51
|
Palmirotta R, Lovero D, Cafforio P, Felici C, Mannavola F, Pellè E, Quaresmini D, Tucci M, Silvestris F. Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology. Ther Adv Med Oncol 2018; 10:1758835918794630. [PMID: 30181785 PMCID: PMC6116068 DOI: 10.1177/1758835918794630] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022] Open
Abstract
Over the last decades, the concept of precision medicine has dramatically renewed the field of medical oncology; the introduction of patient-tailored therapies has significantly improved all measurable outcomes. Liquid biopsy is a revolutionary technique that is opening previously unexpected perspectives. It consists of the detection and isolation of circulating tumor cells, circulating tumor DNA and exosomes, as a source of genomic and proteomic information in patients with cancer. Many technical hurdles have been resolved thanks to newly developed techniques and next-generation sequencing analyses, allowing a broad application of liquid biopsy in a wide range of settings. Initially correlated to prognosis, liquid biopsy data are now being studied for cancer diagnosis, hopefully including screenings, and most importantly for the prediction of response or resistance to given treatments. In particular, the identification of specific mutations in target genes can aid in therapeutic decisions, both in the appropriateness of treatment and in the advanced identification of secondary resistance, aiming to early diagnose disease progression. Still application is far from reality but ongoing research is leading the way to a new era in oncology. This review summarizes the main techniques and applications of liquid biopsy in cancer.
Collapse
Affiliation(s)
- Raffaele Palmirotta
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Domenica Lovero
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Paola Cafforio
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Claudia Felici
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Francesco Mannavola
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Eleonora Pellè
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Davide Quaresmini
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Marco Tucci
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, Italy
| | - Franco Silvestris
- Section of Clinical and Molecular Oncology,
Department of Biomedical Sciences and Human Oncology, University of Bari
Aldo Moro, Bari, 70124, Italy
| |
Collapse
|
52
|
Agerbæk MØ, Bang-Christensen SR, Yang MH, Clausen TM, Pereira MA, Sharma S, Ditlev SB, Nielsen MA, Choudhary S, Gustavsson T, Sorensen PH, Meyer T, Propper D, Shamash J, Theander TG, Aicher A, Daugaard M, Heeschen C, Salanti A. The VAR2CSA malaria protein efficiently retrieves circulating tumor cells in an EpCAM-independent manner. Nat Commun 2018; 9:3279. [PMID: 30115931 PMCID: PMC6095877 DOI: 10.1038/s41467-018-05793-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/26/2018] [Indexed: 12/14/2022] Open
Abstract
Isolation of metastatic circulating tumor cells (CTCs) from cancer patients is of high value for disease monitoring and molecular characterization. Despite the development of many new CTC isolation platforms in the last decade, their isolation and detection has remained a challenge due to the lack of specific and sensitive markers. In this feasibility study, we present a method for CTC isolation based on the specific binding of the malaria rVAR2 protein to oncofetal chondroitin sulfate (ofCS). We show that rVAR2 efficiently captures CTCs from hepatic, lung, pancreatic, and prostate carcinoma patients with minimal contamination of peripheral blood mononuclear cells. Expression of ofCS is present on epithelial and mesenchymal cancer cells and is equally preserved during epithelial–mesenchymal transition of cancer cells. In 25 stage I–IV prostate cancer patient samples, CTC enumeration significantly correlates with disease stage. Lastly, rVAR2 targets a larger and more diverse population of CTCs compared to anti-EpCAM strategies. Isolation of circulating tumor cells (CTCs) allows for non-invasive disease monitoring and characterization. Here the authors describe an alternative CTC isolation method based on the ability of the malaria rVAR2 protein to specifically bind oncofetal chondroitin sulfate, which is expressed by all cancer cells
Collapse
Affiliation(s)
- Mette Ø Agerbæk
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, 2200, Copenhagen, Denmark.,Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Sara R Bang-Christensen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, 2200, Copenhagen, Denmark
| | - Ming-Hsin Yang
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom.,Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, 11490, Taipei, Taiwan
| | - Thomas M Clausen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, 2200, Copenhagen, Denmark.,Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Marina A Pereira
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, 2200, Copenhagen, Denmark
| | - Shreya Sharma
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Sisse B Ditlev
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, 2200, Copenhagen, Denmark
| | - Morten A Nielsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, 2200, Copenhagen, Denmark
| | - Swati Choudhary
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, 2200, Copenhagen, Denmark
| | - Tobias Gustavsson
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, 2200, Copenhagen, Denmark
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| | - Tim Meyer
- UCL Cancer Institute, University College London, London, WC1E 6BT, United Kingdom
| | - David Propper
- Department of Medical Oncology, Barts Health NHS, London, EC1A 7BE, United Kingdom
| | - Jonathan Shamash
- Department of Medical Oncology, Barts Health NHS, London, EC1A 7BE, United Kingdom
| | - Thor G Theander
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, 2200, Copenhagen, Denmark
| | - Alexandra Aicher
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Mads Daugaard
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Christopher Heeschen
- Stem Cells in Cancer & Ageing, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom. .,School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, 2200, Copenhagen, Denmark.
| |
Collapse
|
53
|
Liu X, Zhang Z, Zhang B, Zheng Y, Zheng C, Liu B, Zheng S, Dong K, Dong R. Circulating tumor cells detection in neuroblastoma patients by EpCAM-independent enrichment and immunostaining-fluorescence in situ hybridization. EBioMedicine 2018; 35:244-250. [PMID: 30104180 PMCID: PMC6154868 DOI: 10.1016/j.ebiom.2018.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 12/17/2022] Open
Abstract
Detecting circulating tumor cells (CTCs) has proven valuable for evaluating the prognosis of cancer patients and for studying the mechanisms of treatment resistance. Owing to the lack of universal and specific tumor markers for neuroblastoma (NB), in this prospective study, we adopted an EpCAM-independent method to detect CTCs in the peripheral blood of NB patients. We used an EpCAM-independent assay to delete leukocytes and to enrich the CTCs. CTCs were identified by immunostaining of CD45, DAPI and DNA fluorescence in situ hybridization (FISH) of the centromere of chromosome 8 probe (CEP8). Cells that were DAPI+/CD45-/CEP8 ≥ 3 were considered CTCs. We collected peripheral blood from 28 NB patients as well as clinical and follow-up data. The number of CTCs among the different risk groups were significantly different (p = .0208, Kruskal–Wallis test). Patients with metastasis had more CTCs than those without metastasis (p < .0001, Mann–Whitney test). Patients with ≥3 CTCs per 4 ml of peripheral blood had an increased likelihood of having metastasis (sensitivity, 88.89%; specificity, 78.59%), and patients with ≥10 CTCs per 4 ml of peripheral blood had poorer overall survival. The EpCAM-independent assay along with immunostaining-FISH (i-FISH) described here can detect CTCs in patients with NB at a high sensitivity and may have clinical value for prognosis evaluation and diagnosing metastasis when imaging data are ambiguous.
Collapse
Affiliation(s)
- Xiangqi Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Key Laboratory of Neonatal Disease, Ministry of Health, 399 Wan Yuan Road, Shanghai 201102, China
| | - Zhenzhen Zhang
- Biotecan Medical Diagnostics Co., Ltd, Zhangjiang Center for Translational Medicine, Shanghai, China
| | - Binbin Zhang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Key Laboratory of Neonatal Disease, Ministry of Health, 399 Wan Yuan Road, Shanghai 201102, China
| | - Yijie Zheng
- Medical Scientific Liaison Asian Pacific, Abbott Diagnostics Division, Abbott Laboratories, Shanghai, China
| | - Chao Zheng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Key Laboratory of Neonatal Disease, Ministry of Health, 399 Wan Yuan Road, Shanghai 201102, China
| | - Baihui Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Key Laboratory of Neonatal Disease, Ministry of Health, 399 Wan Yuan Road, Shanghai 201102, China
| | - Shan Zheng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Key Laboratory of Neonatal Disease, Ministry of Health, 399 Wan Yuan Road, Shanghai 201102, China
| | - Kuiran Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Key Laboratory of Neonatal Disease, Ministry of Health, 399 Wan Yuan Road, Shanghai 201102, China.
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Key Laboratory of Neonatal Disease, Ministry of Health, 399 Wan Yuan Road, Shanghai 201102, China.
| |
Collapse
|
54
|
Hao N, Nie Y, Shen T, Zhang JXJ. Microfluidics-enabled rational design of immunomagnetic nanomaterials and their shape effect on liquid biopsy. LAB ON A CHIP 2018; 18:1997-2002. [PMID: 29923569 PMCID: PMC6071334 DOI: 10.1039/c8lc00273h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Microfluidics brings unique opportunities for the synthesis of nanomaterials toward efficient liquid biopsy. Herein, we developed the microreactor-enabled flow synthesis of immunomagnetic nanomaterials with controllable shapes (sphere, cube, rod, and belt) by simply tuning the flow rates. The particle shape-dependent screening efficiency of circulating tumor cells was first investigated and compared with commercial ferrofluids, providing new insights into the rational design of a particulate system toward the screening and analysis of circulating tumor biomarkers.
Collapse
Affiliation(s)
- Nanjing Hao
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, USA.
| | | | | | | |
Collapse
|
55
|
Goldenberg DM, Stein R, Sharkey RM. The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target. Oncotarget 2018; 9:28989-29006. [PMID: 29989029 PMCID: PMC6034748 DOI: 10.18632/oncotarget.25615] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/31/2018] [Indexed: 12/31/2022] Open
Abstract
TROP-2 is a glycoprotein first described as a surface marker of trophoblast cells, but subsequently shown to be increased in many solid cancers, with lower expression in certain normal tissues. It regulates cancer growth, invasion and spread by several signaling pathways, and has a role in stem cell biology and other diseases. This review summarizes TROP-2's properties, especially in cancer, and particularly its role as a target for antibody-drug conjugates (ADC) or immunotherapy. When the irinotecan metabolite, SN-38, is conjugated to a humanized anti-TROP-2 antibody (sacituzumab govitecan), it shows potent broad anticancer activity in human cancer xenografts and in patients with advanced triple-negative breast, non-small cell and small-cell lung, as well as urothelial cancers.
Collapse
Affiliation(s)
- David M. Goldenberg
- Center for Molecular Medicine and Immunology, Belleville, NJ, USA
- IBC Pharmaceuticals, Inc., Morris Plains, NJ, USA
| | - Rhona Stein
- Center for Molecular Medicine and Immunology, Belleville, NJ, USA
| | - Robert M. Sharkey
- Center for Molecular Medicine and Immunology, Belleville, NJ, USA
- Immunomedics, Inc., Morris Plains, NJ, USA
| |
Collapse
|
56
|
Yadav DK, Bai X, Yadav RK, Singh A, Li G, Ma T, Chen W, Liang T. Liquid biopsy in pancreatic cancer: the beginning of a new era. Oncotarget 2018; 9:26900-26933. [PMID: 29928492 PMCID: PMC6003564 DOI: 10.18632/oncotarget.24809] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/25/2018] [Indexed: 12/21/2022] Open
Abstract
With dismal survival rate pancreatic cancer remains one of the most aggressive and devastating malignancy. Predominantly, due to the absence of a dependable methodology for early identification and limited therapeutic options for advanced disease. However, it takes over 17 years to develop pancreatic cancer from initiation of mutation to metastatic cancer; therefore, if diagnosed early; it may increase overall survival dramatically, thus, providing a window of opportunity for early detection. Recently, genomic expression analysis defined 4 subtypes of pancreatic cancer based on mutated genes. Hence, we need simple and standard, minimally invasive test that can monitor those altered genes or their associated pathways in time for the success of precision medicine, and liquid biopsy seems to be one answer to all these questions. Again, liquid biopsy has an ability to pair with genomic tests. Additionally, liquid biopsy based development of circulating tumor cells derived xenografts, 3D organoids system, real-time monitoring of genetic mutations by circulating tumor DNA and exosome as the targeted drug delivery vehicle holds lots of potential for the treatment and cure of pancreatic cancer. At present, diagnosis of pancreatic cancer is frantically done on the premise of CA19-9 and radiological features only, which doesn't give a picture of genetic mutations and epigenetic alteration involved. In this manner, the current diagnostic paradigm for pancreatic cancer diagnosis experiences low diagnostic accuracy. This review article discusses the current state of liquid biopsy in pancreatic cancer as diagnostic and therapeutic tools and future perspectives of research in the light of circulating tumor cells, circulating tumor DNA and exosomes.
Collapse
Affiliation(s)
- Dipesh Kumar Yadav
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Rajesh Kumar Yadav
- Department of Pharmacology, Gandaki Medical College, Tribhuwan University, Institute of Medicine, Pokhara 33700, Nepal
| | - Alina Singh
- Department of Surgery, Bir Hospital, National Academy of Medical Science, Kanti Path, Kathmandu 44600, Nepal
| | - Guogang Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Tao Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
57
|
Opoku-Damoah Y, Assanhou AG, Sooro MA, Baduweh CA, Sun C, Ding Y. Functional Diagnostic and Therapeutic Nanoconstructs for Efficient Probing of Circulating Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14231-14247. [PMID: 29557165 DOI: 10.1021/acsami.7b17896] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The circulation of tumor cells in peripheral blood is mostly recognized as a prerequisite for cancer progression or systemic invasion, and it correlates with the pivotal hallmark of malignancies known as metastasis. Multiple detection schemes for circulating tumor cells (CTCs) have emerged as the most discerning criteria for monitoring the outcome of anticancer therapy. Therefore, there has been a tremendous increase in the use of robust nanostructured platforms for observation of these mobile tumor cells through various simultaneous diagnosis and treatment regimens developed from conventional techniques. This review seeks to give detailed information about the nature of CTCs as well as techniques for exploiting specific biomarkers to help monitor cancer via detection, capturing, and analysis of unstable tumor cells. We will further discuss nanobased diagnostic interventions and novel platforms which have recently been developed from versatile nanomaterials such as polymer nanocomposites, metal organic frameworks, bioderived nanomaterials and other physically responsive particles with desirable intrinsic and external properties. Herein, we will also include in vivo nanotheranostic platforms which have received a lot of attention because of their enormous clinical potential. In all, this review sums up the general potential of key promising nanoinspired systems as well as other advanced strategies under research and those in clinical use.
Collapse
Affiliation(s)
- Yaw Opoku-Damoah
- Australian Institute for Bioengineering & Nanotechnology , The University of Queensland , St. Lucia , Brisbane, QLD 4072
| | - Assogba G Assanhou
- UFR Pharmacie, Falculté des Sciences de la Santé , Université d'Abomey-Calavi , 01BP188 Cotonou , Benin
| | | | | | | | | |
Collapse
|
58
|
Detection of HER2 Amplification in Circulating Tumor Cells of HER2-Negative Gastric Cancer Patients. Target Oncol 2018; 12:341-351. [PMID: 28508152 DOI: 10.1007/s11523-017-0493-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A key to the successful use of targeted cancer therapy is the ability to preselect patients who are likely to benefit from the treatment according to molecular markers. Assessment for predicting therapy response is mostly done using tumor biopsies. However, these might not truly represent all of the patient's malignant cells because of tumor heterogeneity and/or clonal evolution during disease progression. One potential strategy that can complement primary tumor biopsy is the analysis of circulating tumor cells (CTCs). In this study, we analyzed CTCs of patients with gastric cancer (GC) to find those who were likely to benefit from trastuzumab therapies. We developed an imaging-based method that enabled CTC identification simultaneously with evaluation of HER2 gene amplification (the 3D-IF-FISH method). Then we performed a study enrolling 101 GC patients in whom we analyzed CTCs by both 3D-IF-FISH and an FDA-approved CellSearch system. As compared with the CellSearch system, 3D-IF-FISH methods identified a higher number of patients whose primary tumors were HER2- but who had HER2+ CTCs, suggesting that the 3D-IF-FISH method is effective in preselecting patients for trastuzumab therapies. To demonstrate this, we performed an exploratory clinical study to evaluate the clinical benefits of trastuzumab treatment for advanced GC patients (n = 15) whose primary tumors were HER2-, but whose CTCs showed HER2 amplification. An interim evaluation after the first stage showed that these preselected patients had response rates comparable to those reported in the trastuzumab-plus-chemotherapy arm of the ToGA study. The present study offers a new, non-invasive strategy to select patients who are likely to benefit from trastuzumab-based therapies, despite their primary biopsy being HER2-negative. (UMIN ID: UMIN000008622).
Collapse
|
59
|
Remšík J, Fedr R, Navrátil J, Binó L, Slabáková E, Fabian P, Svoboda M, Souček K. Plasticity and intratumoural heterogeneity of cell surface antigen expression in breast cancer. Br J Cancer 2018; 118:813-819. [PMID: 29462126 PMCID: PMC5886127 DOI: 10.1038/bjc.2017.497] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022] Open
Abstract
Background: The intratumoural heterogeneity, often driven by epithelial-to-mesenchymal transition (EMT), significantly contributes to chemoresistance and disease progression in adenocarcinomas. Methods: We introduced a high-throughput screening platform to identify surface antigens that associate with epithelial–mesenchymal plasticity in well-defined pairs of epithelial cell lines and their mesenchymal counterparts. Using multicolour flow cytometry, we then analysed the expression of 10 most robustly changed antigens and identified a 10-molecule surface signature, in pan-cytokeratin-positive/EpCAM-positive and -negative fractions of dissociated breast tumours. Results: We found that surface CD9, CD29, CD49c, and integrin β5 are lost in breast cancer cells that underwent EMT in vivo. The tetraspanin family member CD9 was concordantly downregulated both in vitro and in vivo and associated with epithelial phenotype and favourable prognosis. Conclusions: We propose that overall landscape of 10-molecule surface signature expression reflects the epithelial–mesenchymal plasticity in breast cancer.
Collapse
Affiliation(s)
- Ján Remšík
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic.,Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, Brno 656 91, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Radek Fedr
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic.,Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, Brno 656 91, Czech Republic
| | - Jiří Navrátil
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Žlutý kopec 7, Brno 656 53, Czech Republic
| | - Lucia Binó
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic
| | - Eva Slabáková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic
| | - Pavel Fabian
- Department of Oncological Pathology, Masaryk Memorial Cancer Institute, Žlutý kopec 7, Brno 656 53, Czech Republic
| | - Marek Svoboda
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Žlutý kopec 7, Brno 656 53, Czech Republic
| | - Karel Souček
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 65, Czech Republic.,Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, Brno 656 91, Czech Republic
| |
Collapse
|
60
|
Wang H, Stoecklein NH, Lin PP, Gires O. Circulating and disseminated tumor cells: diagnostic tools and therapeutic targets in motion. Oncotarget 2018; 8:1884-1912. [PMID: 27683128 PMCID: PMC5352105 DOI: 10.18632/oncotarget.12242] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022] Open
Abstract
Enumeration of circulating tumor cells (CTCs) in peripheral blood with the gold standard CellSearchTM has proven prognostic value for tumor recurrence and progression of metastatic disease. Therefore, the further molecular characterization of isolated CTCs might have clinical relevance as liquid biopsy for therapeutic decision-making and to monitor disease progression. The direct analysis of systemic cancer appears particularly important in view of the known disparity in expression of therapeutic targets as well as epithelial-to-mesenchymal transition (EMT)-based heterogeneity between primary and systemic tumor cells, which all substantially complicate monitoring and therapeutic targeting at present. Since CTCs are the potential precursor cells of metastasis, their in-depth molecular profiling should also provide a useful resource for target discovery. The present review will discuss the use of systemically spread cancer cells as liquid biopsy and focus on potential target antigens.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Nikolas H Stoecklein
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University of Munich, Munich, Germany.,Clinical Cooperation Group Personalized Radiotherapy of Head and Neck Tumors, Helmholtz, Germany
| |
Collapse
|
61
|
Riethdorf S, O'Flaherty L, Hille C, Pantel K. Clinical applications of the CellSearch platform in cancer patients. Adv Drug Deliv Rev 2018; 125:102-121. [PMID: 29355669 DOI: 10.1016/j.addr.2018.01.011] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/29/2022]
Abstract
The CellSearch® system (CS) enables standardized enrichment and enumeration of circulating tumor cells (CTCs) that are repeatedly assessable via non-invasive "liquid biopsy". While the association of CTCs with poor clinical outcome for cancer patients has clearly been demonstrated in numerous clinical studies, utilizing CTCs for the identification of therapeutic targets, stratification of patients for targeted therapies and uncovering mechanisms of resistance is still under investigation. Here, we comprehensively review the current benefits and drawbacks of clinical CTC analyses for patients with metastatic and non-metastatic tumors. Furthermore, the review focuses on approaches beyond CTC enumeration that aim to uncover therapeutically relevant antigens, genomic aberrations, transcriptional profiles and epigenetic alterations of CTCs at a single cell level. This characterization of CTCs may shed light on the heterogeneity and genomic landscapes of malignant tumors, an understanding of which is highly important for the development of new therapeutic strategies.
Collapse
|
62
|
Turetta M, Del Ben F, Brisotto G, Biscontin E, Bulfoni M, Cesselli D, Colombatti A, Scoles G, Gigli G, del Mercato LL. Emerging Technologies for Cancer Research: Towards Personalized Medicine with Microfluidic Platforms and 3D Tumor Models. Curr Med Chem 2018; 25:4616-4637. [PMID: 29874987 PMCID: PMC6302350 DOI: 10.2174/0929867325666180605122633] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 07/24/2017] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
In the present review, we describe three hot topics in cancer research such as circulating tumor cells, exosomes, and 3D environment models. The first section is dedicated to microfluidic platforms for detecting circulating tumor cells, including both affinity-based methods that take advantage of antibodies and aptamers, and "label-free" approaches, exploiting cancer cells physical features and, more recently, abnormal cancer metabolism. In the second section, we briefly describe the biology of exosomes and their role in cancer, as well as conventional techniques for their isolation and innovative microfluidic platforms. In the third section, the importance of tumor microenvironment is highlighted, along with techniques for modeling it in vitro. Finally, we discuss limitations of two-dimensional monolayer methods and describe advantages and disadvantages of different three-dimensional tumor systems for cell-cell interaction analysis and their potential applications in cancer management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Loretta L. del Mercato
- Address correspondence to this author at the CNR NANOTEC - Institute of Nanotechnology c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy; E-mail:
| |
Collapse
|
63
|
Wang G, Benasutti H, Jones JF, Shi G, Benchimol M, Pingle S, Kesari S, Yeh Y, Hsieh LE, Liu YT, Elias A, Simberg D. Isolation of Breast cancer CTCs with multitargeted buoyant immunomicrobubbles. Colloids Surf B Biointerfaces 2018; 161:200-209. [PMID: 29080504 PMCID: PMC5726926 DOI: 10.1016/j.colsurfb.2017.10.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/17/2017] [Accepted: 10/21/2017] [Indexed: 12/16/2022]
Abstract
Circulating tumor cells (CTCs) are extremely rare cells found in blood of metastatic cancer patients. There is a need for inexpensive technologies for fast enrichment of CTCs from large blood volumes. Previous data showed that antibody-conjugated lipid shell immuno-microbubbles (MBs) bind and isolate cells from biological fluids by flotation. Here, blood-stable MBs targeted to several surface markers for isolation of breast tumor cells were developed. MBs coated with anti-human EpCAM antibodies showed efficient binding of EpCAM+ breast cancer cell lines SKBR-3, MCF-7, and MDA-MB-453, whereas anti-human EGFR MBs showed binding of EpCAMLOW/NEGATIVE cell lines MDA-MB-231 and BT-549. Multitargeted anti-human EpCAM/EGFR MBs bound all cell lines with over 95% efficiency. Highly concentrated MB-bound tumor cells were collected in a microliter volume via an inverted vacuum-assisted harvesting setup. Using anti-EpCAM and/or anti-EpCAM/EGFR MBs, an efficient (70-90%) recovery and fast (30min) isolation of the above-mentioned cells and cell clusters was achieved from 7.5mL of spiked human blood. Using anti-EpCAM MBs and anti-EpCAM/EGFR MBs, cytokeratin-positive, CD45-negative CTCs were detected in 62.5% (10/16) of patients with metastatic breast cancer and CTC clusters were detected in 41.7% (5/12) of CTC-positive samples. Moreover, in some samples MBs isolated cytokeratin positive, CD45 negative tumor-derived microparticles. None of these structures were detected in blood from non-epithelial malignancies. The fast and inexpensive multitargeted platform for batch isolation of CTCs can promote research and clinical applications involving primary tumors and metastases.
Collapse
Affiliation(s)
- Guankui Wang
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd., Aurora, CO 80045, USA
| | - Halli Benasutti
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd., Aurora, CO 80045, USA
| | - Jessica F Jones
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd., Aurora, CO 80045, USA
| | - Guixin Shi
- Diagnologix, LLC, 5820 Oberlin Drive, Suite 104, San Diego, CA 92121, USA
| | - Michael Benchimol
- Diagnologix, LLC, 5820 Oberlin Drive, Suite 104, San Diego, CA 92121, USA
| | - Sandeep Pingle
- Department of Translational Neuro-Oncology and Neurotherapeutics, John Wayne Cancer Institute at Providence Saint John's Health Center, 2200 Santa Monica Blvd., Santa Monica, CA 90404, USA
| | - Santosh Kesari
- Department of Translational Neuro-Oncology and Neurotherapeutics, John Wayne Cancer Institute at Providence Saint John's Health Center, 2200 Santa Monica Blvd., Santa Monica, CA 90404, USA
| | - Yasan Yeh
- Moores UCSD Cancer Center, University of California San Diego,3855 Health Sciences Drive, La Jolla, CA 92093, USA
| | - Li-En Hsieh
- Moores UCSD Cancer Center, University of California San Diego,3855 Health Sciences Drive, La Jolla, CA 92093, USA
| | - Yu-Tsueng Liu
- Moores UCSD Cancer Center, University of California San Diego,3855 Health Sciences Drive, La Jolla, CA 92093, USA.
| | - Anthony Elias
- University of Colorado Cancer Center, Breast & Sarcoma Programs, Department of Medicine, University of Colorado, 1665 Aurora Court, Aurora, CO 80045, USA
| | - Dmitri Simberg
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd., Aurora, CO 80045, USA.
| |
Collapse
|
64
|
Reinhardt F, Franken A, Fehm T, Neubauer H. Navigation through inter- and intratumoral heterogeneity of endocrine resistance mechanisms in breast cancer: A potential role for Liquid Biopsies? Tumour Biol 2017; 39:1010428317731511. [DOI: 10.1177/1010428317731511] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The majority of breast cancers are hormone receptor positive due to the expression of the estrogen and/or progesterone receptors. Endocrine therapy is a major treatment option for all disease stages of hormone receptor–positive breast cancer and improves overall survival. However, endocrine therapy is limited by de novo and acquired resistance. Several factors have been proposed for endocrine therapy failures, which include molecular alterations in the estrogen receptor pathway, altered expression of cell-cycle regulators, autophagy, and epithelial-to-mesenchymal transition as a consequence of tumor progression and selection pressure. It is essential to reveal and monitor intra- and intertumoral alterations in breast cancer to allow optimal therapy outcome. Endocrine therapy navigation by molecular profiling of tissue biopsies is the current gold standard but limited in many reasons. “Liquid biopsies” such as circulating-tumor cells and circulating-tumor DNA offer hope to fill that gap in allowing non-invasive serial assessment of biomarkers predicting success of endocrine therapy regimen. In this context, this review will provide an overview on inter- and intratumoral heterogeneity of endocrine resistance mechanisms and discuss the potential role of “liquid biopsies” as navigators to personalize treatment methods and prevent endocrine treatment resistance in breast cancer.
Collapse
Affiliation(s)
- Florian Reinhardt
- Department of Obstetrics and Gynecology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - André Franken
- Department of Obstetrics and Gynecology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
65
|
Song P, Ye D, Zuo X, Li J, Wang J, Liu H, Hwang MT, Chao J, Su S, Wang L, Shi J, Wang L, Huang W, Lal R, Fan C. DNA Hydrogel with Aptamer-Toehold-Based Recognition, Cloaking, and Decloaking of Circulating Tumor Cells for Live Cell Analysis. NANO LETTERS 2017; 17:5193-5198. [PMID: 28771008 DOI: 10.1021/acs.nanolett.7b01006] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Circulating tumor cells (CTCs) contain molecular information on the primary tumor and can be used for predictive cancer diagnostics. Capturing rare live CTCs and their quantification in whole blood remain technically challenging. Here we report an aptamer-trigger clamped hybridization chain reaction (atcHCR) method for in situ identification and subsequent cloaking/decloaking of CTCs by porous DNA hydrogels. These decloaked CTCs were then used for live cell analysis. In our design, a DNA staple strand with aptamer-toehold biblocks specifically recognizes epithelial cell adhesion molecule (EpCAM) on the CTC surface that triggers subsequent atcHCR via toehold-initiated branch migration. Porous DNA hydrogel based-cloaking of single/cluster of CTCs allows capturing of living CTCs directly with minimal cell damage. The ability to identify a low number of CTCs in whole blood by DNA hydrogel cloaking would allow high sensitivity and specificity for diagnosis in clinically relevant settings. More significantly, decloaking of CTCs using controlled and defined chemical stimuli can release living CTCs without damages for subsequent culture and live cell analysis. We expect this liquid biopsy tool to open new powerful and effective routes for cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Ping Song
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University , Shanghai 200127, China
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Dekai Ye
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University , Shanghai 200127, China
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Jiang Li
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Jianbang Wang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Huajie Liu
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Michael T Hwang
- Materials Science and Engineering Program, Department of Bioengineering, Department of Mechanical and Aerospace Engineering, Institute of Engineering in Medicine, University of California , San Diego, La Jolla, California 92093, United States
| | - Jie Chao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications , Nanjing 210046, China
| | - Shao Su
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications , Nanjing 210046, China
| | - Lihua Wang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Jiye Shi
- Kellogg College, University of Oxford , Oxford OX2 6PN, United Kingdom
- UCB Pharma, Slough SL1 3WE, United Kingdom
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications , Nanjing 210046, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications , Nanjing 210046, China
| | - Ratnesh Lal
- Materials Science and Engineering Program, Department of Bioengineering, Department of Mechanical and Aerospace Engineering, Institute of Engineering in Medicine, University of California , San Diego, La Jolla, California 92093, United States
| | - Chunhai Fan
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| |
Collapse
|
66
|
Lampignano R, Yang L, Neumann MHD, Franken A, Fehm T, Niederacher D, Neubauer H. A Novel Workflow to Enrich and Isolate Patient-Matched EpCAM high and EpCAM low/negative CTCs Enables the Comparative Characterization of the PIK3CA Status in Metastatic Breast Cancer. Int J Mol Sci 2017; 18:ijms18091885. [PMID: 28858218 PMCID: PMC5618534 DOI: 10.3390/ijms18091885] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/21/2017] [Accepted: 08/25/2017] [Indexed: 02/06/2023] Open
Abstract
Circulating tumor cells (CTCs), potential precursors of most epithelial solid tumors, are mainly enriched by epithelial cell adhesion molecule (EpCAM)-dependent technologies. Hence, these approaches may overlook mesenchymal CTCs, considered highly malignant. Our aim was to establish a workflow to enrich and isolate patient-matched EpCAMhigh and EpCAMlow/negative CTCs within the same blood samples, and to investigate the phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) mutational status within single CTCs. We sequentially processed metastatic breast cancer (MBC) blood samples via CellSearch® (EpCAM-based) and via Parsortix™ (size-based) systems. After enrichment, cells captured in Parsortix™ cassettes were stained in situ for nuclei, cytokeratins, EpCAM and CD45. Afterwards, sorted cells were isolated via CellCelector™ micromanipulator and their genomes were amplified. Lastly, PIK3CA mutational status was analyzed by combining an amplicon-based approach with Sanger sequencing. In 54% of patients′ blood samples both EpCAMhigh and EpCAMlow/negative cells were identified and successfully isolated. High genomic integrity was observed in 8% of amplified genomes of EpCAMlow/negative cells vs. 28% of EpCAMhigh cells suggesting an increased apoptosis in the first CTC-subpopulation. Furthermore, PIK3CA hotspot mutations were detected in both EpCAMhigh and EpCAMlow/negative CTCs. Our workflow is suitable for single CTC analysis, permitting—for the first time—assessment of the heterogeneity of PIK3CA mutational status within patient-matched EpCAMhigh and EpCAMlow/negative CTCs.
Collapse
Affiliation(s)
- Rita Lampignano
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Life Science Center, Merowingerplatz 1A, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - Liwen Yang
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Life Science Center, Merowingerplatz 1A, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - Martin H D Neumann
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Life Science Center, Merowingerplatz 1A, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - André Franken
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Life Science Center, Merowingerplatz 1A, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Life Science Center, Merowingerplatz 1A, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - Dieter Niederacher
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Life Science Center, Merowingerplatz 1A, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, Heinrich Heine University of Duesseldorf, Life Science Center, Merowingerplatz 1A, Moorenstr. 5, 40225 Duesseldorf, Germany.
| |
Collapse
|
67
|
Kruspe S, Dickey DD, Urak KT, Blanco GN, Miller MJ, Clark KC, Burghardt E, Gutierrez WR, Phadke SD, Kamboj S, Ginader T, Smith BJ, Grimm SK, Schappet J, Ozer H, Thomas A, McNamara JO, Chan CH, Giangrande PH. Rapid and Sensitive Detection of Breast Cancer Cells in Patient Blood with Nuclease-Activated Probe Technology. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:542-557. [PMID: 28918054 PMCID: PMC5577414 DOI: 10.1016/j.omtn.2017.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023]
Abstract
A challenge for circulating tumor cell (CTC)-based diagnostics is the development of simple and inexpensive methods that reliably detect the diverse cells that make up CTCs. CTC-derived nucleases are one category of proteins that could be exploited to meet this challenge. Advantages of nucleases as CTC biomarkers include: (1) their elevated expression in many cancer cells, including cells implicated in metastasis that have undergone epithelial-to-mesenchymal transition; and (2) their enzymatic activity, which can be exploited for signal amplification in detection methods. Here, we describe a diagnostic assay based on quenched fluorescent nucleic acid probes that detect breast cancer CTCs via their nuclease activity. This assay exhibited robust performance in distinguishing breast cancer patients from healthy controls, and it is rapid, inexpensive, and easy to implement in most clinical labs. Given its broad applicability, this technology has the potential to have a substantive impact on the diagnosis and treatment of many cancers.
Collapse
Affiliation(s)
- Sven Kruspe
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - David D Dickey
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Kevin T Urak
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA; Molecular & Cellular Biology Program, University of Iowa, Iowa City, IA, USA
| | - Giselle N Blanco
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Matthew J Miller
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Karen C Clark
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
| | - Elliot Burghardt
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Wade R Gutierrez
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Sneha D Phadke
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Sukriti Kamboj
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Timothy Ginader
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Brian J Smith
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Sarah K Grimm
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - James Schappet
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA, USA
| | - Howard Ozer
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alexandra Thomas
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA; Department of Hematology & Oncology, Wake Forest, Winston Salem, NC, USA
| | - James O McNamara
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA; Molecular & Cellular Biology Program, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Carlos H Chan
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA; Department of Surgery, University of Iowa, Iowa City, IA, USA.
| | - Paloma H Giangrande
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA; Molecular & Cellular Biology Program, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA; Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA; Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, USA; Environmental Health Sciences Research Center, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
68
|
Strotman LN, Millner LM, Valdes R, Linder MW. Liquid Biopsies in Oncology and the Current Regulatory Landscape. Mol Diagn Ther 2017; 20:429-36. [PMID: 27324559 DOI: 10.1007/s40291-016-0220-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is a profound need in oncology to detect cancer earlier, guide individualized therapies, and better monitor progress during treatment. Currently, some of this information can be achieved through solid tissue biopsy and imaging. However, these techniques are limited because of the invasiveness of the procedure and the size of the tumor. A liquid biopsy can overcome these barriers as its non-invasive nature allows samples to be collected over time. Liquid biopsies may also allow earlier detection than traditional imaging. Liquid biopsies include the analysis of circulating tumor cells (CTCs), cell-free nucleic acid (cfNA), or extracellular vesicles obtained from a variety of biofluids, such as peripheral blood. In this review, we discuss different liquid biopsy types and how they fit into the current regulatory landscape.
Collapse
Affiliation(s)
- Lindsay N Strotman
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Louisville, 511 South Floyd Street, MDR 221, Louisville, KY, 40202, USA
- PGXL Technologies, 201 E. Floyd St., Suite 306, Louisville, KY, USA
| | - Lori M Millner
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Louisville, 511 South Floyd Street, MDR 221, Louisville, KY, 40202, USA
- PGXL Technologies, 201 E. Floyd St., Suite 306, Louisville, KY, USA
| | - Roland Valdes
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Louisville, 511 South Floyd Street, MDR 221, Louisville, KY, 40202, USA
- PGXL Technologies, 201 E. Floyd St., Suite 306, Louisville, KY, USA
| | - Mark W Linder
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Louisville, 511 South Floyd Street, MDR 221, Louisville, KY, 40202, USA.
- PGXL Technologies, 201 E. Floyd St., Suite 306, Louisville, KY, USA.
| |
Collapse
|
69
|
Micalizzi DS, Haber DA, Maheswaran S. Cancer metastasis through the prism of epithelial-to-mesenchymal transition in circulating tumor cells. Mol Oncol 2017; 11:770-780. [PMID: 28544498 PMCID: PMC5496489 DOI: 10.1002/1878-0261.12081] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 12/23/2022] Open
Abstract
Metastasis of epithelial cancer cells to distant sites is a particularly critical stage of cancer progression that typically marks the incurability of the disease. It is governed by a complex series of events including invasion and intravasation of tumor cells into the stroma and blood, respectively. Epithelial-to-mesenchymal transition (EMT), a phenotypic change marked by the loss of epithelial characteristics and the acquisition of invasive mesenchymal properties, is implicated in the dissemination of tumor cells. Circulating tumor cells (CTCs), the precursors of metastasis, can be used to interrogate the contribution of EMT in metastasis and therapeutic responses. The analysis of these CTCs and in particular the presence of inter- and intrapatient heterogeneity for markers of EMT has provided new insights into the metastatic process. This review will focus on epithelial-mesenchymal plasticity in CTCs and its potential clinical implications.
Collapse
Affiliation(s)
- Douglas S. Micalizzi
- Massachusetts General Hospital Cancer CenterHarvard Medical SchoolCharlestownMAUSA
- Department of MedicineHarvard Medical SchoolCharlestownMAUSA
| | - Daniel A. Haber
- Massachusetts General Hospital Cancer CenterHarvard Medical SchoolCharlestownMAUSA
- Department of MedicineHarvard Medical SchoolCharlestownMAUSA
- Howard Hughes Medical InstituteChevy ChaseMDUSA
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer CenterHarvard Medical SchoolCharlestownMAUSA
- Department of SurgeryHarvard Medical SchoolCharlestownMAUSA
| |
Collapse
|
70
|
Wang D. Unraveling Sugar Chain Signatures of the "Seeds" of Tumor Metastasis. JOURNAL OF PROTEOMICS & BIOINFORMATICS 2017; 10. [PMID: 28490841 PMCID: PMC5421395 DOI: 10.4172/jpb.1000e31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Denong Wang
- Tumor Glycomics Laboratory, SRI International Biosciences Division, CA, USA
| |
Collapse
|
71
|
Tampaki EC, Tampakis A, Nonni A, Kontzoglou K, Patsouris E, Kouraklis G. Nestin and cluster of differentiation 146 expression in breast cancer: Predicting early recurrence by targeting metastasis? Tumour Biol 2017; 39:1010428317691181. [PMID: 28347241 DOI: 10.1177/1010428317691181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The purpose of this study was to investigate the relationship between the expression of stem-cell markers nestin and cluster of differentiation 146 with clinicopathological characteristics in breast cancer and to determine whether a prognostic impact of nestin and CD146 expression exists regarding occurrence of disease relapse in breast cancer. A total of 141 patients who were histologically diagnosed with breast cancer and underwent radical operations from November 2006 to October 2013 in Laiko General Hospital, National and Kapodistrian University of Athens, were enrolled in the study. CD146 and nestin protein expression were evaluated using immunohistochemistry. Nestin expression was observed in 18.4% (26/141) of the cases, while CD146 expression was observed in 35.5% (50/141) of the cases. Nestin expression is significantly higher in younger patients with breast cancer. Nestin and CD146 expression were not correlated with the tumor size and the presence of lymph node metastasis. On the contrary, a significantly higher expression of nestin and CD146 was observed with triple-negative cancers (p < 0.0001 for both markers), low differentiated tumors (p = 0.021 for nestin and p = 0.008 for CD146), and increased Ki-67 expression (p = 0.007 for nestin and p < 0.0001 for CD146). The nestin-positive group of patients and the CD146-positive group of patients presented significantly higher rates of disease recurrence (log-rank test, p = 0.022 for nestin and p = 0.003 for CD146) with a distant metastasis, 30 months after the primary treatment. CD146 but not nestin, however, predicted independently (p = 0.047) disease recurrence. Nestin and CD146 are expressed in breast cancer cells with highly aggressive potency. They might contribute to disease relapse in breast cancer by activating the epithelial-mesenchymal transition pathway and assist tumor neovascularization.
Collapse
Affiliation(s)
- Ekaterini Christina Tampaki
- 1 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | | | - Afroditi Nonni
- 3 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Kontzoglou
- 1 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | - Efstratios Patsouris
- 3 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Gregory Kouraklis
- 1 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| |
Collapse
|
72
|
Zhang D, Liu X, Gao J, Sun Y, Liu T, Yan Q, Yang X. The role of epithelial cell adhesion molecule N-glycosylation on apoptosis in breast cancer cells. Tumour Biol 2017; 39:1010428317695973. [DOI: 10.1177/1010428317695973] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glycosylation of cell surface proteins plays an important role in the regulation of apoptosis. It has been demonstrated that knockdown of epithelial cell adhesion molecule promoted apoptosis, inhibited cell proliferation, and caused cell-cycle arrest. In this study, we investigated whether and how N-glycosylation of epithelial cell adhesion molecule influenced the apoptosis in breast cancer cells. We applied the N-glycosylation mutation epithelial cell adhesion molecule plasmid to express deglycosylation of epithelial cell adhesion molecule and then to study its function. Our results showed that deglycosylation of epithelial cell adhesion molecule promoted apoptosis and inhibited cell proliferation. Deglycosylation of epithelial cell adhesion molecule enhanced the cytotoxic effect of 5-fluorouracil, promoting apoptosis by downregulating the expression of the anti-apoptotic protein Bcl-2 and upregulating the expression of the pro-apoptotic proteins Bax and Caspase 3 via the extracellular-signal-regulated kinase 1/2 and c-Jun N-terminal kinase mitogen-activated protein kinase signaling pathways in MCF-7 and MDA-MB-231 cells. These findings are important for a better understanding of epithelial cell adhesion molecule apoptosis regulation and suggest epithelial cell adhesion molecule as a potential target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Dandan Zhang
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, People’s Republic of China
| | - Xue Liu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, People’s Republic of China
| | - Jiujiao Gao
- Center for Molecular Medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, People’s Republic of China
| | - Yan Sun
- Department of Nephrology, Hematology and Rheumatology, Yantai Affiliated Hospital, Binzhou Medical College, Yantai, People’s Republic of China
| | - Tingjiao Liu
- Section of Oral Pathology, College of Stomatology, Dalian Medical University, Dalian, People’s Republic of China
| | - Qiu Yan
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, People’s Republic of China
| | - Xuesong Yang
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, People’s Republic of China
| |
Collapse
|
73
|
Alvarez Cubero MJ, Lorente JA, Robles-Fernandez I, Rodriguez-Martinez A, Puche JL, Serrano MJ. Circulating Tumor Cells: Markers and Methodologies for Enrichment and Detection. Methods Mol Biol 2017; 1634:283-303. [PMID: 28819860 DOI: 10.1007/978-1-4939-7144-2_24] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cancer is a leading cause of disease worldwide; however, nowadays many points of its initiation processes are unknown. In this chapter, we are focusing on the role of liquid biopsies in cancer detection and progression. CTCs are one of the main components of liquid biopsies, they represent a subset of tumor cells that have acquired the ability to disseminate from the primary tumor and intravasate to the circulatory system. The greatest challenge in the detection of CTCs is their rarity in the blood. Human blood consists of white blood cells (5-10 × 106/mL), red blood cells (5-9 × 109/mL), and platelets (2.5-4 × 108/mL); very few CTCs will be present even in patients with known metastatic disease, with often less than one CTC per mL of blood. CTCs are found in frequencies on the order of 1-10 CTCs per mL of whole blood in patients with metastatic disease, and it is reduced in half for non-metastatic stages. Therefore, accurate methodologies for their capture and analysis are really important. The main aim of the present chapter is to describe different methodologies for CTCs capturing and analysis.
Collapse
MESH Headings
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- Cell Count
- Cell Line, Tumor
- Cell Separation/instrumentation
- Cell Separation/methods
- Cell Survival
- Centrifugation, Density Gradient/methods
- Epithelial Cell Adhesion Molecule/genetics
- Epithelial Cell Adhesion Molecule/immunology
- Epithelial Cell Adhesion Molecule/metabolism
- Epithelial-Mesenchymal Transition/genetics
- Equipment Design
- ErbB Receptors/genetics
- ErbB Receptors/immunology
- ErbB Receptors/metabolism
- Ficoll/chemistry
- Fluorescent Dyes/chemistry
- Humans
- Immunoassay
- Keratins/genetics
- Keratins/immunology
- Keratins/metabolism
- Microfluidic Analytical Techniques/instrumentation
- Neoplasms/blood
- Neoplasms/diagnosis
- Neoplasms/immunology
- Neoplasms/pathology
- Neoplastic Cells, Circulating/immunology
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Protein Binding
Collapse
Affiliation(s)
- M J Alvarez Cubero
- GENYO. Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, Av. de la Ilustración 114, 18016, Granada, Spain.
| | - J A Lorente
- GENYO. Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, Av. de la Ilustración 114, 18016, Granada, Spain
- Laboratory of Genetic Identification, University of Granada-Dept. of Legal Medicine - Faculty of Medicine, Granada, 18016, Spain
| | - I Robles-Fernandez
- GENYO. Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, Av. de la Ilustración 114, 18016, Granada, Spain
| | - A Rodriguez-Martinez
- GENYO. Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, Av. de la Ilustración 114, 18016, Granada, Spain
- Laboratory of Genetic Identification, University of Granada-Dept. of Legal Medicine - Faculty of Medicine, Granada, 18016, Spain
| | - J L Puche
- Integral Oncology Division, Clinical University Hospitals of Granada, Av. de las Fuerzas Armadas, 2, 18014, Granada, Spain
| | - M J Serrano
- GENYO. Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, Av. de la Ilustración 114, 18016, Granada, Spain
- Integral Oncology Division, Clinical University Hospitals of Granada, Av. de las Fuerzas Armadas, 2, 18014, Granada, Spain
| |
Collapse
|
74
|
Lampignano R, Schneck H, Neumann M, Fehm T, Neubauer H. Enrichment, Isolation and Molecular Characterization of EpCAM-Negative Circulating Tumor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 994:181-203. [PMID: 28560675 DOI: 10.1007/978-3-319-55947-6_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The presence of EpCAM-positive circulating tumor cells (CTCs) in the peripheral blood is associated with poor clinical outcomes in breast, colorectal and prostate cancer, as well as the prognosis of other tumor types. In addition, recent studies have suggested that the presence of CTCs undergoing epithelial-to-mesenchymal transition and, as such, may exhibit reduced or no expression of epithelial proteins e.g. EpCAM, might be related to disease progression in metastatic breast cancer (MBC) patients. Analyzing the neoplastic nature of this EpCAM-low/negative (EpCAM-neg) subpopulation remains an open issue as the current standard detection methods for CTCs are not efficient at identifying this subpopulation of cells. The possible association of EpCAM-neg CTCs with EpCAM-positive (EpCAM-pos) CTCs and role in the clinicopathological features and prognosis of MBC patients has still to be demonstrated. Several technologies have been developed and are currently being tested for the identification and the downstream analyses of EpCAM-pos CTCs. These technologies can be adapted and implemented into workflows to isolate and investigate EpCAM-neg cells to understand their biology and clinical relevance. This chapter will endeavour to explain the rationale behind the identification and analyses of all CTC subgroups, as well as to review the current strategies employed to enrich, isolate and characterize EpCAM-negative CTCs. Finally, the latest findings in the field will briefly be discussed with regard to their clinical relevance.
Collapse
Affiliation(s)
- Rita Lampignano
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Helen Schneck
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Martin Neumann
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Hans Neubauer
- Forschungslabore der Frauenklinik des, Universitätsklinikums Düsseldorf, Life Science Center, Merowingerplatz 1A, 40225, Düsseldorf, Germany.
| |
Collapse
|
75
|
Improved detection of circulating tumor cells in non-metastatic high-risk prostate cancer patients. Sci Rep 2016; 6:39736. [PMID: 28000772 PMCID: PMC5175156 DOI: 10.1038/srep39736] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/28/2016] [Indexed: 12/18/2022] Open
Abstract
The relevance of blood-based assays to monitor minimal residual disease (MRD) in non-metastatic prostate cancer (PCa) remains unclear. Proving that clinically relevant circulating tumor cells (CTCs) can be detected with available technologies could address this. This study aimed to improve CTC detection in non-metastatic PCa patients by combining three independent CTC assays: the CellSearch system, an in vivo CellCollector and the EPISPOT. Peripheral blood samples from high-risk PCa patients were screened for CTCs before and three months after radical prostatectomy (RP). Combining the results of both time points, CTCs were detected in 37%, 54.9% and 58.7% of patients using CellSearch, CellCollector and EPISPOT, respectively. The cumulative positivity rate of the three CTC assays was 81.3% (87/107) with 21.5% (23/107) of patients harboring ≥5 CTCs/7.5 ml blood. Matched pair analysis of 30 blood samples taken before and after surgery indicated a significant decrease in CTCs captured by the CellCollector from 66% before RP to 34% after therapy (p = 0.031). CTC detection by EPISPOT before RP significantly correlated with PSA serum values (p < 0.0001) and clinical tumor stage (p = 0.04), while the other assays showed no significant correlations. In conclusion, CTC-based liquid biopsies have the potential to monitor MRD in patients with non-metastatic prostate cancer.
Collapse
|
76
|
Kölbl AC, Jeschke U, Andergassen U. The Significance of Epithelial-to-Mesenchymal Transition for Circulating Tumor Cells. Int J Mol Sci 2016; 17:E1308. [PMID: 27529216 PMCID: PMC5000705 DOI: 10.3390/ijms17081308] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 12/12/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a process involved in embryonic development, but it also plays a role in remote metastasis formation in tumor diseases. During this process cells lose their epithelial features and adopt characteristics of mesenchymal cells. Thereby single tumor cells, which dissolve from the primary tumor, are enabled to invade the blood vessels and travel throughout the body as so called "circulating tumor cells" (CTCs). After leaving the blood stream the reverse process of EMT, the mesenchymal to epithelial transition (MET) helps the cells to seed in different tissues, thereby generating the bud of metastasis formation. As metastasis is the main reason for tumor-associated death, CTCs and the EMT process are in the focus of research in recent years. This review summarizes what was already found out about the molecular mechanisms driving EMT, the consequences of EMT for tumor cell detection, and suitable markers for the detection of CTCs which underwent EMT. The research work done in this field could open new roads towards combating cancer.
Collapse
Affiliation(s)
- Alexandra C Kölbl
- Department of Gynecology and Obstetrics, LMU Munich, Maistrasse 11, 80337 Munich, Germany.
| | - Udo Jeschke
- Department of Gynecology and Obstetrics, LMU Munich, Maistrasse 11, 80337 Munich, Germany.
| | - Ulrich Andergassen
- Department of Gynecology and Obstetrics, LMU Munich, Maistrasse 11, 80337 Munich, Germany.
| |
Collapse
|
77
|
Schehr JL, Schultz ZD, Warrick JW, Guckenberger DJ, Pezzi HM, Sperger JM, Heninger E, Saeed A, Leal T, Mattox K, Traynor AM, Campbell TC, Berry SM, Beebe DJ, Lang JM. High Specificity in Circulating Tumor Cell Identification Is Required for Accurate Evaluation of Programmed Death-Ligand 1. PLoS One 2016; 11:e0159397. [PMID: 27459545 PMCID: PMC4961410 DOI: 10.1371/journal.pone.0159397] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/02/2016] [Indexed: 12/26/2022] Open
Abstract
Background Expression of programmed-death ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC) is typically evaluated through invasive biopsies; however, recent advances in the identification of circulating tumor cells (CTCs) may be a less invasive method to assay tumor cells for these purposes. These liquid biopsies rely on accurate identification of CTCs from the diverse populations in the blood, where some tumor cells share characteristics with normal blood cells. While many blood cells can be excluded by their high expression of CD45, neutrophils and other immature myeloid subsets have low to absent expression of CD45 and also express PD-L1. Furthermore, cytokeratin is typically used to identify CTCs, but neutrophils may stain non-specifically for intracellular antibodies, including cytokeratin, thus preventing accurate evaluation of PD-L1 expression on tumor cells. This holds even greater significance when evaluating PD-L1 in epithelial cell adhesion molecule (EpCAM) positive and EpCAM negative CTCs (as in epithelial-mesenchymal transition (EMT)). Methods To evaluate the impact of CTC misidentification on PD-L1 evaluation, we utilized CD11b to identify myeloid cells. CTCs were isolated from patients with metastatic NSCLC using EpCAM, MUC1 or Vimentin capture antibodies and exclusion-based sample preparation (ESP) technology. Results Large populations of CD11b+CD45lo cells were identified in buffy coats and stained non-specifically for intracellular antibodies including cytokeratin. The amount of CD11b+ cells misidentified as CTCs varied among patients; accounting for 33–100% of traditionally identified CTCs. Cells captured with vimentin had a higher frequency of CD11b+ cells at 41%, compared to 20% and 18% with MUC1 or EpCAM, respectively. Cells misidentified as CTCs ultimately skewed PD-L1 expression to varying degrees across patient samples. Conclusions Interfering myeloid populations can be differentiated from true CTCs with additional staining criteria, thus improving the specificity of CTC identification and the accuracy of biomarker evaluation.
Collapse
Affiliation(s)
- Jennifer L. Schehr
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zachery D. Schultz
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jay W. Warrick
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David J. Guckenberger
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hannah M. Pezzi
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jamie M. Sperger
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erika Heninger
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anwaar Saeed
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ticiana Leal
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kara Mattox
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Anne M. Traynor
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Toby C. Campbell
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Scott M. Berry
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David J. Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Joshua M. Lang
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
78
|
Tartarone A, Rossi E, Lerose R, Mambella G, Calderone G, Zamarchi R, Aieta M. Possible applications of circulating tumor cells in patients with non small cell lung cancer. Lung Cancer 2016; 107:59-64. [PMID: 27339469 DOI: 10.1016/j.lungcan.2016.05.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/01/2016] [Accepted: 05/29/2016] [Indexed: 01/25/2023]
Abstract
Recent experiences indicate that, as already reported for other types of cancer, circulating tumor cells (CTCs) may play a role also in non small cell lung cancer (NSCLC) for diagnosis, therapy monitoring and prognostic purposes. CTCs evaluation could be particularly relevant in this clinical setting not only for the objective difficulty in obtaining tumor tissue, but also because of the lack of reliable tumor markers. In the current review, we will focus on the possible applications of CTCs in NSCLC patients.
Collapse
Affiliation(s)
- Alfredo Tartarone
- Department of Onco-Hematology, Division of Medical Oncology, Centro di Riferimento Oncologico della Basilicata, IRCCS, Rionero in Vulture (PZ), Italy.
| | - Elisabetta Rossi
- Department of Surgery, Oncology and Gastroenterology, Oncology Section, University of Padova, Padova, Italy
| | - Rosa Lerose
- Hospital Pharmacy, Centro di Riferimento Oncologico della Basilicata, IRCCS, Rionero in Vulture (PZ), Italy
| | - Giuseppina Mambella
- Department of Onco-Hematology, Division of Medical Oncology, Centro di Riferimento Oncologico della Basilicata, IRCCS, Rionero in Vulture (PZ), Italy
| | - Giuseppe Calderone
- Department of Onco-Hematology, Division of Medical Oncology, Centro di Riferimento Oncologico della Basilicata, IRCCS, Rionero in Vulture (PZ), Italy
| | | | - Michele Aieta
- Department of Onco-Hematology, Division of Medical Oncology, Centro di Riferimento Oncologico della Basilicata, IRCCS, Rionero in Vulture (PZ), Italy
| |
Collapse
|
79
|
Blassl C, Kuhlmann JD, Webers A, Wimberger P, Fehm T, Neubauer H. Gene expression profiling of single circulating tumor cells in ovarian cancer - Establishment of a multi-marker gene panel. Mol Oncol 2016; 10:1030-42. [PMID: 27157930 DOI: 10.1016/j.molonc.2016.04.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 12/19/2022] Open
Abstract
The presence of circulating tumor cells (CTCs) in the blood of ovarian cancer patients was shown to correlate with decreased overall survival, whereby CTCs with epithelial-mesenchymal-transition (EMT) or stem-like traits are supposed to be involved in metastatic progression and recurrence. Thus, investigating the transcriptional profiles of CTCs might help to identify therapy resistant tumor cells and to overcome treatment failure. For this purpose, we established a multi-marker panel for the molecular characterization of single CTCs, detecting epithelial (EpCAM, Muc-1, CK5/7), EMT (N-cadherin, Vimentin, Snai1/2, CD117, CD146, CD49f) and stem cell (CD44, ALDH1A1, Nanog, SOX2, Notch1/4, Oct4, Lin28) associated transcripts. First primer specificity and PCR-performance of the multiplex-RT-PCRs were successfully validated on genomic DNA and cDNA isolated from OvCar3 cells. The assay sensitivity of the epithelial panel was evaluated by adding defined numbers of tumor cells into the blood of healthy donors and performing a subsequent immunomagnetic tumor cell enrichment (AdnaTest OvarianCancerSelect), resulting in a 100% concordance for the epithelial markers EpCAM and Muc-1 to the AdnaTest OvarianCancerDetect. Additionally, by processing blood from ovarian cancer patients, high assay sensitivity could be verified. In blood of healthy donors no signals for epithelial markers were detected, for EMT and stem cell markers, however, signals were obtained mainly originating from leukocytes which calls for single cell analysis. To that aim by using the ovarian cancer cell line OvCar3, we successfully established a workflow enabling the characterization of single CTCs. It consists of a density gradient-dependent enrichment for nucleated cells, a depletion of CD45-positive cells of hematopoietic origin followed by immunofluorescent labeling of CTCs by EpCAM and Muc-1. Single CTCs are then isolated by micromanipulation and processed for panel gene expression profiling. Finally, fifteen single CTCs from three ovarian cancer patients were analyzed and found to be positive for stem cell (CD44, ALDH1A1, Nanog, Oct4) and EMT markers (N-cadherin, Vimentin, Snai2, CD117, CD146). Albeit, inter-cellular and intra/inter-patient heterogeneity and co-expression of epithelial, mesenchymal and stem cell transcripts on the same CTC was observed. We have established a robust workflow to perform sensitive single cell panel gene expression analysis without the need of pre-amplification steps. Our data point towards a heterogeneous expression of stem cell and EMT associated transcripts in ovarian cancer CTCs.
Collapse
Affiliation(s)
- Christina Blassl
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital of the Heinrich-Heine University Duesseldorf, Life Science Center, Merowingerplatz 1A, 40225 Duesseldorf, Germany.
| | - Jan Dominik Kuhlmann
- Department of Obstetrics and Gynecology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany; German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Alessandra Webers
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital of the Heinrich-Heine University Duesseldorf, Life Science Center, Merowingerplatz 1A, 40225 Duesseldorf, Germany.
| | - Pauline Wimberger
- Department of Obstetrics and Gynecology, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany; German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital of the Heinrich-Heine University Duesseldorf, Moorenstraße 5, 40225 Duesseldorf, Germany.
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital of the Heinrich-Heine University Duesseldorf, Life Science Center, Merowingerplatz 1A, 40225 Duesseldorf, Germany.
| |
Collapse
|
80
|
Tracking metastatic breast cancer: the future of biology in biosensors. Med Oncol 2016; 33:36. [DOI: 10.1007/s12032-016-0748-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
|
81
|
Schneck H, Gierke B, Uppenkamp F, Behrens B, Niederacher D, Stoecklein NH, Templin MF, Pawlak M, Fehm T, Neubauer H. Correction: EpCAM-Independent Enrichment of Circulating Tumor Cells in Metastatic Breast Cancer. PLoS One 2016; 11:e0149315. [PMID: 26859839 PMCID: PMC4747539 DOI: 10.1371/journal.pone.0149315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
82
|
Danila DC, Scher HI, Fleisher M. Circulating Tumor Cells as an Analytical Tool in the Management of Patients with Cancer. MANUAL OF MOLECULAR AND CLINICAL LABORATORY IMMUNOLOGY 2016:1051-1061. [DOI: 10.1128/9781555818722.ch111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|