and other reported giant viruses. Phylogenetic trees were constructed based on six informational genes. Hierarchical clustering was performed based on a set of informational genes from Megavirales members and cellular organisms. Homologous sequences were selected from cellular organisms using TimeTree software, comprising comprehensive, and representative sets of members from Bacteria, Archaea, and Eukarya. Phylogenetic analyses based on three conserved core genes clustered pandoraviruses with phycodnaviruses, exhibiting their close relatedness. Additionally, hierarchical clustering analyses based on informational genes grouped pandoraviruses with Megavirales members as a super group distinct from cellular organisms. Thus, the analyses based on core conserved genes revealed that pandoraviruses are new genuine members of the ‘Fourth TRUC’ club, encompassing distinct life forms compared with cellular organisms.
Collapse
Affiliation(s)
- Vikas Sharma
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes UM63 CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Aix-Marseille University Marseille, France ; I2M UMR 7373, CNRS équipe Evolution Biologique et Modélisation, Aix-Marseille University Marseille, France
| | - Philippe Colson
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes UM63 CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Aix-Marseille University Marseille, France ; Institut Hospitalo-Universitaire Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique-Hôpitaux de Marseille Marseille, France
| | - Olivier Chabrol
- I2M UMR 7373, CNRS équipe Evolution Biologique et Modélisation, Aix-Marseille University Marseille, France
| | - Patrick Scheid
- Medical Parasitology Laboratory, Laboratory Department I (Medicine), Diagnostics, Central Institute of the Bundeswehr Medical Service Koblenz, Germany
| | - Pierre Pontarotti
- I2M UMR 7373, CNRS équipe Evolution Biologique et Modélisation, Aix-Marseille University Marseille, France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes UM63 CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Aix-Marseille University Marseille, France ; Institut Hospitalo-Universitaire Méditerranée Infection, Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, Centre Hospitalo-Universitaire Timone, Assistance Publique-Hôpitaux de Marseille Marseille, France
| |
Collapse
|
71
|
Chow CET, Winget DM, White RA, Hallam SJ, Suttle CA. Combining genomic sequencing methods to explore viral diversity and reveal potential virus-host interactions. Front Microbiol 2015; 6:265. [PMID: 25914678 PMCID: PMC4392320 DOI: 10.3389/fmicb.2015.00265] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/17/2015] [Indexed: 11/13/2022] Open
Abstract
Viral diversity and virus-host interactions in oxygen-starved regions of the ocean, also known as oxygen minimum zones (OMZs), remain relatively unexplored. Microbial community metabolism in OMZs alters nutrient and energy flow through marine food webs, resulting in biological nitrogen loss and greenhouse gas production. Thus, viruses infecting OMZ microbes have the potential to modulate community metabolism with resulting feedback on ecosystem function. Here, we describe viral communities inhabiting oxic surface (10 m) and oxygen-starved basin (200 m) waters of Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island, British Columbia using viral metagenomics and complete viral fosmid sequencing on samples collected between April 2007 and April 2010. Of 6459 open reading frames (ORFs) predicted across all 34 viral fosmids, 77.6% (n = 5010) had no homology to reference viral genomes. These fosmids recruited a higher proportion of viral metagenomic sequences from Saanich Inlet than from nearby northeastern subarctic Pacific Ocean (Line P) waters, indicating differences in the viral communities between coastal and open ocean locations. While functional annotations of fosmid ORFs were limited, recruitment to NCBI's non-redundant “nr” database and publicly available single-cell genomes identified putative viruses infecting marine thaumarchaeal and SUP05 proteobacteria to provide potential host linkages with relevance to coupled biogeochemical cycling processes in OMZ waters. Taken together, these results highlight the power of coupled analyses of multiple sequence data types, such as viral metagenomic and fosmid sequence data with prokaryotic single cell genomes, to chart viral diversity, elucidate genomic and ecological contexts for previously unclassifiable viral sequences, and identify novel host interactions in natural and engineered ecosystems.
Collapse
Affiliation(s)
- Cheryl-Emiliane T Chow
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia Vancouver, BC, Canada
| | - Danielle M Winget
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia Vancouver, BC, Canada
| | - Richard A White
- Department of Microbiology and Immunology, University of British Columbia Vancouver, BC, Canada
| | - Steven J Hallam
- Department of Microbiology and Immunology, University of British Columbia Vancouver, BC, Canada ; Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research Toronto, ON, Canada ; Graduate Program in Bioinformatics, University of British Columbia Vancouver, BC, Canada
| | - Curtis A Suttle
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia Vancouver, BC, Canada ; Department of Microbiology and Immunology, University of British Columbia Vancouver, BC, Canada ; Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research Toronto, ON, Canada ; Department of Botany, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
72
|
Roux S, Enault F, Ravet V, Pereira O, Sullivan MB. Genomic characteristics and environmental distributions of the uncultivated Far-T4 phages. Front Microbiol 2015; 6:199. [PMID: 25852662 PMCID: PMC4360716 DOI: 10.3389/fmicb.2015.00199] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/24/2015] [Indexed: 11/13/2022] Open
Abstract
Viral metagenomics (viromics) is a tremendous tool to reveal viral taxonomic and functional diversity across ecosystems ranging from the human gut to the world's oceans. As with microbes however, there appear vast swaths of “dark matter” yet to be documented for viruses, even among relatively well-studied viral types. Here, we use viromics to explore the “Far-T4 phages” sequence space, a neighbor clade from the well-studied T4-like phages that was first detected through PCR study in seawater and subsequently identified in freshwater lakes through 454-sequenced viromes. To advance the description of these viruses beyond this single marker gene, we explore Far-T4 genome fragments assembled from two deeply-sequenced freshwater viromes. Single gene phylogenetic trees confirm that the Far-T4 phages are divergent from the T4-like phages, genome fragments reveal largely collinear genome organizations, and both data led to the delineation of five Far-T4 clades. Three-dimensional models of major capsid proteins are consistent with a T4-like structure, and highlight a highly conserved core flanked by variable insertions. Finally, we contextualize these now better characterized Far-T4 phages by re-analyzing 196 previously published viromes. These suggest that Far-T4 are common in freshwater and seawater as only four of 82 aquatic viromes lacked Far-T4-like sequences. Variability in representation across the five newly identified clades suggests clade-specific niche differentiation may be occurring across the different biomes, though the underlying mechanism remains unidentified. While complete genome assembly from complex communities and the lack of host linkage information still bottleneck virus discovery through viromes, these findings exemplify the power of metagenomics approaches to assess the diversity, evolutionary history, and genomic characteristics of novel uncultivated phages.
Collapse
Affiliation(s)
- Simon Roux
- Ecology and Evolutionary Biology, University of Arizona Tucson, AZ, USA
| | - François Enault
- Laboratoire "Microorganismes: Génome et Environnement," Clermont Université, Université Blaise Pascal Clermont-Ferrand, France ; Centre National de la Recherche Scientifique, UMR 6023, Laboratoire Microorganismes: Génome et Environnement Aubière, France
| | - Viviane Ravet
- Laboratoire "Microorganismes: Génome et Environnement," Clermont Université, Université Blaise Pascal Clermont-Ferrand, France ; Centre National de la Recherche Scientifique, UMR 6023, Laboratoire Microorganismes: Génome et Environnement Aubière, France
| | - Olivier Pereira
- Laboratoire "Microorganismes: Génome et Environnement," Clermont Université, Université Blaise Pascal Clermont-Ferrand, France ; Centre National de la Recherche Scientifique, UMR 6023, Laboratoire Microorganismes: Génome et Environnement Aubière, France
| | | |
Collapse
|
73
|
Ma Y, Allen LZ, Palenik B. Diversity and genome dynamics of marine cyanophages using metagenomic analyses. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:583-594. [PMID: 25756111 DOI: 10.1111/1758-2229.12160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cyanophages are abundant in the oceanic environment and directly impact cyanobacterial distributions, physiological processes and evolution. Two samples collected from coastal Maine in July and September 2009 were enriched for Synechococcus cells using flow cytometry and examined through metagenomic sequencing. Homology-based sequence prediction indicated cyanophages, largely myoviruses, accounted for almost half the reads and provided insights into environmental infection events. T4-phage core-gene phylogenetic reconstruction revealed unique diversity among uncultured cyanophages and reference isolates resulting in identification of a new phylogenetic cluster. Genomic comparison of reference cyanophage strains S-SM2 and Syn1 with putative homologous contigs recovered from metagenomes provided evidence that gene insertion, deletion and recombination have occurred among, and are likely important for diversification of, natural populations. Identification of putative genetic exchange between cyanophage and non-cyanophage viruses, i.e. Micromonas virus and Pelagibacter phage, supports hypotheses related to a significant role for viruses in mediating transfer of genetic material between taxonomically diverse organisms with overlapping ecological niches.
Collapse
|
74
|
Anderson RE, Sogin ML, Baross JA. Evolutionary strategies of viruses, bacteria and archaea in hydrothermal vent ecosystems revealed through metagenomics. PLoS One 2014; 9:e109696. [PMID: 25279954 PMCID: PMC4184897 DOI: 10.1371/journal.pone.0109696] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 09/11/2014] [Indexed: 11/18/2022] Open
Abstract
The deep-sea hydrothermal vent habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these systems, a high proportion of which are lysogenic, must also withstand these environmental extremes. Here, we explore the evolutionary strategies of both microorganisms and viruses in hydrothermal systems through comparative analysis of a cellular and viral metagenome, collected by size fractionation of high temperature fluids from a diffuse flow hydrothermal vent. We detected a high enrichment of mobile elements and proviruses in the cellular fraction relative to microorganisms in other environments. We observed a relatively high abundance of genes related to energy metabolism as well as cofactors and vitamins in the viral fraction compared to the cellular fraction, which suggest encoding of auxiliary metabolic genes on viral genomes. Moreover, the observation of stronger purifying selection in the viral versus cellular gene pool suggests viral strategies that promote prolonged host integration. Our results demonstrate that there is great potential for hydrothermal vent viruses to integrate into hosts, facilitate horizontal gene transfer, and express or transfer genes that manipulate the hosts’ functional capabilities.
Collapse
Affiliation(s)
- Rika E. Anderson
- School of Oceanography and Astrobiology Program, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Mitchell L. Sogin
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - John A. Baross
- School of Oceanography and Astrobiology Program, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
75
|
Bik HM. Deciphering diversity and ecological function from marine metagenomes. THE BIOLOGICAL BULLETIN 2014; 227:107-116. [PMID: 25411370 DOI: 10.1086/bblv227n2p107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Metagenomic sequencing now represents a common, powerful approach for investigating diversity and functional relationships in marine ecosystems. High-throughput datasets generated from random fragments of environmental DNA can provide a less biased view of organismal abundance (versus PCR-based amplicon sequencing) and enable novel exploration of microbial genomes by recovering genome assemblies from uncultured species, identifying ecological functions, and reconstructing metabolic pathways. This review highlights the current state of knowledge in marine metagenomics, focusing on biological insights gained from recent environmental studies and detailing commonly employed methods for data collection and analysis.
Collapse
Affiliation(s)
- Holly M Bik
- UC Davis Genome Center, University of California-Davis, One Shields Ave, Davis, California 95616
| |
Collapse
|
76
|
Roux S, Hawley AK, Torres Beltran M, Scofield M, Schwientek P, Stepanauskas R, Woyke T, Hallam SJ, Sullivan MB. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. eLife 2014; 3:e03125. [PMID: 25171894 PMCID: PMC4164917 DOI: 10.7554/elife.03125] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/27/2014] [Indexed: 11/13/2022] Open
Abstract
Viruses modulate microbial communities and alter ecosystem functions. However, due to cultivation bottlenecks, specific virus-host interaction dynamics remain cryptic. In this study, we examined 127 single-cell amplified genomes (SAGs) from uncultivated SUP05 bacteria isolated from a model marine oxygen minimum zone (OMZ) to identify 69 viral contigs representing five new genera within dsDNA Caudovirales and ssDNA Microviridae. Infection frequencies suggest that ∼1/3 of SUP05 bacteria is viral-infected, with higher infection frequency where oxygen-deficiency was most severe. Observed Microviridae clonality suggests recovery of bloom-terminating viruses, while systematic co-infection between dsDNA and ssDNA viruses posits previously unrecognized cooperation modes. Analyses of 186 microbial and viral metagenomes revealed that SUP05 viruses persisted for years, but remained endemic to the OMZ. Finally, identification of virus-encoded dissimilatory sulfite reductase suggests SUP05 viruses reprogram their host's energy metabolism. Together, these results demonstrate closely coupled SUP05 virus-host co-evolutionary dynamics with the potential to modulate biogeochemical cycling in climate-critical and expanding OMZs.
Collapse
Affiliation(s)
- Simon Roux
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States
| | - Alyse K Hawley
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Monica Torres Beltran
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Melanie Scofield
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Patrick Schwientek
- U.S Department of Energy Joint Genome Institute, Walnut Creek, United States
| | | | - Tanja Woyke
- U.S Department of Energy Joint Genome Institute, Walnut Creek, United States
| | - Steven J Hallam
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, Canada
| | - Matthew B Sullivan
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States
| |
Collapse
|
77
|
Abeles SR, Pride DT. Molecular bases and role of viruses in the human microbiome. J Mol Biol 2014; 426:3892-906. [PMID: 25020228 PMCID: PMC7172398 DOI: 10.1016/j.jmb.2014.07.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/30/2014] [Accepted: 07/04/2014] [Indexed: 12/24/2022]
Abstract
Viruses are dependent biological entities that interact with the genetic material of most cells on the planet, including the trillions within the human microbiome. Their tremendous diversity renders analysis of human viral communities ("viromes") to be highly complex. Because many of the viruses in humans are bacteriophage, their dynamic interactions with their cellular hosts add greatly to the complexities observed in examining human microbial ecosystems. We are only beginning to be able to study human viral communities on a large scale, mostly as a result of recent and continued advancements in sequencing and bioinformatic technologies. Bacteriophage community diversity in humans not only is inexorably linked to the diversity of their cellular hosts but also is due to their rapid evolution, horizontal gene transfers, and intimate interactions with host nucleic acids. There are vast numbers of observed viral genotypes on many body surfaces studied, including the oral, gastrointestinal, and respiratory tracts, and even in the human bloodstream, which previously was considered a purely sterile environment. The presence of viruses in blood suggests that virome members can traverse mucosal barriers, as indeed these communities are substantially altered when mucosal defenses are weakened. Perhaps the most interesting aspect of human viral communities is the extent to which they can carry gene functions involved in the pathogenesis of their hosts, particularly antibiotic resistance. Persons in close contact with each other have been shown to share a fraction of oral virobiota, which could potentially have important implications for the spread of antibiotic resistance to healthy individuals. Because viruses can have a large impact on ecosystem dynamics through mechanisms such as the transfers of beneficial gene functions or the lysis of certain populations of cellular hosts, they may have both beneficial and detrimental roles that affect human health, including improvements in microbial resilience to disturbances, immune evasion, maintenance of physiologic processes, and altering the microbial community in ways that promote or prevent pathogen colonization.
Collapse
Affiliation(s)
- Shira R Abeles
- Department of Medicine, University of California, San Diego, CA 92093, USA
| | - David T Pride
- Department of Medicine, University of California, San Diego, CA 92093, USA; Department of Pathology, University of California, San Diego, CA 92093, USA.
| |
Collapse
|
78
|
Adriaenssens EM, Van Zyl L, De Maayer P, Rubagotti E, Rybicki E, Tuffin M, Cowan DA. Metagenomic analysis of the viral community in Namib Desert hypoliths. Environ Microbiol 2014; 17:480-95. [PMID: 24912085 DOI: 10.1111/1462-2920.12528] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/02/2014] [Indexed: 11/29/2022]
Abstract
Hypolithic microbial communities are specialized desert communities inhabiting the underside of translucent rocks. Here, we present the first study of the viral fraction of these communities isolated from the hyperarid Namib Desert. The taxonomic composition of the hypolithic viral communities was investigated and a functional assessment of the sequences determined. Phylotypic analysis showed that bacteriophages belonging to the order Caudovirales, in particular the family Siphoviridae, were most prevalent. Functional analysis and comparison with other metaviromes revealed a relatively high frequency of cell wall-degrading enzymes, ribonucleotide reductases (RNRs) and phage-associated genes. Phylogenetic analyses of terL and phoH marker genes indicated that many of the sequences were novel and distinct from known isolates, and the class distribution of the RNRs suggests that this is a novel environment. The composition of the viral hypolith fraction containing many Bacillus-infecting phages was not completely consistent with Namib hypolith phylotypic surveys of the bacterial hosts, in which the cyanobacterial genus Chroococcidiopsis was found to be dominant. This could be attributed to the lack of sequence information about hypolith viruses/bacteria in public databases or the possibility that hypolithic communities incorporate viruses from the surrounding soil.
Collapse
Affiliation(s)
- Evelien M Adriaenssens
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | | | | | | | | | | | | |
Collapse
|
79
|
Campos RK, Boratto PV, Assis FL, Aguiar ERGR, Silva LCF, Albarnaz JD, Dornas FP, Trindade GS, Ferreira PP, Marques JT, Robert C, Raoult D, Kroon EG, La Scola B, Abrahão JS. Samba virus: a novel mimivirus from a giant rain forest, the Brazilian Amazon. Virol J 2014; 11:95. [PMID: 24886672 PMCID: PMC4113263 DOI: 10.1186/1743-422x-11-95] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/01/2014] [Indexed: 01/09/2023] Open
Abstract
Background The identification of novel giant viruses from the nucleocytoplasmic large DNA viruses group and their virophages has increased in the last decade and has helped to shed light on viral evolution. This study describe the discovery, isolation and characterization of Samba virus (SMBV), a novel giant virus belonging to the Mimivirus genus, which was isolated from the Negro River in the Brazilian Amazon. We also report the isolation of an SMBV-associated virophage named Rio Negro (RNV), which is the first Mimivirus virophage to be isolated in the Americas. Methods/results Based on a phylogenetic analysis, SMBV belongs to group A of the putative Megavirales order, possibly a new virus related to Acanthamoeba polyphaga mimivirus (APMV). SMBV is the largest virus isolated in Brazil, with an average particle diameter about 574 nm. The SMBV genome contains 938 ORFs, of which nine are ORFans. The 1,213.6 kb SMBV genome is one of the largest genome of any group A Mimivirus described to date. Electron microscopy showed RNV particle accumulation near SMBV and APMV factories resulting in the production of defective SMBV and APMV particles and decreasing the infectivity of these two viruses by several logs. Conclusion This discovery expands our knowledge of Mimiviridae evolution and ecology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Bernard La Scola
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Laboratório de Vírus, Av, Antônio Carlos, 6627 Pampulha, Belo Horizonte, MG Zip Code 31270-901, Brazil.
| | | |
Collapse
|
80
|
Picocyanobacteria containing a novel pigment gene cluster dominate the brackish water Baltic Sea. ISME JOURNAL 2014; 8:1892-903. [PMID: 24621524 PMCID: PMC4139726 DOI: 10.1038/ismej.2014.35] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 11/09/2022]
Abstract
Photoautotrophic picocyanobacteria harvest light via phycobilisomes (PBS) consisting of the pigments phycocyanin (PC) and phycoerythrin (PE), encoded by genes in conserved gene clusters. The presence and arrangement of these gene clusters give picocyanobacteria characteristic light absorption properties and allow the colonization of specific ecological niches. To date, a full understanding of the evolution and distribution of the PBS gene cluster in picocyanobacteria has been hampered by the scarcity of genome sequences from fresh- and brackish water-adapted strains. To remediate this, we analysed genomes assembled from metagenomic samples collected along a natural salinity gradient, and over the course of a growth season, in the Baltic Sea. We found that while PBS gene clusters in picocyanobacteria sampled in marine habitats were highly similar to known references, brackish-adapted genotypes harboured a novel type not seen in previously sequenced genomes. Phylogenetic analyses showed that the novel gene cluster belonged to a clade of uncultivated picocyanobacteria that dominate the brackish Baltic Sea throughout the summer season, but are uncommon in other examined aquatic ecosystems. Further, our data suggest that the PE genes were lost in the ancestor of PC-containing coastal picocyanobacteria and that multiple horizontal gene transfer events have re-introduced PE genes into brackish-adapted strains, including the novel clade discovered here.
Collapse
|
81
|
Vázquez-Castellanos JF, García-López R, Pérez-Brocal V, Pignatelli M, Moya A. Comparison of different assembly and annotation tools on analysis of simulated viral metagenomic communities in the gut. BMC Genomics 2014; 15:37. [PMID: 24438450 PMCID: PMC3901335 DOI: 10.1186/1471-2164-15-37] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 01/16/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The main limitations in the analysis of viral metagenomes are perhaps the high genetic variability and the lack of information in extant databases. To address these issues, several bioinformatic tools have been specifically designed or adapted for metagenomics by improving read assembly and creating more sensitive methods for homology detection. This study compares the performance of different available assemblers and taxonomic annotation software using simulated viral-metagenomic data. RESULTS We simulated two 454 viral metagenomes using genomes from NCBI's RefSeq database based on the list of actual viruses found in previously published metagenomes. Three different assembly strategies, spanning six assemblers, were tested for performance: overlap-layout-consensus algorithms Newbler, Celera and Minimo; de Bruijn graphs algorithms Velvet and MetaVelvet; and read probabilistic model Genovo. The performance of the assemblies was measured by the length of resulting contigs (using N50), the percentage of reads assembled and the overall accuracy when comparing against corresponding reference genomes. Additionally, the number of chimeras per contig and the lowest common ancestor were estimated in order to assess the effect of assembling on taxonomic and functional annotation. The functional classification of the reads was evaluated by counting the reads that correctly matched the functional data previously reported for the original genomes and calculating the number of over-represented functional categories in chimeric contigs. The sensitivity and specificity of tBLASTx, PhymmBL and the k-mer frequencies were measured by accurate predictions when comparing simulated reads against the NCBI Virus genomes RefSeq database. CONCLUSIONS Assembling improves functional annotation by increasing accurate assignations and decreasing ambiguous hits between viruses and bacteria. However, the success is limited by the chimeric contigs occurring at all taxonomic levels. The assembler and its parameters should be selected based on the focus of each study. Minimo's non-chimeric contigs and Genovo's long contigs excelled in taxonomy assignation and functional annotation, respectively.tBLASTx stood out as the best approach for taxonomic annotation for virus identification. PhymmBL proved useful in datasets in which no related sequences are present as it uses genomic features that may help identify distant taxa. The k-frequencies underperformed in all viral datasets.
Collapse
Affiliation(s)
- Jorge F Vázquez-Castellanos
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valencia (FISABIO)-Salud Pública, Avenida de Cataluña 21, 46020 Valencia, Spain
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, (ICBiBE) Universitat de València, Apartado Postal 22085, 46071 Valencia, Spain
| | - Rodrigo García-López
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valencia (FISABIO)-Salud Pública, Avenida de Cataluña 21, 46020 Valencia, Spain
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, (ICBiBE) Universitat de València, Apartado Postal 22085, 46071 Valencia, Spain
| | - Vicente Pérez-Brocal
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valencia (FISABIO)-Salud Pública, Avenida de Cataluña 21, 46020 Valencia, Spain
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, (ICBiBE) Universitat de València, Apartado Postal 22085, 46071 Valencia, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Miguel Pignatelli
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD UK
| | - Andrés Moya
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valencia (FISABIO)-Salud Pública, Avenida de Cataluña 21, 46020 Valencia, Spain
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, (ICBiBE) Universitat de València, Apartado Postal 22085, 46071 Valencia, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
82
|
Ganesh S, Parris DJ, DeLong EF, Stewart FJ. Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone. THE ISME JOURNAL 2014; 8:187-211. [PMID: 24030599 PMCID: PMC3869020 DOI: 10.1038/ismej.2013.144] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/21/2013] [Accepted: 07/22/2013] [Indexed: 01/27/2023]
Abstract
Marine oxygen minimum zones (OMZs) support diverse microbial communities with roles in major elemental cycles. It is unclear how the taxonomic composition and metabolism of OMZ microorganisms vary between particle-associated and free-living size fractions. We used amplicon (16S rRNA gene) and shotgun metagenome sequencing to compare microbial communities from large (>1.6 μm) and small (0.2-1.6 μm) filter size fractions along a depth gradient in the OMZ off Chile. Despite steep vertical redox gradients, size fraction was a significantly stronger predictor of community composition compared to depth. Phylogenetic diversity showed contrasting patterns, decreasing towards the anoxic OMZ core in the small size fraction, but exhibiting maximal values at these depths within the larger size fraction. Fraction-specific distributions were evident for key OMZ taxa, including anammox planctomycetes, whose coding sequences were enriched up to threefold in the 0.2-1.6 μm community. Functional gene composition also differed between fractions, with the >1.6 μm community significantly enriched in genes mediating social interactions, including motility, adhesion, cell-to-cell transfer, antibiotic resistance and mobile element activity. Prokaryotic transposase genes were three to six fold more abundant in this fraction, comprising up to 2% of protein-coding sequences, suggesting that particle surfaces may act as hotbeds for transposition-based genome changes in marine microbes. Genes for nitric and nitrous oxide reduction were also more abundant (three to seven fold) in the larger size fraction, suggesting microniche partitioning of key denitrification steps. These results highlight an important role for surface attachment in shaping community metabolic potential and genome content in OMZ microorganisms.
Collapse
Affiliation(s)
- Sangita Ganesh
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Darren J Parris
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Edward F DeLong
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Parsons Laboratory 48, Cambridge, MA, USA
- Center for Microbial Ecology: Research and Education, Honolulu, Hawaii, USA
| | - Frank J Stewart
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
83
|
Mizuno CM, Rodriguez-Valera F, Kimes NE, Ghai R. Expanding the marine virosphere using metagenomics. PLoS Genet 2013; 9:e1003987. [PMID: 24348267 PMCID: PMC3861242 DOI: 10.1371/journal.pgen.1003987] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/15/2013] [Indexed: 11/19/2022] Open
Abstract
Viruses infecting prokaryotic cells (phages) are the most abundant entities of the biosphere and contain a largely uncharted wealth of genomic diversity. They play a critical role in the biology of their hosts and in ecosystem functioning at large. The classical approaches studying phages require isolation from a pure culture of the host. Direct sequencing approaches have been hampered by the small amounts of phage DNA present in most natural habitats and the difficulty in applying meta-omic approaches, such as annotation of small reads and assembly. Serendipitously, it has been discovered that cellular metagenomes of highly productive ocean waters (the deep chlorophyll maximum) contain significant amounts of viral DNA derived from cells undergoing the lytic cycle. We have taken advantage of this phenomenon to retrieve metagenomic fosmids containing viral DNA from a Mediterranean deep chlorophyll maximum sample. This method allowed description of complete genomes of 208 new marine phages. The diversity of these genomes was remarkable, contributing 21 genomic groups of tailed bacteriophages of which 10 are completely new. Sequence based methods have allowed host assignment to many of them. These predicted hosts represent a wide variety of important marine prokaryotic microbes like members of SAR11 and SAR116 clades, Cyanobacteria and also the newly described low GC Actinobacteria. A metavirome constructed from the same habitat showed that many of the new phage genomes were abundantly represented. Furthermore, other available metaviromes also indicated that some of the new phages are globally distributed in low to medium latitude ocean waters. The availability of many genomes from the same sample allows a direct approach to viral population genomics confirming the remarkable mosaicism of phage genomes.
Collapse
Affiliation(s)
- Carolina Megumi Mizuno
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
- * E-mail:
| | - Nikole E. Kimes
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Rohit Ghai
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| |
Collapse
|
84
|
Colson P, La Scola B, Raoult D. Giant viruses of amoebae as potential human pathogens. Intervirology 2013; 56:376-85. [PMID: 24157884 DOI: 10.1159/000354558] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Giant viruses infecting phagocytic protists are composed of mimiviruses, the record holders of particle and genome size amongst viruses, and marseilleviruses. Since the discovery in 2003 at our laboratory of the first of these giant viruses, the Mimivirus, a growing body of data has revealed that they are common inhabitants of our biosphere. Moreover, from the outset, the story of Mimivirus has been linked to that of patients exhibiting pneumonia and it was shown that patients developed antibodies to this amoebal pathogen. Since then, there have been several proven cases of human infection or colonization with giant viruses of amoebae, which are known to host several bacteria that are human pathogens. Mimiviruses and marseilleviruses represent a major challenge in human pathology, as virological procedures implemented to date have not used appropriate media to allow their culture, and molecular techniques have used filtration steps that likely prevented their detection. Nevertheless, there is an increasing body of evidence that mimiviruses might cause pneumonia and that humans carry marseilleviruses, and re-analyses of metagenomic databases have provided evidence that these giant viruses can be common in human samples. The proportion of human infections related to these giant mimiviruses and marseilleviruses and the precise short- and long-term consequences of these infections have been scarcely investigated so far and should be the subject of future works.
Collapse
Affiliation(s)
- Philippe Colson
- URMITE UM63, CNRS 7278, IRD 198, INSERM U1905, Institut Hospitalo-Universitaire Méditerranée Infection, Facultés de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | | | | |
Collapse
|
85
|
Lineage specific gene family enrichment at the microscale in marine systems. Curr Opin Microbiol 2013; 16:605-17. [DOI: 10.1016/j.mib.2013.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
86
|
Genome of a SAR116 bacteriophage shows the prevalence of this phage type in the oceans. Proc Natl Acad Sci U S A 2013; 110:12343-8. [PMID: 23798439 DOI: 10.1073/pnas.1219930110] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The abundance, genetic diversity, and crucial ecological and evolutionary roles of marine phages have prompted a large number of metagenomic studies. However, obtaining a thorough understanding of marine phages has been hampered by the low number of phage isolates infecting major bacterial groups other than cyanophages and pelagiphages. Therefore, there is an urgent requirement for the isolation of phages that infect abundant marine bacterial groups. In this study, we isolated and characterized HMO-2011, a phage infecting a bacterium of the SAR116 clade, one of the most abundant marine bacterial lineages. HMO-2011, which infects "Candidatus Puniceispirillum marinum" strain IMCC1322, has an ~55-kb dsDNA genome that harbors many genes with novel features rarely found in cultured organisms, including genes encoding a DNA polymerase with a partial DnaJ central domain and an atypical methanesulfonate monooxygenase. Furthermore, homologs of nearly all HMO-2011 genes were predominantly found in marine metagenomes rather than cultured organisms, suggesting the novelty of HMO-2011 and the prevalence of this phage type in the oceans. A significant number of the viral metagenome sequences obtained from the ocean surface were best assigned to the HMO-2011 genome. The number of reads assigned to HMO-2011 accounted for 10.3%-25.3% of the total reads assigned to viruses in seven viromes from the Pacific and Indian Oceans, making the HMO-2011 genome the most or second-most frequently assigned viral genome. Given its ability to infect the abundant SAR116 clade and its widespread distribution, Puniceispirillum phage HMO-2011 could be an important resource for marine virus research.
Collapse
|
87
|
Colson P, Fancello L, Gimenez G, Armougom F, Desnues C, Fournous G, Yoosuf N, Million M, La Scola B, Raoult D. Evidence of the megavirome in humans. J Clin Virol 2013; 57:191-200. [PMID: 23664726 DOI: 10.1016/j.jcv.2013.03.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/14/2013] [Accepted: 03/29/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Megavirales is a proposed new virus order composed of Mimivirus, Marseillevirus and closely related viruses, as well as members of the families Poxviridae, Iridoviridae, Ascoviridae, Phycodnaviridae and Asfarviridae. The Megavirales virome, which we refer to as the megavirome, has been largely neglected until now because of the use of technical procedures that have jeopardized the discovery of giant viruses, particularly the use of filters with pore sizes in the 0.2-0.45-μm range. Concurrently, there has been accumulating evidence supporting the role of Mimivirus, discovered while investigating a pneumonia outbreak using amoebal coculture, as a causative agent in pneumonia. OBJECTIVES In this paper, we describe the detection of sequences related to Mimivirus and Marseillevirus in the gut microbiota from a young Senegalese man. We also searched for sequences related to Megavirales in human metagenomes publicly available in sequence databases. RESULTS We serendipitously detected Mimivirus- and Marseillevirus-like sequences while using a new metagenomic approach targeting bacterial DNA that subsequently led to the isolation of a new member of the family Marseilleviridae, named Senegalvirus, from human stools. This discovery demonstrates the possibility of the presence of giant viruses of amoebae in humans. In addition, we detected sequences related to Megavirales members in several human metagenomes, which adds to previous findings by several groups. CONCLUSIONS Overall, we present convergent evidence of the presence of mimiviruses and marseilleviruses in humans. Our findings suggest that we should re-evaluate the human megavirome and investigate the prevalence, diversity and potential pathogenicity of giant viruses in humans.
Collapse
Affiliation(s)
- Philippe Colson
- Aix-Marseille Univ, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes UM 63 CNRS 7278 IRD 198 INSERM U1095, Facultés de Médecine et de Pharmacie, Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Affiliation(s)
- Marion Koopmans
- Laboratory for Infectious Diseases and Screening, Center for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
- Virology Department, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|