51
|
Chitadze G, Flüh C, Quabius ES, Freitag-Wolf S, Peters C, Lettau M, Bhat J, Wesch D, Oberg HH, Luecke S, Janssen O, Synowitz M, Held-Feindt J, Kabelitz D. In-depth immunophenotyping of patients with glioblastoma multiforme: Impact of steroid treatment. Oncoimmunology 2017; 6:e1358839. [PMID: 29147621 DOI: 10.1080/2162402x.2017.1358839] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 01/01/2023] Open
Abstract
Despite aggressive treatment regimens based on surgery and radiochemotherapy, the prognosis of patients with grade IV glioblastoma multiforme (GBM) remains extremely poor, calling for alternative options such as immunotherapy. Immunological mechanisms including the Natural Killer Group 2 member D (NKG2D) receptor-ligand system play an important role in tumor immune surveillance and targeting the NKG2D system might be beneficial. However, before considering any kind of immunotherapy, a precise characterization of the immune system is important, particularly in GBM patients where conventional therapies with impact on the immune system are frequently co-administered. Here we performed an in-depth immunophenotyping of GBM patients and age-matched healthy controls and analyzed NKG2D ligand expression on primary GBM cells ex vivo. We report that GBM patients have a compromised innate immune system irrespective of steroid (dexamethasone) medication. However, dexamethasone drastically reduced the number of immune cells in the blood of GBM patients. Moreover, higher counts of immune cells influenced by dexamethasone like CD45+ lymphocytes and non-Vδ2 γδ T cells were associated with better overall survival. Higher levels of NKG2D ligands on primary GBM tumor cells were observed in patients who received radiochemotherapy, pointing towards increased immunogenic potential of GBM cells following standard radiochemotherapy. This study sheds light on how steroids and radiochemotherapy affect immune cell parameters of GBM patients, a pre-requisite for the development of new therapeutic strategies targeting the immune system in these patients.
Collapse
Affiliation(s)
- Guranda Chitadze
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Charlotte Flüh
- Dept. of Neurosurgery, UKSH Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Elgar Susanne Quabius
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany.,Dept. of Oto-Rhino-Laryngology, UKSH Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Schleswig-Hostein, Germany
| | - Christian Peters
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Marcus Lettau
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Jaydeep Bhat
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Stefanie Luecke
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Ottmar Janssen
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Michael Synowitz
- Dept. of Neurosurgery, UKSH Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Janka Held-Feindt
- Dept. of Neurosurgery, UKSH Campus Kiel, Kiel, Schleswig-Hostein, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Schleswig-Hostein, Germany
| |
Collapse
|
52
|
Sutton KS, Dasgupta A, McCarty D, Doering CB, Spencer HT. Bioengineering and serum free expansion of blood-derived γδ T cells. Cytotherapy 2017; 18:881-92. [PMID: 27260209 DOI: 10.1016/j.jcyt.2016.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/24/2016] [Accepted: 04/06/2016] [Indexed: 01/13/2023]
Abstract
BACKGROUND AIMS Cellular immunotherapy relies on several highly variable patient-specific parameters, such as (i) cell number before and after expansion, (ii) targeting of cells to tumors, (iii) cell survival and function after infusion, and (iv) on- and off-target adverse events. Cellular approaches such as the specific expansion of γδ T cells as opposed to αβ T cells are being pursued. γδ T cells are reasonable candidates for immunotherapy because they (i) possess intrinsic anti-tumorigenicity, (ii) require no priming, (iii) direct tumor killing via recognition of stress-responsive ligands, and (iv), as we now show, can be expanded to clinical cell doses in current Good Manufacturing Practice serum-free media (SFM). METHODS γδ T-cell expansion was evaluated in several SFMs. Additionally, the expanded γδ T cells were evaluated for their transduction efficiency using lentiviral vectors (LV). RESULTS Of the SFM cultures, robust expansion was only observed in OpTmizer supplemented with high-dose interleukin-2. γδ T-cell percentages and numbers were sufficient for clinical use. Using cells from several donors, transduction efficiencies ranged from 13 to 33%, which is similar to transduction levels observed using αβ T cells with similar multiplicity of infection. DISCUSSION An optimized method of γδT-cell expansion and transduction was developed that can be tested in early-phase clinical trials. With appropriate elimination of the αβT cell-component, the absence of MHC-restriction affords the opportunity for use in the allogeneic setting with limited risk of graft versus host disease. Finally, the use of SFM provides clinically safer, widely applicable and potentially more efficacious cellular immunotherapy.
Collapse
Affiliation(s)
- Kathryn S Sutton
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Anindya Dasgupta
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - David McCarty
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher B Doering
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - H Trent Spencer
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
53
|
Chitadze G, Oberg HH, Wesch D, Kabelitz D. The Ambiguous Role of γδ T Lymphocytes in Antitumor Immunity. Trends Immunol 2017; 38:668-678. [PMID: 28709825 DOI: 10.1016/j.it.2017.06.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022]
Abstract
γδ T cells play a role in immune surveillance because they recognize stress-induced surface molecules and metabolic intermediates that are frequently dysregulated in transformed cells. Hence, γδ T cells have attracted much interest as effector cells in cell-based immunotherapy. Recently, however, it has been realized that γδ T cells can also promote tumorigenesis through various mechanisms including regulatory activity and IL-17 production. In this review we outline both the pathways involved in cancer cell recognition and killing by γδ T cells as well as current evidence for their protumorigenic activity in various models. Finally, we discuss strategies to improve the tumor reactivity of γδ T cells and to counteract their protumorigenic activities, which should open improved perspectives for their clinical application.
Collapse
Affiliation(s)
- Guranda Chitadze
- Institute of Immunology, University of Kiel, Arnold-Heller-Strasse 3, Building 17, 24105 Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, University of Kiel, Arnold-Heller-Strasse 3, Building 17, 24105 Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, University of Kiel, Arnold-Heller-Strasse 3, Building 17, 24105 Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University of Kiel, Arnold-Heller-Strasse 3, Building 17, 24105 Kiel, Germany.
| |
Collapse
|
54
|
Chandran M, Candolfi M, Shah D, Mineharu Y, Yadav VN, Koschmann C, Asad AS, Lowenstein PR, Castro MG. Single vs. combination immunotherapeutic strategies for glioma. Expert Opin Biol Ther 2017; 17:543-554. [PMID: 28286975 DOI: 10.1080/14712598.2017.1305353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Malignant gliomas are highly invasive tumors, associated with a dismal survival rate despite standard of care, which includes surgical resection, radiotherapy and chemotherapy with temozolomide (TMZ). Precision immunotherapies or combinations of immunotherapies that target unique tumor-specific features may substantially improve upon existing treatments. Areas covered: Clinical trials of single immunotherapies have shown therapeutic potential in high-grade glioma patients, and emerging preclinical studies indicate that combinations of immunotherapies may be more effective than monotherapies. In this review, the authors discuss emerging combinations of immunotherapies and compare efficacy of single vs. combined therapies tested in preclinical brain tumor models. Expert opinion: Malignant gliomas are characterized by a number of factors which may limit the success of single immunotherapies including inter-tumor and intra-tumor heterogeneity, intrinsic resistance to traditional therapies, immunosuppression, and immune selection for tumor cells with low antigenicity. Combination of therapies which target multiple aspects of tumor physiology are likely to be more effective than single therapies. While a limited number of combination immunotherapies are described which are currently being tested in preclinical and clinical studies, the field is expanding at an astounding rate, and endless combinations remain open for exploration.
Collapse
Affiliation(s)
- Mayuri Chandran
- a Department of Neurosurgery , The University of Michigan School of Medicine, MSRB II , Ann Arbor , MI , USA.,b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Marianela Candolfi
- c Instituto de Investigaciones Biomédicas (CONICET-UBA), Facultad de Medicina , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Diana Shah
- a Department of Neurosurgery , The University of Michigan School of Medicine, MSRB II , Ann Arbor , MI , USA.,b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Yohei Mineharu
- d Department of Neurosurgery , Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Viveka Nand Yadav
- a Department of Neurosurgery , The University of Michigan School of Medicine, MSRB II , Ann Arbor , MI , USA.,b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Carl Koschmann
- a Department of Neurosurgery , The University of Michigan School of Medicine, MSRB II , Ann Arbor , MI , USA.,e Department of Pediatrics, Hematology & Oncology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Antonela S Asad
- c Instituto de Investigaciones Biomédicas (CONICET-UBA), Facultad de Medicina , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Pedro R Lowenstein
- a Department of Neurosurgery , The University of Michigan School of Medicine, MSRB II , Ann Arbor , MI , USA.,b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Maria G Castro
- a Department of Neurosurgery , The University of Michigan School of Medicine, MSRB II , Ann Arbor , MI , USA.,b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| |
Collapse
|
55
|
Chimeric antigen receptors for treatment of glioblastoma: a practical review of challenges and ways to overcome them. Cancer Gene Ther 2016; 24:121-129. [PMID: 27767090 DOI: 10.1038/cgt.2016.46] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/05/2016] [Indexed: 12/28/2022]
Abstract
Glioblastoma (GBM) is by far the most common and the most aggressive of all the primary brain malignancies. No curative therapy exists, and median life expectancy hovers at around 1 year after diagnosis, with a minute fraction surviving beyond 5 years. The difficulty in treating GBM lies in the cancer's protected niche within the blood-brain barrier and the heterogeneity of the cancer cells, which possess varying degrees of susceptibility to various common modalities of treatment. Over time, it is the tumor heterogeneity of GBM and the ability of the cancer stem cells to evolve in response treatment that renders the cancer refractory to conventional treatment. Therefore, research has increasingly focused on treatment that incorporates knowledge of GBM molecular biology to therapeutic strategies. One type of therapy that shows great promise is the area of T-cell immunotherapy to target GBM-specific tumor antigens. One attractive strategy is to use T cells that have undergone genetic modification to express a chimeric antigen receptor capable of interacting with tumor antigens. In this article, we will review chimeric antigen receptor T-cell therapy, their advantages, drawbacks, challenges facing their use and how those challenges may be overcome.
Collapse
|
56
|
Abstract
INTRODUCTION Cancer immunotherapy has made much progress in recent years. Clinical trials evaluating a variety of immunotherapeutic approaches are underway in patients with malignant gliomas. Thanks to recent advancements in cell engineering technologies, infusion of ex vivo prepared immune cells have emerged as promising strategies of cancer immunotherapy. AREAS COVERED Herein, the authors review recent and current studies using cellular immunotherapies for malignant gliomas. Specifically, they cover the following areas: a) cellular vaccine approaches using tumor cell-based or dendritic cell (DC)-based vaccines, and b) adoptive cell transfer (ACT) approaches, including lymphokine-activated killer (LAK) cells, γδ T cells, tumor-infiltrating lymphocytes (TIL), chimeric antigen receptor (CAR)-T cells and T-cell receptor (TCR) transduced T cells. EXPERT OPINION While some of the recent studies have shown promising results, the ultimate success of cellular immunotherapy in brain tumor patients would require improvements in the following areas: 1) feasibility in producing cellular therapeutics; 2) identification and characterization of targetable antigens given the paucity and heterogeneity of tumor specific antigens; 3) the development of strategies to promote effector T-cell trafficking; 4) overcoming local and systemic immune suppression, and 5) proper interpretation of imaging data for brain tumor patients receiving immunotherapy.
Collapse
Affiliation(s)
- Yi Lin
- a Neurological Surgery , University of California San Francisco , San Francisco , CA , USA
| | - Hideho Okada
- a Neurological Surgery , University of California San Francisco , San Francisco , CA , USA
| |
Collapse
|
57
|
Paul S, Lal G. Regulatory and effector functions of gamma-delta (γδ) T cells and their therapeutic potential in adoptive cellular therapy for cancer. Int J Cancer 2016; 139:976-85. [PMID: 27012367 DOI: 10.1002/ijc.30109] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/29/2022]
Abstract
γδ T cells are an important innate immune component of the tumor microenvironment and are known to affect the immune response in a wide variety of tumors. Unlike αβ T cells, γδ T cells are capable of spontaneous secretion of IL-17A and IFN-γ without undergoing clonal expansion. Although γδ T cells do not require self-MHC-restricted priming, they can distinguish "foreign" or transformed cells from healthy self-cells by using activating and inhibitory killer Ig-like receptors. γδ T cells were used in several clinical trials to treat cancer patient due to their MHC-unrestricted cytotoxicity, ability to distinguish transformed cells from normal cells, the capacity to secrete inflammatory cytokines and also their ability to enhance the generation of antigen-specific CD8(+) and CD4(+) T cell response. In this review, we discuss the effector and regulatory function of γδ T cells in the tumor microenvironment with special emphasis on the potential for their use in adoptive cellular immunotherapy.
Collapse
Affiliation(s)
- Sourav Paul
- Infection and Immunity Section, National Centre for Cell Science, Pune, India
| | - Girdhari Lal
- Infection and Immunity Section, National Centre for Cell Science, Pune, India
| |
Collapse
|
58
|
Anastasov N, Höfig I, Mall S, Krackhardt AM, Thirion C. Optimized Lentiviral Transduction Protocols by Use of a Poloxamer Enhancer, Spinoculation, and scFv-Antibody Fusions to VSV-G. Methods Mol Biol 2016; 1448:49-61. [PMID: 27317172 DOI: 10.1007/978-1-4939-3753-0_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lentiviral vectors (LV) are widely used to successfully transduce cells for research and clinical applications. This optimized LV infection protocol includes a nontoxic poloxamer-based adjuvant combined with antibody-retargeted lentiviral particles. The novel poloxamer P338 demonstrates superior characteristics for enhancing lentiviral transduction over the best-in-class polybrene-assisted transduction. Poloxamer P338 exhibited dual benefits of low toxicity and high efficiency of lentiviral gene delivery into a range of different primary cell cultures. One of the major advantages of P338 is its availability in pharma grade and applicability as cell culture medium additive in clinical protocols. Lentiviral vectors pseudotyped with the vesicular stomatitis virus glycoprotein (VSV-G) can be produced to high titers and mediate high transduction efficiencies in vitro. For clinical applications the need for optimized transduction protocols, especially for transduction of primary T and stem cells, is high. The successful use of retronectin, the second lentivirus enhancer available as GMP material, requires the application of specific coating protocols not applicable in all processes, and results in the need of a relatively high multiplicity of infection (MOI) to achieve effective transduction efficiencies for hematopoietic cells (e.g., CD34+ hematopoietic stem cells). Cell specificity of lentiviral vectors was successfully increased by displaying different ratios of scFv-fused VSV-G glycoproteins on the viral envelope. The system has been validated with human CD30+ lymphoma cells, resulting in preferential gene delivery to CD30+ cells, which was increased fourfold in mixed cell cultures, by presenting scFv antibody fragments binding to respective surface markers. A combination of spinoculation and poloxamer-based chemical adjuvant increases the transduction of primary T-cells by greater than twofold. The combination of poloxamer-based and scFv-retargeted LVs increased transduction of CD30+ lymphoma cells more than tenfold, and has the potential to improve clinical protocols.
Collapse
Affiliation(s)
- Nataša Anastasov
- Institute of Radiation Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany.
| | - Ines Höfig
- Institute of Radiation Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Sabine Mall
- Medizinische Klinik III, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Angela M Krackhardt
- Medizinische Klinik III, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Christian Thirion
- SIRION Biotech GmbH, Am Klopferspitz 19, 82152, Martinsried, Germany.
| |
Collapse
|
59
|
Chitadze G, Lettau M, Luecke S, Wang T, Janssen O, Fürst D, Mytilineos J, Wesch D, Oberg HH, Held-Feindt J, Kabelitz D. NKG2D- and T-cell receptor-dependent lysis of malignant glioma cell lines by human γδ T cells: Modulation by temozolomide and A disintegrin and metalloproteases 10 and 17 inhibitors. Oncoimmunology 2015; 5:e1093276. [PMID: 27141377 PMCID: PMC4839372 DOI: 10.1080/2162402x.2015.1093276] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/28/2015] [Accepted: 09/04/2015] [Indexed: 10/26/2022] Open
Abstract
The interaction of the MHC class I-related chain molecules A and B (MICA and MICB) and UL-16 binding protein (ULBP) family members expressed on tumor cells with the corresponding NKG2D receptor triggers cytotoxic effector functions in NK cells and γδ T cells. However, as a mechanism of tumor immune escape, NKG2D ligands (NKG2DLs) can be released from the cell surface. In this study, we investigated the NKG2DL system in different human glioblastoma (GBM) cell lines, the most lethal brain tumor in adults. Flow cytometric analysis and ELISA revealed that despite the expression of various NKG2DLs only ULBP2 is released as a soluble protein via the proteolytic activity of "a disintegrin and metalloproteases" (ADAM) 10 and 17. Moreover, we report that temozolomide (TMZ), a chemotherapeutic agent in clinical use for the treatment of GBM, increases the cell surface expression of NKG2DLs and sensitizes GBM cells to γδ T cell-mediated lysis. Both NKG2D and the T-cell receptor (TCR) are involved. The cytotoxic activity of γδ T cells toward GBM cells is strongly enhanced in a TCR-dependent manner by stimulation with pyrophosphate antigens. These data clearly demonstrate the complexity of mechanisms regulating NKG2DL expression in GBM cells and further show that treatment with TMZ can increase the immunogenicity of GBM. Thus, TMZ might enhance the potential of the adoptive transfer of ex vivo expanded γδ T cells for the treatment of malignant glioblastoma.
Collapse
Affiliation(s)
- Guranda Chitadze
- Institute of Immunology, Christian-Albrechts-University Kiel , Kiel, Germany
| | - Marcus Lettau
- Institute of Immunology, Christian-Albrechts-University Kiel , Kiel, Germany
| | - Stefanie Luecke
- Institute of Immunology, Christian-Albrechts-University Kiel , Kiel, Germany
| | - Ting Wang
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany; University of Alberta, Edmonton, Canada
| | - Ottmar Janssen
- Institute of Immunology, Christian-Albrechts-University Kiel , Kiel, Germany
| | - Daniel Fürst
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden-Wuerttemberg-Hessen, Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Joannis Mytilineos
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden-Wuerttemberg-Hessen, Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Daniela Wesch
- Institute of Immunology, Christian-Albrechts-University Kiel , Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts-University Kiel , Kiel, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH , Campus Kiel , Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel , Kiel, Germany
| |
Collapse
|
60
|
Legut M, Cole DK, Sewell AK. The promise of γδ T cells and the γδ T cell receptor for cancer immunotherapy. Cell Mol Immunol 2015; 12:656-68. [PMID: 25864915 PMCID: PMC4716630 DOI: 10.1038/cmi.2015.28] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/01/2015] [Indexed: 12/13/2022] Open
Abstract
γδ T cells form an important part of adaptive immune responses against infections and malignant transformation. The molecular targets of human γδ T cell receptors (TCRs) remain largely unknown, but recent studies have confirmed the recognition of phosphorylated prenyl metabolites, lipids in complex with CD1 molecules and markers of cellular stress. All of these molecules are upregulated on various cancer types, highlighting the potential importance of the γδ T cell compartment in cancer immunosurveillance and paving the way for the use of γδ TCRs in cancer therapy. Ligand recognition by the γδ TCR often requires accessory/co-stimulatory stress molecules on both T cells and target cells; this cellular stress context therefore provides a failsafe against harmful self-reactivity. Unlike αβ T cells, γδ T cells recognise their targets irrespective of HLA haplotype and therefore offer exciting possibilities for off-the-shelf, pan-population cancer immunotherapies. Here, we present a review of known ligands of human γδ T cells and discuss the promise of harnessing these cells for cancer treatment.
Collapse
MESH Headings
- Antigen Presentation
- Antigens, CD1/genetics
- Antigens, CD1/immunology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Clinical Trials as Topic
- Gene Expression Regulation, Neoplastic/immunology
- Hemiterpenes/immunology
- Humans
- Immunotherapy/methods
- Ligands
- Models, Molecular
- Monitoring, Immunologic
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/pathology
- Neoplasms/therapy
- Organophosphorus Compounds/immunology
- Phosphorylation
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- T-Lymphocytes/transplantation
Collapse
Affiliation(s)
- Mateusz Legut
- Division of Infection and Immunity and Systems Immunity University Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - David K Cole
- Division of Infection and Immunity and Systems Immunity University Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Andrew K Sewell
- Division of Infection and Immunity and Systems Immunity University Research Institute, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
61
|
Rushworth D, Alpert A, Santana-Carrero R, Olivares S, Spencer D, Cooper LJN. Antithymidylate resistance enables transgene selection and cell survival for T cells in the presence of 5-fluorouracil and antifolates. Gene Ther 2015; 23:119-28. [PMID: 26273805 DOI: 10.1038/gt.2015.88] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/11/2015] [Accepted: 08/05/2015] [Indexed: 12/31/2022]
Abstract
Antithymidylates (AThy) constitute a class of drugs used in the treatment of cancers such as lung, colon, breast and pancreas. These drugs inhibit DNA synthesis by targeting the enzymes dihydrofolate reductase (DHFR) and/or thymidylate synthase (TYMS). AThys effectively inhibit cancer cells, and also inhibit T cells, preventing anticancer immunity, which might otherwise develop from AThy-induced cancer destruction. We establish that T cells expressing mutant DHFR--DHFR L22F, F31S (DHFR(FS))--and/or mutant TYMS--TYMS T51S, G52S (TYMS(SS))-effectively survive in toxic concentrations of AThys methotrexate, pemetrexed and 5-fluorouracil. Furthermore, we show that DHFR(FS) permitted rapid selection of an inducible suicide transgene in T cells. These findings demonstrate that AThy resistances prevent AThy cytotoxicity to T cells while permitting selection of important transgenes. This technological development could enhance in vitro and in vivo survival and selection of T-cell therapeutics being designed for a broad range of cancers.
Collapse
Affiliation(s)
- D Rushworth
- Division of Pediatrics, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Unit 907, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - A Alpert
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - R Santana-Carrero
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.,University of Puerto Rico School of Medicine, San Juan, Puerto Rico, United States Minor Outlying Islands
| | - S Olivares
- Division of Pediatrics, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Unit 907, Houston, TX, USA
| | - D Spencer
- Bellicum Pharmaceuticals, Houston, TX, USA
| | - L J N Cooper
- Division of Pediatrics, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Unit 907, Houston, TX, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
62
|
Pereboeva L, Harkins L, Wong S, Lamb LS. The safety of allogeneic innate lymphocyte therapy for glioma patients with prior cranial irradiation. Cancer Immunol Immunother 2015; 64:551-62. [PMID: 25676710 PMCID: PMC11029122 DOI: 10.1007/s00262-015-1662-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 01/24/2015] [Indexed: 12/24/2022]
Abstract
The standard treatment of high-grade glioma presents a combination of radiotherapy, chemotherapy and surgery. Immunotherapy is proposed as a potential adjunct to standard cytotoxic regimens to target remaining microscopic disease following resection. We have shown ex vivo expanded/activated γδ T cells to be a promising innate lymphocyte therapy based on their recognition of stress antigens expressed on gliomas. However, successful integration of γδ T cell therapy protocols requires understanding the efficacy and safety of adoptively transferred immune cells in the post-treatment environment. The unique features of γδ T cell product and the environment (hypoxia, inflammation) can affect levels of expression of key cell receptors and secreted factors and either promote or hinder the feasibility of γδ T cell therapy. We investigated the potential for the γδ T cells to injure normal brain tissue that may have been stressed by treatment. We evaluated γδ T cell toxicity by assessing actual and correlative toxicity indicators in several available models including: (1) expression of stress markers on normal primary human astrocytes (as surrogate for brain parenchyma) after irradiation and temozolomide treatment, (2) cytotoxicity of γδ T cells on normal and irradiated primary astrocytes, (3) microglial activation and expression of stress-induced ligands in mouse brain after whole-brain irradiation and (4) expression of stress-induced markers on human brain tumors and on normal brain tissue. The lack of expression of stress-induced ligands in all tested models suggests that γδ T cell therapy is safe for brain tumor patients who undergo standard cytotoxic therapies.
Collapse
Affiliation(s)
- Larisa Pereboeva
- Division of Hematology and Oncology, School of Medicine, University of Alabama at Birmingham (UAB), 1824 6th Ave S, WTI 510C, Birmingham, AL, 35294, USA,
| | | | | | | |
Collapse
|
63
|
Kobayashi H, Tanaka Y. γδ T Cell Immunotherapy-A Review. Pharmaceuticals (Basel) 2015; 8:40-61. [PMID: 25686210 PMCID: PMC4381201 DOI: 10.3390/ph8010040] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/02/2015] [Indexed: 01/24/2023] Open
Abstract
Cancer immunotherapy utilizing Vγ9Vδ2 T cells has been developed over the past decade. A large number of clinical trials have been conducted on various types of solid tumors as well as hematological malignancies. Vγ9Vδ2 T cell-based immunotherapy can be classified into two categories based on the methods of activation and expansion of these cells. Although the in vivo expansion of Vγ9Vδ2 T cells by phosphoantigens or nitrogen-containing bisphosphonates (N-bis) has been translated to early-phase clinical trials, in which the safety of the treatment was confirmed, problems such as activation-induced Vγ9Vδ2 T cell anergy and a decrease in the number of peripheral blood Vγ9Vδ2 T cells after infusion of these stimulants have not yet been solved. In addition, it is difficult to ex vivo expand Vγ9Vδ2 T cells from advanced cancer patients with decreased initial numbers of peripheral blood Vγ9Vδ2 T cells. In this article, we review the clinical studies and reports targeting Vγ9Vδ2 T cells and discuss the development and improvement of Vγ9Vδ2 T cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Hirohito Kobayashi
- Transfusion Medicine and Cell Processing, Department of Urology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Yoshimasa Tanaka
- Center for Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| |
Collapse
|
64
|
Deniger DC, Moyes JS, Cooper LJN. Clinical applications of gamma delta T cells with multivalent immunity. Front Immunol 2014; 5:636. [PMID: 25566249 PMCID: PMC4263175 DOI: 10.3389/fimmu.2014.00636] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/28/2014] [Indexed: 01/13/2023] Open
Abstract
γδ T cells hold promise for adoptive immunotherapy because of their reactivity to bacteria, viruses, and tumors. However, these cells represent a small fraction (1–5%) of the peripheral T-cell pool and require activation and propagation to achieve clinical benefit. Aminobisphosphonates specifically expand the Vγ9Vδ2 subset of γδ T cells and have been used in clinical trials of cancer where objective responses were detected. The Vγ9Vδ2 T cell receptor (TCR) heterodimer binds multiple ligands and results in a multivalent attack by a monoclonal T cell population. Alternatively, populations of γδ T cells with oligoclonal or polyclonal TCR repertoire could be infused for broad-range specificity. However, this goal has been restricted by a lack of applicable expansion protocols for non-Vγ9Vδ2 cells. Recent advances using immobilized antigens, agonistic monoclonal antibodies (mAbs), tumor-derived artificial antigen presenting cells (aAPC), or combinations of activating mAbs and aAPC have been successful in expanding gamma delta T cells with oligoclonal or polyclonal TCR repertoires. Immobilized major histocompatibility complex Class-I chain-related A was a stimulus for γδ T cells expressing TCRδ1 isotypes, and plate-bound activating antibodies have expanded Vδ1 and Vδ2 cells ex vivo. Clinically sufficient quantities of TCRδ1, TCRδ2, and TCRδ1negTCRδ2neg have been produced following co-culture on aAPC, and these subsets displayed differences in memory phenotype and reactivity to tumors in vitro and in vivo. Gamma delta T cells are also amenable to genetic modification as evidenced by introduction of αβ TCRs, chimeric antigen receptors, and drug-resistance genes. This represents a promising future for the clinical application of oligoclonal or polyclonal γδ T cells in autologous and allogeneic settings that builds on current trials testing the safety and efficacy of Vγ9Vδ2 T cells.
Collapse
Affiliation(s)
- Drew C Deniger
- Surgery Branch, National Cancer Institute , Bethesda, MD , USA
| | - Judy S Moyes
- Division of Pediatrics, University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Laurence J N Cooper
- Division of Pediatrics, University of Texas MD Anderson Cancer Center , Houston, TX , USA ; The University of Texas Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center , Houston, TX , USA
| |
Collapse
|
65
|
Lafont V, Sanchez F, Laprevotte E, Michaud HA, Gros L, Eliaou JF, Bonnefoy N. Plasticity of γδ T Cells: Impact on the Anti-Tumor Response. Front Immunol 2014; 5:622. [PMID: 25538706 PMCID: PMC4259167 DOI: 10.3389/fimmu.2014.00622] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/21/2014] [Indexed: 01/17/2023] Open
Abstract
The tumor immune microenvironment contributes to tumor initiation, progression, and response to therapy. Among the immune cell subsets that play a role in the tumor microenvironment, innate-like T cells that express T cell receptors composed of γ and δ chains (γδ T cells) are of particular interest. γδ T cells can contribute to the immune response against many tumor types (lymphoma, myeloma, melanoma, breast, colon, lung, ovary, and prostate cancer) directly through their cytotoxic activity and indirectly by stimulating or regulating the biological functions of other cell types required for the initiation and establishment of the anti-tumor immune response, such as dendritic cells and cytotoxic CD8+ T cells. However, the notion that tumor-infiltrating γδ T cells are a good prognostic marker in cancer was recently challenged by studies showing that the presence of these cells in the tumor microenvironment was associated with poor prognosis in both breast and colon cancer. These findings suggest that γδ T cells may also display pro-tumor activities. Indeed, breast tumor-infiltrating γδ T cells could exert an immunosuppressive activity by negatively regulating dendritic cell maturation. Furthermore, recent studies demonstrated that signals from the microenvironment, particularly cytokines, can confer some plasticity to γδ T cells and promote their differentiation into γδ T cells with regulatory functions. This review focuses on the current knowledge on the functional plasticity of γδ T cells and its effect on their anti-tumor activities. It also discusses the putative mechanisms underlying γδ T cell expansion, differentiation, and recruitment in the tumor microenvironment.
Collapse
Affiliation(s)
- Virginie Lafont
- U896, Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM , Montpellier , France ; Centre Régional de Lutte Contre le Cancer CRLC Val d'Aurelle - Paul Lamarque, Université Montpellier 1 , Montpellier , France
| | - Françoise Sanchez
- U896, Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM , Montpellier , France ; Centre Régional de Lutte Contre le Cancer CRLC Val d'Aurelle - Paul Lamarque, Université Montpellier 1 , Montpellier , France
| | - Emilie Laprevotte
- U896, Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM , Montpellier , France ; Centre Régional de Lutte Contre le Cancer CRLC Val d'Aurelle - Paul Lamarque, Université Montpellier 1 , Montpellier , France
| | - Henri-Alexandre Michaud
- U896, Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM , Montpellier , France ; Centre Régional de Lutte Contre le Cancer CRLC Val d'Aurelle - Paul Lamarque, Université Montpellier 1 , Montpellier , France
| | - Laurent Gros
- U896, Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM , Montpellier , France ; Centre Régional de Lutte Contre le Cancer CRLC Val d'Aurelle - Paul Lamarque, Université Montpellier 1 , Montpellier , France
| | - Jean-François Eliaou
- U896, Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM , Montpellier , France ; Centre Régional de Lutte Contre le Cancer CRLC Val d'Aurelle - Paul Lamarque, Université Montpellier 1 , Montpellier , France ; Département d'Immunologie, Centre Hospitalier Régional Universitaire de Montpellier et Faculté de Médecine, Université Montpellier 1 , Montpellier , France
| | - Nathalie Bonnefoy
- U896, Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM , Montpellier , France ; Centre Régional de Lutte Contre le Cancer CRLC Val d'Aurelle - Paul Lamarque, Université Montpellier 1 , Montpellier , France
| |
Collapse
|
66
|
Latha TS, Reddy MC, Durbaka PVR, Rachamallu A, Pallu R, Lomada D. γδ T Cell-Mediated Immune Responses in Disease and Therapy. Front Immunol 2014; 5:571. [PMID: 25426120 PMCID: PMC4225745 DOI: 10.3389/fimmu.2014.00571] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/24/2014] [Indexed: 12/18/2022] Open
Abstract
The role of γδ T cells in immunotherapy has gained specific importance in the recent years because of their prominent function involving directly or indirectly in the rehabilitation of the diseases. γδ T cells represent a minor population of T cells that express a distinct T cell receptor (TCR) composed of γδ chains instead of αβ chains. Unlike αβ T cells, γδ T cells display a restricted TCR repertoire and recognize mostly unknown non-peptide antigens. γδ T cells act as a link between innate and adaptive immunity, because they lack precise major histocompatibility complex (MHC) restriction and seize the ability to recognize ligands that are generated during affliction. Skin epidermal γδ T cells recognize antigen expressed by damaged or stressed keratinocytes and play an indispensable role in tissue homeostasis and repair through secretion of distinct growth factors. γδ T cell based immunotherapy strategies possess great prominence in the treatment because of the property of their MHC-independent cytotoxicity, copious amount of cytokine release, and a immediate response in infections. Understanding the role of γδ T cells in pathogenic infections, wound healing, autoimmune diseases, and cancer might provide knowledge for the successful treatment of these diseases using γδ T cell based immunotherapy. Enhancing the human Vγ9Vδ2 T cells functions by administration of aminobisphosphonates like zoledronate, pamidronate, and bromohydrin pyrophosphate along with cytokines and monoclonal antibodies shows a hopeful approach for treatment of tumors and infections. The current review summarizes the role of γδ T cells in various human diseases and immunotherapeutic approaches using γδ T cells.
Collapse
Affiliation(s)
- T Sree Latha
- Department of Genetics and Genomics, Yogi Vemana University , Kadapa , India
| | - Madhava C Reddy
- Department of Biotechnology and Bioinformatics, Yogi Vemana University , Kadapa , India
| | | | - Aparna Rachamallu
- Department of Animal Biology, University of Hyderabad , Hyderabad , India ; National Institute of Animal Biotechnology (NIAB) , Hyderabad , India
| | - Reddanna Pallu
- Department of Animal Biology, University of Hyderabad , Hyderabad , India ; National Institute of Animal Biotechnology (NIAB) , Hyderabad , India
| | - Dakshayani Lomada
- Department of Genetics and Genomics, Yogi Vemana University , Kadapa , India
| |
Collapse
|
67
|
A new hope in immunotherapy for malignant gliomas: adoptive T cell transfer therapy. J Immunol Res 2014; 2014:326545. [PMID: 25009822 PMCID: PMC4070364 DOI: 10.1155/2014/326545] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/02/2014] [Accepted: 05/18/2014] [Indexed: 11/18/2022] Open
Abstract
Immunotherapy emerged as a promising therapeutic approach to highly incurable malignant gliomas due to tumor-specific cytotoxicity, minimal side effect, and a durable antitumor effect by memory T cells. But, antitumor activities of endogenously activated T cells induced by immunotherapy such as vaccination are not sufficient to control tumors because tumor-specific antigens may be self-antigens and tumors have immune evasion mechanisms to avoid immune surveillance system of host. Although recent clinical results from vaccine strategy for malignant gliomas are encouraging, these trials have some limitations, particularly their failure to expand tumor antigen-specific T cells reproducibly and effectively. An alternative strategy to overcome these limitations is adoptive T cell transfer therapy, in which tumor-specific T cells are expanded ex vivo rapidly and then transferred to patients. Moreover, enhanced biologic functions of T cells generated by genetic engineering and modified immunosuppressive microenvironment of host by homeostatic T cell expansion and/or elimination of immunosuppressive cells and molecules can induce more potent antitumor T cell responses and make this strategy hold promise in promoting a patient response for malignant glioma treatment. Here we will review the past and current progresses and discuss a new hope in adoptive T cell therapy for malignant gliomas.
Collapse
|
68
|
Systematic improvement of lentivirus transduction protocols by antibody fragments fused to VSV-G as envelope glycoprotein. Biomaterials 2014; 35:4204-12. [DOI: 10.1016/j.biomaterials.2014.01.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 01/22/2014] [Indexed: 12/22/2022]
|
69
|
Krebs S, Rodríguez-Cruz TG, Derenzo C, Gottschalk S. Genetically modified T cells to target glioblastoma. Front Oncol 2013; 3:322. [PMID: 24427741 PMCID: PMC3876295 DOI: 10.3389/fonc.2013.00322] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/17/2013] [Indexed: 01/21/2023] Open
Abstract
Despite advances in surgical procedures, radiation, and chemotherapy the outcome for patients with glioblastoma (GBM) remains poor. While GBM cells express antigens that are potentially recognized by T cells, GBMs prevent the induction of GBM-specific immune responses by creating an immunosuppressive microenvironment. The advent of gene transfer has allowed the rapid generation of antigen-specific T cells as well as T cells with enhanced effector function. Here we review recent advances in the field of cell therapy with genetically modified T cells and how these advances might improve outcomes for patients with GBM in the future.
Collapse
Affiliation(s)
- Simone Krebs
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine , Houston, TX , USA ; Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine , Houston, TX , USA ; Department of Pediatrics, Baylor College of Medicine , Houston, TX , USA
| | - Tania G Rodríguez-Cruz
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine , Houston, TX , USA ; Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine , Houston, TX , USA ; Department of Pediatrics, Baylor College of Medicine , Houston, TX , USA
| | - Christopher Derenzo
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine , Houston, TX , USA ; Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine , Houston, TX , USA ; Department of Pediatrics, Baylor College of Medicine , Houston, TX , USA
| | - Stephen Gottschalk
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine , Houston, TX , USA ; Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine , Houston, TX , USA ; Department of Pediatrics, Baylor College of Medicine , Houston, TX , USA ; Department of Pathology and Immunology, Baylor College of Medicine , Houston, TX , USA
| |
Collapse
|
70
|
Chen HC, Dieli F, Eberl M. An unconventional TRAIL to cancer therapy. Eur J Immunol 2013; 43:3159-62. [PMID: 24136367 DOI: 10.1002/eji.201344105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 09/21/2013] [Accepted: 10/08/2013] [Indexed: 11/10/2022]
Abstract
Cellular immunotherapy offers novel, safe, and effective routes to treating cancer. However, approaches utilizing cytotoxic CD8(+) T cells are hampered by the need to identify suitable target antigens that are expressed by tumor cells but not healthy tissues, and that are recognized with sufficient affinity. Most importantly, the applicability of CD8(+) T-cell-based therapies is governed by the MHC restriction of tumor-specific epitopes, thereby limiting the potential benefit to patients carrying the appropriate MHC haplotype. Alternative approaches to harness the immune system against tumors exploit non-MHC-restricted γδ T cells that recognize stress-induced changes in transformed cells. A new report in this issue of the European Journal of Immunology [Eur. J. Immunol. 2013. 43: 3175-3182] shows that human γδ T cells efficiently kill lung cancer cells through recognition of the NKG2D ligand ULBP2 and secretion of soluble TRAIL. This finding provides new evidence for a TCR-independent cytotoxicity of γδ T cells and supports their promising potential for non-MHC-restricted immunotherapies.
Collapse
Affiliation(s)
- Hung-Chang Chen
- Cardiff Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | | | | |
Collapse
|